twe.c revision 1.103 1 /* $NetBSD: twe.c,v 1.103 2014/07/25 08:10:38 dholland Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 2000 Michael Smith
34 * Copyright (c) 2000 BSDi
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
59 */
60
61 /*
62 * Driver for the 3ware Escalade family of RAID controllers.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.103 2014/07/25 08:10:38 dholland Exp $");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/device.h>
72 #include <sys/queue.h>
73 #include <sys/proc.h>
74 #include <sys/buf.h>
75 #include <sys/endian.h>
76 #include <sys/malloc.h>
77 #include <sys/conf.h>
78 #include <sys/disk.h>
79 #include <sys/sysctl.h>
80 #include <sys/syslog.h>
81 #include <sys/kauth.h>
82
83 #include <sys/bswap.h>
84 #include <sys/bus.h>
85
86 #include <dev/pci/pcireg.h>
87 #include <dev/pci/pcivar.h>
88 #include <dev/pci/pcidevs.h>
89 #include <dev/pci/twereg.h>
90 #include <dev/pci/twevar.h>
91 #include <dev/pci/tweio.h>
92
93 #include "locators.h"
94
95 #define PCI_CBIO 0x10
96
97 static int twe_aen_get(struct twe_softc *, uint16_t *);
98 static void twe_aen_handler(struct twe_ccb *, int);
99 static void twe_aen_enqueue(struct twe_softc *sc, uint16_t, int);
100 static uint16_t twe_aen_dequeue(struct twe_softc *);
101
102 static void twe_attach(device_t, device_t, void *);
103 static int twe_init_connection(struct twe_softc *);
104 static int twe_intr(void *);
105 static int twe_match(device_t, cfdata_t, void *);
106 static int twe_param_set(struct twe_softc *, int, int, size_t, void *);
107 static void twe_poll(struct twe_softc *);
108 static int twe_print(void *, const char *);
109 static int twe_reset(struct twe_softc *);
110 static int twe_status_check(struct twe_softc *, u_int);
111 static int twe_status_wait(struct twe_softc *, u_int, int);
112 static void twe_describe_controller(struct twe_softc *);
113 static void twe_clear_pci_abort(struct twe_softc *sc);
114 static void twe_clear_pci_parity_error(struct twe_softc *sc);
115
116 static int twe_add_unit(struct twe_softc *, int);
117 static int twe_del_unit(struct twe_softc *, int);
118 static int twe_init_connection(struct twe_softc *);
119
120 static inline u_int32_t twe_inl(struct twe_softc *, int);
121 static inline void twe_outl(struct twe_softc *, int, u_int32_t);
122
123 extern struct cfdriver twe_cd;
124
125 CFATTACH_DECL_NEW(twe, sizeof(struct twe_softc),
126 twe_match, twe_attach, NULL, NULL);
127
128 /* FreeBSD driver revision for sysctl expected by the 3ware cli */
129 const char twever[] = "1.50.01.002";
130
131 /*
132 * Tables to convert numeric codes to strings.
133 */
134 const struct twe_code_table twe_table_status[] = {
135 { 0x00, "successful completion" },
136
137 /* info */
138 { 0x42, "command in progress" },
139 { 0x6c, "retrying interface CRC error from UDMA command" },
140
141 /* warning */
142 { 0x81, "redundant/inconsequential request ignored" },
143 { 0x8e, "failed to write zeroes to LBA 0" },
144 { 0x8f, "failed to profile TwinStor zones" },
145
146 /* fatal */
147 { 0xc1, "aborted due to system command or reconfiguration" },
148 { 0xc4, "aborted" },
149 { 0xc5, "access error" },
150 { 0xc6, "access violation" },
151 { 0xc7, "device failure" }, /* high byte may be port # */
152 { 0xc8, "controller error" },
153 { 0xc9, "timed out" },
154 { 0xcb, "invalid unit number" },
155 { 0xcf, "unit not available" },
156 { 0xd2, "undefined opcode" },
157 { 0xdb, "request incompatible with unit" },
158 { 0xdc, "invalid request" },
159 { 0xff, "firmware error, reset requested" },
160
161 { 0, NULL }
162 };
163
164 const struct twe_code_table twe_table_unitstate[] = {
165 { TWE_PARAM_UNITSTATUS_Normal, "Normal" },
166 { TWE_PARAM_UNITSTATUS_Initialising, "Initializing" },
167 { TWE_PARAM_UNITSTATUS_Degraded, "Degraded" },
168 { TWE_PARAM_UNITSTATUS_Rebuilding, "Rebuilding" },
169 { TWE_PARAM_UNITSTATUS_Verifying, "Verifying" },
170 { TWE_PARAM_UNITSTATUS_Corrupt, "Corrupt" },
171 { TWE_PARAM_UNITSTATUS_Missing, "Missing" },
172
173 { 0, NULL }
174 };
175
176 const struct twe_code_table twe_table_unittype[] = {
177 /* array descriptor configuration */
178 { TWE_AD_CONFIG_RAID0, "RAID0" },
179 { TWE_AD_CONFIG_RAID1, "RAID1" },
180 { TWE_AD_CONFIG_TwinStor, "TwinStor" },
181 { TWE_AD_CONFIG_RAID5, "RAID5" },
182 { TWE_AD_CONFIG_RAID10, "RAID10" },
183 { TWE_UD_CONFIG_JBOD, "JBOD" },
184
185 { 0, NULL }
186 };
187
188 const struct twe_code_table twe_table_stripedepth[] = {
189 { TWE_AD_STRIPE_4k, "4K" },
190 { TWE_AD_STRIPE_8k, "8K" },
191 { TWE_AD_STRIPE_16k, "16K" },
192 { TWE_AD_STRIPE_32k, "32K" },
193 { TWE_AD_STRIPE_64k, "64K" },
194 { TWE_AD_STRIPE_128k, "128K" },
195 { TWE_AD_STRIPE_256k, "256K" },
196 { TWE_AD_STRIPE_512k, "512K" },
197 { TWE_AD_STRIPE_1024k, "1024K" },
198
199 { 0, NULL }
200 };
201
202 /*
203 * Asynchronous event notification messages are qualified:
204 * a - not unit/port specific
205 * u - unit specific
206 * p - port specific
207 *
208 * They are further qualified with a severity:
209 * E - LOG_EMERG
210 * a - LOG_ALERT
211 * c - LOG_CRIT
212 * e - LOG_ERR
213 * w - LOG_WARNING
214 * n - LOG_NOTICE
215 * i - LOG_INFO
216 * d - LOG_DEBUG
217 * blank - just use printf
218 */
219 const struct twe_code_table twe_table_aen[] = {
220 { 0x00, "a queue empty" },
221 { 0x01, "a soft reset" },
222 { 0x02, "uc degraded mode" },
223 { 0x03, "aa controller error" },
224 { 0x04, "uE rebuild fail" },
225 { 0x05, "un rebuild done" },
226 { 0x06, "ue incomplete unit" },
227 { 0x07, "un initialization done" },
228 { 0x08, "uw unclean shutdown detected" },
229 { 0x09, "pe drive timeout" },
230 { 0x0a, "pc drive error" },
231 { 0x0b, "un rebuild started" },
232 { 0x0c, "un initialization started" },
233 { 0x0d, "ui logical unit deleted" },
234 { 0x0f, "pc SMART threshold exceeded" },
235 { 0x15, "a table undefined" }, /* XXX: Not in FreeBSD's table */
236 { 0x21, "pe ATA UDMA downgrade" },
237 { 0x22, "pi ATA UDMA upgrade" },
238 { 0x23, "pw sector repair occurred" },
239 { 0x24, "aa SBUF integrity check failure" },
240 { 0x25, "pa lost cached write" },
241 { 0x26, "pa drive ECC error detected" },
242 { 0x27, "pe DCB checksum error" },
243 { 0x28, "pn DCB unsupported version" },
244 { 0x29, "ui verify started" },
245 { 0x2a, "ua verify failed" },
246 { 0x2b, "ui verify complete" },
247 { 0x2c, "pw overwrote bad sector during rebuild" },
248 { 0x2d, "pa encountered bad sector during rebuild" },
249 { 0x2e, "pe replacement drive too small" },
250 { 0x2f, "ue array not previously initialized" },
251 { 0x30, "p drive not supported" },
252 { 0xff, "a aen queue full" },
253
254 { 0, NULL },
255 };
256
257 const char *
258 twe_describe_code(const struct twe_code_table *table, uint32_t code)
259 {
260
261 for (; table->string != NULL; table++) {
262 if (table->code == code)
263 return (table->string);
264 }
265 return (NULL);
266 }
267
268 static inline u_int32_t
269 twe_inl(struct twe_softc *sc, int off)
270 {
271
272 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
273 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
274 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
275 }
276
277 static inline void
278 twe_outl(struct twe_softc *sc, int off, u_int32_t val)
279 {
280
281 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
282 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
283 BUS_SPACE_BARRIER_WRITE);
284 }
285
286 /*
287 * Match a supported board.
