twe.c revision 1.108 1 /* $NetBSD: twe.c,v 1.108 2019/11/10 21:16:36 chs Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 2000 Michael Smith
34 * Copyright (c) 2000 BSDi
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
59 */
60
61 /*
62 * Driver for the 3ware Escalade family of RAID controllers.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.108 2019/11/10 21:16:36 chs Exp $");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/device.h>
72 #include <sys/queue.h>
73 #include <sys/proc.h>
74 #include <sys/buf.h>
75 #include <sys/endian.h>
76 #include <sys/malloc.h>
77 #include <sys/conf.h>
78 #include <sys/disk.h>
79 #include <sys/sysctl.h>
80 #include <sys/syslog.h>
81 #include <sys/kauth.h>
82 #include <sys/module.h>
83 #include <sys/bswap.h>
84 #include <sys/bus.h>
85
86 #include <dev/pci/pcireg.h>
87 #include <dev/pci/pcivar.h>
88 #include <dev/pci/pcidevs.h>
89 #include <dev/pci/twereg.h>
90 #include <dev/pci/twevar.h>
91 #include <dev/pci/tweio.h>
92
93 #include "locators.h"
94 #include "ioconf.h"
95
96 #define PCI_CBIO 0x10
97
98 static int twe_aen_get(struct twe_softc *, uint16_t *);
99 static void twe_aen_handler(struct twe_ccb *, int);
100 static void twe_aen_enqueue(struct twe_softc *sc, uint16_t, int);
101 static uint16_t twe_aen_dequeue(struct twe_softc *);
102
103 static void twe_attach(device_t, device_t, void *);
104 static int twe_rescan(device_t, const char *, const int *);
105 static int twe_init_connection(struct twe_softc *);
106 static int twe_intr(void *);
107 static int twe_match(device_t, cfdata_t, void *);
108 static int twe_param_set(struct twe_softc *, int, int, size_t, void *);
109 static void twe_poll(struct twe_softc *);
110 static int twe_print(void *, const char *);
111 static int twe_reset(struct twe_softc *);
112 static int twe_status_check(struct twe_softc *, u_int);
113 static int twe_status_wait(struct twe_softc *, u_int, int);
114 static void twe_describe_controller(struct twe_softc *);
115 static void twe_clear_pci_abort(struct twe_softc *sc);
116 static void twe_clear_pci_parity_error(struct twe_softc *sc);
117
118 static int twe_add_unit(struct twe_softc *, int);
119 static int twe_del_unit(struct twe_softc *, int);
120 static int twe_init_connection(struct twe_softc *);
121
122 static inline u_int32_t twe_inl(struct twe_softc *, int);
123 static inline void twe_outl(struct twe_softc *, int, u_int32_t);
124
125 extern struct cfdriver twe_cd;
126
127 CFATTACH_DECL3_NEW(twe, sizeof(struct twe_softc),
128 twe_match, twe_attach, NULL, NULL, twe_rescan, NULL, 0);
129
130 /* FreeBSD driver revision for sysctl expected by the 3ware cli */
131 const char twever[] = "1.50.01.002";
132
133 /*
134 * Tables to convert numeric codes to strings.
135 */
136 const struct twe_code_table twe_table_status[] = {
137 { 0x00, "successful completion" },
138
139 /* info */
140 { 0x42, "command in progress" },
141 { 0x6c, "retrying interface CRC error from UDMA command" },
142
143 /* warning */
144 { 0x81, "redundant/inconsequential request ignored" },
145 { 0x8e, "failed to write zeroes to LBA 0" },
146 { 0x8f, "failed to profile TwinStor zones" },
147
148 /* fatal */
149 { 0xc1, "aborted due to system command or reconfiguration" },
150 { 0xc4, "aborted" },
151 { 0xc5, "access error" },
152 { 0xc6, "access violation" },
153 { 0xc7, "device failure" }, /* high byte may be port # */
154 { 0xc8, "controller error" },
155 { 0xc9, "timed out" },
156 { 0xcb, "invalid unit number" },
157 { 0xcf, "unit not available" },
158 { 0xd2, "undefined opcode" },
159 { 0xdb, "request incompatible with unit" },
160 { 0xdc, "invalid request" },
161 { 0xff, "firmware error, reset requested" },
162
163 { 0, NULL }
164 };
165
166 const struct twe_code_table twe_table_unitstate[] = {
167 { TWE_PARAM_UNITSTATUS_Normal, "Normal" },
168 { TWE_PARAM_UNITSTATUS_Initialising, "Initializing" },
169 { TWE_PARAM_UNITSTATUS_Degraded, "Degraded" },
170 { TWE_PARAM_UNITSTATUS_Rebuilding, "Rebuilding" },
171 { TWE_PARAM_UNITSTATUS_Verifying, "Verifying" },
172 { TWE_PARAM_UNITSTATUS_Corrupt, "Corrupt" },
173 { TWE_PARAM_UNITSTATUS_Missing, "Missing" },
174
175 { 0, NULL }
176 };
177
178 const struct twe_code_table twe_table_unittype[] = {
179 /* array descriptor configuration */
180 { TWE_AD_CONFIG_RAID0, "RAID0" },
181 { TWE_AD_CONFIG_RAID1, "RAID1" },
182 { TWE_AD_CONFIG_TwinStor, "TwinStor" },
183 { TWE_AD_CONFIG_RAID5, "RAID5" },
184 { TWE_AD_CONFIG_RAID10, "RAID10" },
185 { TWE_UD_CONFIG_JBOD, "JBOD" },
186
187 { 0, NULL }
188 };
189
190 const struct twe_code_table twe_table_stripedepth[] = {
191 { TWE_AD_STRIPE_4k, "4K" },
192 { TWE_AD_STRIPE_8k, "8K" },
193 { TWE_AD_STRIPE_16k, "16K" },
194 { TWE_AD_STRIPE_32k, "32K" },
195 { TWE_AD_STRIPE_64k, "64K" },
196 { TWE_AD_STRIPE_128k, "128K" },
197 { TWE_AD_STRIPE_256k, "256K" },
198 { TWE_AD_STRIPE_512k, "512K" },
199 { TWE_AD_STRIPE_1024k, "1024K" },
200
201 { 0, NULL }
202 };
203
204 /*
205 * Asynchronous event notification messages are qualified:
206 * a - not unit/port specific
207 * u - unit specific
208 * p - port specific
209 *
210 * They are further qualified with a severity:
211 * E - LOG_EMERG
212 * a - LOG_ALERT
213 * c - LOG_CRIT
214 * e - LOG_ERR
215 * w - LOG_WARNING
216 * n - LOG_NOTICE
217 * i - LOG_INFO
218 * d - LOG_DEBUG
219 * blank - just use printf
220 */
221 const struct twe_code_table twe_table_aen[] = {
222 { 0x00, "a queue empty" },
223 { 0x01, "a soft reset" },
224 { 0x02, "uc degraded mode" },
225 { 0x03, "aa controller error" },
226 { 0x04, "uE rebuild fail" },
227 { 0x05, "un rebuild done" },
228 { 0x06, "ue incomplete unit" },
229 { 0x07, "un initialization done" },
230 { 0x08, "uw unclean shutdown detected" },
231 { 0x09, "pe drive timeout" },
232 { 0x0a, "pc drive error" },
233 { 0x0b, "un rebuild started" },
234 { 0x0c, "un initialization started" },
235 { 0x0d, "ui logical unit deleted" },
236 { 0x0f, "pc SMART threshold exceeded" },
237 { 0x15, "a table undefined" }, /* XXX: Not in FreeBSD's table */
238 { 0x21, "pe ATA UDMA downgrade" },
239 { 0x22, "pi ATA UDMA upgrade" },
240 { 0x23, "pw sector repair occurred" },
241 { 0x24, "aa SBUF integrity check failure" },
242 { 0x25, "pa lost cached write" },
243 { 0x26, "pa drive ECC error detected" },
244 { 0x27, "pe DCB checksum error" },
245 { 0x28, "pn DCB unsupported version" },
246 { 0x29, "ui verify started" },
247 { 0x2a, "ua verify failed" },
248 { 0x2b, "ui verify complete" },
249 { 0x2c, "pw overwrote bad sector during rebuild" },
250 { 0x2d, "pa encountered bad sector during rebuild" },
251 { 0x2e, "pe replacement drive too small" },
252 { 0x2f, "ue array not previously initialized" },
253 { 0x30, "p drive not supported" },
254 { 0xff, "a aen queue full" },
255
256 { 0, NULL },
257 };
258
259 const char *
260 twe_describe_code(const struct twe_code_table *table, uint32_t code)
261 {
262
263 for (; table->string != NULL; table++) {
264 if (table->code == code)
265 return (table->string);
266 }
267 return (NULL);
268 }
269
270 static inline u_int32_t
271 twe_inl(struct twe_softc *sc, int off)
272 {
273
274 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
275 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
276 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
277 }
278
279 static inline void
280 twe_outl(struct twe_softc *sc, int off, u_int32_t val)
281 {
282
283 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
284 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
285 BUS_SPACE_BARRIER_WRITE);
286 }
287
288 /*
289 * Match a supported board.
