twe.c revision 1.107 1 /* $NetBSD: twe.c,v 1.107 2018/12/09 11:14:02 jdolecek Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 2000 Michael Smith
34 * Copyright (c) 2000 BSDi
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
59 */
60
61 /*
62 * Driver for the 3ware Escalade family of RAID controllers.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.107 2018/12/09 11:14:02 jdolecek Exp $");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/device.h>
72 #include <sys/queue.h>
73 #include <sys/proc.h>
74 #include <sys/buf.h>
75 #include <sys/endian.h>
76 #include <sys/malloc.h>
77 #include <sys/conf.h>
78 #include <sys/disk.h>
79 #include <sys/sysctl.h>
80 #include <sys/syslog.h>
81 #include <sys/kauth.h>
82 #include <sys/module.h>
83 #include <sys/bswap.h>
84 #include <sys/bus.h>
85
86 #include <dev/pci/pcireg.h>
87 #include <dev/pci/pcivar.h>
88 #include <dev/pci/pcidevs.h>
89 #include <dev/pci/twereg.h>
90 #include <dev/pci/twevar.h>
91 #include <dev/pci/tweio.h>
92
93 #include "locators.h"
94 #include "ioconf.h"
95
96 #define PCI_CBIO 0x10
97
98 static int twe_aen_get(struct twe_softc *, uint16_t *);
99 static void twe_aen_handler(struct twe_ccb *, int);
100 static void twe_aen_enqueue(struct twe_softc *sc, uint16_t, int);
101 static uint16_t twe_aen_dequeue(struct twe_softc *);
102
103 static void twe_attach(device_t, device_t, void *);
104 static int twe_rescan(device_t, const char *, const int *);
105 static int twe_init_connection(struct twe_softc *);
106 static int twe_intr(void *);
107 static int twe_match(device_t, cfdata_t, void *);
108 static int twe_param_set(struct twe_softc *, int, int, size_t, void *);
109 static void twe_poll(struct twe_softc *);
110 static int twe_print(void *, const char *);
111 static int twe_reset(struct twe_softc *);
112 static int twe_status_check(struct twe_softc *, u_int);
113 static int twe_status_wait(struct twe_softc *, u_int, int);
114 static void twe_describe_controller(struct twe_softc *);
115 static void twe_clear_pci_abort(struct twe_softc *sc);
116 static void twe_clear_pci_parity_error(struct twe_softc *sc);
117
118 static int twe_add_unit(struct twe_softc *, int);
119 static int twe_del_unit(struct twe_softc *, int);
120 static int twe_init_connection(struct twe_softc *);
121
122 static inline u_int32_t twe_inl(struct twe_softc *, int);
123 static inline void twe_outl(struct twe_softc *, int, u_int32_t);
124
125 extern struct cfdriver twe_cd;
126
127 CFATTACH_DECL3_NEW(twe, sizeof(struct twe_softc),
128 twe_match, twe_attach, NULL, NULL, twe_rescan, NULL, 0);
129
130 /* FreeBSD driver revision for sysctl expected by the 3ware cli */
131 const char twever[] = "1.50.01.002";
132
133 /*
134 * Tables to convert numeric codes to strings.
135 */
136 const struct twe_code_table twe_table_status[] = {
137 { 0x00, "successful completion" },
138
139 /* info */
140 { 0x42, "command in progress" },
141 { 0x6c, "retrying interface CRC error from UDMA command" },
142
143 /* warning */
144 { 0x81, "redundant/inconsequential request ignored" },
145 { 0x8e, "failed to write zeroes to LBA 0" },
146 { 0x8f, "failed to profile TwinStor zones" },
147
148 /* fatal */
149 { 0xc1, "aborted due to system command or reconfiguration" },
150 { 0xc4, "aborted" },
151 { 0xc5, "access error" },
152 { 0xc6, "access violation" },
153 { 0xc7, "device failure" }, /* high byte may be port # */
154 { 0xc8, "controller error" },
155 { 0xc9, "timed out" },
156 { 0xcb, "invalid unit number" },
157 { 0xcf, "unit not available" },
158 { 0xd2, "undefined opcode" },
159 { 0xdb, "request incompatible with unit" },
160 { 0xdc, "invalid request" },
161 { 0xff, "firmware error, reset requested" },
162
163 { 0, NULL }
164 };
165
166 const struct twe_code_table twe_table_unitstate[] = {
167 { TWE_PARAM_UNITSTATUS_Normal, "Normal" },
168 { TWE_PARAM_UNITSTATUS_Initialising, "Initializing" },
169 { TWE_PARAM_UNITSTATUS_Degraded, "Degraded" },
170 { TWE_PARAM_UNITSTATUS_Rebuilding, "Rebuilding" },
171 { TWE_PARAM_UNITSTATUS_Verifying, "Verifying" },
172 { TWE_PARAM_UNITSTATUS_Corrupt, "Corrupt" },
173 { TWE_PARAM_UNITSTATUS_Missing, "Missing" },
174
175 { 0, NULL }
176 };
177
178 const struct twe_code_table twe_table_unittype[] = {
179 /* array descriptor configuration */
180 { TWE_AD_CONFIG_RAID0, "RAID0" },
181 { TWE_AD_CONFIG_RAID1, "RAID1" },
182 { TWE_AD_CONFIG_TwinStor, "TwinStor" },
183 { TWE_AD_CONFIG_RAID5, "RAID5" },
184 { TWE_AD_CONFIG_RAID10, "RAID10" },
185 { TWE_UD_CONFIG_JBOD, "JBOD" },
186
187 { 0, NULL }
188 };
189
190 const struct twe_code_table twe_table_stripedepth[] = {
191 { TWE_AD_STRIPE_4k, "4K" },
192 { TWE_AD_STRIPE_8k, "8K" },
193 { TWE_AD_STRIPE_16k, "16K" },
194 { TWE_AD_STRIPE_32k, "32K" },
195 { TWE_AD_STRIPE_64k, "64K" },
196 { TWE_AD_STRIPE_128k, "128K" },
197 { TWE_AD_STRIPE_256k, "256K" },
198 { TWE_AD_STRIPE_512k, "512K" },
199 { TWE_AD_STRIPE_1024k, "1024K" },
200
201 { 0, NULL }
202 };
203
204 /*
205 * Asynchronous event notification messages are qualified:
206 * a - not unit/port specific
207 * u - unit specific
208 * p - port specific
209 *
210 * They are further qualified with a severity:
211 * E - LOG_EMERG
212 * a - LOG_ALERT
213 * c - LOG_CRIT
214 * e - LOG_ERR
215 * w - LOG_WARNING
216 * n - LOG_NOTICE
217 * i - LOG_INFO
218 * d - LOG_DEBUG
219 * blank - just use printf
220 */
221 const struct twe_code_table twe_table_aen[] = {
222 { 0x00, "a queue empty" },
223 { 0x01, "a soft reset" },
224 { 0x02, "uc degraded mode" },
225 { 0x03, "aa controller error" },
226 { 0x04, "uE rebuild fail" },
227 { 0x05, "un rebuild done" },
228 { 0x06, "ue incomplete unit" },
229 { 0x07, "un initialization done" },
230 { 0x08, "uw unclean shutdown detected" },
231 { 0x09, "pe drive timeout" },
232 { 0x0a, "pc drive error" },
233 { 0x0b, "un rebuild started" },
234 { 0x0c, "un initialization started" },
235 { 0x0d, "ui logical unit deleted" },
236 { 0x0f, "pc SMART threshold exceeded" },
237 { 0x15, "a table undefined" }, /* XXX: Not in FreeBSD's table */
238 { 0x21, "pe ATA UDMA downgrade" },
239 { 0x22, "pi ATA UDMA upgrade" },
240 { 0x23, "pw sector repair occurred" },
241 { 0x24, "aa SBUF integrity check failure" },
242 { 0x25, "pa lost cached write" },
243 { 0x26, "pa drive ECC error detected" },
244 { 0x27, "pe DCB checksum error" },
245 { 0x28, "pn DCB unsupported version" },
246 { 0x29, "ui verify started" },
247 { 0x2a, "ua verify failed" },
248 { 0x2b, "ui verify complete" },
249 { 0x2c, "pw overwrote bad sector during rebuild" },
250 { 0x2d, "pa encountered bad sector during rebuild" },
251 { 0x2e, "pe replacement drive too small" },
252 { 0x2f, "ue array not previously initialized" },
253 { 0x30, "p drive not supported" },
254 { 0xff, "a aen queue full" },
255
256 { 0, NULL },
257 };
258
259 const char *
260 twe_describe_code(const struct twe_code_table *table, uint32_t code)
261 {
262
263 for (; table->string != NULL; table++) {
264 if (table->code == code)
265 return (table->string);
266 }
267 return (NULL);
268 }
269
270 static inline u_int32_t
271 twe_inl(struct twe_softc *sc, int off)
272 {
273
274 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
275 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
276 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
277 }
278
279 static inline void
280 twe_outl(struct twe_softc *sc, int off, u_int32_t val)
281 {
282
283 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
284 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
285 BUS_SPACE_BARRIER_WRITE);
286 }
287
288 /*
289 * Match a supported board.