288 */
289 static int
290 twe_match(device_t parent, cfdata_t cfdata, void *aux)
291 {
292 struct pci_attach_args *pa;
293
294 pa = aux;
295
296 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
297 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
298 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
299 }
300
301 /*
302 * Attach a supported board.
303 *
304 * XXX This doesn't fail gracefully.
305 */
306 static void
307 twe_attach(device_t parent, device_t self, void *aux)
308 {
309 struct pci_attach_args *pa;
310 struct twe_softc *sc;
311 pci_chipset_tag_t pc;
312 pci_intr_handle_t ih;
313 pcireg_t csr;
314 const char *intrstr;
315 int s, size, i, rv, rseg;
316 size_t max_segs, max_xfer;
317 bus_dma_segment_t seg;
318 const struct sysctlnode *node;
319 struct twe_cmd *tc;
320 struct twe_ccb *ccb;
321 char intrbuf[PCI_INTRSTR_LEN];
322
323 sc = device_private(self);
324 sc->sc_dev = self;
325 pa = aux;
326 pc = pa->pa_pc;
327 sc->sc_dmat = pa->pa_dmat;
328 SIMPLEQ_INIT(&sc->sc_ccb_queue);
329 SLIST_INIT(&sc->sc_ccb_freelist);
330
331 aprint_naive(": RAID controller\n");
332 aprint_normal(": 3ware Escalade\n");
333
334
335 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
336 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
337 aprint_error_dev(self, "can't map i/o space\n");
338 return;
339 }
340
341 /* Enable the device. */
342 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
343 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
344 csr | PCI_COMMAND_MASTER_ENABLE);
345
346 /* Map and establish the interrupt. */
347 if (pci_intr_map(pa, &ih)) {
348 aprint_error_dev(self, "can't map interrupt\n");
349 return;
350 }
351
352 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
353 sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc);
354 if (sc->sc_ih == NULL) {
355 aprint_error_dev(self, "can't establish interrupt%s%s\n",
356 (intrstr) ? " at " : "",
357 (intrstr) ? intrstr : "");
358 return;
359 }
360
361 if (intrstr != NULL)
362 aprint_normal_dev(self, "interrupting at %s\n",
363 intrstr);
364
365 /*
366 * Allocate and initialise the command blocks and CCBs.
367 */
368 size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
369
370 if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
371 &rseg, BUS_DMA_NOWAIT)) != 0) {
372 aprint_error_dev(self, "unable to allocate commands, rv = %d\n", rv);
373 return;
374 }
375
376 if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
377 (void **)&sc->sc_cmds,
378 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
379 aprint_error_dev(self, "unable to map commands, rv = %d\n", rv);
380 return;
381 }
382
383 if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
384 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
385 aprint_error_dev(self, "unable to create command DMA map, rv = %d\n", rv);
386 return;
387 }
388
389 if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
390 size, NULL, BUS_DMA_NOWAIT)) != 0) {
391 aprint_error_dev(self, "unable to load command DMA map, rv = %d\n", rv);
392 return;
393 }
394
395 ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT);
396 if (ccb == NULL) {
397 aprint_error_dev(self, "unable to allocate memory for ccbs\n");
398 return;
399 }
400
401 sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
402 memset(sc->sc_cmds, 0, size);
403
404 sc->sc_ccbs = ccb;
405 tc = (struct twe_cmd *)sc->sc_cmds;
406 max_segs = twe_get_maxsegs();
407 max_xfer = twe_get_maxxfer(max_segs);
408
409 for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
410 ccb->ccb_cmd = tc;
411 ccb->ccb_cmdid = i;
412 ccb->ccb_flags = 0;
413 rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
414 max_segs, PAGE_SIZE, 0,
415 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
416 &ccb->ccb_dmamap_xfer);
417 if (rv != 0) {
418 aprint_error_dev(self, "can't create dmamap, rv = %d\n", rv);
419 return;
420 }
421
422 /* Save the first CCB for AEN retrieval. */
423 if (i != 0)
424 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
425 ccb_chain.slist);
426 }
427
428 /* Wait for the controller to become ready. */
429 if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
430 aprint_error_dev(self, "microcontroller not ready\n");
431 return;
432 }
433
434 twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
435
436 /* Reset the controller. */
437 s = splbio();
438 rv = twe_reset(sc);
439 splx(s);
440 if (rv) {
441 aprint_error_dev(self, "reset failed\n");
442 return;
443 }
444
445 /* Initialise connection with controller. */
446 twe_init_connection(sc);
447
448 twe_describe_controller(sc);
449
450 /* Find and attach RAID array units. */
451 sc->sc_nunits = 0;
452 for (i = 0; i < TWE_MAX_UNITS; i++)
453 (void) twe_add_unit(sc, i);
454
455 /* ...and finally, enable interrupts. */
456 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
457 TWE_CTL_UNMASK_RESP_INTR |
458 TWE_CTL_ENABLE_INTRS);
459
460 /* sysctl set-up for 3ware cli */
461 if (sysctl_createv(NULL, 0, NULL, &node,
462 0, CTLTYPE_NODE, device_xname(self),
463 SYSCTL_DESCR("twe driver information"),
464 NULL, 0, NULL, 0,
465 CTL_HW, CTL_CREATE, CTL_EOL) != 0) {
466 aprint_error_dev(self, "could not create %s.%s sysctl node\n",
467 "hw", device_xname(self));
468 return;
469 }
470 if ((i = sysctl_createv(NULL, 0, NULL, NULL,
471 0, CTLTYPE_STRING, "driver_version",
472 SYSCTL_DESCR("twe0 driver version"),
473 NULL, 0, __UNCONST(&twever), 0,
474 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL))
475 != 0) {
476 aprint_error_dev(self, "could not create %s.%s.driver_version sysctl\n",
477 "hw", device_xname(self));
478 return;
479 }
480 }
481
482 void
483 twe_register_callbacks(struct twe_softc *sc, int unit,
484 const struct twe_callbacks *tcb)
485 {
486
487 sc->sc_units[unit].td_callbacks = tcb;
488 }
489
490 static void
491 twe_recompute_openings(struct twe_softc *sc)
492 {
493 struct twe_drive *td;
494 int unit, openings;
495
496 if (sc->sc_nunits != 0)
497 openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits;
498 else
499 openings = 0;
500 if (openings == sc->sc_openings)
501 return;
502 sc->sc_openings = openings;
503
504 #ifdef TWE_DEBUG
505 printf("%s: %d array%s, %d openings per array\n",