290 */
291 static int
292 twe_match(device_t parent, cfdata_t cfdata, void *aux)
293 {
294 struct pci_attach_args *pa;
295
296 pa = aux;
297
298 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
299 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
300 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
301 }
302
303 /*
304 * Attach a supported board.
305 *
306 * XXX This doesn't fail gracefully.
307 */
308 static void
309 twe_attach(device_t parent, device_t self, void *aux)
310 {
311 struct pci_attach_args *pa;
312 struct twe_softc *sc;
313 pci_chipset_tag_t pc;
314 pci_intr_handle_t ih;
315 pcireg_t csr;
316 const char *intrstr;
317 int s, size, i, rv, rseg;
318 size_t max_segs, max_xfer;
319 bus_dma_segment_t seg;
320 const struct sysctlnode *node;
321 struct twe_cmd *tc;
322 struct twe_ccb *ccb;
323 char intrbuf[PCI_INTRSTR_LEN];
324
325 sc = device_private(self);
326 sc->sc_dev = self;
327 pa = aux;
328 pc = pa->pa_pc;
329 sc->sc_dmat = pa->pa_dmat;
330 SIMPLEQ_INIT(&sc->sc_ccb_queue);
331 SLIST_INIT(&sc->sc_ccb_freelist);
332
333 aprint_naive(": RAID controller\n");
334 aprint_normal(": 3ware Escalade\n");
335
336
337 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
338 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
339 aprint_error_dev(self, "can't map i/o space\n");
340 return;
341 }
342
343 /* Enable the device. */
344 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
345 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
346 csr | PCI_COMMAND_MASTER_ENABLE);
347
348 /* Map and establish the interrupt. */
349 if (pci_intr_map(pa, &ih)) {
350 aprint_error_dev(self, "can't map interrupt\n");
351 return;
352 }
353
354 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
355 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_BIO, twe_intr, sc,
356 device_xname(self));
357 if (sc->sc_ih == NULL) {
358 aprint_error_dev(self, "can't establish interrupt%s%s\n",
359 (intrstr) ? " at " : "",
360 (intrstr) ? intrstr : "");
361 return;
362 }
363
364 if (intrstr != NULL)
365 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
366
367 /*
368 * Allocate and initialise the command blocks and CCBs.
369 */
370 size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
371
372 if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
373 &rseg, BUS_DMA_NOWAIT)) != 0) {
374 aprint_error_dev(self,
375 "unable to allocate commands, rv = %d\n", rv);
376 return;
377 }
378
379 if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
380 (void **)&sc->sc_cmds,
381 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
382 aprint_error_dev(self,
383 "unable to map commands, rv = %d\n", rv);
384 return;
385 }
386
387 if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
388 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
389 aprint_error_dev(self,
390 "unable to create command DMA map, rv = %d\n", rv);
391 return;
392 }
393
394 if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
395 size, NULL, BUS_DMA_NOWAIT)) != 0) {
396 aprint_error_dev(self,
397 "unable to load command DMA map, rv = %d\n", rv);
398 return;
399 }
400
401 sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
402 memset(sc->sc_cmds, 0, size);
403
404 tc = (struct twe_cmd *)sc->sc_cmds;
405 max_segs = twe_get_maxsegs();
406 max_xfer = twe_get_maxxfer(max_segs);
407
408 ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_WAITOK);
409 sc->sc_ccbs = ccb;
410
411 for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
412 ccb->ccb_cmd = tc;
413 ccb->ccb_cmdid = i;
414 ccb->ccb_flags = 0;
415 rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
416 max_segs, PAGE_SIZE, 0,
417 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
418 &ccb->ccb_dmamap_xfer);
419 if (rv != 0) {
420 aprint_error_dev(self,
421 "can't create dmamap, rv = %d\n", rv);
422 return;
423 }
424
425 /* Save the first CCB for AEN retrieval. */
426 if (i != 0)
427 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
428 ccb_chain.slist);
429 }
430
431 /* Wait for the controller to become ready. */
432 if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
433 aprint_error_dev(self, "microcontroller not ready\n");
434 return;
435 }
436
437 twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
438
439 /* Reset the controller. */
440 s = splbio();
441 rv = twe_reset(sc);
442 splx(s);
443 if (rv) {
444 aprint_error_dev(self, "reset failed\n");
445 return;
446 }
447
448 /* Initialise connection with controller. */
449 twe_init_connection(sc);
450
451 twe_describe_controller(sc);
452
453 /* Find and attach RAID array units. */
454 twe_rescan(self, "twe", 0);
455
456 /* ...and finally, enable interrupts. */
457 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
458 TWE_CTL_UNMASK_RESP_INTR |
459 TWE_CTL_ENABLE_INTRS);
460
461 /* sysctl set-up for 3ware cli */
462 if (sysctl_createv(NULL, 0, NULL, &node,
463 0, CTLTYPE_NODE, device_xname(self),
464 SYSCTL_DESCR("twe driver information"),
465 NULL, 0, NULL, 0,
466 CTL_HW, CTL_CREATE, CTL_EOL) != 0) {
467 aprint_error_dev(self, "could not create %s.%s sysctl node\n",
468 "hw", device_xname(self));
469 return;
470 }
471 if ((i = sysctl_createv(NULL, 0, NULL, NULL,
472 0, CTLTYPE_STRING, "driver_version",
473 SYSCTL_DESCR("twe0 driver version"),
474 NULL, 0, __UNCONST(&twever), 0,
475 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL))
476 != 0) {
477 aprint_error_dev(self,
478 "could not create %s.%s.driver_version sysctl\n",
479 "hw", device_xname(self));
480 return;
481 }
482 }
483
484 static int
485 twe_rescan(device_t self, const char *attr, const int *flags)
486 {
487 struct twe_softc *sc;
488 int i;
489
490 sc = device_private(self);
491 sc->sc_nunits = 0;
492 for (i = 0; i < TWE_MAX_UNITS; i++)
493 (void) twe_add_unit(sc, i);
494 return 0;
495 }
496
497
498 void
499 twe_register_callbacks(struct twe_softc *sc, int unit,
500 const struct twe_callbacks *tcb)
501 {
502
503 sc->sc_units[unit].td_callbacks = tcb;
504 }
505
506 static void
507 twe_recompute_openings(struct twe_softc *sc)
508 {
509 struct twe_drive *td;
510 int unit, openings;
511
512 if (sc->sc_nunits != 0)
513 openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits;
514 else
515 openings = 0;
516 if (openings == sc->sc_openings)
517 return;
518 sc->sc_openings = openings;
519
