twe.c revision 1.47 1 /* $NetBSD: twe.c,v 1.47 2003/09/23 23:08:54 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 2000 Michael Smith
41 * Copyright (c) 2000 BSDi
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
66 */
67
68 /*
69 * Driver for the 3ware Escalade family of RAID controllers.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.47 2003/09/23 23:08:54 thorpej Exp $");
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/device.h>
79 #include <sys/queue.h>
80 #include <sys/proc.h>
81 #include <sys/buf.h>
82 #include <sys/endian.h>
83 #include <sys/malloc.h>
84 #include <sys/conf.h>
85 #include <sys/disk.h>
86
87 #include <uvm/uvm_extern.h>
88
89 #include <machine/bswap.h>
90 #include <machine/bus.h>
91
92 #include <dev/pci/pcireg.h>
93 #include <dev/pci/pcivar.h>
94 #include <dev/pci/pcidevs.h>
95 #include <dev/pci/twereg.h>
96 #include <dev/pci/twevar.h>
97 #include <dev/pci/tweio.h>
98
99 #define PCI_CBIO 0x10
100
101 static int twe_aen_get(struct twe_softc *, uint16_t *);
102 static void twe_aen_handler(struct twe_ccb *, int);
103 static void twe_aen_enqueue(struct twe_softc *sc, uint16_t, int);
104 static uint16_t twe_aen_dequeue(struct twe_softc *);
105
106 static void twe_attach(struct device *, struct device *, void *);
107 static int twe_init_connection(struct twe_softc *);
108 static int twe_intr(void *);
109 static int twe_match(struct device *, struct cfdata *, void *);
110 static int twe_param_set(struct twe_softc *, int, int, size_t, void *);
111 static void twe_poll(struct twe_softc *);
112 static int twe_print(void *, const char *);
113 static int twe_reset(struct twe_softc *);
114 static int twe_submatch(struct device *, struct cfdata *, void *);
115 static int twe_status_check(struct twe_softc *, u_int);
116 static int twe_status_wait(struct twe_softc *, u_int, int);
117 static void twe_describe_controller(struct twe_softc *);
118
119 static int twe_add_unit(struct twe_softc *, int);
120 static int twe_del_unit(struct twe_softc *, int);
121
122 static inline u_int32_t twe_inl(struct twe_softc *, int);
123 static inline void twe_outl(struct twe_softc *, int, u_int32_t);
124
125 dev_type_open(tweopen);
126 dev_type_close(tweclose);
127 dev_type_ioctl(tweioctl);
128
129 const struct cdevsw twe_cdevsw = {
130 tweopen, tweclose, noread, nowrite, tweioctl,
131 nostop, notty, nopoll, nommap,
132 };
133
134 extern struct cfdriver twe_cd;
135
136 CFATTACH_DECL(twe, sizeof(struct twe_softc),
137 twe_match, twe_attach, NULL, NULL);
138
139 /*
140 * Tables to convert numeric codes to strings.
141 */
142 const struct twe_code_table twe_table_status[] = {
143 { 0x00, "successful completion" },
144
145 /* info */
146 { 0x42, "command in progress" },
147 { 0x6c, "retrying interface CRC error from UDMA command" },
148
149 /* warning */
150 { 0x81, "redundant/inconsequential request ignored" },
151 { 0x8e, "failed to write zeroes to LBA 0" },
152 { 0x8f, "failed to profile TwinStor zones" },
153
154 /* fatal */
155 { 0xc1, "aborted due to system command or reconfiguration" },
156 { 0xc4, "aborted" },
157 { 0xc5, "access error" },
158 { 0xc6, "access violation" },
159 { 0xc7, "device failure" }, /* high byte may be port # */
160 { 0xc8, "controller error" },
161 { 0xc9, "timed out" },
162 { 0xcb, "invalid unit number" },
163 { 0xcf, "unit not available" },
164 { 0xd2, "undefined opcode" },
165 { 0xdb, "request incompatible with unit" },
166 { 0xdc, "invalid request" },
167 { 0xff, "firmware error, reset requested" },
168
169 { 0, NULL }
170 };
171
172 const struct twe_code_table twe_table_unitstate[] = {
173 { TWE_PARAM_UNITSTATUS_Normal, "Normal" },
