sv.c revision 1.54 1 /* $NetBSD: sv.c,v 1.54 2019/03/16 12:09:58 isaki Exp $ */
2 /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3
4 /*
5 * Copyright (c) 1999, 2008 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Charles M. Hannum.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1998 Constantine Paul Sapuntzakis
35 * All rights reserved
36 *
37 * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. The author's name or those of the contributors may be used to
48 * endorse or promote products derived from this software without
49 * specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
52 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
53 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
54 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
55 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
56 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
57 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
58 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
59 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 /*
65 * S3 SonicVibes driver
66 * Heavily based on the eap driver by Lennart Augustsson
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.54 2019/03/16 12:09:58 isaki Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/kmem.h>
76 #include <sys/device.h>
77
78 #include <dev/pci/pcireg.h>
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcidevs.h>
81
82 #include <sys/audioio.h>
83 #include <dev/audio_if.h>
84 #include <dev/mulaw.h>
85 #include <dev/auconv.h>
86
87 #include <dev/ic/i8237reg.h>
88 #include <dev/pci/svreg.h>
89 #include <dev/pci/svvar.h>
90
91 #include <sys/bus.h>
92
93 /* XXX
94 * The SonicVibes DMA is broken and only works on 24-bit addresses.
95 * As long as bus_dmamem_alloc_range() is missing we use the ISA
96 * DMA tag on i386.
97 */
98 #if defined(amd64) || defined(i386)
99 #include <dev/isa/isavar.h>
100 #endif
101
102 #ifdef AUDIO_DEBUG
103 #define DPRINTF(x) if (svdebug) printf x
104 #define DPRINTFN(n,x) if (svdebug>(n)) printf x
105 int svdebug = 0;
106 #else
107 #define DPRINTF(x)
108 #define DPRINTFN(n,x)
109 #endif
110
111 static int sv_match(device_t, cfdata_t, void *);
112 static void sv_attach(device_t, device_t, void *);
113 static int sv_intr(void *);
114
115 struct sv_dma {
116 bus_dmamap_t map;
117 void *addr;
118 bus_dma_segment_t segs[1];
119 int nsegs;
120 size_t size;
121 struct sv_dma *next;
122 };
123 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
124 #define KERNADDR(p) ((void *)((p)->addr))
125
126 CFATTACH_DECL_NEW(sv, sizeof(struct sv_softc),
127 sv_match, sv_attach, NULL, NULL);
128
129 static struct audio_device sv_device = {
130 "S3 SonicVibes",
131 "",
132 "sv"
133 };
134
135 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0]))
136
137 static int sv_allocmem(struct sv_softc *, size_t, size_t, int,
138 struct sv_dma *);
139 static int sv_freemem(struct sv_softc *, struct sv_dma *);
140
141 static void sv_init_mixer(struct sv_softc *);
142
143 static int sv_open(void *, int);
144 static int sv_query_encoding(void *, struct audio_encoding *);
145 static int sv_set_params(void *, int, int, audio_params_t *,
146 audio_params_t *, stream_filter_list_t *,
147 stream_filter_list_t *);
148 static int sv_round_blocksize(void *, int, int, const audio_params_t *);
149 static int sv_trigger_output(void *, void *, void *, int, void (*)(void *),
150 void *, const audio_params_t *);
151 static int sv_trigger_input(void *, void *, void *, int, void (*)(void *),
152 void *, const audio_params_t *);
153 static int sv_halt_output(void *);
154 static int sv_halt_input(void *);
155 static int sv_getdev(void *, struct audio_device *);
156 static int sv_mixer_set_port(void *, mixer_ctrl_t *);
157 static int sv_mixer_get_port(void *, mixer_ctrl_t *);
158 static int sv_query_devinfo(void *, mixer_devinfo_t *);
159 static void * sv_malloc(void *, int, size_t);
160 static void sv_free(void *, void *, size_t);
161 static size_t sv_round_buffersize(void *, int, size_t);
162 static paddr_t sv_mappage(void *, void *, off_t, int);
163 static int sv_get_props(void *);
164 static void sv_get_locks(void *, kmutex_t **, kmutex_t **);
165
166 #ifdef AUDIO_DEBUG
167 void sv_dumpregs(struct sv_softc *sc);
168 #endif
169
170 static const struct audio_hw_if sv_hw_if = {
171 .open = sv_open,
172 .query_encoding = sv_query_encoding,
173 .set_params = sv_set_params,
174 .round_blocksize = sv_round_blocksize,
175 .halt_output = sv_halt_output,
176 .halt_input = sv_halt_input,
177 .getdev = sv_getdev,
178 .set_port = sv_mixer_set_port,
179 .get_port = sv_mixer_get_port,
180 .query_devinfo = sv_query_devinfo,
181 .allocm = sv_malloc,
182 .freem = sv_free,
183 .round_buffersize = sv_round_buffersize,
184 .mappage = sv_mappage,
185 .get_props = sv_get_props,
186 .trigger_output = sv_trigger_output,
187 .trigger_input = sv_trigger_input,
188 .get_locks = sv_get_locks,
189 };
190
191 #define SV_NFORMATS 4
192 static const struct audio_format sv_formats[SV_NFORMATS] = {
193 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
194 2, AUFMT_STEREO, 0, {2000, 48000}},
195 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