290 */
291 static int
292 twe_match(device_t parent, cfdata_t cfdata, void *aux)
293 {
294 struct pci_attach_args *pa;
295
296 pa = aux;
297
298 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
299 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
300 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
301 }
302
303 /*
304 * Attach a supported board.
305 *
306 * XXX This doesn't fail gracefully.
307 */
308 static void
309 twe_attach(device_t parent, device_t self, void *aux)
310 {
311 struct pci_attach_args *pa;
312 struct twe_softc *sc;
313 pci_chipset_tag_t pc;
314 pci_intr_handle_t ih;
315 pcireg_t csr;
316 const char *intrstr;
317 int s, size, i, rv, rseg;
318 size_t max_segs, max_xfer;
319 bus_dma_segment_t seg;
320 const struct sysctlnode *node;
321 struct twe_cmd *tc;
322 struct twe_ccb *ccb;
323 char intrbuf[PCI_INTRSTR_LEN];
324
325 sc = device_private(self);
326 sc->sc_dev = self;
327 pa = aux;
328 pc = pa->pa_pc;
329 sc->sc_dmat = pa->pa_dmat;
330 SIMPLEQ_INIT(&sc->sc_ccb_queue);
331 SLIST_INIT(&sc->sc_ccb_freelist);
332
333 aprint_naive(": RAID controller\n");
334 aprint_normal(": 3ware Escalade\n");
335
336
337 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
338 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
339 aprint_error_dev(self, "can't map i/o space\n");
340 return;
341 }
342
343 /* Enable the device. */
344 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
345 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
346 csr | PCI_COMMAND_MASTER_ENABLE);
347
348 /* Map and establish the interrupt. */
349 if (pci_intr_map(pa, &ih)) {
350 aprint_error_dev(self, "can't map interrupt\n");
351 return;
352 }
353
354 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
355 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_BIO, twe_intr, sc,
356 device_xname(self));
357 if (sc->sc_ih == NULL) {
358 aprint_error_dev(self, "can't establish interrupt%s%s\n",
359 (intrstr) ? " at " : "",
360 (intrstr) ? intrstr : "");
361 return;
362 }
363
364 if (intrstr != NULL)
365 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
366
367 /*
368 * Allocate and initialise the command blocks and CCBs.
369 */
370 size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
371
372 if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
373 &rseg, BUS_DMA_NOWAIT)) != 0) {
374 aprint_error_dev(self,
375 "unable to allocate commands, rv = %d\n", rv);
376 return;
377 }
378
379 if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
380 (void **)&sc->sc_cmds,
381 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
382 aprint_error_dev(self,
383 "unable to map commands, rv = %d\n", rv);
384 return;
385 }
386
387 if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
388 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
389 aprint_error_dev(self,
390 "unable to create command DMA map, rv = %d\n", rv);
391 return;
392 }
393
394 if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
395 size, NULL, BUS_DMA_NOWAIT)) != 0) {
396 aprint_error_dev(self,
397 "unable to load command DMA map, rv = %d\n", rv);
398 return;
399 }
400
401 ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT);
402 if (ccb == NULL) {
403 aprint_error_dev(self, "unable to allocate memory for ccbs\n");
404 return;
405 }
406
407 sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
408 memset(sc->sc_cmds, 0, size);
409
410 sc->sc_ccbs = ccb;
411 tc = (struct twe_cmd *)sc->sc_cmds;
412 max_segs = twe_get_maxsegs();
413 max_xfer = twe_get_maxxfer(max_segs);
414
415 for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
416 ccb->ccb_cmd = tc;
417 ccb->ccb_cmdid = i;
418 ccb->ccb_flags = 0;
419 rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
420 max_segs, PAGE_SIZE, 0,
421 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
422 &ccb->ccb_dmamap_xfer);
423 if (rv != 0) {
424 aprint_error_dev(self,
425 "can't create dmamap, rv = %d\n", rv);
426 return;
427 }
428
429 /* Save the first CCB for AEN retrieval. */
430 if (i != 0)
431 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
432 ccb_chain.slist);
433 }
434
435 /* Wait for the controller to become ready. */
436 if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
437 aprint_error_dev(self, "microcontroller not ready\n");
438 return;
439 }
440
441 twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
442
443 /* Reset the controller. */
444 s = splbio();
445 rv = twe_reset(sc);
446 splx(s);
447 if (rv) {
448 aprint_error_dev(self, "reset failed\n");
449 return;
450 }
451
452 /* Initialise connection with controller. */
453 twe_init_connection(sc);
454
455 twe_describe_controller(sc);
456
457 /* Find and attach RAID array units. */
458 twe_rescan(self, "twe", 0);
459
460 /* ...and finally, enable interrupts. */
461 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
462 TWE_CTL_UNMASK_RESP_INTR |
463 TWE_CTL_ENABLE_INTRS);
464
465 /* sysctl set-up for 3ware cli */
466 if (sysctl_createv(NULL, 0, NULL, &node,
467 0, CTLTYPE_NODE, device_xname(self),
468 SYSCTL_DESCR("twe driver information"),
469 NULL, 0, NULL, 0,
470 CTL_HW, CTL_CREATE, CTL_EOL) != 0) {
471 aprint_error_dev(self, "could not create %s.%s sysctl node\n",
472 "hw", device_xname(self));
473 return;
474 }
475 if ((i = sysctl_createv(NULL, 0, NULL, NULL,
476 0, CTLTYPE_STRING, "driver_version",
477 SYSCTL_DESCR("twe0 driver version"),
478 NULL, 0, __UNCONST(&twever), 0,
479 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL))
480 != 0) {
481 aprint_error_dev(self,
482 "could not create %s.%s.driver_version sysctl\n",
483 "hw", device_xname(self));
484 return;
485 }
486 }
487
488 static int
489 twe_rescan(device_t self, const char *attr, const int *flags)
490 {
491 struct twe_softc *sc;
492 int i;
493
494 sc = device_private(self);
495 sc->sc_nunits = 0;
496 for (i = 0; i < TWE_MAX_UNITS; i++)
497 (void) twe_add_unit(sc, i);
498 return 0;
499 }
500
501
502 void
503 twe_register_callbacks(struct twe_softc *sc, int unit,
504 const struct twe_callbacks *tcb)
505 {
506
507 sc->sc_units[unit].td_callbacks = tcb;
508 }
509
510 static void
511 twe_recompute_openings(struct twe_softc *sc)
512 {
513 struct twe_drive *td;
514 int unit, openings;
515
516 if (sc->sc_nunits != 0)
517 openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits;
518 else
519 openings = 0;
520 if (openings == sc->sc_openings)
