sv.c revision 1.55 1 /* $NetBSD: sv.c,v 1.55 2019/05/08 13:40:19 isaki Exp $ */
2 /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3
4 /*
5 * Copyright (c) 1999, 2008 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Charles M. Hannum.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1998 Constantine Paul Sapuntzakis
35 * All rights reserved
36 *
37 * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. The author's name or those of the contributors may be used to
48 * endorse or promote products derived from this software without
49 * specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
52 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
53 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
54 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
55 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
56 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
57 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
58 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
59 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 /*
65 * S3 SonicVibes driver
66 * Heavily based on the eap driver by Lennart Augustsson
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.55 2019/05/08 13:40:19 isaki Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/kmem.h>
76 #include <sys/device.h>
77
78 #include <dev/pci/pcireg.h>
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcidevs.h>
81
82 #include <sys/audioio.h>
83 #include <dev/audio/audio_if.h>
84
85 #include <dev/ic/i8237reg.h>
86 #include <dev/pci/svreg.h>
87 #include <dev/pci/svvar.h>
88
89 #include <sys/bus.h>
90
91 /* XXX
92 * The SonicVibes DMA is broken and only works on 24-bit addresses.
93 * As long as bus_dmamem_alloc_range() is missing we use the ISA
94 * DMA tag on i386.
95 */
96 #if defined(amd64) || defined(i386)
97 #include <dev/isa/isavar.h>
98 #endif
99
100 #ifdef AUDIO_DEBUG
101 #define DPRINTF(x) if (svdebug) printf x
102 #define DPRINTFN(n,x) if (svdebug>(n)) printf x
103 int svdebug = 0;
104 #else
105 #define DPRINTF(x)
106 #define DPRINTFN(n,x)
107 #endif
108
109 static int sv_match(device_t, cfdata_t, void *);
110 static void sv_attach(device_t, device_t, void *);
111 static int sv_intr(void *);
112
113 struct sv_dma {
114 bus_dmamap_t map;
115 void *addr;
116 bus_dma_segment_t segs[1];
117 int nsegs;
118 size_t size;
119 struct sv_dma *next;
120 };
121 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
122 #define KERNADDR(p) ((void *)((p)->addr))
123
124 CFATTACH_DECL_NEW(sv, sizeof(struct sv_softc),
125 sv_match, sv_attach, NULL, NULL);
126
127 static struct audio_device sv_device = {
128 "S3 SonicVibes",
129 "",
130 "sv"
131 };
132
133 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0]))
134
135 static int sv_allocmem(struct sv_softc *, size_t, size_t, int,
136 struct sv_dma *);
137 static int sv_freemem(struct sv_softc *, struct sv_dma *);
138
139 static void sv_init_mixer(struct sv_softc *);
140
141 static int sv_open(void *, int);
142 static int sv_query_format(void *, audio_format_query_t *);
143 static int sv_set_format(void *, int,
144 const audio_params_t *, const audio_params_t *,
145 audio_filter_reg_t *, audio_filter_reg_t *);
146 static int sv_round_blocksize(void *, int, int, const audio_params_t *);
147 static int sv_trigger_output(void *, void *, void *, int, void (*)(void *),
148 void *, const audio_params_t *);
149 static int sv_trigger_input(void *, void *, void *, int, void (*)(void *),
150 void *, const audio_params_t *);
151 static int sv_halt_output(void *);
152 static int sv_halt_input(void *);
153 static int sv_getdev(void *, struct audio_device *);
154 static int sv_mixer_set_port(void *, mixer_ctrl_t *);
155 static int sv_mixer_get_port(void *, mixer_ctrl_t *);
156 static int sv_query_devinfo(void *, mixer_devinfo_t *);
157 static void * sv_malloc(void *, int, size_t);
158 static void sv_free(void *, void *, size_t);
159 static int sv_get_props(void *);
160 static void sv_get_locks(void *, kmutex_t **, kmutex_t **);
161
162 #ifdef AUDIO_DEBUG
163 void sv_dumpregs(struct sv_softc *sc);
164 #endif
165
166 static const struct audio_hw_if sv_hw_if = {
167 .open = sv_open,
168 .query_format = sv_query_format,
169 .set_format = sv_set_format,
170 .round_blocksize = sv_round_blocksize,
171 .halt_output = sv_halt_output,
172 .halt_input = sv_halt_input,
173 .getdev = sv_getdev,
174 .set_port = sv_mixer_set_port,
175 .get_port = sv_mixer_get_port,
176 .query_devinfo = sv_query_devinfo,
177 .allocm = sv_malloc,
178 .freem = sv_free,
179 .get_props = sv_get_props,
180 .trigger_output = sv_trigger_output,
181 .trigger_input = sv_trigger_input,
182 .get_locks = sv_get_locks,
183 };
184
185 static const struct audio_format sv_formats[] = {
186 {
187 .mode = AUMODE_PLAY | AUMODE_RECORD,
188 .encoding = AUDIO_ENCODING_SLINEAR_LE,
189 .validbits = 16,
190 .precision = 16,
191 .channels = 2,
192 .channel_mask = AUFMT_STEREO,
193 .frequency_type = 0,