506 device_xname(sc->sc_dev), sc->sc_nunits,
507 sc->sc_nunits == 1 ? "" : "s", sc->sc_openings);
508 #endif
509
510 for (unit = 0; unit < TWE_MAX_UNITS; unit++) {
511 td = &sc->sc_units[unit];
512 if (td->td_dev != NULL)
513 (*td->td_callbacks->tcb_openings)(td->td_dev,
514 sc->sc_openings);
515 }
516 }
517
518 static int
519 twe_add_unit(struct twe_softc *sc, int unit)
520 {
521 struct twe_param *dtp, *atp;
522 struct twe_array_descriptor *ad;
523 struct twe_drive *td;
524 struct twe_attach_args twea;
525 uint32_t newsize;
526 int rv;
527 uint16_t dsize;
528 uint8_t newtype, newstripe;
529 int locs[TWECF_NLOCS];
530
531 if (unit < 0 || unit >= TWE_MAX_UNITS)
532 return (EINVAL);
533
534 /* Find attached units. */
535 rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
536 TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
537 if (rv != 0) {
538 aprint_error_dev(sc->sc_dev, "error %d fetching unit summary\n",
539 rv);
540 return (rv);
541 }
542
543 /* For each detected unit, collect size and store in an array. */
544 td = &sc->sc_units[unit];
545
546 /* Unit present? */
547 if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) {
548 /*
549 * XXX Should we check to see if a device has been
550 * XXX attached at this index and detach it if it
551 * XXX has? ("rescan" semantics)
552 */
553 rv = 0;
554 goto out;
555 }
556
557 rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit,
558 TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
559 if (rv != 0) {
560 aprint_error_dev(sc->sc_dev, "error %d fetching descriptor size "
561 "for unit %d\n", rv, unit);
562 goto out;
563 }
564
565 rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit,
566 TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
567 if (rv != 0) {
568 aprint_error_dev(sc->sc_dev, "error %d fetching array descriptor "
569 "for unit %d\n", rv, unit);
570 goto out;
571 }
572
573 ad = (struct twe_array_descriptor *)atp->tp_data;
574 newtype = ad->configuration;
575 newstripe = ad->stripe_size;
576 free(atp, M_DEVBUF);
577
578 rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit,
579 TWE_PARAM_UNITINFO_Capacity, &newsize);
580 if (rv != 0) {
581 aprint_error_dev(sc->sc_dev,
582 "error %d fetching capacity for unit %d\n",
583 rv, unit);
584 goto out;
585 }
586
587 /*
588 * Have a device, so we need to attach it. If there is currently
589 * something sitting at the slot, and the parameters are different,
590 * then we detach the old device before attaching the new one.
591 */
592 if (td->td_dev != NULL &&
593 td->td_size == newsize &&
594 td->td_type == newtype &&
595 td->td_stripe == newstripe) {
596 /* Same as the old device; just keep using it. */
597 rv = 0;
598 goto out;
599 } else if (td->td_dev != NULL) {
600 /* Detach the old device first. */
601 (void) config_detach(td->td_dev, DETACH_FORCE);
602 td->td_dev = NULL;
603 } else if (td->td_size == 0)
604 sc->sc_nunits++;
605
606 /*
607 * Committed to the new array unit; assign its parameters and
608 * recompute the number of available command openings.
609 */
610 td->td_size = newsize;
611 td->td_type = newtype;
612 td->td_stripe = newstripe;
613 twe_recompute_openings(sc);
614
615 twea.twea_unit = unit;
616
617 locs[TWECF_UNIT] = unit;
618
619 td->td_dev = config_found_sm_loc(sc->sc_dev, "twe", locs, &twea,
620 twe_print, config_stdsubmatch);
621
622 rv = 0;
623 out:
624 free(dtp, M_DEVBUF);
625 return (rv);
626 }
627
628 static int
629 twe_del_unit(struct twe_softc *sc, int unit)
630 {
631 struct twe_drive *td;
632
633 if (unit < 0 || unit >= TWE_MAX_UNITS)
634 return (EINVAL);
635
636 td = &sc->sc_units[unit];
637 if (td->td_size != 0)
638 sc->sc_nunits--;
639 td->td_size = 0;
640 td->td_type = 0;
641 td->td_stripe = 0;
642 if (td->td_dev != NULL) {
643 (void) config_detach(td->td_dev, DETACH_FORCE);
644 td->td_dev = NULL;
645 }
646 twe_recompute_openings(sc);
647 return (0);
648 }
649
650 /*
651 * Reset the controller.
652 * MUST BE CALLED AT splbio()!
653 */
654 static int
655 twe_reset(struct twe_softc *sc)
656 {
657 uint16_t aen;
658 u_int status;
659 int got, rv;
660
661 /* Issue a soft reset. */
662 twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
663 TWE_CTL_CLEAR_HOST_INTR |
664 TWE_CTL_CLEAR_ATTN_INTR |
665 TWE_CTL_MASK_CMD_INTR |
666 TWE_CTL_MASK_RESP_INTR |
667 TWE_CTL_CLEAR_ERROR_STS |
668 TWE_CTL_DISABLE_INTRS);
669
670 /* Wait for attention... */
671 if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) {
672 aprint_error_dev(sc->sc_dev, "timeout waiting for attention interrupt\n");
673 return (-1);
674 }
675
676 /* ...and ACK it. */
677 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
678
679 /*
680 * Pull AENs out of the controller; look for a soft reset AEN.
681 * Open code this, since we want to detect reset even if the
682 * queue for management tools is full.
683 *
684 * Note that since:
685 * - interrupts are blocked
686 * - we have reset the controller
687 * - acknowledged the pending ATTENTION
688 * that there is no way a pending asynchronous AEN fetch would
689 * finish, so clear the flag.
690 */
691 sc->sc_flags &= ~TWEF_AEN;
692 for (got = 0;;) {
693 rv = twe_aen_get(sc, &aen);
694 if (rv != 0)
695 printf("%s: error %d while draining event queue\n",
696 device_xname(sc->sc_dev), rv);
697 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
698 break;
699 if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
700 got = 1;
701 twe_aen_enqueue(sc, aen, 1);
702 }
703
704 if (!got) {
705 printf("%s: reset not reported\n", device_xname(sc->sc_dev));
706 return (-1);
707 }
708
709 /* Check controller status. */
710 status = twe_inl(sc, TWE_REG_STS);
711 if (twe_status_check(sc, status)) {
712 printf("%s: controller errors detected\n",
713 device_xname(sc->sc_dev));
714 return (-1);
715 }
716
717 /* Drain the response queue. */
718 for (;;) {
719 status = twe_inl(sc, TWE_REG_STS);
720 if (twe_status_check(sc, status) != 0) {
721 aprint_error_dev(sc->sc_dev, "can't drain response queue\n");
722 return (-1);
723 }
724 if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
725 break;
726 (void)twe_inl(sc, TWE_REG_RESP_QUEUE);
727 }
728
729 return (0);
730 }
731
732 /*
733 * Print autoconfiguration message for a sub-device.