521 return;
522 sc->sc_openings = openings;
523
524 #ifdef TWE_DEBUG
525 printf("%s: %d array%s, %d openings per array\n",
526 device_xname(sc->sc_dev), sc->sc_nunits,
527 sc->sc_nunits == 1 ? "" : "s", sc->sc_openings);
528 #endif
529
530 for (unit = 0; unit < TWE_MAX_UNITS; unit++) {
531 td = &sc->sc_units[unit];
532 if (td->td_dev != NULL)
533 (*td->td_callbacks->tcb_openings)(td->td_dev,
534 sc->sc_openings);
535 }
536 }
537
538 static int
539 twe_add_unit(struct twe_softc *sc, int unit)
540 {
541 struct twe_param *dtp, *atp;
542 struct twe_array_descriptor *ad;
543 struct twe_drive *td;
544 struct twe_attach_args twea;
545 uint32_t newsize;
546 int rv;
547 uint16_t dsize;
548 uint8_t newtype, newstripe;
549 int locs[TWECF_NLOCS];
550
551 if (unit < 0 || unit >= TWE_MAX_UNITS)
552 return (EINVAL);
553
554 /* Find attached units. */
555 rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
556 TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
557 if (rv != 0) {
558 aprint_error_dev(sc->sc_dev,
559 "error %d fetching unit summary\n", rv);
560 return (rv);
561 }
562
563 /* For each detected unit, collect size and store in an array. */
564 td = &sc->sc_units[unit];
565
566 /* Unit present? */
567 if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) {
568 /*
569 * XXX Should we check to see if a device has been
570 * XXX attached at this index and detach it if it
571 * XXX has? ("rescan" semantics)
572 */
573 rv = 0;
574 goto out;
575 }
576
577 rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit,
578 TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
579 if (rv != 0) {
580 aprint_error_dev(sc->sc_dev,
581 "error %d fetching descriptor size for unit %d\n",
582 rv, unit);
583 goto out;
584 }
585
586 rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit,
587 TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
588 if (rv != 0) {
589 aprint_error_dev(sc->sc_dev,
590 "error %d fetching array descriptor for unit %d\n",
591 rv, unit);
592 goto out;
593 }
594
595 ad = (struct twe_array_descriptor *)atp->tp_data;
596 newtype = ad->configuration;
597 newstripe = ad->stripe_size;
598 free(atp, M_DEVBUF);
599
600 rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit,
601 TWE_PARAM_UNITINFO_Capacity, &newsize);
602 if (rv != 0) {
603 aprint_error_dev(sc->sc_dev,
604 "error %d fetching capacity for unit %d\n",
605 rv, unit);
606 goto out;
607 }
608
609 /*
610 * Have a device, so we need to attach it. If there is currently
611 * something sitting at the slot, and the parameters are different,
612 * then we detach the old device before attaching the new one.
613 */
614 if (td->td_dev != NULL &&
615 td->td_size == newsize &&
616 td->td_type == newtype &&
617 td->td_stripe == newstripe) {
618 /* Same as the old device; just keep using it. */
619 rv = 0;
620 goto out;
621 } else if (td->td_dev != NULL) {
622 /* Detach the old device first. */
623 (void) config_detach(td->td_dev, DETACH_FORCE);
624 td->td_dev = NULL;
625 } else if (td->td_size == 0)
626 sc->sc_nunits++;
627
628 /*
629 * Committed to the new array unit; assign its parameters and
630 * recompute the number of available command openings.
631 */
632 td->td_size = newsize;
633 td->td_type = newtype;
634 td->td_stripe = newstripe;
635 twe_recompute_openings(sc);
636
637 twea.twea_unit = unit;
638
639 locs[TWECF_UNIT] = unit;
640
641 td->td_dev = config_found_sm_loc(sc->sc_dev, "twe", locs, &twea,
642 twe_print, config_stdsubmatch);
643
644 rv = 0;
645 out:
646 free(dtp, M_DEVBUF);
647 return (rv);
648 }
649
650 static int
651 twe_del_unit(struct twe_softc *sc, int unit)
652 {
653 struct twe_drive *td;
654
655 if (unit < 0 || unit >= TWE_MAX_UNITS)
656 return (EINVAL);
657
658 td = &sc->sc_units[unit];
659 if (td->td_size != 0)
660 sc->sc_nunits--;
661 td->td_size = 0;
662 td->td_type = 0;
663 td->td_stripe = 0;
664 if (td->td_dev != NULL) {
665 (void) config_detach(td->td_dev, DETACH_FORCE);
666 td->td_dev = NULL;
667 }
668 twe_recompute_openings(sc);
669 return (0);
670 }
671
672 /*
673 * Reset the controller.
674 * MUST BE CALLED AT splbio()!
675 */
676 static int
677 twe_reset(struct twe_softc *sc)
678 {
679 uint16_t aen;
680 u_int status;
681 int got, rv;
682
683 /* Issue a soft reset. */
684 twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
685 TWE_CTL_CLEAR_HOST_INTR |
686 TWE_CTL_CLEAR_ATTN_INTR |
687 TWE_CTL_MASK_CMD_INTR |
688 TWE_CTL_MASK_RESP_INTR |
689 TWE_CTL_CLEAR_ERROR_STS |
690 TWE_CTL_DISABLE_INTRS);
691
692 /* Wait for attention... */
693 if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) {
694 aprint_error_dev(sc->sc_dev,
695 "timeout waiting for attention interrupt\n");
696 return (-1);
697 }
698
699 /* ...and ACK it. */
700 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
701
702 /*
703 * Pull AENs out of the controller; look for a soft reset AEN.
704 * Open code this, since we want to detect reset even if the
705 * queue for management tools is full.
706 *
707 * Note that since:
708 * - interrupts are blocked
709 * - we have reset the controller
710 * - acknowledged the pending ATTENTION
711 * that there is no way a pending asynchronous AEN fetch would
712 * finish, so clear the flag.
713 */
714 sc->sc_flags &= ~TWEF_AEN;
715 for (got = 0;;) {
716 rv = twe_aen_get(sc, &aen);
717 if (rv != 0)
718 printf("%s: error %d while draining event queue\n",
719 device_xname(sc->sc_dev), rv);
720 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
721 break;
722 if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
723 got = 1;
724 twe_aen_enqueue(sc, aen, 1);
725 }
726
727 if (!got) {
728 printf("%s: reset not reported\n", device_xname(sc->sc_dev));
729 return (-1);
730 }
731
732 /* Check controller status. */
733 status = twe_inl(sc, TWE_REG_STS);
734 if (twe_status_check(sc, status)) {
735 printf("%s: controller errors detected\n",
736 device_xname(sc->sc_dev));
737 return (-1);
738 }
739
740 /* Drain the response queue. */
741 for (;;) {
742 status = twe_inl(sc, TWE_REG_STS);
743 if (twe_status_check(sc, status) != 0) {
744 aprint_error_dev(sc->sc_dev,
745 "can't drain response queue\n");
746 return (-1);
747 }
748 if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
749 break;
750 (void)twe_inl(sc, TWE_REG_RESP_QUEUE);
751 }
752
753 return (0);
754 }
755
756 /*
757 * Print autoconfiguration message for a sub-device.