174 { TWE_PARAM_UNITSTATUS_Initialising, "Initializing" },
175 { TWE_PARAM_UNITSTATUS_Degraded, "Degraded" },
176 { TWE_PARAM_UNITSTATUS_Rebuilding, "Rebuilding" },
177 { TWE_PARAM_UNITSTATUS_Verifying, "Verifying" },
178 { TWE_PARAM_UNITSTATUS_Corrupt, "Corrupt" },
179 { TWE_PARAM_UNITSTATUS_Missing, "Missing" },
180
181 { 0, NULL }
182 };
183
184 const struct twe_code_table twe_table_unittype[] = {
185 /* array descriptor configuration */
186 { TWE_AD_CONFIG_RAID0, "RAID0" },
187 { TWE_AD_CONFIG_RAID1, "RAID1" },
188 { TWE_AD_CONFIG_TwinStor, "TwinStor" },
189 { TWE_AD_CONFIG_RAID5, "RAID5" },
190 { TWE_AD_CONFIG_RAID10, "RAID10" },
191
192 { 0, NULL }
193 };
194
195 const struct twe_code_table twe_table_stripedepth[] = {
196 { TWE_AD_STRIPE_4k, "4K" },
197 { TWE_AD_STRIPE_8k, "8K" },
198 { TWE_AD_STRIPE_16k, "16K" },
199 { TWE_AD_STRIPE_32k, "32K" },
200 { TWE_AD_STRIPE_64k, "64K" },
201
202 { 0, NULL }
203 };
204
205 /*
206 * Asynchronous event notification messages are qualified:
207 * a - not unit/port specific
208 * u - unit specific
209 * p - port specific
210 */
211 const struct twe_code_table twe_table_aen[] = {
212 { 0x00, "a queue empty" },
213 { 0x01, "a soft reset" },
214 { 0x02, "u degraded mode" },
215 { 0x03, "a controller error" },
216 { 0x04, "u rebuild fail" },
217 { 0x05, "u rebuild done" },
218 { 0x06, "u incomplete unit" },
219 { 0x07, "u initialization done" },
220 { 0x08, "u unclean shutdown detected" },
221 { 0x09, "p drive timeout" },
222 { 0x0a, "p drive error" },
223 { 0x0b, "u rebuild started" },
224 { 0x0c, "u initialization started" },
225 { 0x0d, "u logical unit deleted" },
226 { 0x0f, "p SMART threshold exceeded" },
227 { 0x15, "a table undefined" }, /* XXX: Not in FreeBSD's table */
228 { 0x21, "p ATA UDMA downgrade" },
229 { 0x22, "p ATA UDMA upgrade" },
230 { 0x23, "p sector repair occurred" },
231 { 0x24, "a SBUF integrity check failure" },
232 { 0x25, "p lost cached write" },
233 { 0x26, "p drive ECC error detected" },
234 { 0x27, "p DCB checksum error" },
235 { 0x28, "p DCB unsupported version" },
236 { 0x29, "u verify started" },
237 { 0x2a, "u verify failed" },
238 { 0x2b, "u verify complete" },
239 { 0x2c, "p overwrote bad sector during rebuild" },
240 { 0x2d, "p encountered bad sector during rebuild" },
241 { 0x2e, "p replacement drive too small" },
242 { 0x2f, "u array not previously initialized" },
243 { 0x30, "p drive not supported" },
244 { 0xff, "a aen queue full" },
245
246 { 0, NULL },
247 };
248
249 const char *
250 twe_describe_code(const struct twe_code_table *table, uint32_t code)
251 {
252
253 for (; table->string != NULL; table++) {
254 if (table->code == code)
255 return (table->string);
256 }
257 return (NULL);
258 }
259
260 static inline u_int32_t
261 twe_inl(struct twe_softc *sc, int off)
262 {
263
264 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
265 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
266 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
267 }
268
269 static inline void
270 twe_outl(struct twe_softc *sc, int off, u_int32_t val)
271 {
272
273 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
274 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
275 BUS_SPACE_BARRIER_WRITE);
276 }
277
278 /*
279 * Match a supported board.
280 */
281 static int
282 twe_match(struct device *parent, struct cfdata *cfdata, void *aux)
283 {
284 struct pci_attach_args *pa;
285
286 pa = aux;
287
288 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
289 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
290 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
291 }
292
293 /*
294 * Attach a supported board.