520 #ifdef TWE_DEBUG
521 printf("%s: %d array%s, %d openings per array\n",
522 device_xname(sc->sc_dev), sc->sc_nunits,
523 sc->sc_nunits == 1 ? "" : "s", sc->sc_openings);
524 #endif
525
526 for (unit = 0; unit < TWE_MAX_UNITS; unit++) {
527 td = &sc->sc_units[unit];
528 if (td->td_dev != NULL)
529 (*td->td_callbacks->tcb_openings)(td->td_dev,
530 sc->sc_openings);
531 }
532 }
533
534 static int
535 twe_add_unit(struct twe_softc *sc, int unit)
536 {
537 struct twe_param *dtp, *atp;
538 struct twe_array_descriptor *ad;
539 struct twe_drive *td;
540 struct twe_attach_args twea;
541 uint32_t newsize;
542 int rv;
543 uint16_t dsize;
544 uint8_t newtype, newstripe;
545 int locs[TWECF_NLOCS];
546
547 if (unit < 0 || unit >= TWE_MAX_UNITS)
548 return (EINVAL);
549
550 /* Find attached units. */
551 rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
552 TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
553 if (rv != 0) {
554 aprint_error_dev(sc->sc_dev,
555 "error %d fetching unit summary\n", rv);
556 return (rv);
557 }
558
559 /* For each detected unit, collect size and store in an array. */
560 td = &sc->sc_units[unit];
561
562 /* Unit present? */
563 if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) {
564 /*
565 * XXX Should we check to see if a device has been
566 * XXX attached at this index and detach it if it
567 * XXX has? ("rescan" semantics)
568 */
569 rv = 0;
570 goto out;
571 }
572
573 rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit,
574 TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
575 if (rv != 0) {
576 aprint_error_dev(sc->sc_dev,
577 "error %d fetching descriptor size for unit %d\n",
578 rv, unit);
579 goto out;
580 }
581
582 rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit,
583 TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
584 if (rv != 0) {
585 aprint_error_dev(sc->sc_dev,
586 "error %d fetching array descriptor for unit %d\n",
587 rv, unit);
588 goto out;
589 }
590
591 ad = (struct twe_array_descriptor *)atp->tp_data;
592 newtype = ad->configuration;
593 newstripe = ad->stripe_size;
594 free(atp, M_DEVBUF);
595
596 rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit,
597 TWE_PARAM_UNITINFO_Capacity, &newsize);
598 if (rv != 0) {
599 aprint_error_dev(sc->sc_dev,
600 "error %d fetching capacity for unit %d\n",
601 rv, unit);
602 goto out;
603 }
604
605 /*
606 * Have a device, so we need to attach it. If there is currently
607 * something sitting at the slot, and the parameters are different,
608 * then we detach the old device before attaching the new one.
609 */
610 if (td->td_dev != NULL &&
611 td->td_size == newsize &&
612 td->td_type == newtype &&
613 td->td_stripe == newstripe) {
614 /* Same as the old device; just keep using it. */
615 rv = 0;
616 goto out;
617 } else if (td->td_dev != NULL) {
618 /* Detach the old device first. */
619 (void) config_detach(td->td_dev, DETACH_FORCE);
620 td->td_dev = NULL;
621 } else if (td->td_size == 0)
622 sc->sc_nunits++;
623
624 /*
625 * Committed to the new array unit; assign its parameters and
626 * recompute the number of available command openings.
627 */
628 td->td_size = newsize;
629 td->td_type = newtype;
630 td->td_stripe = newstripe;
631 twe_recompute_openings(sc);
632
633 twea.twea_unit = unit;
634
635 locs[TWECF_UNIT] = unit;
636
637 td->td_dev = config_found_sm_loc(sc->sc_dev, "twe", locs, &twea,
638 twe_print, config_stdsubmatch);
639
640 rv = 0;
641 out:
642 free(dtp, M_DEVBUF);
643 return (rv);
644 }
645
646 static int
647 twe_del_unit(struct twe_softc *sc, int unit)
648 {
649 struct twe_drive *td;
650
651 if (unit < 0 || unit >= TWE_MAX_UNITS)
652 return (EINVAL);
653
654 td = &sc->sc_units[unit];
655 if (td->td_size != 0)
656 sc->sc_nunits--;
657 td->td_size = 0;
658 td->td_type = 0;
659 td->td_stripe = 0;
660 if (td->td_dev != NULL) {
661 (void) config_detach(td->td_dev, DETACH_FORCE);
662 td->td_dev = NULL;
663 }
664 twe_recompute_openings(sc);
665 return (0);
666 }
667
668 /*
669 * Reset the controller.
670 * MUST BE CALLED AT splbio()!
671 */
672 static int
673 twe_reset(struct twe_softc *sc)
674 {
675 uint16_t aen;
676 u_int status;
677 int got, rv;
678
679 /* Issue a soft reset. */
680 twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
681 TWE_CTL_CLEAR_HOST_INTR |
682 TWE_CTL_CLEAR_ATTN_INTR |
683 TWE_CTL_MASK_CMD_INTR |
684 TWE_CTL_MASK_RESP_INTR |
685 TWE_CTL_CLEAR_ERROR_STS |
686 TWE_CTL_DISABLE_INTRS);
687
688 /* Wait for attention... */
689 if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) {
690 aprint_error_dev(sc->sc_dev,
691 "timeout waiting for attention interrupt\n");
692 return (-1);
693 }
694
695 /* ...and ACK it. */
696 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
697
698 /*
699 * Pull AENs out of the controller; look for a soft reset AEN.
700 * Open code this, since we want to detect reset even if the
701 * queue for management tools is full.
702 *
703 * Note that since:
704 * - interrupts are blocked
705 * - we have reset the controller
706 * - acknowledged the pending ATTENTION
707 * that there is no way a pending asynchronous AEN fetch would
708 * finish, so clear the flag.
709 */
710 sc->sc_flags &= ~TWEF_AEN;
711 for (got = 0;;) {
712 rv = twe_aen_get(sc, &aen);
713 if (rv != 0)
714 printf("%s: error %d while draining event queue\n",
715 device_xname(sc->sc_dev), rv);
716 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
717 break;
718 if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
719 got = 1;
720 twe_aen_enqueue(sc, aen, 1);
721 }
722
723 if (!got) {
724 printf("%s: reset not reported\n", device_xname(sc->sc_dev));
725 return (-1);
726 }
727
728 /* Check controller status. */
729 status = twe_inl(sc, TWE_REG_STS);
730 if (twe_status_check(sc, status)) {
731 printf("%s: controller errors detected\n",
732 device_xname(sc->sc_dev));
733 return (-1);
734 }
735
736 /* Drain the response queue. */
737 for (;;) {
738 status = twe_inl(sc, TWE_REG_STS);
739 if (twe_status_check(sc, status) != 0) {
740 aprint_error_dev(sc->sc_dev,
741 "can't drain response queue\n");
742 return (-1);
743 }
744 if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
745 break;
746 (void)twe_inl(sc, TWE_REG_RESP_QUEUE);
747 }
748
749 return (0);
750 }
751
752 /*
753 * Print autoconfiguration message for a sub-device.