194 .frequency = { 2000, 48000 },
195 },
196 };
197 #define SV_NFORMATS __arraycount(sv_formats)
198
199
200 static void
201 sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val)
202 {
203
204 DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
205 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
206 }
207
208 static uint8_t
209 sv_read(struct sv_softc *sc, uint8_t reg)
210 {
211 uint8_t val;
212
213 val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
214 DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
215 return val;
216 }
217
218 static uint8_t
219 sv_read_indirect(struct sv_softc *sc, uint8_t reg)
220 {
221 uint8_t val;
222
223 sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
224 val = sv_read(sc, SV_CODEC_IDATA);
225 return val;
226 }
227
228 static void
229 sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val)
230 {
231 uint8_t iaddr;
232
233 iaddr = reg & SV_IADDR_MASK;
234 if (reg == SV_DMA_DATA_FORMAT)
235 iaddr |= SV_IADDR_MCE;
236
237 sv_write(sc, SV_CODEC_IADDR, iaddr);
238 sv_write(sc, SV_CODEC_IDATA, val);
239 }
240
241 static int
242 sv_match(device_t parent, cfdata_t match, void *aux)
243 {
244 struct pci_attach_args *pa;
245
246 pa = aux;
247 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
248 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
249 return 1;
250
251 return 0;
252 }
253
254 static pcireg_t pci_io_alloc_low, pci_io_alloc_high;
255
256 static int
257 pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs,
258 bus_space_tag_t iot, bus_size_t size, bus_size_t align,
259 bus_size_t bound, int flags, bus_space_handle_t *ioh)
260 {
261 bus_addr_t addr;
262 int error;
263
264 error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high,
265 size, align, bound, flags, &addr, ioh);
266 if (error)
267 return error;
268
269 pci_conf_write(pc, pt, pcioffs, addr);
270 return 0;
271 }
272
273 /*
274 * Allocate IO addresses when all other configuration is done.
275 */
276 static void
277 sv_defer(device_t self)
278 {
279 struct sv_softc *sc;
280 pci_chipset_tag_t pc;
281 pcitag_t pt;
282 pcireg_t dmaio;
283
284 sc = device_private(self);
285 pc = sc->sc_pa.pa_pc;
286 pt = sc->sc_pa.pa_tag;
287 DPRINTF(("sv_defer: %p\n", sc));
288
289 /* XXX
290 * Get a reasonable default for the I/O range.
291 * Assume the range around SB_PORTBASE is valid on this PCI bus.
292 */
293 pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT);
294 pci_io_alloc_high = pci_io_alloc_low + 0x1000;
295
296 if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
297 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
298 0, &sc->sc_dmaa_ioh)) {
299 printf("sv_attach: cannot allocate DMA A range\n");
300 return;
301 }
302 dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
303 DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
304 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
305 dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
306
307 if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
308 sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
309 0, &sc->sc_dmac_ioh)) {
310 printf("sv_attach: cannot allocate DMA C range\n");
311 return;
312 }
313 dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
314 DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
315 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
316 dmaio | SV_DMA_CHANNEL_ENABLE);
317
318 sc->sc_dmaset = 1;
319 }
320
321 static void
322 sv_attach(device_t parent, device_t self, void *aux)
323 {
324 struct sv_softc *sc;
325 struct pci_attach_args *pa;
326 pci_chipset_tag_t pc;
327 pcitag_t pt;
328 pci_intr_handle_t ih;
329 pcireg_t csr;
330 char const *intrstr;
331 uint8_t reg;
332 struct audio_attach_args arg;
333 char intrbuf[PCI_INTRSTR_LEN];
334
335 sc = device_private(self);
336 pa = aux;
337 pc = pa->pa_pc;
338 pt = pa->pa_tag;
339 aprint_naive("\n");
340 aprint_normal("\n");
341
342 /* Map I/O registers */
343 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
344 PCI_MAPREG_TYPE_IO, 0,
345 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
346 aprint_error_dev(self, "can't map enhanced i/o space\n");
347 return;
348 }
349 if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
350 PCI_MAPREG_TYPE_IO, 0,
351 &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
352 aprint_error_dev(self, "can't map FM i/o space\n");
353 return;
354 }
355 if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
356 PCI_MAPREG_TYPE_IO, 0,
357 &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
358 aprint_error_dev(self, "can't map MIDI i/o space\n");
359 return;
360 }
361 DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
362 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
363
364 #if defined(alpha)
365 /* XXX Force allocation through the SGMAP. */
366 sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
367 #elif defined(amd64) || defined(i386)
368 /* XXX
369 * The SonicVibes DMA is broken and only works on 24-bit addresses.