196 1, AUFMT_MONAURAL, 0, {2000, 48000}},
197 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
198 2, AUFMT_STEREO, 0, {2000, 48000}},
199 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
200 1, AUFMT_MONAURAL, 0, {2000, 48000}},
201 };
202
203
204 static void
205 sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val)
206 {
207
208 DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
209 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
210 }
211
212 static uint8_t
213 sv_read(struct sv_softc *sc, uint8_t reg)
214 {
215 uint8_t val;
216
217 val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
218 DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
219 return val;
220 }
221
222 static uint8_t
223 sv_read_indirect(struct sv_softc *sc, uint8_t reg)
224 {
225 uint8_t val;
226
227 sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
228 val = sv_read(sc, SV_CODEC_IDATA);
229 return val;
230 }
231
232 static void
233 sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val)
234 {
235 uint8_t iaddr;
236
237 iaddr = reg & SV_IADDR_MASK;
238 if (reg == SV_DMA_DATA_FORMAT)
239 iaddr |= SV_IADDR_MCE;
240
241 sv_write(sc, SV_CODEC_IADDR, iaddr);
242 sv_write(sc, SV_CODEC_IDATA, val);
243 }
244
245 static int
246 sv_match(device_t parent, cfdata_t match, void *aux)
247 {
248 struct pci_attach_args *pa;
249
250 pa = aux;
251 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
252 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
253 return 1;
254
255 return 0;
256 }
257
258 static pcireg_t pci_io_alloc_low, pci_io_alloc_high;
259
260 static int
261 pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs,
262 bus_space_tag_t iot, bus_size_t size, bus_size_t align,
263 bus_size_t bound, int flags, bus_space_handle_t *ioh)
264 {
265 bus_addr_t addr;
266 int error;
267
268 error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high,
269 size, align, bound, flags, &addr, ioh);
270 if (error)
271 return error;
272
273 pci_conf_write(pc, pt, pcioffs, addr);
274 return 0;
275 }
276
277 /*
278 * Allocate IO addresses when all other configuration is done.
279 */
280 static void
281 sv_defer(device_t self)
282 {
283 struct sv_softc *sc;
284 pci_chipset_tag_t pc;
285 pcitag_t pt;
286 pcireg_t dmaio;
287
288 sc = device_private(self);
289 pc = sc->sc_pa.pa_pc;
290 pt = sc->sc_pa.pa_tag;
291 DPRINTF(("sv_defer: %p\n", sc));
292
293 /* XXX
294 * Get a reasonable default for the I/O range.
295 * Assume the range around SB_PORTBASE is valid on this PCI bus.
296 */
297 pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT);
298 pci_io_alloc_high = pci_io_alloc_low + 0x1000;
299
300 if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
301 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
302 0, &sc->sc_dmaa_ioh)) {
303 printf("sv_attach: cannot allocate DMA A range\n");
304 return;
305 }
306 dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
307 DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
308 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
309 dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
310
311 if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
312 sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
313 0, &sc->sc_dmac_ioh)) {
314 printf("sv_attach: cannot allocate DMA C range\n");
315 return;
316 }
317 dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
318 DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
319 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
320 dmaio | SV_DMA_CHANNEL_ENABLE);
321
322 sc->sc_dmaset = 1;
323 }
324
325 static void
326 sv_attach(device_t parent, device_t self, void *aux)
327 {
328 struct sv_softc *sc;
329 struct pci_attach_args *pa;
330 pci_chipset_tag_t pc;
331 pcitag_t pt;
332 pci_intr_handle_t ih;
333 pcireg_t csr;
334 char const *intrstr;
335 uint8_t reg;
336 struct audio_attach_args arg;
337 char intrbuf[PCI_INTRSTR_LEN];
338
339 sc = device_private(self);
340 pa = aux;
341 pc = pa->pa_pc;
342 pt = pa->pa_tag;
343 aprint_naive("\n");
344 aprint_normal("\n");
345
346 /* Map I/O registers */
347 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
348 PCI_MAPREG_TYPE_IO, 0,
349 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
350 aprint_error_dev(self, "can't map enhanced i/o space\n");
351 return;
352 }
353 if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
354 PCI_MAPREG_TYPE_IO, 0,
355 &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
356 aprint_error_dev(self, "can't map FM i/o space\n");
357 return;
358 }
359 if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
360 PCI_MAPREG_TYPE_IO, 0,
361 &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
362 aprint_error_dev(self, "can't map MIDI i/o space\n");
363 return;
364 }
365 DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
366 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
367
368 #if defined(alpha)
369 /* XXX Force allocation through the SGMAP. */
370 sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
371 #elif defined(amd64) || defined(i386)
372 /* XXX
373 * The SonicVibes DMA is broken and only works on 24-bit addresses.
374 * As long as bus_dmamem_alloc_range() is missing we use the ISA
375 * DMA tag on i386.