758 */
759 static int
760 twe_print(void *aux, const char *pnp)
761 {
762 struct twe_attach_args *twea;
763
764 twea = aux;
765
766 if (pnp != NULL)
767 aprint_normal("block device at %s", pnp);
768 aprint_normal(" unit %d", twea->twea_unit);
769 return (UNCONF);
770 }
771
772 /*
773 * Interrupt service routine.
774 */
775 static int
776 twe_intr(void *arg)
777 {
778 struct twe_softc *sc;
779 u_int status;
780 int caught, rv;
781
782 sc = arg;
783 caught = 0;
784 status = twe_inl(sc, TWE_REG_STS);
785 twe_status_check(sc, status);
786
787 /* Host interrupts - purpose unknown. */
788 if ((status & TWE_STS_HOST_INTR) != 0) {
789 #ifdef DEBUG
790 printf("%s: host interrupt\n", device_xname(sc->sc_dev));
791 #endif
792 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
793 caught = 1;
794 }
795
796 /*
797 * Attention interrupts, signalled when a controller or child device
798 * state change has occurred.
799 */
800 if ((status & TWE_STS_ATTN_INTR) != 0) {
801 rv = twe_aen_get(sc, NULL);
802 if (rv != 0)
803 aprint_error_dev(sc->sc_dev,
804 "unable to retrieve AEN (%d)\n", rv);
805 else
806 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
807 caught = 1;
808 }
809
810 /*
811 * Command interrupts, signalled when the controller can accept more
812 * commands. We don't use this; instead, we try to submit commands
813 * when we receive them, and when other commands have completed.
814 * Mask it so we don't get another one.
815 */
816 if ((status & TWE_STS_CMD_INTR) != 0) {
817 #ifdef DEBUG
818 printf("%s: command interrupt\n", device_xname(sc->sc_dev));
819 #endif
820 twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
821 caught = 1;
822 }
823
824 if ((status & TWE_STS_RESP_INTR) != 0) {
825 twe_poll(sc);
826 caught = 1;
827 }
828
829 return (caught);
830 }
831
832 /*
833 * Fetch an AEN. Even though this is really like parameter
834 * retrieval, we handle this specially, because we issue this
835 * AEN retrieval command from interrupt context, and thus
836 * reserve a CCB for it to avoid resource shortage.
837 *
838 * XXX There are still potential resource shortages we could
839 * XXX encounter. Consider pre-allocating all AEN-related
840 * XXX resources.
841 *
842 * MUST BE CALLED AT splbio()!
843 */
844 static int
845 twe_aen_get(struct twe_softc *sc, uint16_t *aenp)
846 {
847 struct twe_ccb *ccb;
848 struct twe_cmd *tc;
849 struct twe_param *tp;
850 int rv;
851
852 /*
853 * If we're already retrieving an AEN, just wait; another
854 * retrieval will be chained after the current one completes.
855 */
856 if (sc->sc_flags & TWEF_AEN) {
857 /*
858 * It is a fatal software programming error to attempt
859 * to fetch an AEN synchronously when an AEN fetch is
860 * already pending.
861 */
862 KASSERT(aenp == NULL);
863 return (0);
864 }
865
866 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
867 if (tp == NULL)
868 return (ENOMEM);
869
870 ccb = twe_ccb_alloc(sc,
871 TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
872 KASSERT(ccb != NULL);
873
874 ccb->ccb_data = tp;
875 ccb->ccb_datasize = TWE_SECTOR_SIZE;
876 ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL;
877 ccb->ccb_tx.tx_context = tp;
878 ccb->ccb_tx.tx_dv = sc->sc_dev;
879
880 tc = ccb->ccb_cmd;
881 tc->tc_size = 2;
882 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
883 tc->tc_unit = 0;
884 tc->tc_count = htole16(1);
885
886 /* Fill in the outbound parameter data. */
887 tp->tp_table_id = htole16(TWE_PARAM_AEN);
888 tp->tp_param_id = TWE_PARAM_AEN_UnitCode;
889 tp->tp_param_size = 2;
890
891 /* Map the transfer. */
892 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
893 twe_ccb_free(sc, ccb);
894 goto done;
895 }
896
897 /* Enqueue the command and wait. */
898 if (aenp != NULL) {
899 rv = twe_ccb_poll(sc, ccb, 5);
900 twe_ccb_unmap(sc, ccb);
901 twe_ccb_free(sc, ccb);
902 if (rv == 0)
903 *aenp = le16toh(*(uint16_t *)tp->tp_data);
904 free(tp, M_DEVBUF);
905 } else {
906 sc->sc_flags |= TWEF_AEN;
907 twe_ccb_enqueue(sc, ccb);
908 rv = 0;
909 }
910
911 done:
912 return (rv);
913 }
914
915 /*
916 * Handle an AEN returned by the controller.
917 * MUST BE CALLED AT splbio()!
918 */
919 static void
920 twe_aen_handler(struct twe_ccb *ccb, int error)
921 {
922 struct twe_softc *sc;
923 struct twe_param *tp;
924 uint16_t aen;
925 int rv;
926
927 sc = device_private(ccb->ccb_tx.tx_dv);
928 tp = ccb->ccb_tx.tx_context;
929 twe_ccb_unmap(sc, ccb);
930
931 sc->sc_flags &= ~TWEF_AEN;
932
933 if (error) {
934 aprint_error_dev(sc->sc_dev, "error retrieving AEN\n");
935 aen = TWE_AEN_QUEUE_EMPTY;
936 } else
937 aen = le16toh(*(u_int16_t *)tp->tp_data);
938 free(tp, M_DEVBUF);
939 twe_ccb_free(sc, ccb);
940
941 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
942 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
943 return;
944 }
945
946 twe_aen_enqueue(sc, aen, 0);
947
948 /*
949 * Chain another retrieval in case interrupts have been
950 * coalesced.
951 */
952 rv = twe_aen_get(sc, NULL);
953 if (rv != 0)
954 aprint_error_dev(sc->sc_dev,
955 "unable to retrieve AEN (%d)\n", rv);
956 }
957
958 static void
959 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet)
960 {
961 const char *str, *msg;
962 int s, next, nextnext, level;
963
964 /*
965 * First report the AEN on the console. Maybe.
966 */
967 if (! quiet) {
968 str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen));
969 if (str == NULL) {
970 aprint_error_dev(sc->sc_dev,
971 "unknown AEN 0x%04x\n", aen);
972 } else {
973 msg = str + 3;
974 switch (str[1]) {
975 case 'E': level = LOG_EMERG; break;
976 case 'a': level = LOG_ALERT; break;
977 case 'c': level = LOG_CRIT; break;
978 case 'e': level = LOG_ERR; break;
979 case 'w': level = LOG_WARNING; break;
980 case 'n': level = LOG_NOTICE; break;
981 case 'i': level = LOG_INFO; break;
982 case 'd': level = LOG_DEBUG; break;
983 default:
984 /* Don't use syslog. */
985 level = -1;
986 }
987
988 if (level < 0) {
989 switch (str[0]) {
990 case 'u':
991 case 'p':
992 printf("%s: %s %d: %s\n",
993 device_xname(sc->sc_dev),
994 str[0] == 'u' ? "unit" : "port",
995 TWE_AEN_UNIT(aen), msg);
996 break;
997
998 default:
999 printf("%s: %s\n",
1000 device_xname(sc->sc_dev), msg);
1001 }
1002 } else {
1003 switch (str[0]) {
1004 case 'u':
1005 case 'p':
1006 log(level, "%s: %s %d: %s\n",
1007 device_xname(sc->sc_dev),
1008 str[0] == 'u' ? "unit" : "port",
1009 TWE_AEN_UNIT(aen), msg);
1010 break;
1011
1012 default:
1013 log(level, "%s: %s\n",
1014 device_xname(sc->sc_dev), msg);
1015 }
1016 }
1017 }
1018 }
1019
1020 /* Now enqueue the AEN for mangement tools. */
1021 s = splbio();
1022
1023 next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH;
1024 nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH;
1025
1026 /*
1027 * If this is the last free slot, then queue up a "queue
1028 * full" message.