734 */
735 static int
736 twe_print(void *aux, const char *pnp)
737 {
738 struct twe_attach_args *twea;
739
740 twea = aux;
741
742 if (pnp != NULL)
743 aprint_normal("block device at %s", pnp);
744 aprint_normal(" unit %d", twea->twea_unit);
745 return (UNCONF);
746 }
747
748 /*
749 * Interrupt service routine.
750 */
751 static int
752 twe_intr(void *arg)
753 {
754 struct twe_softc *sc;
755 u_int status;
756 int caught, rv;
757
758 sc = arg;
759 caught = 0;
760 status = twe_inl(sc, TWE_REG_STS);
761 twe_status_check(sc, status);
762
763 /* Host interrupts - purpose unknown. */
764 if ((status & TWE_STS_HOST_INTR) != 0) {
765 #ifdef DEBUG
766 printf("%s: host interrupt\n", device_xname(sc->sc_dev));
767 #endif
768 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
769 caught = 1;
770 }
771
772 /*
773 * Attention interrupts, signalled when a controller or child device
774 * state change has occurred.
775 */
776 if ((status & TWE_STS_ATTN_INTR) != 0) {
777 rv = twe_aen_get(sc, NULL);
778 if (rv != 0)
779 aprint_error_dev(sc->sc_dev, "unable to retrieve AEN (%d)\n", rv);
780 else
781 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
782 caught = 1;
783 }
784
785 /*
786 * Command interrupts, signalled when the controller can accept more
787 * commands. We don't use this; instead, we try to submit commands
788 * when we receive them, and when other commands have completed.
789 * Mask it so we don't get another one.
790 */
791 if ((status & TWE_STS_CMD_INTR) != 0) {
792 #ifdef DEBUG
793 printf("%s: command interrupt\n", device_xname(sc->sc_dev));
794 #endif
795 twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
796 caught = 1;
797 }
798
799 if ((status & TWE_STS_RESP_INTR) != 0) {
800 twe_poll(sc);
801 caught = 1;
802 }
803
804 return (caught);
805 }
806
807 /*
808 * Fetch an AEN. Even though this is really like parameter
809 * retrieval, we handle this specially, because we issue this
810 * AEN retrieval command from interrupt context, and thus
811 * reserve a CCB for it to avoid resource shortage.
812 *
813 * XXX There are still potential resource shortages we could
814 * XXX encounter. Consider pre-allocating all AEN-related
815 * XXX resources.
816 *
817 * MUST BE CALLED AT splbio()!
818 */
819 static int
820 twe_aen_get(struct twe_softc *sc, uint16_t *aenp)
821 {
822 struct twe_ccb *ccb;
823 struct twe_cmd *tc;
824 struct twe_param *tp;
825 int rv;
826
827 /*
828 * If we're already retrieving an AEN, just wait; another
829 * retrieval will be chained after the current one completes.
830 */
831 if (sc->sc_flags & TWEF_AEN) {
832 /*
833 * It is a fatal software programming error to attempt
834 * to fetch an AEN synchronously when an AEN fetch is
835 * already pending.
836 */
837 KASSERT(aenp == NULL);
838 return (0);
839 }
840
841 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
842 if (tp == NULL)
843 return (ENOMEM);
844
845 ccb = twe_ccb_alloc(sc,
846 TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
847 KASSERT(ccb != NULL);
848
849 ccb->ccb_data = tp;
850 ccb->ccb_datasize = TWE_SECTOR_SIZE;
851 ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL;
852 ccb->ccb_tx.tx_context = tp;
853 ccb->ccb_tx.tx_dv = sc->sc_dev;
854
855 tc = ccb->ccb_cmd;
856 tc->tc_size = 2;
857 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
858 tc->tc_unit = 0;
859 tc->tc_count = htole16(1);
860
861 /* Fill in the outbound parameter data. */
862 tp->tp_table_id = htole16(TWE_PARAM_AEN);
863 tp->tp_param_id = TWE_PARAM_AEN_UnitCode;
864 tp->tp_param_size = 2;
865
866 /* Map the transfer. */
867 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
868 twe_ccb_free(sc, ccb);
869 goto done;
870 }
871
872 /* Enqueue the command and wait. */
873 if (aenp != NULL) {
874 rv = twe_ccb_poll(sc, ccb, 5);
875 twe_ccb_unmap(sc, ccb);
876 twe_ccb_free(sc, ccb);
877 if (rv == 0)
878 *aenp = le16toh(*(uint16_t *)tp->tp_data);
879 free(tp, M_DEVBUF);
880 } else {
881 sc->sc_flags |= TWEF_AEN;
882 twe_ccb_enqueue(sc, ccb);
883 rv = 0;
884 }
885
886 done:
887 return (rv);
888 }
889
890 /*
891 * Handle an AEN returned by the controller.
892 * MUST BE CALLED AT splbio()!
893 */
894 static void
895 twe_aen_handler(struct twe_ccb *ccb, int error)
896 {
897 struct twe_softc *sc;
898 struct twe_param *tp;
899 uint16_t aen;
900 int rv;
901
902 sc = device_private(ccb->ccb_tx.tx_dv);
903 tp = ccb->ccb_tx.tx_context;
904 twe_ccb_unmap(sc, ccb);
905
906 sc->sc_flags &= ~TWEF_AEN;
907
908 if (error) {
909 aprint_error_dev(sc->sc_dev, "error retrieving AEN\n");
910 aen = TWE_AEN_QUEUE_EMPTY;
911 } else
912 aen = le16toh(*(u_int16_t *)tp->tp_data);
913 free(tp, M_DEVBUF);
914 twe_ccb_free(sc, ccb);
915
916 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
917 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
918 return;
919 }
920
921 twe_aen_enqueue(sc, aen, 0);
922
923 /*
924 * Chain another retrieval in case interrupts have been
925 * coalesced.
926 */
927 rv = twe_aen_get(sc, NULL);
928 if (rv != 0)
929 aprint_error_dev(sc->sc_dev, "unable to retrieve AEN (%d)\n", rv);
930 }
931
932 static void
933 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet)
934 {
935 const char *str, *msg;
936 int s, next, nextnext, level;
937
938 /*
939 * First report the AEN on the console. Maybe.
940 */
941 if (! quiet) {
942 str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen));
943 if (str == NULL) {
944 aprint_error_dev(sc->sc_dev, "unknown AEN 0x%04x\n", aen);
945 } else {
946 msg = str + 3;
947 switch (str[1]) {
948 case 'E': level = LOG_EMERG; break;
949 case 'a': level = LOG_ALERT; break;
950 case 'c': level = LOG_CRIT; break;
951 case 'e': level = LOG_ERR; break;
952 case 'w': level = LOG_WARNING; break;
953 case 'n': level = LOG_NOTICE; break;
954 case 'i': level = LOG_INFO; break;
955 case 'd': level = LOG_DEBUG; break;
956 default:
957 /* Don't use syslog. */
958 level = -1;
959 }
960
961 if (level < 0) {
962 switch (str[0]) {
963 case 'u':
964 case 'p':
965 printf("%s: %s %d: %s\n",
966 device_xname(sc->sc_dev),
967 str[0] == 'u' ? "unit" : "port",
968 TWE_AEN_UNIT(aen), msg);
969 break;
970
971 default:
972 printf("%s: %s\n",
973 device_xname(sc->sc_dev), msg);
974 }
975 } else {
976 switch (str[0]) {
977 case 'u':
978 case 'p':
979 log(level, "%s: %s %d: %s\n",
980 device_xname(sc->sc_dev),
981 str[0] == 'u' ? "unit" : "port",
982 TWE_AEN_UNIT(aen), msg);
983 break;
984
985 default:
986 log(level, "%s: %s\n",
987 device_xname(sc->sc_dev), msg);
988 }
989 }
990 }
991 }
992
993 /* Now enqueue the AEN for mangement tools. */
994 s = splbio();
995
996 next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH;
997 nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH;
998
999 /*
1000 * If this is the last free slot, then queue up a "queue
1001 * full" message.