754 */
755 static int
756 twe_print(void *aux, const char *pnp)
757 {
758 struct twe_attach_args *twea;
759
760 twea = aux;
761
762 if (pnp != NULL)
763 aprint_normal("block device at %s", pnp);
764 aprint_normal(" unit %d", twea->twea_unit);
765 return (UNCONF);
766 }
767
768 /*
769 * Interrupt service routine.
770 */
771 static int
772 twe_intr(void *arg)
773 {
774 struct twe_softc *sc;
775 u_int status;
776 int caught, rv;
777
778 sc = arg;
779 caught = 0;
780 status = twe_inl(sc, TWE_REG_STS);
781 twe_status_check(sc, status);
782
783 /* Host interrupts - purpose unknown. */
784 if ((status & TWE_STS_HOST_INTR) != 0) {
785 #ifdef DEBUG
786 printf("%s: host interrupt\n", device_xname(sc->sc_dev));
787 #endif
788 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
789 caught = 1;
790 }
791
792 /*
793 * Attention interrupts, signalled when a controller or child device
794 * state change has occurred.
795 */
796 if ((status & TWE_STS_ATTN_INTR) != 0) {
797 rv = twe_aen_get(sc, NULL);
798 if (rv != 0)
799 aprint_error_dev(sc->sc_dev,
800 "unable to retrieve AEN (%d)\n", rv);
801 else
802 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
803 caught = 1;
804 }
805
806 /*
807 * Command interrupts, signalled when the controller can accept more
808 * commands. We don't use this; instead, we try to submit commands
809 * when we receive them, and when other commands have completed.
810 * Mask it so we don't get another one.
811 */
812 if ((status & TWE_STS_CMD_INTR) != 0) {
813 #ifdef DEBUG
814 printf("%s: command interrupt\n", device_xname(sc->sc_dev));
815 #endif
816 twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
817 caught = 1;
818 }
819
820 if ((status & TWE_STS_RESP_INTR) != 0) {
821 twe_poll(sc);
822 caught = 1;
823 }
824
825 return (caught);
826 }
827
828 /*
829 * Fetch an AEN. Even though this is really like parameter
830 * retrieval, we handle this specially, because we issue this
831 * AEN retrieval command from interrupt context, and thus
832 * reserve a CCB for it to avoid resource shortage.
833 *
834 * XXX There are still potential resource shortages we could
835 * XXX encounter. Consider pre-allocating all AEN-related
836 * XXX resources.
837 *
838 * MUST BE CALLED AT splbio()!
839 */
840 static int
841 twe_aen_get(struct twe_softc *sc, uint16_t *aenp)
842 {
843 struct twe_ccb *ccb;
844 struct twe_cmd *tc;
845 struct twe_param *tp;
846 int rv;
847
848 /*
849 * If we're already retrieving an AEN, just wait; another
850 * retrieval will be chained after the current one completes.
851 */
852 if (sc->sc_flags & TWEF_AEN) {
853 /*
854 * It is a fatal software programming error to attempt
855 * to fetch an AEN synchronously when an AEN fetch is
856 * already pending.
857 */
858 KASSERT(aenp == NULL);
859 return (0);
860 }
861
862 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
863 if (tp == NULL)
864 return (ENOMEM);
865
866 ccb = twe_ccb_alloc(sc,
867 TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
868 KASSERT(ccb != NULL);
869
870 ccb->ccb_data = tp;
871 ccb->ccb_datasize = TWE_SECTOR_SIZE;
872 ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL;
873 ccb->ccb_tx.tx_context = tp;
874 ccb->ccb_tx.tx_dv = sc->sc_dev;
875
876 tc = ccb->ccb_cmd;
877 tc->tc_size = 2;
878 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
879 tc->tc_unit = 0;
880 tc->tc_count = htole16(1);
881
882 /* Fill in the outbound parameter data. */
883 tp->tp_table_id = htole16(TWE_PARAM_AEN);
884 tp->tp_param_id = TWE_PARAM_AEN_UnitCode;
885 tp->tp_param_size = 2;
886
887 /* Map the transfer. */
888 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
889 twe_ccb_free(sc, ccb);
890 goto done;
891 }
892
893 /* Enqueue the command and wait. */
894 if (aenp != NULL) {
895 rv = twe_ccb_poll(sc, ccb, 5);
896 twe_ccb_unmap(sc, ccb);
897 twe_ccb_free(sc, ccb);
898 if (rv == 0)
899 *aenp = le16toh(*(uint16_t *)tp->tp_data);
900 free(tp, M_DEVBUF);
901 } else {
902 sc->sc_flags |= TWEF_AEN;
903 twe_ccb_enqueue(sc, ccb);
904 rv = 0;
905 }
906
907 done:
908 return (rv);
909 }
910
911 /*
912 * Handle an AEN returned by the controller.
913 * MUST BE CALLED AT splbio()!
914 */
915 static void
916 twe_aen_handler(struct twe_ccb *ccb, int error)
917 {
918 struct twe_softc *sc;
919 struct twe_param *tp;
920 uint16_t aen;
921 int rv;
922
923 sc = device_private(ccb->ccb_tx.tx_dv);
924 tp = ccb->ccb_tx.tx_context;
925 twe_ccb_unmap(sc, ccb);
926
927 sc->sc_flags &= ~TWEF_AEN;
928
929 if (error) {
930 aprint_error_dev(sc->sc_dev, "error retrieving AEN\n");
931 aen = TWE_AEN_QUEUE_EMPTY;
932 } else
933 aen = le16toh(*(u_int16_t *)tp->tp_data);
934 free(tp, M_DEVBUF);
935 twe_ccb_free(sc, ccb);
936
937 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
938 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
939 return;
940 }
941
942 twe_aen_enqueue(sc, aen, 0);
943
944 /*
945 * Chain another retrieval in case interrupts have been
946 * coalesced.
947 */
948 rv = twe_aen_get(sc, NULL);
949 if (rv != 0)
950 aprint_error_dev(sc->sc_dev,
951 "unable to retrieve AEN (%d)\n", rv);
952 }
953
954 static void
955 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet)
956 {
957 const char *str, *msg;
958 int s, next, nextnext, level;
959
960 /*
961 * First report the AEN on the console. Maybe.
962 */
963 if (! quiet) {
964 str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen));
965 if (str == NULL) {
966 aprint_error_dev(sc->sc_dev,
967 "unknown AEN 0x%04x\n", aen);
968 } else {
969 msg = str + 3;
970 switch (str[1]) {
971 case 'E': level = LOG_EMERG; break;
972 case 'a': level = LOG_ALERT; break;
973 case 'c': level = LOG_CRIT; break;
974 case 'e': level = LOG_ERR; break;
975 case 'w': level = LOG_WARNING; break;
976 case 'n': level = LOG_NOTICE; break;
977 case 'i': level = LOG_INFO; break;
978 case 'd': level = LOG_DEBUG; break;
979 default:
980 /* Don't use syslog. */
981 level = -1;
982 }
983
984 if (level < 0) {
985 switch (str[0]) {
986 case 'u':
987 case 'p':
988 printf("%s: %s %d: %s\n",
989 device_xname(sc->sc_dev),
990 str[0] == 'u' ? "unit" : "port",
991 TWE_AEN_UNIT(aen), msg);
992 break;
993
994 default:
995 printf("%s: %s\n",
996 device_xname(sc->sc_dev), msg);
997 }
998 } else {
999 switch (str[0]) {
1000 case 'u':
1001 case 'p':
1002 log(level, "%s: %s %d: %s\n",
1003 device_xname(sc->sc_dev),
1004 str[0] == 'u' ? "unit" : "port",
1005 TWE_AEN_UNIT(aen), msg);
1006 break;
1007
1008 default:
1009 log(level, "%s: %s\n",
1010 device_xname(sc->sc_dev), msg);
1011 }
1012 }
1013 }
1014 }
1015
1016 /* Now enqueue the AEN for mangement tools. */
1017 s = splbio();
1018
1019 next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH;
1020 nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH;
1021
1022 /*
1023 * If this is the last free slot, then queue up a "queue
1024 * full" message.