376 */
377 sc->sc_dmatag = &isa_bus_dma_tag;
378 #else
379 sc->sc_dmatag = pa->pa_dmat;
380 #endif
381
382 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
383 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
384
385 /* Enable the device. */
386 csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
387 pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
388 csr | PCI_COMMAND_MASTER_ENABLE);
389
390 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
391 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
392
393 /* initialize codec registers */
394 reg = sv_read(sc, SV_CODEC_CONTROL);
395 reg |= SV_CTL_RESET;
396 sv_write(sc, SV_CODEC_CONTROL, reg);
397 delay(50);
398
399 reg = sv_read(sc, SV_CODEC_CONTROL);
400 reg &= ~SV_CTL_RESET;
401 reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
402
403 /* This write clears the reset */
404 sv_write(sc, SV_CODEC_CONTROL, reg);
405 delay(50);
406
407 /* This write actually shoves the new values in */
408 sv_write(sc, SV_CODEC_CONTROL, reg);
409
410 DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
411
412 /* Map and establish the interrupt. */
413 if (pci_intr_map(pa, &ih)) {
414 aprint_error_dev(self, "couldn't map interrupt\n");
415 return;
416 }
417
418 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
419 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
420
421 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
422 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_AUDIO, sv_intr, sc,
423 device_xname(self));
424 if (sc->sc_ih == NULL) {
425 aprint_error_dev(self, "couldn't establish interrupt");
426 if (intrstr != NULL)
427 aprint_error(" at %s", intrstr);
428 aprint_error("\n");
429 mutex_destroy(&sc->sc_lock);
430 mutex_destroy(&sc->sc_intr_lock);
431 return;
432 }
433 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
434 aprint_normal_dev(self, "rev %d",
435 sv_read_indirect(sc, SV_REVISION_LEVEL));
436 if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
437 aprint_normal(", reverb SRAM present");
438 if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
439 aprint_normal(", wavetable ROM present");
440 aprint_normal("\n");
441
442 /* Enable DMA interrupts */
443 reg = sv_read(sc, SV_CODEC_INTMASK);
444 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
445 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
446 sv_write(sc, SV_CODEC_INTMASK, reg);
447 sv_read(sc, SV_CODEC_STATUS);
448
449 sv_init_mixer(sc);
450
451 audio_attach_mi(&sv_hw_if, sc, self);
452
453 arg.type = AUDIODEV_TYPE_OPL;
454 arg.hwif = 0;
455 arg.hdl = 0;
456 (void)config_found(self, &arg, audioprint);
457
458 sc->sc_pa = *pa; /* for deferred setup */
459 config_defer(self, sv_defer);
460 }
461
462 #ifdef AUDIO_DEBUG
463 void
464 sv_dumpregs(struct sv_softc *sc)
465 {
466 int idx;
467
468 #if 0
469 for (idx = 0; idx < 0x50; idx += 4)
470 printf ("%02x = %x\n", idx,
471 pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
472 #endif
473
474 for (idx = 0; idx < 6; idx++)
475 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
476
477 for (idx = 0; idx < 0x32; idx++)
478 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
479
480 for (idx = 0; idx < 0x10; idx++)
481 printf ("DMA %02x = %02x\n", idx,
482 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
483 }
484 #endif
485
486 static int
487 sv_intr(void *p)
488 {
489 struct sv_softc *sc;
490 uint8_t intr;
491
492 sc = p;
493
494 mutex_spin_enter(&sc->sc_intr_lock);
495
496 intr = sv_read(sc, SV_CODEC_STATUS);
497 DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
498
499 if (intr & SV_INTSTATUS_DMAA) {
500 if (sc->sc_pintr)
501 sc->sc_pintr(sc->sc_parg);
502 }
503
504 if (intr & SV_INTSTATUS_DMAC) {
505 if (sc->sc_rintr)
506 sc->sc_rintr(sc->sc_rarg);
507 }
508
509 mutex_spin_exit(&sc->sc_intr_lock);
510
511 return (intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)) != 0;
512 }
513
514 static int
515 sv_allocmem(struct sv_softc *sc, size_t size, size_t align,
516 int direction, struct sv_dma *p)
517 {
518 int error;
519
520 p->size = size;
521 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
522 p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_WAITOK);
523 if (error)
524 return error;
525
526 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
527 &p->addr, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
528 if (error)
529 goto free;
530
531 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
532 0, BUS_DMA_WAITOK, &p->map);
533 if (error)
534 goto unmap;
535
536 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
537 BUS_DMA_WAITOK | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
538 if (error)
539 goto destroy;
540 DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
541 (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
542 return 0;
543
544 destroy:
545 bus_dmamap_destroy(sc->sc_dmatag, p->map);
546 unmap:
547 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