370 * As long as bus_dmamem_alloc_range() is missing we use the ISA
371 * DMA tag on i386.
372 */
373 sc->sc_dmatag = &isa_bus_dma_tag;
374 #else
375 sc->sc_dmatag = pa->pa_dmat;
376 #endif
377
378 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
379 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
380
381 /* Enable the device. */
382 csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
383 pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
384 csr | PCI_COMMAND_MASTER_ENABLE);
385
386 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
387 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
388
389 /* initialize codec registers */
390 reg = sv_read(sc, SV_CODEC_CONTROL);
391 reg |= SV_CTL_RESET;
392 sv_write(sc, SV_CODEC_CONTROL, reg);
393 delay(50);
394
395 reg = sv_read(sc, SV_CODEC_CONTROL);
396 reg &= ~SV_CTL_RESET;
397 reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
398
399 /* This write clears the reset */
400 sv_write(sc, SV_CODEC_CONTROL, reg);
401 delay(50);
402
403 /* This write actually shoves the new values in */
404 sv_write(sc, SV_CODEC_CONTROL, reg);
405
406 DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
407
408 /* Map and establish the interrupt. */
409 if (pci_intr_map(pa, &ih)) {
410 aprint_error_dev(self, "couldn't map interrupt\n");
411 return;
412 }
413
414 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
415 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
416
417 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
418 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_AUDIO, sv_intr, sc,
419 device_xname(self));
420 if (sc->sc_ih == NULL) {
421 aprint_error_dev(self, "couldn't establish interrupt");
422 if (intrstr != NULL)
423 aprint_error(" at %s", intrstr);
424 aprint_error("\n");
425 mutex_destroy(&sc->sc_lock);
426 mutex_destroy(&sc->sc_intr_lock);
427 return;
428 }
429 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
430 aprint_normal_dev(self, "rev %d",
431 sv_read_indirect(sc, SV_REVISION_LEVEL));
432 if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
433 aprint_normal(", reverb SRAM present");
434 if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
435 aprint_normal(", wavetable ROM present");
436 aprint_normal("\n");
437
438 /* Enable DMA interrupts */
439 reg = sv_read(sc, SV_CODEC_INTMASK);
440 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
441 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
442 sv_write(sc, SV_CODEC_INTMASK, reg);
443 sv_read(sc, SV_CODEC_STATUS);
444
445 sv_init_mixer(sc);
446
447 audio_attach_mi(&sv_hw_if, sc, self);
448
449 arg.type = AUDIODEV_TYPE_OPL;
450 arg.hwif = 0;
451 arg.hdl = 0;
452 (void)config_found(self, &arg, audioprint);
453
454 sc->sc_pa = *pa; /* for deferred setup */
455 config_defer(self, sv_defer);
456 }
457
458 #ifdef AUDIO_DEBUG
459 void
460 sv_dumpregs(struct sv_softc *sc)
461 {
462 int idx;
463
464 #if 0
465 for (idx = 0; idx < 0x50; idx += 4)
466 printf ("%02x = %x\n", idx,
467 pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
468 #endif
469
470 for (idx = 0; idx < 6; idx++)
471 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
472
473 for (idx = 0; idx < 0x32; idx++)
474 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
475
476 for (idx = 0; idx < 0x10; idx++)
477 printf ("DMA %02x = %02x\n", idx,
478 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
479 }
480 #endif
481
482 static int
483 sv_intr(void *p)
484 {
485 struct sv_softc *sc;
486 uint8_t intr;
487
488 sc = p;
489
490 mutex_spin_enter(&sc->sc_intr_lock);
491
492 intr = sv_read(sc, SV_CODEC_STATUS);
493 DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
494
495 if (intr & SV_INTSTATUS_DMAA) {
496 if (sc->sc_pintr)
497 sc->sc_pintr(sc->sc_parg);
498 }
499
500 if (intr & SV_INTSTATUS_DMAC) {
501 if (sc->sc_rintr)
502 sc->sc_rintr(sc->sc_rarg);
503 }
504
505 mutex_spin_exit(&sc->sc_intr_lock);
506
507 return (intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)) != 0;
508 }
509
510 static int
511 sv_allocmem(struct sv_softc *sc, size_t size, size_t align,
512 int direction, struct sv_dma *p)
513 {
514 int error;
515
516 p->size = size;
517 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
518 p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_WAITOK);
519 if (error)
520 return error;
521
522 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
523 &p->addr, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
524 if (error)
525 goto free;
526
527 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
528 0, BUS_DMA_WAITOK, &p->map);
529 if (error)
530 goto unmap;
531
532 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
533 BUS_DMA_WAITOK | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
534 if (error)
535 goto destroy;
536 DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
537 (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
538 return 0;
539
540 destroy:
541 bus_dmamap_destroy(sc->sc_dmatag, p->map);
542 unmap:
543 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
544 free:
545 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
546 return error;
547 }
548
549 static int
550 sv_freemem(struct sv_softc *sc, struct sv_dma *p)
551 {
552
553 bus_dmamap_unload(sc->sc_dmatag, p->map);
554 bus_dmamap_destroy(sc->sc_dmatag, p->map);
555 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
556 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
557 return 0;
558 }
559
560 static int
561 sv_open(void *addr, int flags)
562 {
563 struct sv_softc *sc;
564
565 sc = addr;
566 DPRINTF(("sv_open\n"));
567 if (!sc->sc_dmaset)
568 return ENXIO;
569
570 return 0;
571 }
572
573 static int
574 sv_query_format(void *addr, audio_format_query_t *afp)
575 {
576
577 return audio_query_format(sv_formats, SV_NFORMATS, afp);
578 }
579
580 static int
581 sv_set_format(void *addr, int setmode,
582 const audio_params_t *play, const audio_params_t *rec,
583 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
584 {
585 struct sv_softc *sc;
586 uint32_t val;
587
588 sc = addr;
589
590 /* *play and *rec are the identical because !AUDIO_PROP_INDEPENDENT. */
591
592 val = play->sample_rate * 65536 / 48000;
593 /*
594 * If the sample rate is exactly 48 kHz, the fraction would overflow the
595 * register, so we have to bias it. This causes a little clock drift.