1029 */
1030 if (nextnext == sc->sc_aen_tail)
1031 aen = TWE_AEN_QUEUE_FULL;
1032
1033 if (next != sc->sc_aen_tail) {
1034 sc->sc_aen_queue[sc->sc_aen_head] = aen;
1035 sc->sc_aen_head = next;
1036 }
1037
1038 if (sc->sc_flags & TWEF_AENQ_WAIT) {
1039 sc->sc_flags &= ~TWEF_AENQ_WAIT;
1040 wakeup(&sc->sc_aen_queue);
1041 }
1042
1043 splx(s);
1044 }
1045
1046 /* NOTE: Must be called at splbio(). */
1047 static uint16_t
1048 twe_aen_dequeue(struct twe_softc *sc)
1049 {
1050 uint16_t aen;
1051
1052 if (sc->sc_aen_tail == sc->sc_aen_head)
1053 aen = TWE_AEN_QUEUE_EMPTY;
1054 else {
1055 aen = sc->sc_aen_queue[sc->sc_aen_tail];
1056 sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH;
1057 }
1058
1059 return (aen);
1060 }
1061
1062 /*
1063 * These are short-hand functions that execute TWE_OP_GET_PARAM to
1064 * fetch 1, 2, and 4 byte parameter values, respectively.
1065 */
1066 int
1067 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
1068 uint8_t *valp)
1069 {
1070 struct twe_param *tp;
1071 int rv;
1072
1073 rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
1074 if (rv != 0)
1075 return (rv);
1076 *valp = *(uint8_t *)tp->tp_data;
1077 free(tp, M_DEVBUF);
1078 return (0);
1079 }
1080
1081 int
1082 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
1083 uint16_t *valp)
1084 {
1085 struct twe_param *tp;
1086 int rv;
1087
1088 rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
1089 if (rv != 0)
1090 return (rv);
1091 *valp = le16toh(*(uint16_t *)tp->tp_data);
1092 free(tp, M_DEVBUF);
1093 return (0);
1094 }
1095
1096 int
1097 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
1098 uint32_t *valp)
1099 {
1100 struct twe_param *tp;
1101 int rv;
1102
1103 rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
1104 if (rv != 0)
1105 return (rv);
1106 *valp = le32toh(*(uint32_t *)tp->tp_data);
1107 free(tp, M_DEVBUF);
1108 return (0);
1109 }
1110
1111 /*
1112 * Execute a TWE_OP_GET_PARAM command. If a callback function is provided,
1113 * it will be called with generated context when the command has completed.
1114 * If no callback is provided, the command will be executed synchronously
1115 * and a pointer to a buffer containing the data returned.
1116 *
1117 * The caller or callback is responsible for freeing the buffer.
1118 *
1119 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1120 */
1121 int
1122 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
1123 void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
1124 {
1125 struct twe_ccb *ccb;
1126 struct twe_cmd *tc;
1127 struct twe_param *tp;
1128 int rv, s;
1129
1130 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1131 if (tp == NULL)
1132 return ENOMEM;
1133
1134 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1135 KASSERT(ccb != NULL);
1136
1137 ccb->ccb_data = tp;
1138 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1139 ccb->ccb_tx.tx_handler = func;
1140 ccb->ccb_tx.tx_context = tp;
1141 ccb->ccb_tx.tx_dv = sc->sc_dev;
1142
1143 tc = ccb->ccb_cmd;
1144 tc->tc_size = 2;
1145 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
1146 tc->tc_unit = 0;
1147 tc->tc_count = htole16(1);
1148
1149 /* Fill in the outbound parameter data. */
1150 tp->tp_table_id = htole16(table_id);
1151 tp->tp_param_id = param_id;
1152 tp->tp_param_size = size;
1153
1154 /* Map the transfer. */
1155 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1156 twe_ccb_free(sc, ccb);
1157 goto done;
1158 }
1159
1160 /* Submit the command and either wait or let the callback handle it. */
1161 if (func == NULL) {
1162 s = splbio();
1163 rv = twe_ccb_poll(sc, ccb, 5);
1164 twe_ccb_unmap(sc, ccb);
1165 twe_ccb_free(sc, ccb);
1166 splx(s);
1167 } else {
1168 #ifdef DEBUG
1169 if (pbuf != NULL)
1170 panic("both func and pbuf defined");
1171 #endif
1172 twe_ccb_enqueue(sc, ccb);
1173 return 0;
1174 }
1175
1176 done:
1177 if (pbuf == NULL || rv != 0)
1178 free(tp, M_DEVBUF);
1179 else if (pbuf != NULL && rv == 0)
1180 *pbuf = tp;
1181 return rv;
1182 }
1183
1184 /*
1185 * Execute a TWE_OP_SET_PARAM command.
1186 *
1187 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1188 */
1189 static int
1190 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
1191 void *sbuf)
1192 {
1193 struct twe_ccb *ccb;
1194 struct twe_cmd *tc;
1195 struct twe_param *tp;
1196 int rv, s;
1197
1198 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1199 if (tp == NULL)
1200 return ENOMEM;
1201
1202 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1203 KASSERT(ccb != NULL);
1204
1205 ccb->ccb_data = tp;
1206 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1207 ccb->ccb_tx.tx_handler = 0;
1208 ccb->ccb_tx.tx_context = tp;
1209 ccb->ccb_tx.tx_dv = sc->sc_dev;
1210
1211 tc = ccb->ccb_cmd;
1212 tc->tc_size = 2;
1213 tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
1214 tc->tc_unit = 0;
1215 tc->tc_count = htole16(1);
1216
1217 /* Fill in the outbound parameter data. */
1218 tp->tp_table_id = htole16(table_id);
1219 tp->tp_param_id = param_id;
1220 tp->tp_param_size = size;
1221 memcpy(tp->tp_data, sbuf, size);
1222
1223 /* Map the transfer. */
1224 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1225 twe_ccb_free(sc, ccb);
1226 goto done;
1227 }
1228
1229 /* Submit the command and wait. */
1230 s = splbio();
1231 rv = twe_ccb_poll(sc, ccb, 5);
1232 twe_ccb_unmap(sc, ccb);
1233 twe_ccb_free(sc, ccb);
1234 splx(s);
1235 done:
1236 free(tp, M_DEVBUF);
1237 return (rv);
1238 }
1239
1240 /*
1241 * Execute a TWE_OP_INIT_CONNECTION command. Return non-zero on error.
1242 * Must be called with interrupts blocked.
1243 */
1244 static int
1245 twe_init_connection(struct twe_softc *sc)
1246 {
1247 struct twe_ccb *ccb;
1248 struct twe_cmd *tc;
1249 int rv;
1250
1251 if ((ccb = twe_ccb_alloc(sc, 0)) == NULL)
1252 return (EAGAIN);
1253
1254 /* Build the command. */
1255 tc = ccb->ccb_cmd;
1256 tc->tc_size = 3;
1257 tc->tc_opcode = TWE_OP_INIT_CONNECTION;
1258 tc->tc_unit = 0;
1259 tc->tc_count = htole16(TWE_MAX_CMDS);
1260 tc->tc_args.init_connection.response_queue_pointer = 0;
1261
1262 /* Submit the command for immediate execution. */
1263 rv = twe_ccb_poll(sc, ccb, 5);
1264 twe_ccb_free(sc, ccb);
1265 return (rv);
1266 }
1267
1268 /*
1269 * Poll the controller for completed commands. Must be called with
1270 * interrupts blocked.