548 free:
549 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
550 return error;
551 }
552
553 static int
554 sv_freemem(struct sv_softc *sc, struct sv_dma *p)
555 {
556
557 bus_dmamap_unload(sc->sc_dmatag, p->map);
558 bus_dmamap_destroy(sc->sc_dmatag, p->map);
559 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
560 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
561 return 0;
562 }
563
564 static int
565 sv_open(void *addr, int flags)
566 {
567 struct sv_softc *sc;
568
569 sc = addr;
570 DPRINTF(("sv_open\n"));
571 if (!sc->sc_dmaset)
572 return ENXIO;
573
574 return 0;
575 }
576
577 static int
578 sv_query_encoding(void *addr, struct audio_encoding *fp)
579 {
580
581 switch (fp->index) {
582 case 0:
583 strcpy(fp->name, AudioEulinear);
584 fp->encoding = AUDIO_ENCODING_ULINEAR;
585 fp->precision = 8;
586 fp->flags = 0;
587 return 0;
588 case 1:
589 strcpy(fp->name, AudioEmulaw);
590 fp->encoding = AUDIO_ENCODING_ULAW;
591 fp->precision = 8;
592 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
593 return 0;
594 case 2:
595 strcpy(fp->name, AudioEalaw);
596 fp->encoding = AUDIO_ENCODING_ALAW;
597 fp->precision = 8;
598 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
599 return 0;
600 case 3:
601 strcpy(fp->name, AudioEslinear);
602 fp->encoding = AUDIO_ENCODING_SLINEAR;
603 fp->precision = 8;
604 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
605 return 0;
606 case 4:
607 strcpy(fp->name, AudioEslinear_le);
608 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
609 fp->precision = 16;
610 fp->flags = 0;
611 return 0;
612 case 5:
613 strcpy(fp->name, AudioEulinear_le);
614 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
615 fp->precision = 16;
616 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
617 return 0;
618 case 6:
619 strcpy(fp->name, AudioEslinear_be);
620 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
621 fp->precision = 16;
622 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
623 return 0;
624 case 7:
625 strcpy(fp->name, AudioEulinear_be);
626 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
627 fp->precision = 16;
628 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
629 return 0;
630 default:
631 return EINVAL;
632 }
633 }
634
635 static int
636 sv_set_params(void *addr, int setmode, int usemode, audio_params_t *play,
637 audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil)
638 {
639 struct sv_softc *sc;
640 audio_params_t *p;
641 uint32_t val;
642
643 sc = addr;
644 p = NULL;
645 /*
646 * This device only has one clock, so make the sample rates match.
647 */
648 if (play->sample_rate != rec->sample_rate &&
649 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
650 if (setmode == AUMODE_PLAY) {
651 rec->sample_rate = play->sample_rate;
652 setmode |= AUMODE_RECORD;
653 } else if (setmode == AUMODE_RECORD) {
654 play->sample_rate = rec->sample_rate;
655 setmode |= AUMODE_PLAY;
656 } else
657 return EINVAL;
658 }
659
660 if (setmode & AUMODE_RECORD) {
661 p = rec;
662 if (auconv_set_converter(sv_formats, SV_NFORMATS,
663 AUMODE_RECORD, rec, FALSE, rfil) < 0)
664 return EINVAL;
665 }
666 if (setmode & AUMODE_PLAY) {
667 p = play;
668 if (auconv_set_converter(sv_formats, SV_NFORMATS,
669 AUMODE_PLAY, play, FALSE, pfil) < 0)
670 return EINVAL;
671 }
672
673 if (p == NULL)
674 return 0;
675
676 val = p->sample_rate * 65536 / 48000;
677 /*
678 * If the sample rate is exactly 48 kHz, the fraction would overflow the
679 * register, so we have to bias it. This causes a little clock drift.
680 * The drift is below normal crystal tolerance (.0001%), so although
681 * this seems a little silly, we can pretty much ignore it.
682 * (I tested the output speed with values of 1-20, just to be sure this
683 * register isn't *supposed* to have a bias. It isn't.)
684 * - mycroft
685 */
686 if (val > 65535)
687 val = 65535;
688
689 mutex_spin_enter(&sc->sc_intr_lock);
690 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
691 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
692 mutex_spin_exit(&sc->sc_intr_lock);
693
694 #define F_REF 24576000
695
696 #define ABS(x) (((x) < 0) ? (-x) : (x))
697
698 if (setmode & AUMODE_RECORD) {
699 /* The ADC reference frequency (f_out) is 512 * sample rate */
700
701 /* f_out is dervied from the 24.576MHz crystal by three values:
702 M & N & R. The equation is as follows:
703
704 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
705
706 with the constraint that:
707
708 80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz
709 and n, m >= 1
710 */
711
712 int goal_f_out;
713 int a, n, m, best_n, best_m, best_error;
714 int pll_sample;
715 int error;
716
717 goal_f_out = 512 * rec->sample_rate;
718 best_n = 0;
719 best_m = 0;
720 best_error = 10000000;
721 for (a = 0; a < 8; a++) {
722 if ((goal_f_out * (1 << a)) >= 80000000)
723 break;
724 }
725
726 /* a != 8 because sample_rate >= 2000 */