596 * The drift is below normal crystal tolerance (.0001%), so although
597 * this seems a little silly, we can pretty much ignore it.
598 * (I tested the output speed with values of 1-20, just to be sure this
599 * register isn't *supposed* to have a bias. It isn't.)
600 * - mycroft
601 */
602 if (val > 65535)
603 val = 65535;
604
605 mutex_spin_enter(&sc->sc_intr_lock);
606 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
607 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
608 mutex_spin_exit(&sc->sc_intr_lock);
609
610 #define F_REF 24576000
611
612 #define ABS(x) (((x) < 0) ? (-x) : (x))
613
614 if (setmode & AUMODE_RECORD) {
615 /* The ADC reference frequency (f_out) is 512 * sample rate */
616
617 /* f_out is dervied from the 24.576MHz crystal by three values:
618 M & N & R. The equation is as follows:
619
620 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
621
622 with the constraint that:
623
624 80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz
625 and n, m >= 1
626 */
627
628 int goal_f_out;
629 int a, n, m, best_n, best_m, best_error;
630 int pll_sample;
631 int error;
632
633 goal_f_out = 512 * rec->sample_rate;
634 best_n = 0;
635 best_m = 0;
636 best_error = 10000000;
637 for (a = 0; a < 8; a++) {
638 if ((goal_f_out * (1 << a)) >= 80000000)
639 break;
640 }
641
642 /* a != 8 because sample_rate >= 2000 */
643
644 for (n = 33; n > 2; n--) {
645 m = (goal_f_out * n * (1 << a)) / F_REF;
646 if ((m > 257) || (m < 3))
647 continue;
648
649 pll_sample = (m * F_REF) / (n * (1 << a));
650 pll_sample /= 512;
651
652 /* Threshold might be good here */
653 error = pll_sample - rec->sample_rate;
654 error = ABS(error);
655
656 if (error < best_error) {
657 best_error = error;
658 best_n = n;
659 best_m = m;
660 if (error == 0) break;
661 }
662 }
663
664 best_n -= 2;
665 best_m -= 2;
666
667 mutex_spin_enter(&sc->sc_intr_lock);
668 sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
669 sv_write_indirect(sc, SV_ADC_PLL_N,
670 best_n | (a << SV_PLL_R_SHIFT));
671 mutex_spin_exit(&sc->sc_intr_lock);
672 }
673
674 return 0;
675 }
676
677 static int
678 sv_round_blocksize(void *addr, int blk, int mode,
679 const audio_params_t *param)
680 {
681
682 return blk & -32; /* keep good alignment */
683 }
684
685 static int
686 sv_trigger_output(void *addr, void *start, void *end, int blksize,
687 void (*intr)(void *), void *arg, const audio_params_t *param)
688 {
689 struct sv_softc *sc;
690 struct sv_dma *p;
691 uint8_t mode;
692 int dma_count;
693
694 DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d "
695 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
696 sc = addr;
697 sc->sc_pintr = intr;
698 sc->sc_parg = arg;
699
700 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
701 mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
702 if (param->precision == 16)
703 mode |= SV_DMAA_FORMAT16;
704 if (param->channels == 2)
705 mode |= SV_DMAA_STEREO;
706 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
707
708 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
709 continue;
710 if (p == NULL) {
711 printf("sv_trigger_output: bad addr %p\n", start);
712 return EINVAL;
713 }
714
715 dma_count = ((char *)end - (char *)start) - 1;
716 DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n",
717 (int)DMAADDR(p), dma_count));
718
719 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
720 DMAADDR(p));
721 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
722 dma_count);
723 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
724 DMA37MD_READ | DMA37MD_LOOP);
725
726 DPRINTF(("sv_trigger_output: current addr=%x\n",
727 bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
728
729 dma_count = blksize - 1;
730
731 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
732 sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
733
734 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
735 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
736
737 return 0;
738 }
739
740 static int
741 sv_trigger_input(void *addr, void *start, void *end, int blksize,