1002 */
1003 if (nextnext == sc->sc_aen_tail)
1004 aen = TWE_AEN_QUEUE_FULL;
1005
1006 if (next != sc->sc_aen_tail) {
1007 sc->sc_aen_queue[sc->sc_aen_head] = aen;
1008 sc->sc_aen_head = next;
1009 }
1010
1011 if (sc->sc_flags & TWEF_AENQ_WAIT) {
1012 sc->sc_flags &= ~TWEF_AENQ_WAIT;
1013 wakeup(&sc->sc_aen_queue);
1014 }
1015
1016 splx(s);
1017 }
1018
1019 /* NOTE: Must be called at splbio(). */
1020 static uint16_t
1021 twe_aen_dequeue(struct twe_softc *sc)
1022 {
1023 uint16_t aen;
1024
1025 if (sc->sc_aen_tail == sc->sc_aen_head)
1026 aen = TWE_AEN_QUEUE_EMPTY;
1027 else {
1028 aen = sc->sc_aen_queue[sc->sc_aen_tail];
1029 sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH;
1030 }
1031
1032 return (aen);
1033 }
1034
1035 /*
1036 * These are short-hand functions that execute TWE_OP_GET_PARAM to
1037 * fetch 1, 2, and 4 byte parameter values, respectively.
1038 */
1039 int
1040 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
1041 uint8_t *valp)
1042 {
1043 struct twe_param *tp;
1044 int rv;
1045
1046 rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
1047 if (rv != 0)
1048 return (rv);
1049 *valp = *(uint8_t *)tp->tp_data;
1050 free(tp, M_DEVBUF);
1051 return (0);
1052 }
1053
1054 int
1055 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
1056 uint16_t *valp)
1057 {
1058 struct twe_param *tp;
1059 int rv;
1060
1061 rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
1062 if (rv != 0)
1063 return (rv);
1064 *valp = le16toh(*(uint16_t *)tp->tp_data);
1065 free(tp, M_DEVBUF);
1066 return (0);
1067 }
1068
1069 int
1070 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
1071 uint32_t *valp)
1072 {
1073 struct twe_param *tp;
1074 int rv;
1075
1076 rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
1077 if (rv != 0)
1078 return (rv);
1079 *valp = le32toh(*(uint32_t *)tp->tp_data);
1080 free(tp, M_DEVBUF);
1081 return (0);
1082 }
1083
1084 /*
1085 * Execute a TWE_OP_GET_PARAM command. If a callback function is provided,
1086 * it will be called with generated context when the command has completed.
1087 * If no callback is provided, the command will be executed synchronously
1088 * and a pointer to a buffer containing the data returned.
1089 *
1090 * The caller or callback is responsible for freeing the buffer.
1091 *
1092 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1093 */
1094 int
1095 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
1096 void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
1097 {
1098 struct twe_ccb *ccb;
1099 struct twe_cmd *tc;
1100 struct twe_param *tp;
1101 int rv, s;
1102
1103 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1104 if (tp == NULL)
1105 return ENOMEM;
1106
1107 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1108 KASSERT(ccb != NULL);
1109
1110 ccb->ccb_data = tp;
1111 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1112 ccb->ccb_tx.tx_handler = func;
1113 ccb->ccb_tx.tx_context = tp;
1114 ccb->ccb_tx.tx_dv = sc->sc_dev;
1115
1116 tc = ccb->ccb_cmd;
1117 tc->tc_size = 2;
1118 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
1119 tc->tc_unit = 0;
1120 tc->tc_count = htole16(1);
1121
1122 /* Fill in the outbound parameter data. */
1123 tp->tp_table_id = htole16(table_id);
1124 tp->tp_param_id = param_id;
1125 tp->tp_param_size = size;
1126
1127 /* Map the transfer. */
1128 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1129 twe_ccb_free(sc, ccb);
1130 goto done;
1131 }
1132
1133 /* Submit the command and either wait or let the callback handle it. */
1134 if (func == NULL) {
1135 s = splbio();
1136 rv = twe_ccb_poll(sc, ccb, 5);
1137 twe_ccb_unmap(sc, ccb);
1138 twe_ccb_free(sc, ccb);
1139 splx(s);
1140 } else {
1141 #ifdef DEBUG
1142 if (pbuf != NULL)
1143 panic("both func and pbuf defined");
1144 #endif
1145 twe_ccb_enqueue(sc, ccb);
1146 return 0;
1147 }
1148
1149 done:
1150 if (pbuf == NULL || rv != 0)
1151 free(tp, M_DEVBUF);
1152 else if (pbuf != NULL && rv == 0)
1153 *pbuf = tp;
1154 return rv;
1155 }
1156
1157 /*
1158 * Execute a TWE_OP_SET_PARAM command.
1159 *
1160 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1161 */
1162 static int
1163 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
1164 void *sbuf)
1165 {
1166 struct twe_ccb *ccb;
1167 struct twe_cmd *tc;
1168 struct twe_param *tp;
1169 int rv, s;
1170
1171 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1172 if (tp == NULL)
1173 return ENOMEM;
1174
1175 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1176 KASSERT(ccb != NULL);
1177
1178 ccb->ccb_data = tp;
1179 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1180 ccb->ccb_tx.tx_handler = 0;
1181 ccb->ccb_tx.tx_context = tp;
1182 ccb->ccb_tx.tx_dv = sc->sc_dev;
1183
1184 tc = ccb->ccb_cmd;
1185 tc->tc_size = 2;
1186 tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
1187 tc->tc_unit = 0;
1188 tc->tc_count = htole16(1);
1189
1190 /* Fill in the outbound parameter data. */
1191 tp->tp_table_id = htole16(table_id);
1192 tp->tp_param_id = param_id;
1193 tp->tp_param_size = size;
1194 memcpy(tp->tp_data, sbuf, size);
1195
1196 /* Map the transfer. */
1197 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1198 twe_ccb_free(sc, ccb);
1199 goto done;
1200 }
1201
1202 /* Submit the command and wait. */
1203 s = splbio();
1204 rv = twe_ccb_poll(sc, ccb, 5);
1205 twe_ccb_unmap(sc, ccb);
1206 twe_ccb_free(sc, ccb);
1207 splx(s);
1208 done:
1209 free(tp, M_DEVBUF);
1210 return (rv);
1211 }
1212
1213 /*
1214 * Execute a TWE_OP_INIT_CONNECTION command. Return non-zero on error.
1215 * Must be called with interrupts blocked.
1216 */
1217 static int
1218 twe_init_connection(struct twe_softc *sc)
1219 {
1220 struct twe_ccb *ccb;
1221 struct twe_cmd *tc;
1222 int rv;
1223
1224 if ((ccb = twe_ccb_alloc(sc, 0)) == NULL)
1225 return (EAGAIN);
1226
1227 /* Build the command. */
1228 tc = ccb->ccb_cmd;
1229 tc->tc_size = 3;
1230 tc->tc_opcode = TWE_OP_INIT_CONNECTION;
1231 tc->tc_unit = 0;
1232 tc->tc_count = htole16(TWE_MAX_CMDS);
1233 tc->tc_args.init_connection.response_queue_pointer = 0;
1234
1235 /* Submit the command for immediate execution. */
1236 rv = twe_ccb_poll(sc, ccb, 5);
1237 twe_ccb_free(sc, ccb);
1238 return (rv);
1239 }
1240
1241 /*
1242 * Poll the controller for completed commands. Must be called with
1243 * interrupts blocked.