1271 */
1272 static void
1273 twe_poll(struct twe_softc *sc)
1274 {
1275 struct twe_ccb *ccb;
1276 int found;
1277 u_int status, cmdid;
1278
1279 found = 0;
1280
1281 for (;;) {
1282 status = twe_inl(sc, TWE_REG_STS);
1283 twe_status_check(sc, status);
1284
1285 if ((status & TWE_STS_RESP_QUEUE_EMPTY))
1286 break;
1287
1288 found = 1;
1289 cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
1290 cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
1291 if (cmdid >= TWE_MAX_QUEUECNT) {
1292 aprint_error_dev(sc->sc_dev, "bad cmdid %d\n", cmdid);
1293 continue;
1294 }
1295
1296 ccb = sc->sc_ccbs + cmdid;
1297 if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
1298 printf("%s: CCB for cmdid %d not active\n",
1299 device_xname(sc->sc_dev), cmdid);
1300 continue;
1301 }
1302 ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
1303
1304 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1305 (char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
1306 sizeof(struct twe_cmd),
1307 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1308
1309 /* Pass notification to upper layers. */
1310 if (ccb->ccb_tx.tx_handler != NULL)
1311 (*ccb->ccb_tx.tx_handler)(ccb,
1312 ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
1313 }
1314
1315 /* If any commands have completed, run the software queue. */
1316 if (found)
1317 twe_ccb_enqueue(sc, NULL);
1318 }
1319
1320 /*
1321 * Wait for `status' to be set in the controller status register. Return
1322 * zero if found, non-zero if the operation timed out.
1323 */
1324 static int
1325 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
1326 {
1327
1328 for (timo *= 10; timo != 0; timo--) {
1329 if ((twe_inl(sc, TWE_REG_STS) & status) == status)
1330 break;
1331 delay(100000);
1332 }
1333
1334 return (timo == 0);
1335 }
1336
1337 /*
1338 * Clear a PCI parity error.
1339 */
1340 static void
1341 twe_clear_pci_parity_error(struct twe_softc *sc)
1342 {
1343 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0,
1344 TWE_CTL_CLEAR_PARITY_ERROR);
1345
1346 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
1347 }
1348
1349
1350 /*
1351 * Clear a PCI abort.
1352 */
1353 static void
1354 twe_clear_pci_abort(struct twe_softc *sc)
1355 {
1356 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT);
1357
1358 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
1359 }
1360
1361 /*
1362 * Complain if the status bits aren't what we expect.
1363 */
1364 static int
1365 twe_status_check(struct twe_softc *sc, u_int status)
1366 {
1367 int rv;
1368
1369 rv = 0;
1370
1371 if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
1372 aprint_error_dev(sc->sc_dev, "missing status bits: 0x%08x\n",
1373 status & ~TWE_STS_EXPECTED_BITS);
1374 rv = -1;
1375 }
1376
1377 if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
1378 aprint_error_dev(sc->sc_dev, "unexpected status bits: 0x%08x\n",
1379 status & TWE_STS_UNEXPECTED_BITS);
1380 rv = -1;
1381 if (status & TWE_STS_PCI_PARITY_ERROR) {
1382 aprint_error_dev(sc->sc_dev, "PCI parity error: Reseat"
1383 " card, move card or buggy device present.\n");
1384 twe_clear_pci_parity_error(sc);
1385 }
1386 if (status & TWE_STS_PCI_ABORT) {
1387 aprint_error_dev(sc->sc_dev, "PCI abort, clearing.\n");
1388 twe_clear_pci_abort(sc);
1389 }
1390 }
1391
1392 return (rv);
1393 }
1394
1395 /*
1396 * Allocate and initialise a CCB.
1397 */
1398 static inline void
1399 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags)
1400 {
1401 struct twe_cmd *tc;
1402
1403 ccb->ccb_tx.tx_handler = NULL;
1404 ccb->ccb_flags = flags;
1405 tc = ccb->ccb_cmd;
1406 tc->tc_status = 0;
1407 tc->tc_flags = 0;
1408 tc->tc_cmdid = ccb->ccb_cmdid;
1409 }
1410
1411 struct twe_ccb *
1412 twe_ccb_alloc(struct twe_softc *sc, int flags)
1413 {
1414 struct twe_ccb *ccb;
1415 int s;
1416
1417 s = splbio();
1418 if (__predict_false((flags & TWE_CCB_AEN) != 0)) {
1419 /* Use the reserved CCB. */
1420 ccb = sc->sc_ccbs;
1421 } else {
1422 /* Allocate a CCB and command block. */
1423 if (__predict_false((ccb =
1424 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1425 splx(s);
1426 return (NULL);
1427 }
1428 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1429 }
1430 #ifdef DIAGNOSTIC
1431 if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0)
1432 panic("twe_ccb_alloc: got reserved CCB for non-AEN");
1433 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1434 panic("twe_ccb_alloc: CCB %ld already allocated",
1435 (long)(ccb - sc->sc_ccbs));
1436 flags |= TWE_CCB_ALLOCED;
1437 #endif
1438 splx(s);
1439
1440 twe_ccb_init(sc, ccb, flags);
1441 return (ccb);
1442 }
1443
1444 struct twe_ccb *
1445 twe_ccb_alloc_wait(struct twe_softc *sc, int flags)
1446 {
1447 struct twe_ccb *ccb;
1448 int s;
1449
1450 KASSERT((flags & TWE_CCB_AEN) == 0);
1451
1452 s = splbio();
1453 while (__predict_false((ccb =
1454 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1455 sc->sc_flags |= TWEF_WAIT_CCB;
1456 (void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0);
1457 }
1458 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1459 #ifdef DIAGNOSTIC
1460 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1461 panic("twe_ccb_alloc_wait: CCB %ld already allocated",
1462 (long)(ccb - sc->sc_ccbs));
1463 flags |= TWE_CCB_ALLOCED;
1464 #endif
1465 splx(s);
1466
1467 twe_ccb_init(sc, ccb, flags);
1468 return (ccb);
1469 }
1470
1471 /*
1472 * Free a CCB.
1473 */
1474 void
1475 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
1476 {
1477 int s;
1478
1479 s = splbio();
1480 if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) {
1481 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
1482 if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) {
1483 sc->sc_flags &= ~TWEF_WAIT_CCB;
1484 wakeup(&sc->sc_ccb_freelist);
1485 }
1486 }
1487 ccb->ccb_flags = 0;
1488 splx(s);
1489 }
1490
1491 /*
1492 * Map the specified CCB's command block and data buffer (if any) into
1493 * controller visible space. Perform DMA synchronisation.
1494 */
1495 int
1496 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
1497 {
1498 struct twe_cmd *tc;
1499 int flags, nsegs, i, s, rv;
1500 void *data;
1501
1502 /*
1503 * The data as a whole must be 512-byte aligned.
1504 */
1505 if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
1506 s = splvm();
1507 /* XXX */
1508 rv = uvm_km_kmem_alloc(kmem_va_arena,
1509 ccb->ccb_datasize, (VM_NOSLEEP | VM_INSTANTFIT),
1510 (vmem_addr_t *)&ccb->ccb_abuf);
1511 splx(s);
1512 data = (void *)ccb->ccb_abuf;
1513 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1514 memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
1515 } else {
1516 ccb->ccb_abuf = (vaddr_t)0;
1517 data = ccb->ccb_data;
1518 }
1519
1520 /*
1521 * Map the data buffer into bus space and build the S/G list.