742 void (*intr)(void *), void *arg, const audio_params_t *param)
743 {
744 struct sv_softc *sc;
745 struct sv_dma *p;
746 uint8_t mode;
747 int dma_count;
748
749 DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d "
750 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
751 sc = addr;
752 sc->sc_rintr = intr;
753 sc->sc_rarg = arg;
754
755 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
756 mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
757 if (param->precision == 16)
758 mode |= SV_DMAC_FORMAT16;
759 if (param->channels == 2)
760 mode |= SV_DMAC_STEREO;
761 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
762
763 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
764 continue;
765 if (!p) {
766 printf("sv_trigger_input: bad addr %p\n", start);
767 return EINVAL;
768 }
769
770 dma_count = (((char *)end - (char *)start) >> 1) - 1;
771 DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n",
772 (int)DMAADDR(p), dma_count));
773
774 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
775 DMAADDR(p));
776 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
777 dma_count);
778 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
779 DMA37MD_WRITE | DMA37MD_LOOP);
780
781 DPRINTF(("sv_trigger_input: current addr=%x\n",
782 bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
783
784 dma_count = (blksize >> 1) - 1;
785
786 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
787 sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
788
789 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
790 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
791
792 return 0;
793 }
794
795 static int
796 sv_halt_output(void *addr)
797 {
798 struct sv_softc *sc;
799 uint8_t mode;
800
801 DPRINTF(("sv: sv_halt_output\n"));
802 sc = addr;
803 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
804 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
805 sc->sc_pintr = 0;
806
807 return 0;
808 }
809
810 static int
811 sv_halt_input(void *addr)
812 {
813 struct sv_softc *sc;
814 uint8_t mode;
815
816 DPRINTF(("sv: sv_halt_input\n"));
817 sc = addr;
818 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
819 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
820 sc->sc_rintr = 0;
821
822 return 0;
823 }
824
825 static int
826 sv_getdev(void *addr, struct audio_device *retp)
827 {
828
829 *retp = sv_device;
830 return 0;
831 }
832
833
834 /*
835 * Mixer related code is here
836 *
837 */
838
839 #define SV_INPUT_CLASS 0
840 #define SV_OUTPUT_CLASS 1
841 #define SV_RECORD_CLASS 2
842
843 #define SV_LAST_CLASS 2
844
845 static const char *mixer_classes[] =
846 { AudioCinputs, AudioCoutputs, AudioCrecord };
847
848 static const struct {
849 uint8_t l_port;
850 uint8_t r_port;
851 uint8_t mask;
852 uint8_t class;
853 const char *audio;
854 } ports[] = {
855 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
856 SV_INPUT_CLASS, "aux1" },
857 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
858 SV_INPUT_CLASS, AudioNcd },
859 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
860 SV_INPUT_CLASS, AudioNline },
861 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
862 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
863 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
864 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
865 SV_INPUT_CLASS, "aux2" },
866 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
867 SV_INPUT_CLASS, AudioNdac },
868 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
869 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
870 };
871
872
873 static const struct {
874 int idx;
875 const char *name;
876 } record_sources[] = {
877 { SV_REC_CD, AudioNcd },
878 { SV_REC_DAC, AudioNdac },
879 { SV_REC_AUX2, "aux2" },
880 { SV_REC_LINE, AudioNline },
881 { SV_REC_AUX1, "aux1" },
882 { SV_REC_MIC, AudioNmicrophone },
883 { SV_REC_MIXER, AudioNmixerout }
884 };
885
886
887 #define SV_DEVICES_PER_PORT 2
888 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
889 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