295 *
296 * XXX This doesn't fail gracefully.
297 */
298 static void
299 twe_attach(struct device *parent, struct device *self, void *aux)
300 {
301 struct pci_attach_args *pa;
302 struct twe_softc *sc;
303 pci_chipset_tag_t pc;
304 pci_intr_handle_t ih;
305 pcireg_t csr;
306 const char *intrstr;
307 int s, size, i, rv, rseg;
308 size_t max_segs, max_xfer;
309 bus_dma_segment_t seg;
310 struct twe_cmd *tc;
311 struct twe_ccb *ccb;
312
313 sc = (struct twe_softc *)self;
314 pa = aux;
315 pc = pa->pa_pc;
316 sc->sc_dmat = pa->pa_dmat;
317 SIMPLEQ_INIT(&sc->sc_ccb_queue);
318 SLIST_INIT(&sc->sc_ccb_freelist);
319
320 aprint_naive(": RAID controller\n");
321 aprint_normal(": 3ware Escalade\n");
322
323 ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT);
324 if (ccb == NULL) {
325 aprint_error("%s: unable to allocate memory for ccbs\n",
326 sc->sc_dv.dv_xname);
327 return;
328 }
329
330 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
331 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
332 aprint_error("%s: can't map i/o space\n", sc->sc_dv.dv_xname);
333 return;
334 }
335
336 /* Enable the device. */
337 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
338 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
339 csr | PCI_COMMAND_MASTER_ENABLE);
340
341 /* Map and establish the interrupt. */
342 if (pci_intr_map(pa, &ih)) {
343 aprint_error("%s: can't map interrupt\n", sc->sc_dv.dv_xname);
344 return;
345 }
346
347 intrstr = pci_intr_string(pc, ih);
348 sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc);
349 if (sc->sc_ih == NULL) {
350 aprint_error("%s: can't establish interrupt%s%s\n",
351 sc->sc_dv.dv_xname,
352 (intrstr) ? " at " : "",
353 (intrstr) ? intrstr : "");
354 return;
355 }
356
357 if (intrstr != NULL)
358 aprint_normal("%s: interrupting at %s\n",
359 sc->sc_dv.dv_xname, intrstr);
360
361 /*
362 * Allocate and initialise the command blocks and CCBs.
363 */
364 size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
365
366 if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
367 &rseg, BUS_DMA_NOWAIT)) != 0) {
368 aprint_error("%s: unable to allocate commands, rv = %d\n",
369 sc->sc_dv.dv_xname, rv);
370 return;
371 }
372
373 if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
374 (caddr_t *)&sc->sc_cmds,
375 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
376 aprint_error("%s: unable to map commands, rv = %d\n",
377 sc->sc_dv.dv_xname, rv);
378 return;
379 }
380
381 if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
382 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
383 aprint_error("%s: unable to create command DMA map, rv = %d\n",
384 sc->sc_dv.dv_xname, rv);
385 return;
386 }
387
388 if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
389 size, NULL, BUS_DMA_NOWAIT)) != 0) {
390 aprint_error("%s: unable to load command DMA map, rv = %d\n",
391 sc->sc_dv.dv_xname, rv);
392 return;
393 }
394
395 sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
396 memset(sc->sc_cmds, 0, size);
397
398 sc->sc_ccbs = ccb;
399 tc = (struct twe_cmd *)sc->sc_cmds;
400 max_segs = twe_get_maxsegs();
401 max_xfer = twe_get_maxxfer(max_segs);
402
403 for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
404 ccb->ccb_cmd = tc;
405 ccb->ccb_cmdid = i;
406 ccb->ccb_flags = 0;
407 rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
408 max_segs, PAGE_SIZE, 0,
409 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
410 &ccb->ccb_dmamap_xfer);
411 if (rv != 0) {
412 aprint_error("%s: can't create dmamap, rv = %d\n",
413 sc->sc_dv.dv_xname, rv);
414 return;
415 }
416
417 /* Save the first CCB for AEN retrieval. */
418 if (i != 0)
419 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
420 ccb_chain.slist);
421 }
422
423 /* Wait for the controller to become ready. */
424 if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