1025 */
1026 if (nextnext == sc->sc_aen_tail)
1027 aen = TWE_AEN_QUEUE_FULL;
1028
1029 if (next != sc->sc_aen_tail) {
1030 sc->sc_aen_queue[sc->sc_aen_head] = aen;
1031 sc->sc_aen_head = next;
1032 }
1033
1034 if (sc->sc_flags & TWEF_AENQ_WAIT) {
1035 sc->sc_flags &= ~TWEF_AENQ_WAIT;
1036 wakeup(&sc->sc_aen_queue);
1037 }
1038
1039 splx(s);
1040 }
1041
1042 /* NOTE: Must be called at splbio(). */
1043 static uint16_t
1044 twe_aen_dequeue(struct twe_softc *sc)
1045 {
1046 uint16_t aen;
1047
1048 if (sc->sc_aen_tail == sc->sc_aen_head)
1049 aen = TWE_AEN_QUEUE_EMPTY;
1050 else {
1051 aen = sc->sc_aen_queue[sc->sc_aen_tail];
1052 sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH;
1053 }
1054
1055 return (aen);
1056 }
1057
1058 /*
1059 * These are short-hand functions that execute TWE_OP_GET_PARAM to
1060 * fetch 1, 2, and 4 byte parameter values, respectively.
1061 */
1062 int
1063 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
1064 uint8_t *valp)
1065 {
1066 struct twe_param *tp;
1067 int rv;
1068
1069 rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
1070 if (rv != 0)
1071 return (rv);
1072 *valp = *(uint8_t *)tp->tp_data;
1073 free(tp, M_DEVBUF);
1074 return (0);
1075 }
1076
1077 int
1078 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
1079 uint16_t *valp)
1080 {
1081 struct twe_param *tp;
1082 int rv;
1083
1084 rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
1085 if (rv != 0)
1086 return (rv);
1087 *valp = le16toh(*(uint16_t *)tp->tp_data);
1088 free(tp, M_DEVBUF);
1089 return (0);
1090 }
1091
1092 int
1093 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
1094 uint32_t *valp)
1095 {
1096 struct twe_param *tp;
1097 int rv;
1098
1099 rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
1100 if (rv != 0)
1101 return (rv);
1102 *valp = le32toh(*(uint32_t *)tp->tp_data);
1103 free(tp, M_DEVBUF);
1104 return (0);
1105 }
1106
1107 /*
1108 * Execute a TWE_OP_GET_PARAM command. If a callback function is provided,
1109 * it will be called with generated context when the command has completed.
1110 * If no callback is provided, the command will be executed synchronously
1111 * and a pointer to a buffer containing the data returned.
1112 *
1113 * The caller or callback is responsible for freeing the buffer.
1114 *
1115 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1116 */
1117 int
1118 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
1119 void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
1120 {
1121 struct twe_ccb *ccb;
1122 struct twe_cmd *tc;
1123 struct twe_param *tp;
1124 int rv, s;
1125
1126 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1127 if (tp == NULL)
1128 return ENOMEM;
1129
1130 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1131 KASSERT(ccb != NULL);
1132
1133 ccb->ccb_data = tp;
1134 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1135 ccb->ccb_tx.tx_handler = func;
1136 ccb->ccb_tx.tx_context = tp;
1137 ccb->ccb_tx.tx_dv = sc->sc_dev;
1138
1139 tc = ccb->ccb_cmd;
1140 tc->tc_size = 2;
1141 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
1142 tc->tc_unit = 0;
1143 tc->tc_count = htole16(1);
1144
1145 /* Fill in the outbound parameter data. */
1146 tp->tp_table_id = htole16(table_id);
1147 tp->tp_param_id = param_id;
1148 tp->tp_param_size = size;
1149
1150 /* Map the transfer. */
1151 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1152 twe_ccb_free(sc, ccb);
1153 goto done;
1154 }
1155
1156 /* Submit the command and either wait or let the callback handle it. */
1157 if (func == NULL) {
1158 s = splbio();
1159 rv = twe_ccb_poll(sc, ccb, 5);
1160 twe_ccb_unmap(sc, ccb);
1161 twe_ccb_free(sc, ccb);
1162 splx(s);
1163 } else {
1164 #ifdef DEBUG
1165 if (pbuf != NULL)
1166 panic("both func and pbuf defined");
1167 #endif
1168 twe_ccb_enqueue(sc, ccb);
1169 return 0;
1170 }
1171
1172 done:
1173 if (pbuf == NULL || rv != 0)
1174 free(tp, M_DEVBUF);
1175 else if (pbuf != NULL && rv == 0)
1176 *pbuf = tp;
1177 return rv;
1178 }
1179
1180 /*
1181 * Execute a TWE_OP_SET_PARAM command.
1182 *
1183 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1184 */
1185 static int
1186 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
1187 void *sbuf)
1188 {
1189 struct twe_ccb *ccb;
1190 struct twe_cmd *tc;
1191 struct twe_param *tp;
1192 int rv, s;
1193
1194 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
1195 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1196 ccb->ccb_data = tp;
1197 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1198 ccb->ccb_tx.tx_handler = 0;
1199 ccb->ccb_tx.tx_context = tp;
1200 ccb->ccb_tx.tx_dv = sc->sc_dev;
1201
1202 tc = ccb->ccb_cmd;
1203 tc->tc_size = 2;
1204 tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
1205 tc->tc_unit = 0;
1206 tc->tc_count = htole16(1);
1207
1208 /* Fill in the outbound parameter data. */
1209 tp->tp_table_id = htole16(table_id);
1210 tp->tp_param_id = param_id;
1211 tp->tp_param_size = size;
1212 memcpy(tp->tp_data, sbuf, size);
1213
1214 /* Map the transfer. */
1215 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1216 twe_ccb_free(sc, ccb);
1217 goto done;
1218 }
1219
1220 /* Submit the command and wait. */
1221 s = splbio();
1222 rv = twe_ccb_poll(sc, ccb, 5);
1223 twe_ccb_unmap(sc, ccb);
1224 twe_ccb_free(sc, ccb);
1225 splx(s);
1226 done:
1227 free(tp, M_DEVBUF);
1228 return (rv);
1229 }
1230
1231 /*
1232 * Execute a TWE_OP_INIT_CONNECTION command. Return non-zero on error.
1233 * Must be called with interrupts blocked.
1234 */
1235 static int
1236 twe_init_connection(struct twe_softc *sc)
1237 {
1238 struct twe_ccb *ccb;
1239 struct twe_cmd *tc;
1240 int rv;
1241
1242 if ((ccb = twe_ccb_alloc(sc, 0)) == NULL)
1243 return (EAGAIN);
1244
1245 /* Build the command. */
1246 tc = ccb->ccb_cmd;
1247 tc->tc_size = 3;
1248 tc->tc_opcode = TWE_OP_INIT_CONNECTION;
1249 tc->tc_unit = 0;
1250 tc->tc_count = htole16(TWE_MAX_CMDS);
1251 tc->tc_args.init_connection.response_queue_pointer = 0;
1252
1253 /* Submit the command for immediate execution. */
1254 rv = twe_ccb_poll(sc, ccb, 5);
1255 twe_ccb_free(sc, ccb);
1256 return (rv);
1257 }
1258
1259 /*
1260 * Poll the controller for completed commands. Must be called with
1261 * interrupts blocked.