890 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
891 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
892 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
893 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
894
895 static int
896 sv_query_devinfo(void *addr, mixer_devinfo_t *dip)
897 {
898 int i;
899
900 /* It's a class */
901 if (dip->index <= SV_LAST_CLASS) {
902 dip->type = AUDIO_MIXER_CLASS;
903 dip->mixer_class = dip->index;
904 dip->next = dip->prev = AUDIO_MIXER_LAST;
905 strcpy(dip->label.name, mixer_classes[dip->index]);
906 return 0;
907 }
908
909 if (dip->index >= SV_FIRST_MIXER &&
910 dip->index <= SV_LAST_MIXER) {
911 int off, mute ,idx;
912
913 off = dip->index - SV_FIRST_MIXER;
914 mute = (off % SV_DEVICES_PER_PORT);
915 idx = off / SV_DEVICES_PER_PORT;
916 dip->mixer_class = ports[idx].class;
917 strcpy(dip->label.name, ports[idx].audio);
918
919 if (!mute) {
920 dip->type = AUDIO_MIXER_VALUE;
921 dip->prev = AUDIO_MIXER_LAST;
922 dip->next = dip->index + 1;
923
924 if (ports[idx].r_port != 0)
925 dip->un.v.num_channels = 2;
926 else
927 dip->un.v.num_channels = 1;
928
929 strcpy(dip->un.v.units.name, AudioNvolume);
930 } else {
931 dip->type = AUDIO_MIXER_ENUM;
932 dip->prev = dip->index - 1;
933 dip->next = AUDIO_MIXER_LAST;
934
935 strcpy(dip->label.name, AudioNmute);
936 dip->un.e.num_mem = 2;
937 strcpy(dip->un.e.member[0].label.name, AudioNoff);
938 dip->un.e.member[0].ord = 0;
939 strcpy(dip->un.e.member[1].label.name, AudioNon);
940 dip->un.e.member[1].ord = 1;
941 }
942
943 return 0;
944 }
945
946 switch (dip->index) {
947 case SV_RECORD_SOURCE:
948 dip->mixer_class = SV_RECORD_CLASS;
949 dip->prev = AUDIO_MIXER_LAST;
950 dip->next = SV_RECORD_GAIN;
951 strcpy(dip->label.name, AudioNsource);
952 dip->type = AUDIO_MIXER_ENUM;
953
954 dip->un.e.num_mem = ARRAY_SIZE(record_sources);
955 for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
956 strcpy(dip->un.e.member[i].label.name,
957 record_sources[i].name);
958 dip->un.e.member[i].ord = record_sources[i].idx;
959 }
960 return 0;
961
962 case SV_RECORD_GAIN:
963 dip->mixer_class = SV_RECORD_CLASS;
964 dip->prev = SV_RECORD_SOURCE;
965 dip->next = AUDIO_MIXER_LAST;
966 strcpy(dip->label.name, "gain");
967 dip->type = AUDIO_MIXER_VALUE;
968 dip->un.v.num_channels = 1;
969 strcpy(dip->un.v.units.name, AudioNvolume);
970 return 0;
971
972 case SV_MIC_BOOST:
973 dip->mixer_class = SV_RECORD_CLASS;
974 dip->prev = AUDIO_MIXER_LAST;
975 dip->next = AUDIO_MIXER_LAST;
976 strcpy(dip->label.name, "micboost");
977 goto on_off;
978
979 case SV_SRS_MODE:
980 dip->mixer_class = SV_OUTPUT_CLASS;
981 dip->prev = dip->next = AUDIO_MIXER_LAST;
982 strcpy(dip->label.name, AudioNspatial);
983
984 on_off:
985 dip->type = AUDIO_MIXER_ENUM;
986 dip->un.e.num_mem = 2;
987 strcpy(dip->un.e.member[0].label.name, AudioNoff);
988 dip->un.e.member[0].ord = 0;
989 strcpy(dip->un.e.member[1].label.name, AudioNon);
990 dip->un.e.member[1].ord = 1;
991 return 0;
992 }
993
994 return ENXIO;
995 }
996
997 static int
998 sv_mixer_set_port(void *addr, mixer_ctrl_t *cp)
999 {
1000 struct sv_softc *sc;
1001 uint8_t reg;
1002 int idx;
1003
1004 sc = addr;
1005 if (cp->dev >= SV_FIRST_MIXER &&
1006 cp->dev <= SV_LAST_MIXER) {
1007 int off, mute;
1008
1009 off = cp->dev - SV_FIRST_MIXER;
1010 mute = (off % SV_DEVICES_PER_PORT);
1011 idx = off / SV_DEVICES_PER_PORT;
1012
1013 if (mute) {
1014 if (cp->type != AUDIO_MIXER_ENUM)
1015 return EINVAL;
1016
1017 mutex_spin_enter(&sc->sc_intr_lock);
1018 reg = sv_read_indirect(sc, ports[idx].l_port);
1019 if (cp->un.ord)
1020 reg |= SV_MUTE_BIT;
1021 else
1022 reg &= ~SV_MUTE_BIT;
1023 sv_write_indirect(sc, ports[idx].l_port, reg);
1024
1025 if (ports[idx].r_port) {
1026 reg = sv_read_indirect(sc, ports[idx].r_port);
1027 if (cp->un.ord)
1028 reg |= SV_MUTE_BIT;
1029 else
1030 reg &= ~SV_MUTE_BIT;
1031 sv_write_indirect(sc, ports[idx].r_port, reg);
1032 }
1033 mutex_spin_exit(&sc->sc_intr_lock);
1034 } else {
1035 int lval, rval;
1036
1037 if (cp->type != AUDIO_MIXER_VALUE)
1038 return EINVAL;
1039
1040 if (cp->un.value.num_channels != 1 &&