1522 */
1523 rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
1524 ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1525 ((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
1526 BUS_DMA_READ : BUS_DMA_WRITE));
1527 if (rv != 0) {
1528 if (ccb->ccb_abuf != (vaddr_t)0) {
1529 s = splvm();
1530 /* XXX */
1531 uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf,
1532 ccb->ccb_datasize);
1533 splx(s);
1534 }
1535 return (rv);
1536 }
1537
1538 nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
1539 tc = ccb->ccb_cmd;
1540 tc->tc_size += 2 * nsegs;
1541
1542 /* The location of the S/G list is dependent upon command type. */
1543 switch (tc->tc_opcode >> 5) {
1544 case 2:
1545 for (i = 0; i < nsegs; i++) {
1546 tc->tc_args.param.sgl[i].tsg_address =
1547 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1548 tc->tc_args.param.sgl[i].tsg_length =
1549 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1550 }
1551 /* XXX Needed? */
1552 for (; i < TWE_SG_SIZE; i++) {
1553 tc->tc_args.param.sgl[i].tsg_address = 0;
1554 tc->tc_args.param.sgl[i].tsg_length = 0;
1555 }
1556 break;
1557 case 3:
1558 for (i = 0; i < nsegs; i++) {
1559 tc->tc_args.io.sgl[i].tsg_address =
1560 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1561 tc->tc_args.io.sgl[i].tsg_length =
1562 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1563 }
1564 /* XXX Needed? */
1565 for (; i < TWE_SG_SIZE; i++) {
1566 tc->tc_args.io.sgl[i].tsg_address = 0;
1567 tc->tc_args.io.sgl[i].tsg_length = 0;
1568 }
1569 break;
1570 default:
1571 /*
1572 * In all likelihood, this is a command passed from
1573 * management tools in userspace where no S/G list is
1574 * necessary because no data is being passed.
1575 */
1576 break;
1577 }
1578
1579 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1580 flags = BUS_DMASYNC_PREREAD;
1581 else
1582 flags = 0;
1583 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1584 flags |= BUS_DMASYNC_PREWRITE;
1585
1586 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1587 ccb->ccb_datasize, flags);
1588 return (0);
1589 }
1590
1591 /*
1592 * Unmap the specified CCB's command block and data buffer (if any) and
1593 * perform DMA synchronisation.
1594 */
1595 void
1596 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
1597 {
1598 int flags, s;
1599
1600 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1601 flags = BUS_DMASYNC_POSTREAD;
1602 else
1603 flags = 0;
1604 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1605 flags |= BUS_DMASYNC_POSTWRITE;
1606
1607 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1608 ccb->ccb_datasize, flags);
1609 bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
1610
1611 if (ccb->ccb_abuf != (vaddr_t)0) {
1612 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1613 memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
1614 ccb->ccb_datasize);
1615 s = splvm();
1616 /* XXX */
1617 uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf,
1618 ccb->ccb_datasize);
1619 splx(s);
1620 }
1621 }
1622
1623 /*
1624 * Submit a command to the controller and poll on completion. Return
1625 * non-zero on timeout (but don't check status, as some command types don't
1626 * return status). Must be called with interrupts blocked.
1627 */
1628 int
1629 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
1630 {
1631 int rv;
1632
1633 if ((rv = twe_ccb_submit(sc, ccb)) != 0)
1634 return (rv);
1635
1636 for (timo *= 1000; timo != 0; timo--) {
1637 twe_poll(sc);
1638 if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
1639 break;
1640 DELAY(100);
1641 }
1642
1643 return (timo == 0);
1644 }
1645
1646 /*
1647 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1648 * the order that they were enqueued and try to submit their command blocks
1649 * to the controller for execution.
1650 */
1651 void
1652 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
1653 {
1654 int s;
1655
1656 s = splbio();
1657
1658 if (ccb != NULL)
1659 SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
1660
1661 while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
1662 if (twe_ccb_submit(sc, ccb))
1663 break;
1664 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
1665 }
1666
1667 splx(s);
1668 }
1669
1670 /*
1671 * Submit the command block associated with the specified CCB to the
1672 * controller for execution. Must be called with interrupts blocked.
1673 */
1674 int
1675 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
1676 {
1677 bus_addr_t pa;
1678 int rv;
1679 u_int status;
1680
1681 /* Check to see if we can post a command. */
1682 status = twe_inl(sc, TWE_REG_STS);
1683 twe_status_check(sc, status);
1684
1685 if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
1686 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1687 (char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
1688 sizeof(struct twe_cmd),
1689 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1690 #ifdef DIAGNOSTIC
1691 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0)
1692 panic("%s: CCB %ld not ALLOCED\n",
1693 device_xname(sc->sc_dev), (long)(ccb - sc->sc_ccbs));
1694 #endif
1695 ccb->ccb_flags |= TWE_CCB_ACTIVE;
1696 pa = sc->sc_cmds_paddr +
1697 ccb->ccb_cmdid * sizeof(struct twe_cmd);
1698 twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
1699 rv = 0;
1700 } else
1701 rv = EBUSY;
1702
1703 return (rv);
1704 }
1705
1706
1707 /*
1708 * Accept an open operation on the control device.
1709 */
1710 static int
1711 tweopen(dev_t dev, int flag, int mode, struct lwp *l)
1712 {
1713 struct twe_softc *twe;
1714
1715 if ((twe = device_lookup_private(&twe_cd, minor(dev))) == NULL)
1716 return (ENXIO);
1717 if ((twe->sc_flags & TWEF_OPEN) != 0)
1718 return (EBUSY);
1719
1720 twe->sc_flags |= TWEF_OPEN;
1721 return (0);
1722 }
1723
1724 /*
1725 * Accept the last close on the control device.
1726 */
1727 static int
1728 tweclose(dev_t dev, int flag, int mode,
1729 struct lwp *l)
1730 {
1731 struct twe_softc *twe;
1732
1733 twe = device_lookup_private(&twe_cd, minor(dev));
1734 twe->sc_flags &= ~TWEF_OPEN;
1735 return (0);
1736 }
1737
1738 void
1739 twe_ccb_wait_handler(struct twe_ccb *ccb, int error)
1740 {
1741
1742 /* Just wake up the sleeper. */
1743 wakeup(ccb);
1744 }
1745
1746 /*
1747 * Handle control operations.
1748 */
1749 static int
1750 tweioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1751 {
1752 struct twe_softc *twe;
1753 struct twe_ccb *ccb;
1754 struct twe_param *param;
1755 struct twe_usercommand *tu;
1756 struct twe_paramcommand *tp;
1757 struct twe_drivecommand *td;
1758 void *pdata = NULL;
1759 int s, error = 0;
1760 u_int8_t cmdid;
1761
1762 twe = device_lookup_private(&twe_cd, minor(dev));
1763 tu = (struct twe_usercommand *)data;
1764 tp = (struct twe_paramcommand *)data;
1765 td = (struct twe_drivecommand *)data;
1766
1767 /* This is intended to be compatible with the FreeBSD interface. */
1768 switch (cmd) {
1769 case TWEIO_COMMAND:
1770 error = kauth_authorize_device_passthru(l->l_cred, dev,
1771 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1772 if (error)
1773 return (error);
1774
1775 /* XXX mutex */
1776 if (tu->tu_size > 0) {
1777 /*
1778 * XXX Handle > TWE_SECTOR_SIZE? Let's see if
1779 * it's really necessary, first.