425 aprint_error("%s: microcontroller not ready\n",
426 sc->sc_dv.dv_xname);
427 return;
428 }
429
430 twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
431
432 /* Reset the controller. */
433 s = splbio();
434 rv = twe_reset(sc);
435 splx(s);
436 if (rv) {
437 aprint_error("%s: reset failed\n", sc->sc_dv.dv_xname);
438 return;
439 }
440
441 /* Initialise connection with controller. */
442 twe_init_connection(sc);
443
444 twe_describe_controller(sc);
445
446 /* Find and attach RAID array units. */
447 sc->sc_nunits = 0;
448 for (i = 0; i < TWE_MAX_UNITS; i++)
449 (void) twe_add_unit(sc, i);
450
451 /* ...and finally, enable interrupts. */
452 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
453 TWE_CTL_UNMASK_RESP_INTR |
454 TWE_CTL_ENABLE_INTRS);
455 }
456
457 void
458 twe_register_callbacks(struct twe_softc *sc, int unit,
459 const struct twe_callbacks *tcb)
460 {
461
462 sc->sc_units[unit].td_callbacks = tcb;
463 }
464
465 static void
466 twe_recompute_openings(struct twe_softc *sc)
467 {
468 struct twe_drive *td;
469 int unit, openings;
470
471 if (sc->sc_nunits != 0)
472 openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits;
473 else
474 openings = 0;
475 if (openings == sc->sc_openings)
476 return;
477 sc->sc_openings = openings;
478
479 #ifdef TWE_DEBUG
480 printf("%s: %d array%s, %d openings per array\n",
481 sc->sc_dv.dv_xname, sc->sc_nunits,
482 sc->sc_nunits == 1 ? "" : "s", sc->sc_openings);
483 #endif
484
485 for (unit = 0; unit < TWE_MAX_UNITS; unit++) {
486 td = &sc->sc_units[unit];
487 if (td->td_dev != NULL)
488 (*td->td_callbacks->tcb_openings)(td->td_dev,
489 sc->sc_openings);
490 }
491 }
492
493 static int
494 twe_add_unit(struct twe_softc *sc, int unit)
495 {
496 struct twe_param *dtp, *atp;
497 struct twe_array_descriptor *ad;
498 struct twe_drive *td;
499 struct twe_attach_args twea;
500 uint32_t newsize;
501 int rv;
502 uint16_t dsize;
503 uint8_t newtype, newstripe;
504
505 if (unit < 0 || unit >= TWE_MAX_UNITS)
506 return (EINVAL);
507
508 /* Find attached units. */
509 rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
510 TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
511 if (rv != 0) {
512 aprint_error("%s: error %d fetching unit summary\n",
513 sc->sc_dv.dv_xname, rv);
514 return (rv);
515 }
516
517 /* For each detected unit, collect size and store in an array. */
518 td = &sc->sc_units[unit];
519
520 /* Unit present? */
521 if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) {
522 /*
523 * XXX Should we check to see if a device has been
524 * XXX attached at this index and detach it if it
525 * XXX has? ("rescan" semantics)
526 */
527 rv = 0;
528 goto out;
529 }
530
531 rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit,
532 TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
533 if (rv != 0) {
534 aprint_error("%s: error %d fetching descriptor size "
535 "for unit %d\n", sc->sc_dv.dv_xname, rv, unit);
536 goto out;
537 }
538
539 rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit,
540 TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
541 if (rv != 0) {
542 aprint_error("%s: error %d fetching array descriptor "
543 "for unit %d\n", sc->sc_dv.dv_xname, rv, unit);
544 goto out;
545 }
546
547 ad = (struct twe_array_descriptor *)atp->tp_data;
548 newtype = ad->configuration;
549 newstripe = ad->stripe_size;
550 free(atp, M_DEVBUF);
551
552 rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit,
553 TWE_PARAM_UNITINFO_Capacity, &newsize);
554 if (rv != 0) {
555 aprint_error(
556 "%s: error %d fetching capacity for unit %d\n",
557 sc->sc_dv.dv_xname, rv, unit);
558 goto out;
559 }
560
561 /*
562 * Have a device, so we need to attach it. If there is currently
563 * something sitting at the slot, and the parameters are different,
564 * then we detach the old device before attaching the new one.