1244 */
1245 static void
1246 twe_poll(struct twe_softc *sc)
1247 {
1248 struct twe_ccb *ccb;
1249 int found;
1250 u_int status, cmdid;
1251
1252 found = 0;
1253
1254 for (;;) {
1255 status = twe_inl(sc, TWE_REG_STS);
1256 twe_status_check(sc, status);
1257
1258 if ((status & TWE_STS_RESP_QUEUE_EMPTY))
1259 break;
1260
1261 found = 1;
1262 cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
1263 cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
1264 if (cmdid >= TWE_MAX_QUEUECNT) {
1265 aprint_error_dev(sc->sc_dev, "bad cmdid %d\n", cmdid);
1266 continue;
1267 }
1268
1269 ccb = sc->sc_ccbs + cmdid;
1270 if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
1271 printf("%s: CCB for cmdid %d not active\n",
1272 device_xname(sc->sc_dev), cmdid);
1273 continue;
1274 }
1275 ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
1276
1277 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1278 (char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
1279 sizeof(struct twe_cmd),
1280 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1281
1282 /* Pass notification to upper layers. */
1283 if (ccb->ccb_tx.tx_handler != NULL)
1284 (*ccb->ccb_tx.tx_handler)(ccb,
1285 ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
1286 }
1287
1288 /* If any commands have completed, run the software queue. */
1289 if (found)
1290 twe_ccb_enqueue(sc, NULL);
1291 }
1292
1293 /*
1294 * Wait for `status' to be set in the controller status register. Return
1295 * zero if found, non-zero if the operation timed out.
1296 */
1297 static int
1298 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
1299 {
1300
1301 for (timo *= 10; timo != 0; timo--) {
1302 if ((twe_inl(sc, TWE_REG_STS) & status) == status)
1303 break;
1304 delay(100000);
1305 }
1306
1307 return (timo == 0);
1308 }
1309
1310 /*
1311 * Clear a PCI parity error.
1312 */
1313 static void
1314 twe_clear_pci_parity_error(struct twe_softc *sc)
1315 {
1316 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PARITY_ERROR);
1317
1318 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
1319 }
1320
1321
1322 /*
1323 * Clear a PCI abort.
1324 */
1325 static void
1326 twe_clear_pci_abort(struct twe_softc *sc)
1327 {
1328 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT);
1329
1330 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
1331 }
1332
1333 /*
1334 * Complain if the status bits aren't what we expect.
1335 */
1336 static int
1337 twe_status_check(struct twe_softc *sc, u_int status)
1338 {
1339 int rv;
1340
1341 rv = 0;
1342
1343 if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
1344 aprint_error_dev(sc->sc_dev, "missing status bits: 0x%08x\n",
1345 status & ~TWE_STS_EXPECTED_BITS);
1346 rv = -1;
1347 }
1348
1349 if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
1350 aprint_error_dev(sc->sc_dev, "unexpected status bits: 0x%08x\n",
1351 status & TWE_STS_UNEXPECTED_BITS);
1352 rv = -1;
1353 if (status & TWE_STS_PCI_PARITY_ERROR) {
1354 aprint_error_dev(sc->sc_dev, "PCI parity error: Reseat card, move card "
1355 "or buggy device present.\n");
1356 twe_clear_pci_parity_error(sc);
1357 }
1358 if (status & TWE_STS_PCI_ABORT) {
1359 aprint_error_dev(sc->sc_dev, "PCI abort, clearing.\n");
1360 twe_clear_pci_abort(sc);
1361 }
1362 }
1363
1364 return (rv);
1365 }
1366
1367 /*
1368 * Allocate and initialise a CCB.
1369 */
1370 static inline void
1371 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags)
1372 {
1373 struct twe_cmd *tc;
1374
1375 ccb->ccb_tx.tx_handler = NULL;
1376 ccb->ccb_flags = flags;
1377 tc = ccb->ccb_cmd;
1378 tc->tc_status = 0;
1379 tc->tc_flags = 0;
1380 tc->tc_cmdid = ccb->ccb_cmdid;
1381 }
1382
1383 struct twe_ccb *
1384 twe_ccb_alloc(struct twe_softc *sc, int flags)
1385 {
1386 struct twe_ccb *ccb;
1387 int s;
1388
1389 s = splbio();
1390 if (__predict_false((flags & TWE_CCB_AEN) != 0)) {
1391 /* Use the reserved CCB. */
1392 ccb = sc->sc_ccbs;
1393 } else {
1394 /* Allocate a CCB and command block. */
1395 if (__predict_false((ccb =
1396 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1397 splx(s);
1398 return (NULL);
1399 }
1400 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1401 }
1402 #ifdef DIAGNOSTIC
1403 if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0)
1404 panic("twe_ccb_alloc: got reserved CCB for non-AEN");
1405 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1406 panic("twe_ccb_alloc: CCB %ld already allocated",
1407 (long)(ccb - sc->sc_ccbs));
1408 flags |= TWE_CCB_ALLOCED;
1409 #endif
1410 splx(s);
1411
1412 twe_ccb_init(sc, ccb, flags);
1413 return (ccb);
1414 }
1415
1416 struct twe_ccb *
1417 twe_ccb_alloc_wait(struct twe_softc *sc, int flags)
1418 {
1419 struct twe_ccb *ccb;
1420 int s;
1421
1422 KASSERT((flags & TWE_CCB_AEN) == 0);
1423
1424 s = splbio();
1425 while (__predict_false((ccb =
1426 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1427 sc->sc_flags |= TWEF_WAIT_CCB;
1428 (void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0);
1429 }
1430 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1431 #ifdef DIAGNOSTIC
1432 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1433 panic("twe_ccb_alloc_wait: CCB %ld already allocated",
1434 (long)(ccb - sc->sc_ccbs));
1435 flags |= TWE_CCB_ALLOCED;
1436 #endif
1437 splx(s);
1438
1439 twe_ccb_init(sc, ccb, flags);
1440 return (ccb);
1441 }
1442
1443 /*
1444 * Free a CCB.
1445 */
1446 void
1447 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
1448 {
1449 int s;
1450
1451 s = splbio();
1452 if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) {
1453 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
1454 if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) {
1455 sc->sc_flags &= ~TWEF_WAIT_CCB;
1456 wakeup(&sc->sc_ccb_freelist);
1457 }
1458 }
1459 ccb->ccb_flags = 0;
1460 splx(s);
1461 }
1462
1463 /*
1464 * Map the specified CCB's command block and data buffer (if any) into
1465 * controller visible space. Perform DMA synchronisation.
1466 */
1467 int
1468 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
1469 {
1470 struct twe_cmd *tc;
1471 int flags, nsegs, i, s, rv;
1472 void *data;
1473
1474 /*
1475 * The data as a whole must be 512-byte aligned.
1476 */
1477 if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
1478 s = splvm();
1479 /* XXX */
1480 rv = uvm_km_kmem_alloc(kmem_va_arena,
1481 ccb->ccb_datasize, (VM_NOSLEEP | VM_INSTANTFIT),
1482 (vmem_addr_t *)&ccb->ccb_abuf);
1483 splx(s);
1484 data = (void *)ccb->ccb_abuf;
1485 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1486 memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
1487 } else {
1488 ccb->ccb_abuf = (vaddr_t)0;
1489 data = ccb->ccb_data;
1490 }
1491
1492 /*
1493 * Map the data buffer into bus space and build the S/G list.