1041 cp->un.value.num_channels != 2)
1042 return (EINVAL);
1043
1044 if (ports[idx].r_port == 0) {
1045 if (cp->un.value.num_channels != 1)
1046 return (EINVAL);
1047 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1048 rval = 0; /* shut up GCC */
1049 } else {
1050 if (cp->un.value.num_channels != 2)
1051 return (EINVAL);
1052
1053 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1054 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1055 }
1056
1057 mutex_spin_enter(&sc->sc_intr_lock);
1058 reg = sv_read_indirect(sc, ports[idx].l_port);
1059 reg &= ~(ports[idx].mask);
1060 lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1061 AUDIO_MAX_GAIN;
1062 reg |= lval;
1063 sv_write_indirect(sc, ports[idx].l_port, reg);
1064
1065 if (ports[idx].r_port != 0) {
1066 reg = sv_read_indirect(sc, ports[idx].r_port);
1067 reg &= ~(ports[idx].mask);
1068
1069 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1070 AUDIO_MAX_GAIN;
1071 reg |= rval;
1072
1073 sv_write_indirect(sc, ports[idx].r_port, reg);
1074 }
1075
1076 sv_read_indirect(sc, ports[idx].l_port);
1077 mutex_spin_exit(&sc->sc_intr_lock);
1078 }
1079
1080 return 0;
1081 }
1082
1083
1084 switch (cp->dev) {
1085 case SV_RECORD_SOURCE:
1086 if (cp->type != AUDIO_MIXER_ENUM)
1087 return EINVAL;
1088
1089 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1090 if (record_sources[idx].idx == cp->un.ord)
1091 goto found;
1092 }
1093
1094 return EINVAL;
1095
1096 found:
1097 mutex_spin_enter(&sc->sc_intr_lock);
1098 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1099 reg &= ~SV_REC_SOURCE_MASK;
1100 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1101 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1102
1103 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1104 reg &= ~SV_REC_SOURCE_MASK;
1105 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1106 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1107 mutex_spin_exit(&sc->sc_intr_lock);
1108 return 0;
1109
1110 case SV_RECORD_GAIN:
1111 {
1112 int val;
1113
1114 if (cp->type != AUDIO_MIXER_VALUE)
1115 return EINVAL;
1116
1117 if (cp->un.value.num_channels != 1)
1118 return EINVAL;
1119
1120 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]
1121 * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN;
1122
1123 mutex_spin_enter(&sc->sc_intr_lock);
1124 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1125 reg &= ~SV_REC_GAIN_MASK;
1126 reg |= val;
1127 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1128
1129 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1130 reg &= ~SV_REC_GAIN_MASK;
1131 reg |= val;
1132 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1133 mutex_spin_exit(&sc->sc_intr_lock);
1134 }
1135 return (0);
1136
1137 case SV_MIC_BOOST:
1138 if (cp->type != AUDIO_MIXER_ENUM)
1139 return EINVAL;
1140
1141 mutex_spin_enter(&sc->sc_intr_lock);
1142 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1143 if (cp->un.ord) {
1144 reg |= SV_MIC_BOOST_BIT;
1145 } else {
1146 reg &= ~SV_MIC_BOOST_BIT;
1147 }
1148
1149 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1150 mutex_spin_exit(&sc->sc_intr_lock);
1151 return 0;
1152
1153 case SV_SRS_MODE:
1154 if (cp->type != AUDIO_MIXER_ENUM)
1155 return EINVAL;
1156
1157 mutex_spin_enter(&sc->sc_intr_lock);
1158 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1159 if (cp->un.ord) {
1160 reg &= ~SV_SRS_SPACE_ONOFF;
1161 } else {
1162 reg |= SV_SRS_SPACE_ONOFF;
1163 }
1164
1165 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1166 mutex_spin_exit(&sc->sc_intr_lock);
1167 return 0;
1168 }
1169
1170 return EINVAL;
1171 }
1172
1173 static int
1174 sv_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1175 {
1176 struct sv_softc *sc;
1177 int val, error;
1178 uint8_t reg;
1179
1180 sc = addr;
1181 error = 0;
1182
1183 mutex_spin_enter(&sc->sc_intr_lock);
1184
1185 if (cp->dev >= SV_FIRST_MIXER &&
1186 cp->dev <= SV_LAST_MIXER) {
1187 int off = cp->dev - SV_FIRST_MIXER;
1188 int mute = (off % 2);
1189 int idx = off / 2;
1190
1191 off = cp->dev - SV_FIRST_MIXER;