1262 */
1263 static void
1264 twe_poll(struct twe_softc *sc)
1265 {
1266 struct twe_ccb *ccb;
1267 int found;
1268 u_int status, cmdid;
1269
1270 found = 0;
1271
1272 for (;;) {
1273 status = twe_inl(sc, TWE_REG_STS);
1274 twe_status_check(sc, status);
1275
1276 if ((status & TWE_STS_RESP_QUEUE_EMPTY))
1277 break;
1278
1279 found = 1;
1280 cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
1281 cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
1282 if (cmdid >= TWE_MAX_QUEUECNT) {
1283 aprint_error_dev(sc->sc_dev, "bad cmdid %d\n", cmdid);
1284 continue;
1285 }
1286
1287 ccb = sc->sc_ccbs + cmdid;
1288 if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
1289 printf("%s: CCB for cmdid %d not active\n",
1290 device_xname(sc->sc_dev), cmdid);
1291 continue;
1292 }
1293 ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
1294
1295 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1296 (char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
1297 sizeof(struct twe_cmd),
1298 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1299
1300 /* Pass notification to upper layers. */
1301 if (ccb->ccb_tx.tx_handler != NULL)
1302 (*ccb->ccb_tx.tx_handler)(ccb,
1303 ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
1304 }
1305
1306 /* If any commands have completed, run the software queue. */
1307 if (found)
1308 twe_ccb_enqueue(sc, NULL);
1309 }
1310
1311 /*
1312 * Wait for `status' to be set in the controller status register. Return
1313 * zero if found, non-zero if the operation timed out.
1314 */
1315 static int
1316 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
1317 {
1318
1319 for (timo *= 10; timo != 0; timo--) {
1320 if ((twe_inl(sc, TWE_REG_STS) & status) == status)
1321 break;
1322 delay(100000);
1323 }
1324
1325 return (timo == 0);
1326 }
1327
1328 /*
1329 * Clear a PCI parity error.
1330 */
1331 static void
1332 twe_clear_pci_parity_error(struct twe_softc *sc)
1333 {
1334 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0,
1335 TWE_CTL_CLEAR_PARITY_ERROR);
1336
1337 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
1338 }
1339
1340
1341 /*
1342 * Clear a PCI abort.
1343 */
1344 static void
1345 twe_clear_pci_abort(struct twe_softc *sc)
1346 {
1347 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT);
1348
1349 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
1350 }
1351
1352 /*
1353 * Complain if the status bits aren't what we expect.
1354 */
1355 static int
1356 twe_status_check(struct twe_softc *sc, u_int status)
1357 {
1358 int rv;
1359
1360 rv = 0;
1361
1362 if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
1363 aprint_error_dev(sc->sc_dev, "missing status bits: 0x%08x\n",
1364 status & ~TWE_STS_EXPECTED_BITS);
1365 rv = -1;
1366 }
1367
1368 if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
1369 aprint_error_dev(sc->sc_dev, "unexpected status bits: 0x%08x\n",
1370 status & TWE_STS_UNEXPECTED_BITS);
1371 rv = -1;
1372 if (status & TWE_STS_PCI_PARITY_ERROR) {
1373 aprint_error_dev(sc->sc_dev, "PCI parity error: Reseat"
1374 " card, move card or buggy device present.\n");
1375 twe_clear_pci_parity_error(sc);
1376 }
1377 if (status & TWE_STS_PCI_ABORT) {
1378 aprint_error_dev(sc->sc_dev, "PCI abort, clearing.\n");
1379 twe_clear_pci_abort(sc);
1380 }
1381 }
1382
1383 return (rv);
1384 }
1385
1386 /*
1387 * Allocate and initialise a CCB.
1388 */
1389 static inline void
1390 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags)
1391 {
1392 struct twe_cmd *tc;
1393
1394 ccb->ccb_tx.tx_handler = NULL;
1395 ccb->ccb_flags = flags;
1396 tc = ccb->ccb_cmd;
1397 tc->tc_status = 0;
1398 tc->tc_flags = 0;
1399 tc->tc_cmdid = ccb->ccb_cmdid;
1400 }
1401
1402 struct twe_ccb *
1403 twe_ccb_alloc(struct twe_softc *sc, int flags)
1404 {
1405 struct twe_ccb *ccb;
1406 int s;
1407
1408 s = splbio();
1409 if (__predict_false((flags & TWE_CCB_AEN) != 0)) {
1410 /* Use the reserved CCB. */
1411 ccb = sc->sc_ccbs;
1412 } else {
1413 /* Allocate a CCB and command block. */
1414 if (__predict_false((ccb =
1415 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1416 splx(s);
1417 return (NULL);
1418 }
1419 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1420 }
1421 #ifdef DIAGNOSTIC
1422 if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0)
1423 panic("twe_ccb_alloc: got reserved CCB for non-AEN");
1424 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1425 panic("twe_ccb_alloc: CCB %ld already allocated",
1426 (long)(ccb - sc->sc_ccbs));
1427 flags |= TWE_CCB_ALLOCED;
1428 #endif
1429 splx(s);
1430
1431 twe_ccb_init(sc, ccb, flags);
1432 return (ccb);
1433 }
1434
1435 struct twe_ccb *
1436 twe_ccb_alloc_wait(struct twe_softc *sc, int flags)
1437 {
1438 struct twe_ccb *ccb;
1439 int s;
1440
1441 KASSERT((flags & TWE_CCB_AEN) == 0);
1442
1443 s = splbio();
1444 while (__predict_false((ccb =
1445 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1446 sc->sc_flags |= TWEF_WAIT_CCB;
1447 (void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0);
1448 }
1449 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1450 #ifdef DIAGNOSTIC
1451 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1452 panic("twe_ccb_alloc_wait: CCB %ld already allocated",
1453 (long)(ccb - sc->sc_ccbs));
1454 flags |= TWE_CCB_ALLOCED;
1455 #endif
1456 splx(s);
1457
1458 twe_ccb_init(sc, ccb, flags);
1459 return (ccb);
1460 }
1461
1462 /*
1463 * Free a CCB.
1464 */
1465 void
1466 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
1467 {
1468 int s;
1469
1470 s = splbio();
1471 if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) {
1472 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
1473 if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) {
1474 sc->sc_flags &= ~TWEF_WAIT_CCB;
1475 wakeup(&sc->sc_ccb_freelist);
1476 }
1477 }
1478 ccb->ccb_flags = 0;
1479 splx(s);
1480 }
1481
1482 /*
1483 * Map the specified CCB's command block and data buffer (if any) into
1484 * controller visible space. Perform DMA synchronisation.
1485 */
1486 int
1487 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
1488 {
1489 struct twe_cmd *tc;
1490 int flags, nsegs, i, s, rv;
1491 void *data;
1492
1493 /*
1494 * The data as a whole must be 512-byte aligned.
1495 */
1496 if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
1497 s = splvm();
1498 /* XXX */
1499 rv = uvm_km_kmem_alloc(kmem_va_arena,
1500 ccb->ccb_datasize, (VM_NOSLEEP | VM_INSTANTFIT),
1501 (vmem_addr_t *)&ccb->ccb_abuf);
1502 splx(s);
1503 data = (void *)ccb->ccb_abuf;
1504 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1505 memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
1506 } else {
1507 ccb->ccb_abuf = (vaddr_t)0;
1508 data = ccb->ccb_data;
1509 }
1510
1511 /*
1512 * Map the data buffer into bus space and build the S/G list.