727
728 for (n = 33; n > 2; n--) {
729 m = (goal_f_out * n * (1 << a)) / F_REF;
730 if ((m > 257) || (m < 3))
731 continue;
732
733 pll_sample = (m * F_REF) / (n * (1 << a));
734 pll_sample /= 512;
735
736 /* Threshold might be good here */
737 error = pll_sample - rec->sample_rate;
738 error = ABS(error);
739
740 if (error < best_error) {
741 best_error = error;
742 best_n = n;
743 best_m = m;
744 if (error == 0) break;
745 }
746 }
747
748 best_n -= 2;
749 best_m -= 2;
750
751 mutex_spin_enter(&sc->sc_intr_lock);
752 sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
753 sv_write_indirect(sc, SV_ADC_PLL_N,
754 best_n | (a << SV_PLL_R_SHIFT));
755 mutex_spin_exit(&sc->sc_intr_lock);
756 }
757
758 return 0;
759 }
760
761 static int
762 sv_round_blocksize(void *addr, int blk, int mode,
763 const audio_params_t *param)
764 {
765
766 return blk & -32; /* keep good alignment */
767 }
768
769 static int
770 sv_trigger_output(void *addr, void *start, void *end, int blksize,
771 void (*intr)(void *), void *arg, const audio_params_t *param)
772 {
773 struct sv_softc *sc;
774 struct sv_dma *p;
775 uint8_t mode;
776 int dma_count;
777
778 DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d "
779 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
780 sc = addr;
781 sc->sc_pintr = intr;
782 sc->sc_parg = arg;
783
784 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
785 mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
786 if (param->precision == 16)
787 mode |= SV_DMAA_FORMAT16;
788 if (param->channels == 2)
789 mode |= SV_DMAA_STEREO;
790 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
791
792 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
793 continue;
794 if (p == NULL) {
795 printf("sv_trigger_output: bad addr %p\n", start);
796 return EINVAL;
797 }
798
799 dma_count = ((char *)end - (char *)start) - 1;
800 DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n",
801 (int)DMAADDR(p), dma_count));
802
803 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
804 DMAADDR(p));
805 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
806 dma_count);
807 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
808 DMA37MD_READ | DMA37MD_LOOP);
809
810 DPRINTF(("sv_trigger_output: current addr=%x\n",
811 bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
812
813 dma_count = blksize - 1;
814
815 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
816 sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
817
818 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
819 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
820
821 return 0;
822 }
823
824 static int
825 sv_trigger_input(void *addr, void *start, void *end, int blksize,
826 void (*intr)(void *), void *arg, const audio_params_t *param)
827 {
828 struct sv_softc *sc;
829 struct sv_dma *p;
830 uint8_t mode;
831 int dma_count;
832
833 DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d "
834 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
835 sc = addr;
836 sc->sc_rintr = intr;
837 sc->sc_rarg = arg;
838
839 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
840 mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
841 if (param->precision == 16)
842 mode |= SV_DMAC_FORMAT16;
843 if (param->channels == 2)
844 mode |= SV_DMAC_STEREO;
845 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
846
847 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
848 continue;
849 if (!p) {
850 printf("sv_trigger_input: bad addr %p\n", start);
851 return EINVAL;
852 }
853
854 dma_count = (((char *)end - (char *)start) >> 1) - 1;
855 DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n",
856 (int)DMAADDR(p), dma_count));
857
858 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
859 DMAADDR(p));
860 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
861 dma_count);
862 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
863 DMA37MD_WRITE | DMA37MD_LOOP);
864
865 DPRINTF(("sv_trigger_input: current addr=%x\n",
866 bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
867
868 dma_count = (blksize >> 1) - 1;
869
870 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
871 sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
872
873 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
874 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
875
876 return 0;
877 }
878
879 static int
880 sv_halt_output(void *addr)
881 {
882 struct sv_softc *sc;
883 uint8_t mode;
884
885 DPRINTF(("sv: sv_halt_output\n"));
886 sc = addr;
887 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
888 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
889 sc->sc_pintr = 0;
890
891 return 0;
892 }
893
894 static int
895 sv_halt_input(void *addr)
896 {
897 struct sv_softc *sc;
898 uint8_t mode;
899
900 DPRINTF(("sv: sv_halt_input\n"));
901 sc = addr;
902 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