1494 */
1495 rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
1496 ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1497 ((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
1498 BUS_DMA_READ : BUS_DMA_WRITE));
1499 if (rv != 0) {
1500 if (ccb->ccb_abuf != (vaddr_t)0) {
1501 s = splvm();
1502 /* XXX */
1503 uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf,
1504 ccb->ccb_datasize);
1505 splx(s);
1506 }
1507 return (rv);
1508 }
1509
1510 nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
1511 tc = ccb->ccb_cmd;
1512 tc->tc_size += 2 * nsegs;
1513
1514 /* The location of the S/G list is dependent upon command type. */
1515 switch (tc->tc_opcode >> 5) {
1516 case 2:
1517 for (i = 0; i < nsegs; i++) {
1518 tc->tc_args.param.sgl[i].tsg_address =
1519 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1520 tc->tc_args.param.sgl[i].tsg_length =
1521 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1522 }
1523 /* XXX Needed? */
1524 for (; i < TWE_SG_SIZE; i++) {
1525 tc->tc_args.param.sgl[i].tsg_address = 0;
1526 tc->tc_args.param.sgl[i].tsg_length = 0;
1527 }
1528 break;
1529 case 3:
1530 for (i = 0; i < nsegs; i++) {
1531 tc->tc_args.io.sgl[i].tsg_address =
1532 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1533 tc->tc_args.io.sgl[i].tsg_length =
1534 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1535 }
1536 /* XXX Needed? */
1537 for (; i < TWE_SG_SIZE; i++) {
1538 tc->tc_args.io.sgl[i].tsg_address = 0;
1539 tc->tc_args.io.sgl[i].tsg_length = 0;
1540 }
1541 break;
1542 default:
1543 /*
1544 * In all likelihood, this is a command passed from
1545 * management tools in userspace where no S/G list is
1546 * necessary because no data is being passed.
1547 */
1548 break;
1549 }
1550
1551 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1552 flags = BUS_DMASYNC_PREREAD;
1553 else
1554 flags = 0;
1555 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1556 flags |= BUS_DMASYNC_PREWRITE;
1557
1558 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1559 ccb->ccb_datasize, flags);
1560 return (0);
1561 }
1562
1563 /*
1564 * Unmap the specified CCB's command block and data buffer (if any) and
1565 * perform DMA synchronisation.
1566 */
1567 void
1568 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
1569 {
1570 int flags, s;
1571
1572 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1573 flags = BUS_DMASYNC_POSTREAD;
1574 else
1575 flags = 0;
1576 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1577 flags |= BUS_DMASYNC_POSTWRITE;
1578
1579 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1580 ccb->ccb_datasize, flags);
1581 bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
1582
1583 if (ccb->ccb_abuf != (vaddr_t)0) {
1584 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1585 memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
1586 ccb->ccb_datasize);
1587 s = splvm();
1588 /* XXX */
1589 uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf,
1590 ccb->ccb_datasize);
1591 splx(s);
1592 }
1593 }
1594
1595 /*
1596 * Submit a command to the controller and poll on completion. Return
1597 * non-zero on timeout (but don't check status, as some command types don't
1598 * return status). Must be called with interrupts blocked.
1599 */
1600 int
1601 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
1602 {
1603 int rv;
1604
1605 if ((rv = twe_ccb_submit(sc, ccb)) != 0)
1606 return (rv);
1607
1608 for (timo *= 1000; timo != 0; timo--) {
1609 twe_poll(sc);
1610 if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
1611 break;
1612 DELAY(100);
1613 }
1614
1615 return (timo == 0);
1616 }
1617
1618 /*
1619 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1620 * the order that they were enqueued and try to submit their command blocks
1621 * to the controller for execution.
1622 */
1623 void
1624 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
1625 {
1626 int s;
1627
1628 s = splbio();
1629
1630 if (ccb != NULL)
1631 SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
1632
1633 while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
1634 if (twe_ccb_submit(sc, ccb))
1635 break;
1636 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
1637 }
1638
1639 splx(s);
1640 }
1641
1642 /*
1643 * Submit the command block associated with the specified CCB to the
1644 * controller for execution. Must be called with interrupts blocked.
1645 */
1646 int
1647 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
1648 {
1649 bus_addr_t pa;
1650 int rv;
1651 u_int status;
1652
1653 /* Check to see if we can post a command. */
1654 status = twe_inl(sc, TWE_REG_STS);
1655 twe_status_check(sc, status);
1656
1657 if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
1658 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1659 (char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
1660 sizeof(struct twe_cmd),
1661 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1662 #ifdef DIAGNOSTIC
1663 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0)
1664 panic("%s: CCB %ld not ALLOCED\n",
1665 device_xname(sc->sc_dev), (long)(ccb - sc->sc_ccbs));
1666 #endif
1667 ccb->ccb_flags |= TWE_CCB_ACTIVE;
1668 pa = sc->sc_cmds_paddr +
1669 ccb->ccb_cmdid * sizeof(struct twe_cmd);
1670 twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
1671 rv = 0;
1672 } else
1673 rv = EBUSY;
1674
1675 return (rv);
1676 }
1677
1678
1679 /*
1680 * Accept an open operation on the control device.
1681 */
1682 static int
1683 tweopen(dev_t dev, int flag, int mode, struct lwp *l)
1684 {
1685 struct twe_softc *twe;
1686
1687 if ((twe = device_lookup_private(&twe_cd, minor(dev))) == NULL)
1688 return (ENXIO);
1689 if ((twe->sc_flags & TWEF_OPEN) != 0)
1690 return (EBUSY);
1691
1692 twe->sc_flags |= TWEF_OPEN;
1693 return (0);
1694 }
1695
1696 /*
1697 * Accept the last close on the control device.
1698 */
1699 static int
1700 tweclose(dev_t dev, int flag, int mode,
1701 struct lwp *l)
1702 {
1703 struct twe_softc *twe;
1704
1705 twe = device_lookup_private(&twe_cd, minor(dev));
1706 twe->sc_flags &= ~TWEF_OPEN;
1707 return (0);
1708 }
1709
1710 void
1711 twe_ccb_wait_handler(struct twe_ccb *ccb, int error)
1712 {
1713
1714 /* Just wake up the sleeper. */
1715 wakeup(ccb);
1716 }
1717
1718 /*
1719 * Handle control operations.
1720 */
1721 static int
1722 tweioctl(dev_t dev, u_long cmd, void *data, int flag,
1723 struct lwp *l)
1724 {
1725 struct twe_softc *twe;
1726 struct twe_ccb *ccb;
1727 struct twe_param *param;
1728 struct twe_usercommand *tu;
1729 struct twe_paramcommand *tp;
1730 struct twe_drivecommand *td;
1731 void *pdata = NULL;
1732 int s, error = 0;
1733 u_int8_t cmdid;
1734
1735 twe = device_lookup_private(&twe_cd, minor(dev));
1736 tu = (struct twe_usercommand *)data;
1737 tp = (struct twe_paramcommand *)data;
1738 td = (struct twe_drivecommand *)data;
1739
1740 /* This is intended to be compatible with the FreeBSD interface. */
1741 switch (cmd) {
1742 case TWEIO_COMMAND:
1743 error = kauth_authorize_device_passthru(l->l_cred, dev,
1744 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1745 if (error)
1746 return (error);
1747
1748 /* XXX mutex */
1749 if (tu->tu_size > 0) {
1750 /*
1751 * XXX Handle > TWE_SECTOR_SIZE? Let's see if
1752 * it's really necessary, first.