1780 */
1781 if (tu->tu_size > TWE_SECTOR_SIZE) {
1782 #ifdef TWE_DEBUG
1783 printf("%s: TWEIO_COMMAND: tu_size = %zu\n",
1784 device_xname(twe->sc_dev), tu->tu_size);
1785 #endif
1786 return EINVAL;
1787 }
1788 pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
1789 error = copyin(tu->tu_data, pdata, tu->tu_size);
1790 if (error != 0)
1791 goto done;
1792 ccb = twe_ccb_alloc_wait(twe,
1793 TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1794 KASSERT(ccb != NULL);
1795 ccb->ccb_data = pdata;
1796 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1797 } else {
1798 ccb = twe_ccb_alloc_wait(twe, 0);
1799 KASSERT(ccb != NULL);
1800 }
1801
1802 ccb->ccb_tx.tx_handler = twe_ccb_wait_handler;
1803 ccb->ccb_tx.tx_context = NULL;
1804 ccb->ccb_tx.tx_dv = twe->sc_dev;
1805
1806 cmdid = ccb->ccb_cmdid;
1807 memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
1808 ccb->ccb_cmd->tc_cmdid = cmdid;
1809
1810 /* Map the transfer. */
1811 if ((error = twe_ccb_map(twe, ccb)) != 0) {
1812 twe_ccb_free(twe, ccb);
1813 goto done;
1814 }
1815
1816 /* Submit the command and wait up to 1 minute. */
1817 error = 0;
1818 twe_ccb_enqueue(twe, ccb);
1819 s = splbio();
1820 while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0)
1821 if ((error = tsleep(ccb, PRIBIO, "tweioctl",
1822 60 * hz)) != 0)
1823 break;
1824 splx(s);
1825
1826 /* Copy the command back to the ioctl argument. */
1827 memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd));
1828 #ifdef TWE_DEBUG
1829 printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, "
1830 "tc_status = 0x%02x\n", device_xname(twe->sc_dev),
1831 tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status);
1832 #endif
1833
1834 s = splbio();
1835 twe_ccb_free(twe, ccb);
1836 splx(s);
1837
1838 if (tu->tu_size > 0)
1839 error = copyout(pdata, tu->tu_data, tu->tu_size);
1840 goto done;
1841
1842 case TWEIO_STATS:
1843 return (ENOENT);
1844
1845 case TWEIO_AEN_POLL:
1846 s = splbio();
1847 *(u_int *)data = twe_aen_dequeue(twe);
1848 splx(s);
1849 return (0);
1850
1851 case TWEIO_AEN_WAIT:
1852 s = splbio();
1853 while ((*(u_int *)data =
1854 twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) {
1855 twe->sc_flags |= TWEF_AENQ_WAIT;
1856 error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH,
1857 "tweaen", 0);
1858 if (error == EINTR) {
1859 splx(s);
1860 return (error);
1861 }
1862 }
1863 splx(s);
1864 return (0);
1865
1866 case TWEIO_GET_PARAM:
1867 error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
1868 tp->tp_size, 0, ¶m);
1869 if (error != 0)
1870 return (error);
1871 if (param->tp_param_size > tp->tp_size) {
1872 error = EFAULT;
1873 goto done;
1874 }
1875 error = copyout(param->tp_data, tp->tp_data,
1876 param->tp_param_size);
1877 free(param, M_DEVBUF);
1878 goto done;
1879
1880 case TWEIO_SET_PARAM:
1881 pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
1882 if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
1883 goto done;
1884 error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
1885 tp->tp_size, pdata);
1886 goto done;
1887
1888 case TWEIO_RESET:
1889 s = splbio();
1890 twe_reset(twe);
1891 splx(s);
1892 return (0);
1893
1894 case TWEIO_ADD_UNIT:
1895 /* XXX mutex */
1896 return (twe_add_unit(twe, td->td_unit));
1897
1898 case TWEIO_DEL_UNIT:
1899 /* XXX mutex */
1900 return (twe_del_unit(twe, td->td_unit));
1901
1902 default:
1903 return EINVAL;
1904 }
1905 done:
1906 if (pdata)
1907 free(pdata, M_DEVBUF);
1908 return error;
1909 }
1910
1911 const struct cdevsw twe_cdevsw = {
1912 .d_open = tweopen,
1913 .d_close = tweclose,
1914 .d_read = noread,
1915 .d_write = nowrite,
1916 .d_ioctl = tweioctl,
1917 .d_stop = nostop,
1918 .d_tty = notty,
1919 .d_poll = nopoll,
1920 .d_mmap = nommap,
1921 .d_kqfilter = nokqfilter,
1922 .d_discard = nodiscard,
1923 .d_flag = D_OTHER
1924 };
1925
1926 /*
1927 * Print some information about the controller
1928 */
1929 static void
1930 twe_describe_controller(struct twe_softc *sc)
1931 {
1932 struct twe_param *p[6];
1933 int i, rv = 0;
1934 uint32_t dsize;
1935 uint8_t ports;
1936
1937 ports = 0;
1938
1939 /* get the port count */
1940 rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
1941 TWE_PARAM_CONTROLLER_PortCount, &ports);
1942
1943 /* get version strings */
1944 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
1945 16, NULL, &p[0]);
1946 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
1947 16, NULL, &p[1]);
1948 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
1949 16, NULL, &p[2]);
1950 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
1951 8, NULL, &p[3]);
1952 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
1953 8, NULL, &p[4]);
1954 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
1955 8, NULL, &p[5]);
1956
1957 if (rv) {
1958 /* some error occurred */
1959 aprint_error_dev(sc->sc_dev,
1960 "failed to fetch version information\n");
1961 return;
1962 }
1963
1964 aprint_normal_dev(sc->sc_dev, "%d ports, Firmware %.16s, BIOS %.16s\n",
1965 ports, p[1]->tp_data, p[2]->tp_data);
1966
1967 aprint_verbose_dev(sc->sc_dev,
1968 "Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
1969 p[0]->tp_data, p[3]->tp_data,
1970 p[4]->tp_data, p[5]->tp_data);
1971
1972 free(p[0], M_DEVBUF);
1973 free(p[1], M_DEVBUF);
1974 free(p[2], M_DEVBUF);
1975 free(p[3], M_DEVBUF);
1976 free(p[4], M_DEVBUF);
1977 free(p[5], M_DEVBUF);
1978
1979 rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY,
1980 TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]);
1981 if (rv) {
1982 aprint_error_dev(sc->sc_dev,
1983 "failed to get drive status summary\n");
1984 return;
1985 }
1986 for (i = 0; i < ports; i++) {
1987 if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present)
1988 continue;
1989 rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i,
1990 TWE_PARAM_DRIVEINFO_Size, &dsize);
1991 if (rv) {
1992 aprint_error_dev(sc->sc_dev,
1993 "unable to get drive size for port %d\n", i);
1994 continue;
1995 }
1996 rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i,
1997 TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]);
1998 if (rv) {
1999 aprint_error_dev(sc->sc_dev,
2000 "unable to get drive model for port %d\n", i);
2001 continue;
2002 }
2003 aprint_verbose_dev(sc->sc_dev, "port %d: %.40s %d MB\n",
2004 i, p[1]->tp_data, dsize / 2048);
2005 free(p[1], M_DEVBUF);
2006 }
2007 free(p[0], M_DEVBUF);
2008 }
2009
2010 MODULE(MODULE_CLASS_DRIVER, twe, "pci");
2011
2012 #ifdef _MODULE
2013 #include "ioconf.c"
2014 #endif
2015
2016 static int
2017 twe_modcmd(modcmd_t cmd, void *opaque)
2018 {
2019 int error = 0;
2020
2021 #ifdef _MODULE
2022 switch (cmd) {
2023 case MODULE_CMD_INIT:
2024 error = config_init_component(cfdriver_ioconf_twe,
2025 cfattach_ioconf_twe, cfdata_ioconf_twe);
2026 break;
2027 case MODULE_CMD_FINI:
2028 error = config_fini_component(cfdriver_ioconf_twe,
2029 cfattach_ioconf_twe, cfdata_ioconf_twe);
2030 break;
2031 default:
2032 error = ENOTTY;
2033 break;
2034 }
2035 #endif
2036
2037 return error;
2038 }
2039