903 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
904 sc->sc_rintr = 0;
905
906 return 0;
907 }
908
909 static int
910 sv_getdev(void *addr, struct audio_device *retp)
911 {
912
913 *retp = sv_device;
914 return 0;
915 }
916
917
918 /*
919 * Mixer related code is here
920 *
921 */
922
923 #define SV_INPUT_CLASS 0
924 #define SV_OUTPUT_CLASS 1
925 #define SV_RECORD_CLASS 2
926
927 #define SV_LAST_CLASS 2
928
929 static const char *mixer_classes[] =
930 { AudioCinputs, AudioCoutputs, AudioCrecord };
931
932 static const struct {
933 uint8_t l_port;
934 uint8_t r_port;
935 uint8_t mask;
936 uint8_t class;
937 const char *audio;
938 } ports[] = {
939 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
940 SV_INPUT_CLASS, "aux1" },
941 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
942 SV_INPUT_CLASS, AudioNcd },
943 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
944 SV_INPUT_CLASS, AudioNline },
945 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
946 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
947 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
948 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
949 SV_INPUT_CLASS, "aux2" },
950 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
951 SV_INPUT_CLASS, AudioNdac },
952 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
953 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
954 };
955
956
957 static const struct {
958 int idx;
959 const char *name;
960 } record_sources[] = {
961 { SV_REC_CD, AudioNcd },
962 { SV_REC_DAC, AudioNdac },
963 { SV_REC_AUX2, "aux2" },
964 { SV_REC_LINE, AudioNline },
965 { SV_REC_AUX1, "aux1" },
966 { SV_REC_MIC, AudioNmicrophone },
967 { SV_REC_MIXER, AudioNmixerout }
968 };
969
970
971 #define SV_DEVICES_PER_PORT 2
972 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
973 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
974 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
975 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
976 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
977 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
978
979 static int
980 sv_query_devinfo(void *addr, mixer_devinfo_t *dip)
981 {
982 int i;
983
984 /* It's a class */
985 if (dip->index <= SV_LAST_CLASS) {
986 dip->type = AUDIO_MIXER_CLASS;
987 dip->mixer_class = dip->index;
988 dip->next = dip->prev = AUDIO_MIXER_LAST;
989 strcpy(dip->label.name, mixer_classes[dip->index]);
990 return 0;
991 }
992
993 if (dip->index >= SV_FIRST_MIXER &&
994 dip->index <= SV_LAST_MIXER) {
995 int off, mute ,idx;
996
997 off = dip->index - SV_FIRST_MIXER;
998 mute = (off % SV_DEVICES_PER_PORT);
999 idx = off / SV_DEVICES_PER_PORT;
1000 dip->mixer_class = ports[idx].class;
1001 strcpy(dip->label.name, ports[idx].audio);
1002
1003 if (!mute) {
1004 dip->type = AUDIO_MIXER_VALUE;
1005 dip->prev = AUDIO_MIXER_LAST;
1006 dip->next = dip->index + 1;
1007
1008 if (ports[idx].r_port != 0)
1009 dip->un.v.num_channels = 2;
1010 else
1011 dip->un.v.num_channels = 1;
1012
1013 strcpy(dip->un.v.units.name, AudioNvolume);
1014 } else {
1015 dip->type = AUDIO_MIXER_ENUM;
1016 dip->prev = dip->index - 1;
1017 dip->next = AUDIO_MIXER_LAST;
1018
1019 strcpy(dip->label.name, AudioNmute);
1020 dip->un.e.num_mem = 2;
1021 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1022 dip->un.e.member[0].ord = 0;
1023 strcpy(dip->un.e.member[1].label.name, AudioNon);
1024 dip->un.e.member[1].ord = 1;
1025 }
1026
1027 return 0;
1028 }
1029
1030 switch (dip->index) {
1031 case SV_RECORD_SOURCE:
1032 dip->mixer_class = SV_RECORD_CLASS;
1033 dip->prev = AUDIO_MIXER_LAST;
1034 dip->next = SV_RECORD_GAIN;
1035 strcpy(dip->label.name, AudioNsource);
1036 dip->type = AUDIO_MIXER_ENUM;
1037
1038 dip->un.e.num_mem = ARRAY_SIZE(record_sources);
1039 for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
1040 strcpy(dip->un.e.member[i].label.name,
1041 record_sources[i].name);
1042 dip->un.e.member[i].ord = record_sources[i].idx;
1043 }
1044 return 0;
1045
1046 case SV_RECORD_GAIN:
1047 dip->mixer_class = SV_RECORD_CLASS;
1048 dip->prev = SV_RECORD_SOURCE;
1049 dip->next = AUDIO_MIXER_LAST;
1050 strcpy(dip->label.name, "gain");
1051 dip->type = AUDIO_MIXER_VALUE;
1052 dip->un.v.num_channels = 1;
1053 strcpy(dip->un.v.units.name, AudioNvolume);
1054 return 0;
1055
1056 case SV_MIC_BOOST:
1057 dip->mixer_class = SV_RECORD_CLASS;
1058 dip->prev = AUDIO_MIXER_LAST;
1059 dip->next = AUDIO_MIXER_LAST;
1060 strcpy(dip->label.name, "micboost");
1061 goto on_off;
1062
1063 case SV_SRS_MODE:
1064 dip->mixer_class = SV_OUTPUT_CLASS;
1065 dip->prev = dip->next = AUDIO_MIXER_LAST;
1066 strcpy(dip->label.name, AudioNspatial);
1067
1068 on_off:
1069 dip->type = AUDIO_MIXER_ENUM;
1070 dip->un.e.num_mem = 2;
1071 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1072 dip->un.e.member[0].ord = 0;
1073 strcpy(dip->un.e.member[1].label.name, AudioNon);
1074 dip->un.e.member[1].ord = 1;