1753 */
1754 if (tu->tu_size > TWE_SECTOR_SIZE) {
1755 #ifdef TWE_DEBUG
1756 printf("%s: TWEIO_COMMAND: tu_size = %zu\n",
1757 device_xname(twe->sc_dev), tu->tu_size);
1758 #endif
1759 return EINVAL;
1760 }
1761 pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
1762 error = copyin(tu->tu_data, pdata, tu->tu_size);
1763 if (error != 0)
1764 goto done;
1765 ccb = twe_ccb_alloc_wait(twe,
1766 TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1767 KASSERT(ccb != NULL);
1768 ccb->ccb_data = pdata;
1769 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1770 } else {
1771 ccb = twe_ccb_alloc_wait(twe, 0);
1772 KASSERT(ccb != NULL);
1773 }
1774
1775 ccb->ccb_tx.tx_handler = twe_ccb_wait_handler;
1776 ccb->ccb_tx.tx_context = NULL;
1777 ccb->ccb_tx.tx_dv = twe->sc_dev;
1778
1779 cmdid = ccb->ccb_cmdid;
1780 memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
1781 ccb->ccb_cmd->tc_cmdid = cmdid;
1782
1783 /* Map the transfer. */
1784 if ((error = twe_ccb_map(twe, ccb)) != 0) {
1785 twe_ccb_free(twe, ccb);
1786 goto done;
1787 }
1788
1789 /* Submit the command and wait up to 1 minute. */
1790 error = 0;
1791 twe_ccb_enqueue(twe, ccb);
1792 s = splbio();
1793 while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0)
1794 if ((error = tsleep(ccb, PRIBIO, "tweioctl",
1795 60 * hz)) != 0)
1796 break;
1797 splx(s);
1798
1799 /* Copy the command back to the ioctl argument. */
1800 memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd));
1801 #ifdef TWE_DEBUG
1802 printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, "
1803 "tc_status = 0x%02x\n", device_xname(twe->sc_dev),
1804 tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status);
1805 #endif
1806
1807 s = splbio();
1808 twe_ccb_free(twe, ccb);
1809 splx(s);
1810
1811 if (tu->tu_size > 0)
1812 error = copyout(pdata, tu->tu_data, tu->tu_size);
1813 goto done;
1814
1815 case TWEIO_STATS:
1816 return (ENOENT);
1817
1818 case TWEIO_AEN_POLL:
1819 s = splbio();
1820 *(u_int *)data = twe_aen_dequeue(twe);
1821 splx(s);
1822 return (0);
1823
1824 case TWEIO_AEN_WAIT:
1825 s = splbio();
1826 while ((*(u_int *)data =
1827 twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) {
1828 twe->sc_flags |= TWEF_AENQ_WAIT;
1829 error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH,
1830 "tweaen", 0);
1831 if (error == EINTR) {
1832 splx(s);
1833 return (error);
1834 }
1835 }
1836 splx(s);
1837 return (0);
1838
1839 case TWEIO_GET_PARAM:
1840 error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
1841 tp->tp_size, 0, ¶m);
1842 if (error != 0)
1843 return (error);
1844 if (param->tp_param_size > tp->tp_size) {
1845 error = EFAULT;
1846 goto done;
1847 }
1848 error = copyout(param->tp_data, tp->tp_data,
1849 param->tp_param_size);
1850 free(param, M_DEVBUF);
1851 goto done;
1852
1853 case TWEIO_SET_PARAM:
1854 pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
1855 if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
1856 goto done;
1857 error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
1858 tp->tp_size, pdata);
1859 goto done;
1860
1861 case TWEIO_RESET:
1862 s = splbio();
1863 twe_reset(twe);
1864 splx(s);
1865 return (0);
1866
1867 case TWEIO_ADD_UNIT:
1868 /* XXX mutex */
1869 return (twe_add_unit(twe, td->td_unit));
1870
1871 case TWEIO_DEL_UNIT:
1872 /* XXX mutex */
1873 return (twe_del_unit(twe, td->td_unit));
1874
1875 default:
1876 return EINVAL;
1877 }
1878 done:
1879 if (pdata)
1880 free(pdata, M_DEVBUF);
1881 return error;
1882 }
1883
1884 const struct cdevsw twe_cdevsw = {
1885 .d_open = tweopen,
1886 .d_close = tweclose,
1887 .d_read = noread,
1888 .d_write = nowrite,
1889 .d_ioctl = tweioctl,
1890 .d_stop = nostop,
1891 .d_tty = notty,
1892 .d_poll = nopoll,
1893 .d_mmap = nommap,
1894 .d_kqfilter = nokqfilter,
1895 .d_discard = nodiscard,
1896 .d_flag = D_OTHER
1897 };
1898
1899 /*
1900 * Print some information about the controller
1901 */
1902 static void
1903 twe_describe_controller(struct twe_softc *sc)
1904 {
1905 struct twe_param *p[6];
1906 int i, rv = 0;
1907 uint32_t dsize;
1908 uint8_t ports;
1909
1910 ports = 0;
1911
1912 /* get the port count */
1913 rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
1914 TWE_PARAM_CONTROLLER_PortCount, &ports);
1915
1916 /* get version strings */
1917 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
1918 16, NULL, &p[0]);
1919 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
1920 16, NULL, &p[1]);
1921 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
1922 16, NULL, &p[2]);
1923 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
1924 8, NULL, &p[3]);
1925 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
1926 8, NULL, &p[4]);
1927 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
1928 8, NULL, &p[5]);
1929
1930 if (rv) {
1931 /* some error occurred */
1932 aprint_error_dev(sc->sc_dev, "failed to fetch version information\n");
1933 return;
1934 }
1935
1936 aprint_normal_dev(sc->sc_dev, "%d ports, Firmware %.16s, BIOS %.16s\n",
1937 ports, p[1]->tp_data, p[2]->tp_data);
1938
1939 aprint_verbose_dev(sc->sc_dev, "Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
1940 p[0]->tp_data, p[3]->tp_data,
1941 p[4]->tp_data, p[5]->tp_data);
1942
1943 free(p[0], M_DEVBUF);
1944 free(p[1], M_DEVBUF);
1945 free(p[2], M_DEVBUF);
1946 free(p[3], M_DEVBUF);
1947 free(p[4], M_DEVBUF);
1948 free(p[5], M_DEVBUF);
1949
1950 rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY,
1951 TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]);
1952 if (rv) {
1953 aprint_error_dev(sc->sc_dev, "failed to get drive status summary\n");
1954 return;
1955 }
1956 for (i = 0; i < ports; i++) {
1957 if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present)
1958 continue;
1959 rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i,
1960 TWE_PARAM_DRIVEINFO_Size, &dsize);
1961 if (rv) {
1962 aprint_error_dev(sc->sc_dev,
1963 "unable to get drive size for port %d\n", i);
1964 continue;
1965 }
1966 rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i,
1967 TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]);
1968 if (rv) {
1969 aprint_error_dev(sc->sc_dev,
1970 "unable to get drive model for port %d\n", i);
1971 continue;
1972 }
1973 aprint_verbose_dev(sc->sc_dev, "port %d: %.40s %d MB\n",
1974 i, p[1]->tp_data, dsize / 2048);
1975 free(p[1], M_DEVBUF);
1976 }
1977 free(p[0], M_DEVBUF);
1978 }
1979