1513 */
1514 rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
1515 ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1516 ((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
1517 BUS_DMA_READ : BUS_DMA_WRITE));
1518 if (rv != 0) {
1519 if (ccb->ccb_abuf != (vaddr_t)0) {
1520 s = splvm();
1521 /* XXX */
1522 uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf,
1523 ccb->ccb_datasize);
1524 splx(s);
1525 }
1526 return (rv);
1527 }
1528
1529 nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
1530 tc = ccb->ccb_cmd;
1531 tc->tc_size += 2 * nsegs;
1532
1533 /* The location of the S/G list is dependent upon command type. */
1534 switch (tc->tc_opcode >> 5) {
1535 case 2:
1536 for (i = 0; i < nsegs; i++) {
1537 tc->tc_args.param.sgl[i].tsg_address =
1538 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1539 tc->tc_args.param.sgl[i].tsg_length =
1540 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1541 }
1542 /* XXX Needed? */
1543 for (; i < TWE_SG_SIZE; i++) {
1544 tc->tc_args.param.sgl[i].tsg_address = 0;
1545 tc->tc_args.param.sgl[i].tsg_length = 0;
1546 }
1547 break;
1548 case 3:
1549 for (i = 0; i < nsegs; i++) {
1550 tc->tc_args.io.sgl[i].tsg_address =
1551 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1552 tc->tc_args.io.sgl[i].tsg_length =
1553 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1554 }
1555 /* XXX Needed? */
1556 for (; i < TWE_SG_SIZE; i++) {
1557 tc->tc_args.io.sgl[i].tsg_address = 0;
1558 tc->tc_args.io.sgl[i].tsg_length = 0;
1559 }
1560 break;
1561 default:
1562 /*
1563 * In all likelihood, this is a command passed from
1564 * management tools in userspace where no S/G list is
1565 * necessary because no data is being passed.
1566 */
1567 break;
1568 }
1569
1570 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1571 flags = BUS_DMASYNC_PREREAD;
1572 else
1573 flags = 0;
1574 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1575 flags |= BUS_DMASYNC_PREWRITE;
1576
1577 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1578 ccb->ccb_datasize, flags);
1579 return (0);
1580 }
1581
1582 /*
1583 * Unmap the specified CCB's command block and data buffer (if any) and
1584 * perform DMA synchronisation.
1585 */
1586 void
1587 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
1588 {
1589 int flags, s;
1590
1591 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1592 flags = BUS_DMASYNC_POSTREAD;
1593 else
1594 flags = 0;
1595 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1596 flags |= BUS_DMASYNC_POSTWRITE;
1597
1598 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1599 ccb->ccb_datasize, flags);
1600 bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
1601
1602 if (ccb->ccb_abuf != (vaddr_t)0) {
1603 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1604 memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
1605 ccb->ccb_datasize);
1606 s = splvm();
1607 /* XXX */
1608 uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf,
1609 ccb->ccb_datasize);
1610 splx(s);
1611 }
1612 }
1613
1614 /*
1615 * Submit a command to the controller and poll on completion. Return
1616 * non-zero on timeout (but don't check status, as some command types don't
1617 * return status). Must be called with interrupts blocked.
1618 */
1619 int
1620 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
1621 {
1622 int rv;
1623
1624 if ((rv = twe_ccb_submit(sc, ccb)) != 0)
1625 return (rv);
1626
1627 for (timo *= 1000; timo != 0; timo--) {
1628 twe_poll(sc);
1629 if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
1630 break;
1631 DELAY(100);
1632 }
1633
1634 return (timo == 0);
1635 }
1636
1637 /*
1638 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1639 * the order that they were enqueued and try to submit their command blocks
1640 * to the controller for execution.
1641 */
1642 void
1643 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
1644 {
1645 int s;
1646
1647 s = splbio();
1648
1649 if (ccb != NULL)
1650 SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
1651
1652 while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
1653 if (twe_ccb_submit(sc, ccb))
1654 break;
1655 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
1656 }
1657
1658 splx(s);
1659 }
1660
1661 /*
1662 * Submit the command block associated with the specified CCB to the
1663 * controller for execution. Must be called with interrupts blocked.
1664 */
1665 int
1666 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
1667 {
1668 bus_addr_t pa;
1669 int rv;
1670 u_int status;
1671
1672 /* Check to see if we can post a command. */
1673 status = twe_inl(sc, TWE_REG_STS);
1674 twe_status_check(sc, status);
1675
1676 if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
1677 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1678 (char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
1679 sizeof(struct twe_cmd),
1680 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1681 #ifdef DIAGNOSTIC
1682 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0)
1683 panic("%s: CCB %ld not ALLOCED\n",
1684 device_xname(sc->sc_dev), (long)(ccb - sc->sc_ccbs));
1685 #endif
1686 ccb->ccb_flags |= TWE_CCB_ACTIVE;
1687 pa = sc->sc_cmds_paddr +
1688 ccb->ccb_cmdid * sizeof(struct twe_cmd);
1689 twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
1690 rv = 0;
1691 } else
1692 rv = EBUSY;
1693
1694 return (rv);
1695 }
1696
1697
1698 /*
1699 * Accept an open operation on the control device.
1700 */
1701 static int
1702 tweopen(dev_t dev, int flag, int mode, struct lwp *l)
1703 {
1704 struct twe_softc *twe;
1705
1706 if ((twe = device_lookup_private(&twe_cd, minor(dev))) == NULL)
1707 return (ENXIO);
1708 if ((twe->sc_flags & TWEF_OPEN) != 0)
1709 return (EBUSY);
1710
1711 twe->sc_flags |= TWEF_OPEN;
1712 return (0);
1713 }
1714
1715 /*
1716 * Accept the last close on the control device.
1717 */
1718 static int
1719 tweclose(dev_t dev, int flag, int mode,
1720 struct lwp *l)
1721 {
1722 struct twe_softc *twe;
1723
1724 twe = device_lookup_private(&twe_cd, minor(dev));
1725 twe->sc_flags &= ~TWEF_OPEN;
1726 return (0);
1727 }
1728
1729 void
1730 twe_ccb_wait_handler(struct twe_ccb *ccb, int error)
1731 {
1732
1733 /* Just wake up the sleeper. */
1734 wakeup(ccb);
1735 }
1736
1737 /*
1738 * Handle control operations.
1739 */
1740 static int
1741 tweioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1742 {
1743 struct twe_softc *twe;
1744 struct twe_ccb *ccb;
1745 struct twe_param *param;
1746 struct twe_usercommand *tu;
1747 struct twe_paramcommand *tp;
1748 struct twe_drivecommand *td;
1749 void *pdata = NULL;
1750 int s, error = 0;
1751 u_int8_t cmdid;
1752
1753 twe = device_lookup_private(&twe_cd, minor(dev));
1754 tu = (struct twe_usercommand *)data;
1755 tp = (struct twe_paramcommand *)data;
1756 td = (struct twe_drivecommand *)data;
1757
1758 /* This is intended to be compatible with the FreeBSD interface. */
1759 switch (cmd) {
1760 case TWEIO_COMMAND:
1761 error = kauth_authorize_device_passthru(l->l_cred, dev,
1762 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1763 if (error)
1764 return (error);
1765
1766 /* XXX mutex */
1767 if (tu->tu_size > 0) {
1768 /*
1769 * XXX Handle > TWE_SECTOR_SIZE? Let's see if
1770 * it's really necessary, first.