1075 return 0;
1076 }
1077
1078 return ENXIO;
1079 }
1080
1081 static int
1082 sv_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1083 {
1084 struct sv_softc *sc;
1085 uint8_t reg;
1086 int idx;
1087
1088 sc = addr;
1089 if (cp->dev >= SV_FIRST_MIXER &&
1090 cp->dev <= SV_LAST_MIXER) {
1091 int off, mute;
1092
1093 off = cp->dev - SV_FIRST_MIXER;
1094 mute = (off % SV_DEVICES_PER_PORT);
1095 idx = off / SV_DEVICES_PER_PORT;
1096
1097 if (mute) {
1098 if (cp->type != AUDIO_MIXER_ENUM)
1099 return EINVAL;
1100
1101 mutex_spin_enter(&sc->sc_intr_lock);
1102 reg = sv_read_indirect(sc, ports[idx].l_port);
1103 if (cp->un.ord)
1104 reg |= SV_MUTE_BIT;
1105 else
1106 reg &= ~SV_MUTE_BIT;
1107 sv_write_indirect(sc, ports[idx].l_port, reg);
1108
1109 if (ports[idx].r_port) {
1110 reg = sv_read_indirect(sc, ports[idx].r_port);
1111 if (cp->un.ord)
1112 reg |= SV_MUTE_BIT;
1113 else
1114 reg &= ~SV_MUTE_BIT;
1115 sv_write_indirect(sc, ports[idx].r_port, reg);
1116 }
1117 mutex_spin_exit(&sc->sc_intr_lock);
1118 } else {
1119 int lval, rval;
1120
1121 if (cp->type != AUDIO_MIXER_VALUE)
1122 return EINVAL;
1123
1124 if (cp->un.value.num_channels != 1 &&
1125 cp->un.value.num_channels != 2)
1126 return (EINVAL);
1127
1128 if (ports[idx].r_port == 0) {
1129 if (cp->un.value.num_channels != 1)
1130 return (EINVAL);
1131 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1132 rval = 0; /* shut up GCC */
1133 } else {
1134 if (cp->un.value.num_channels != 2)
1135 return (EINVAL);
1136
1137 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1138 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1139 }
1140
1141 mutex_spin_enter(&sc->sc_intr_lock);
1142 reg = sv_read_indirect(sc, ports[idx].l_port);
1143 reg &= ~(ports[idx].mask);
1144 lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1145 AUDIO_MAX_GAIN;
1146 reg |= lval;
1147 sv_write_indirect(sc, ports[idx].l_port, reg);
1148
1149 if (ports[idx].r_port != 0) {
1150 reg = sv_read_indirect(sc, ports[idx].r_port);
1151 reg &= ~(ports[idx].mask);
1152
1153 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1154 AUDIO_MAX_GAIN;
1155 reg |= rval;
1156
1157 sv_write_indirect(sc, ports[idx].r_port, reg);
1158 }
1159
1160 sv_read_indirect(sc, ports[idx].l_port);
1161 mutex_spin_exit(&sc->sc_intr_lock);
1162 }
1163
1164 return 0;
1165 }
1166
1167
1168 switch (cp->dev) {
1169 case SV_RECORD_SOURCE:
1170 if (cp->type != AUDIO_MIXER_ENUM)
1171 return EINVAL;
1172
1173 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1174 if (record_sources[idx].idx == cp->un.ord)
1175 goto found;
1176 }
1177
1178 return EINVAL;
1179
1180 found:
1181 mutex_spin_enter(&sc->sc_intr_lock);
1182 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1183 reg &= ~SV_REC_SOURCE_MASK;
1184 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1185 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1186
1187 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1188 reg &= ~SV_REC_SOURCE_MASK;
1189 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1190 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1191 mutex_spin_exit(&sc->sc_intr_lock);
1192 return 0;
1193
1194 case SV_RECORD_GAIN:
1195 {
1196 int val;
1197
1198 if (cp->type != AUDIO_MIXER_VALUE)
1199 return EINVAL;
1200
1201 if (cp->un.value.num_channels != 1)
1202 return EINVAL;
1203
1204 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]
1205 * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN;
1206
1207 mutex_spin_enter(&sc->sc_intr_lock);
1208 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1209 reg &= ~SV_REC_GAIN_MASK;
1210 reg |= val;
1211 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1212
1213 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1214 reg &= ~SV_REC_GAIN_MASK;
1215 reg |= val;
1216 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1217 mutex_spin_exit(&sc->sc_intr_lock);
1218 }
1219 return (0);
1220
1221 case SV_MIC_BOOST:
1222 if (cp->type != AUDIO_MIXER_ENUM)
1223 return EINVAL;
1224
1225 mutex_spin_enter(&sc->sc_intr_lock);
1226 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1227 if (cp->un.ord) {
1228 reg |= SV_MIC_BOOST_BIT;
1229 } else {
1230 reg &= ~SV_MIC_BOOST_BIT;
1231 }
1232
1233 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1234 mutex_spin_exit(&sc->sc_intr_lock);
1235 return 0;
1236
1237 case SV_SRS_MODE:
1238 if (cp->type != AUDIO_MIXER_ENUM)
1239 return EINVAL;
1240
1241 mutex_spin_enter(&sc->sc_intr_lock);
1242 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1243 if (cp->un.ord) {
1244 reg &= ~SV_SRS_SPACE_ONOFF;
1245 } else {
1246 reg |= SV_SRS_SPACE_ONOFF;
1247 }
1248
1249 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1250 mutex_spin_exit(&sc->sc_intr_lock);
1251 return 0;
1252 }
1253
1254 return EINVAL;
1255 }
1256
1257 static int
1258 sv_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1259 {
1260 struct sv_softc *sc;
1261 int val, error;