1192 mute = (off % 2);
1193 idx = off / 2;
1194 if (mute) {
1195 if (cp->type != AUDIO_MIXER_ENUM)
1196 error = EINVAL;
1197 else {
1198 reg = sv_read_indirect(sc, ports[idx].l_port);
1199 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1200 }
1201 } else {
1202 if (cp->type != AUDIO_MIXER_VALUE ||
1203 (cp->un.value.num_channels != 1 &&
1204 cp->un.value.num_channels != 2) ||
1205 ((ports[idx].r_port == 0 &&
1206 cp->un.value.num_channels != 1) ||
1207 (ports[idx].r_port != 0 &&
1208 cp->un.value.num_channels != 2)))
1209 error = EINVAL;
1210 else {
1211 reg = sv_read_indirect(sc, ports[idx].l_port);
1212 reg &= ports[idx].mask;
1213
1214 val = AUDIO_MAX_GAIN -
1215 ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1216
1217 if (ports[idx].r_port != 0) {
1218 cp->un.value.level
1219 [AUDIO_MIXER_LEVEL_LEFT] = val;
1220
1221 reg = sv_read_indirect(sc,
1222 ports[idx].r_port);
1223 reg &= ports[idx].mask;
1224
1225 val = AUDIO_MAX_GAIN -
1226 ((reg * AUDIO_MAX_GAIN)
1227 / ports[idx].mask);
1228 cp->un.value.level
1229 [AUDIO_MIXER_LEVEL_RIGHT] = val;
1230 } else
1231 cp->un.value.level
1232 [AUDIO_MIXER_LEVEL_MONO] = val;
1233 }
1234 }
1235
1236 return error;
1237 }
1238
1239 switch (cp->dev) {
1240 case SV_RECORD_SOURCE:
1241 if (cp->type != AUDIO_MIXER_ENUM) {
1242 error = EINVAL;
1243 break;
1244 }
1245
1246 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1247 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1248
1249 break;
1250
1251 case SV_RECORD_GAIN:
1252 if (cp->type != AUDIO_MIXER_VALUE) {
1253 error = EINVAL;
1254 break;
1255 }
1256 if (cp->un.value.num_channels != 1) {
1257 error = EINVAL;
1258 break;
1259 }
1260
1261 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1262 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1263 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1264
1265 break;
1266
1267 case SV_MIC_BOOST:
1268 if (cp->type != AUDIO_MIXER_ENUM) {
1269 error = EINVAL;
1270 break;
1271 }
1272 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1273 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1274 break;
1275
1276 case SV_SRS_MODE:
1277 if (cp->type != AUDIO_MIXER_ENUM) {
1278 error = EINVAL;
1279 break;
1280 }
1281 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1282 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1283 break;
1284 default:
1285 error = EINVAL;
1286 break;
1287 }
1288
1289 mutex_spin_exit(&sc->sc_intr_lock);
1290 return error;
1291 }
1292
1293 static void
1294 sv_init_mixer(struct sv_softc *sc)
1295 {
1296 mixer_ctrl_t cp;
1297 int i;
1298
1299 cp.type = AUDIO_MIXER_ENUM;
1300 cp.dev = SV_SRS_MODE;
1301 cp.un.ord = 0;
1302
1303 sv_mixer_set_port(sc, &cp);
1304
1305 for (i = 0; i < ARRAY_SIZE(ports); i++) {
1306 if (!strcmp(ports[i].audio, AudioNdac)) {
1307 cp.type = AUDIO_MIXER_ENUM;
1308 cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1309 cp.un.ord = 0;
1310 sv_mixer_set_port(sc, &cp);
1311 break;
1312 }
1313 }
1314 }
1315
1316 static void *
1317 sv_malloc(void *addr, int direction, size_t size)
1318 {
1319 struct sv_softc *sc;
1320 struct sv_dma *p;
1321 int error;
1322
1323 sc = addr;
1324 p = kmem_alloc(sizeof(*p), KM_SLEEP);
1325 error = sv_allocmem(sc, size, 16, direction, p);
1326 if (error) {
1327 kmem_free(p, sizeof(*p));
1328 return 0;
1329 }
1330 p->next = sc->sc_dmas;
1331 sc->sc_dmas = p;
1332 return KERNADDR(p);
1333 }
1334
1335 static void
1336 sv_free(void *addr, void *ptr, size_t size)
1337 {
1338 struct sv_softc *sc;
1339 struct sv_dma **pp, *p;
1340
1341 sc = addr;
1342 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1343 if (KERNADDR(p) == ptr) {
1344 sv_freemem(sc, p);
1345 *pp = p->next;
1346 kmem_free(p, sizeof(*p));
1347 return;
1348 }
1349 }
1350 }
1351
1352 static int
1353 sv_get_props(void *addr)
1354 {
1355 return AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX;
1356 }
1357
1358 static void
1359 sv_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
1360 {
1361 struct sv_softc *sc;
1362
1363 sc = addr;
1364 *intr = &sc->sc_intr_lock;
1365 *thread = &sc->sc_lock;
1366 }
1367