1771 */
1772 if (tu->tu_size > TWE_SECTOR_SIZE) {
1773 #ifdef TWE_DEBUG
1774 printf("%s: TWEIO_COMMAND: tu_size = %zu\n",
1775 device_xname(twe->sc_dev), tu->tu_size);
1776 #endif
1777 return EINVAL;
1778 }
1779 pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
1780 error = copyin(tu->tu_data, pdata, tu->tu_size);
1781 if (error != 0)
1782 goto done;
1783 ccb = twe_ccb_alloc_wait(twe,
1784 TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1785 KASSERT(ccb != NULL);
1786 ccb->ccb_data = pdata;
1787 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1788 } else {
1789 ccb = twe_ccb_alloc_wait(twe, 0);
1790 KASSERT(ccb != NULL);
1791 }
1792
1793 ccb->ccb_tx.tx_handler = twe_ccb_wait_handler;
1794 ccb->ccb_tx.tx_context = NULL;
1795 ccb->ccb_tx.tx_dv = twe->sc_dev;
1796
1797 cmdid = ccb->ccb_cmdid;
1798 memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
1799 ccb->ccb_cmd->tc_cmdid = cmdid;
1800
1801 /* Map the transfer. */
1802 if ((error = twe_ccb_map(twe, ccb)) != 0) {
1803 twe_ccb_free(twe, ccb);
1804 goto done;
1805 }
1806
1807 /* Submit the command and wait up to 1 minute. */
1808 error = 0;
1809 twe_ccb_enqueue(twe, ccb);
1810 s = splbio();
1811 while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0)
1812 if ((error = tsleep(ccb, PRIBIO, "tweioctl",
1813 60 * hz)) != 0)
1814 break;
1815 splx(s);
1816
1817 /* Copy the command back to the ioctl argument. */
1818 memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd));
1819 #ifdef TWE_DEBUG
1820 printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, "
1821 "tc_status = 0x%02x\n", device_xname(twe->sc_dev),
1822 tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status);
1823 #endif
1824
1825 s = splbio();
1826 twe_ccb_free(twe, ccb);
1827 splx(s);
1828
1829 if (tu->tu_size > 0)
1830 error = copyout(pdata, tu->tu_data, tu->tu_size);
1831 goto done;
1832
1833 case TWEIO_STATS:
1834 return (ENOENT);
1835
1836 case TWEIO_AEN_POLL:
1837 s = splbio();
1838 *(u_int *)data = twe_aen_dequeue(twe);
1839 splx(s);
1840 return (0);
1841
1842 case TWEIO_AEN_WAIT:
1843 s = splbio();
1844 while ((*(u_int *)data =
1845 twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) {
1846 twe->sc_flags |= TWEF_AENQ_WAIT;
1847 error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH,
1848 "tweaen", 0);
1849 if (error == EINTR) {
1850 splx(s);
1851 return (error);
1852 }
1853 }
1854 splx(s);
1855 return (0);
1856
1857 case TWEIO_GET_PARAM:
1858 error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
1859 tp->tp_size, 0, ¶m);
1860 if (error != 0)
1861 return (error);
1862 if (param->tp_param_size > tp->tp_size) {
1863 error = EFAULT;
1864 goto done;
1865 }
1866 error = copyout(param->tp_data, tp->tp_data,
1867 param->tp_param_size);
1868 free(param, M_DEVBUF);
1869 goto done;
1870
1871 case TWEIO_SET_PARAM:
1872 pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
1873 if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
1874 goto done;
1875 error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
1876 tp->tp_size, pdata);
1877 goto done;
1878
1879 case TWEIO_RESET:
1880 s = splbio();
1881 twe_reset(twe);
1882 splx(s);
1883 return (0);
1884
1885 case TWEIO_ADD_UNIT:
1886 /* XXX mutex */
1887 return (twe_add_unit(twe, td->td_unit));
1888
1889 case TWEIO_DEL_UNIT:
1890 /* XXX mutex */
1891 return (twe_del_unit(twe, td->td_unit));
1892
1893 default:
1894 return EINVAL;
1895 }
1896 done:
1897 if (pdata)
1898 free(pdata, M_DEVBUF);
1899 return error;
1900 }
1901
1902 const struct cdevsw twe_cdevsw = {
1903 .d_open = tweopen,
1904 .d_close = tweclose,
1905 .d_read = noread,
1906 .d_write = nowrite,
1907 .d_ioctl = tweioctl,
1908 .d_stop = nostop,
1909 .d_tty = notty,
1910 .d_poll = nopoll,
1911 .d_mmap = nommap,
1912 .d_kqfilter = nokqfilter,
1913 .d_discard = nodiscard,
1914 .d_flag = D_OTHER
1915 };
1916
1917 /*
1918 * Print some information about the controller
1919 */
1920 static void
1921 twe_describe_controller(struct twe_softc *sc)
1922 {
1923 struct twe_param *p[6];
1924 int i, rv = 0;
1925 uint32_t dsize;
1926 uint8_t ports;
1927
1928 ports = 0;
1929
1930 /* get the port count */
1931 rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
1932 TWE_PARAM_CONTROLLER_PortCount, &ports);
1933
1934 /* get version strings */
1935 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
1936 16, NULL, &p[0]);
1937 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
1938 16, NULL, &p[1]);
1939 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
1940 16, NULL, &p[2]);
1941 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
1942 8, NULL, &p[3]);
1943 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
1944 8, NULL, &p[4]);
1945 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
1946 8, NULL, &p[5]);
1947
1948 if (rv) {
1949 /* some error occurred */
1950 aprint_error_dev(sc->sc_dev,
1951 "failed to fetch version information\n");
1952 return;
1953 }
1954
1955 aprint_normal_dev(sc->sc_dev, "%d ports, Firmware %.16s, BIOS %.16s\n",
1956 ports, p[1]->tp_data, p[2]->tp_data);
1957
1958 aprint_verbose_dev(sc->sc_dev,
1959 "Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
1960 p[0]->tp_data, p[3]->tp_data,
1961 p[4]->tp_data, p[5]->tp_data);
1962
1963 free(p[0], M_DEVBUF);
1964 free(p[1], M_DEVBUF);
1965 free(p[2], M_DEVBUF);
1966 free(p[3], M_DEVBUF);
1967 free(p[4], M_DEVBUF);
1968 free(p[5], M_DEVBUF);
1969
1970 rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY,
1971 TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]);
1972 if (rv) {
1973 aprint_error_dev(sc->sc_dev,
1974 "failed to get drive status summary\n");
1975 return;
1976 }
1977 for (i = 0; i < ports; i++) {
1978 if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present)
1979 continue;
1980 rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i,
1981 TWE_PARAM_DRIVEINFO_Size, &dsize);
1982 if (rv) {
1983 aprint_error_dev(sc->sc_dev,
1984 "unable to get drive size for port %d\n", i);
1985 continue;
1986 }
1987 rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i,
1988 TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]);
1989 if (rv) {
1990 aprint_error_dev(sc->sc_dev,
1991 "unable to get drive model for port %d\n", i);
1992 continue;
1993 }
1994 aprint_verbose_dev(sc->sc_dev, "port %d: %.40s %d MB\n",
1995 i, p[1]->tp_data, dsize / 2048);
1996 free(p[1], M_DEVBUF);
1997 }
1998 free(p[0], M_DEVBUF);
1999 }
2000
2001 MODULE(MODULE_CLASS_DRIVER, twe, "pci");
2002
2003 #ifdef _MODULE
2004 #include "ioconf.c"
2005 #endif
2006
2007 static int
2008 twe_modcmd(modcmd_t cmd, void *opaque)
2009 {
2010 int error = 0;
2011
2012 #ifdef _MODULE
2013 switch (cmd) {
2014 case MODULE_CMD_INIT:
2015 error = config_init_component(cfdriver_ioconf_twe,
2016 cfattach_ioconf_twe, cfdata_ioconf_twe);
2017 break;
2018 case MODULE_CMD_FINI:
2019 error = config_fini_component(cfdriver_ioconf_twe,
2020 cfattach_ioconf_twe, cfdata_ioconf_twe);
2021 break;
2022 default:
2023 error = ENOTTY;
2024 break;
2025 }
2026 #endif
2027
2028 return error;
2029 }
2030