1262 uint8_t reg;
1263
1264 sc = addr;
1265 error = 0;
1266
1267 mutex_spin_enter(&sc->sc_intr_lock);
1268
1269 if (cp->dev >= SV_FIRST_MIXER &&
1270 cp->dev <= SV_LAST_MIXER) {
1271 int off = cp->dev - SV_FIRST_MIXER;
1272 int mute = (off % 2);
1273 int idx = off / 2;
1274
1275 off = cp->dev - SV_FIRST_MIXER;
1276 mute = (off % 2);
1277 idx = off / 2;
1278 if (mute) {
1279 if (cp->type != AUDIO_MIXER_ENUM)
1280 error = EINVAL;
1281 else {
1282 reg = sv_read_indirect(sc, ports[idx].l_port);
1283 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1284 }
1285 } else {
1286 if (cp->type != AUDIO_MIXER_VALUE ||
1287 (cp->un.value.num_channels != 1 &&
1288 cp->un.value.num_channels != 2) ||
1289 ((ports[idx].r_port == 0 &&
1290 cp->un.value.num_channels != 1) ||
1291 (ports[idx].r_port != 0 &&
1292 cp->un.value.num_channels != 2)))
1293 error = EINVAL;
1294 else {
1295 reg = sv_read_indirect(sc, ports[idx].l_port);
1296 reg &= ports[idx].mask;
1297
1298 val = AUDIO_MAX_GAIN -
1299 ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1300
1301 if (ports[idx].r_port != 0) {
1302 cp->un.value.level
1303 [AUDIO_MIXER_LEVEL_LEFT] = val;
1304
1305 reg = sv_read_indirect(sc,
1306 ports[idx].r_port);
1307 reg &= ports[idx].mask;
1308
1309 val = AUDIO_MAX_GAIN -
1310 ((reg * AUDIO_MAX_GAIN)
1311 / ports[idx].mask);
1312 cp->un.value.level
1313 [AUDIO_MIXER_LEVEL_RIGHT] = val;
1314 } else
1315 cp->un.value.level
1316 [AUDIO_MIXER_LEVEL_MONO] = val;
1317 }
1318 }
1319
1320 return error;
1321 }
1322
1323 switch (cp->dev) {
1324 case SV_RECORD_SOURCE:
1325 if (cp->type != AUDIO_MIXER_ENUM) {
1326 error = EINVAL;
1327 break;
1328 }
1329
1330 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1331 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1332
1333 break;
1334
1335 case SV_RECORD_GAIN:
1336 if (cp->type != AUDIO_MIXER_VALUE) {
1337 error = EINVAL;
1338 break;
1339 }
1340 if (cp->un.value.num_channels != 1) {
1341 error = EINVAL;
1342 break;
1343 }
1344
1345 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1346 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1347 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1348
1349 break;
1350
1351 case SV_MIC_BOOST:
1352 if (cp->type != AUDIO_MIXER_ENUM) {
1353 error = EINVAL;
1354 break;
1355 }
1356 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1357 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1358 break;
1359
1360 case SV_SRS_MODE:
1361 if (cp->type != AUDIO_MIXER_ENUM) {
1362 error = EINVAL;
1363 break;
1364 }
1365 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1366 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1367 break;
1368 default:
1369 error = EINVAL;
1370 break;
1371 }
1372
1373 mutex_spin_exit(&sc->sc_intr_lock);
1374 return error;
1375 }
1376
1377 static void
1378 sv_init_mixer(struct sv_softc *sc)
1379 {
1380 mixer_ctrl_t cp;
1381 int i;
1382
1383 cp.type = AUDIO_MIXER_ENUM;
1384 cp.dev = SV_SRS_MODE;
1385 cp.un.ord = 0;
1386
1387 sv_mixer_set_port(sc, &cp);
1388
1389 for (i = 0; i < ARRAY_SIZE(ports); i++) {
1390 if (!strcmp(ports[i].audio, AudioNdac)) {
1391 cp.type = AUDIO_MIXER_ENUM;
1392 cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1393 cp.un.ord = 0;
1394 sv_mixer_set_port(sc, &cp);
1395 break;
1396 }
1397 }
1398 }
1399
1400 static void *
1401 sv_malloc(void *addr, int direction, size_t size)
1402 {
1403 struct sv_softc *sc;
1404 struct sv_dma *p;
1405 int error;
1406
1407 sc = addr;
1408 p = kmem_alloc(sizeof(*p), KM_SLEEP);
1409 error = sv_allocmem(sc, size, 16, direction, p);
1410 if (error) {
1411 kmem_free(p, sizeof(*p));
1412 return 0;
1413 }
1414 p->next = sc->sc_dmas;
1415 sc->sc_dmas = p;
1416 return KERNADDR(p);
1417 }
1418
1419 static void
1420 sv_free(void *addr, void *ptr, size_t size)
1421 {
1422 struct sv_softc *sc;
1423 struct sv_dma **pp, *p;
1424
1425 sc = addr;
1426 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1427 if (KERNADDR(p) == ptr) {
1428 sv_freemem(sc, p);
1429 *pp = p->next;
1430 kmem_free(p, sizeof(*p));
1431 return;
1432 }
1433 }
1434 }
1435
1436 static size_t
1437 sv_round_buffersize(void *addr, int direction, size_t size)
1438 {
1439
1440 return size;
1441 }
1442
1443 static paddr_t
1444 sv_mappage(void *addr, void *mem, off_t off, int prot)
1445 {
1446 struct sv_softc *sc;
1447 struct sv_dma *p;
1448
1449 sc = addr;
1450 if (off < 0)
1451 return -1;
1452 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1453 continue;
1454 if (p == NULL)
1455 return -1;
1456 return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1457 off, prot, BUS_DMA_WAITOK);
1458 }
1459
1460 static int
1461 sv_get_props(void *addr)
1462 {
1463 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1464 }
1465
1466 static void
1467 sv_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
1468 {
1469 struct sv_softc *sc;
1470
1471 sc = addr;
1472 *intr = &sc->sc_intr_lock;
1473 *thread = &sc->sc_lock;
1474 }
1475