565 */
566 if (td->td_dev != NULL &&
567 td->td_size == newsize &&
568 td->td_type == newtype &&
569 td->td_stripe == newstripe) {
570 /* Same as the old device; just keep using it. */
571 rv = 0;
572 goto out;
573 } else if (td->td_dev != NULL) {
574 /* Detach the old device first. */
575 (void) config_detach(td->td_dev, DETACH_FORCE);
576 td->td_dev = NULL;
577 } else if (td->td_size == 0)
578 sc->sc_nunits++;
579
580 /*
581 * Committed to the new array unit; assign its parameters and
582 * recompute the number of available command openings.
583 */
584 td->td_size = newsize;
585 td->td_type = newtype;
586 td->td_stripe = newstripe;
587 twe_recompute_openings(sc);
588
589 twea.twea_unit = unit;
590 td->td_dev = config_found_sm(&sc->sc_dv, &twea, twe_print,
591 twe_submatch);
592
593 rv = 0;
594 out:
595 free(dtp, M_DEVBUF);
596 return (rv);
597 }
598
599 static int
600 twe_del_unit(struct twe_softc *sc, int unit)
601 {
602 struct twe_drive *td;
603
604 if (unit < 0 || unit >= TWE_MAX_UNITS)
605 return (EINVAL);
606
607 td = &sc->sc_units[unit];
608 if (td->td_size != 0)
609 sc->sc_nunits--;
610 td->td_size = 0;
611 td->td_type = 0;
612 td->td_stripe = 0;
613 if (td->td_dev != NULL) {
614 (void) config_detach(td->td_dev, DETACH_FORCE);
615 td->td_dev = NULL;
616 }
617 twe_recompute_openings(sc);
618 return (0);
619 }
620
621 /*
622 * Reset the controller.
623 * MUST BE CALLED AT splbio()!
624 */
625 static int
626 twe_reset(struct twe_softc *sc)
627 {
628 uint16_t aen;
629 u_int status;
630 volatile u_int32_t junk;
631 int got, rv;
632
633 /* Issue a soft reset. */
634 twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
635 TWE_CTL_CLEAR_HOST_INTR |
636 TWE_CTL_CLEAR_ATTN_INTR |
637 TWE_CTL_MASK_CMD_INTR |
638 TWE_CTL_MASK_RESP_INTR |
639 TWE_CTL_CLEAR_ERROR_STS |
640 TWE_CTL_DISABLE_INTRS);
641
642 /* Wait for attention... */
643 if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 15)) {
644 printf("%s: no attention interrupt\n",
645 sc->sc_dv.dv_xname);
646 return (-1);
647 }
648
649 /* ...and ACK it. */
650 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
651
652 /*
653 * Pull AENs out of the controller; look for a soft reset AEN.
654 * Open code this, since we want to detect reset even if the
655 * queue for management tools is full.
656 */
657 sc->sc_flags &= ~TWEF_AEN;
658 for (got = 0;;) {
659 rv = twe_aen_get(sc, &aen);
660 if (rv != 0)
661 printf("%s: error %d while draining event queue\n",
662 sc->sc_dv.dv_xname, rv);
663 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
664 break;
665 if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
666 got = 1;
667 twe_aen_enqueue(sc, aen, 1);
668 }
669
670 if (!got) {
671 printf("%s: reset not reported\n", sc->sc_dv.dv_xname);
672 return (-1);
673 }
674
675 /* Check controller status. */
676 status = twe_inl(sc, TWE_REG_STS);
677 if (twe_status_check(sc, status)) {
678 printf("%s: controller errors detected\n",
679 sc->sc_dv.dv_xname);
680 return (-1);
681 }
682
683 /* Drain the response queue. */
684 for (;;) {
685 status = twe_inl(sc, TWE_REG_STS);
686 if (twe_status_check(sc, status) != 0) {
687 printf("%s: can't drain response queue\n",
688 sc->sc_dv.dv_xname);
689 return (-1);
690 }
691 if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
692 break;
693 junk = twe_inl(sc, TWE_REG_RESP_QUEUE);
694 }
695
696 return (0);
697 }
698
699 /*
700 * Print autoconfiguration message for a sub-device.
701 */
702 static int
703 twe_print(void *aux, const char *pnp)
704 {
705 struct twe_attach_args *twea;
706
707 twea = aux;
708
709 if (pnp != NULL)
710 aprint_normal("block device at %s", pnp);
711 aprint_normal(" unit %d", twea->twea_unit);
712 return (UNCONF);
713 }
714
715 /*
716 * Match a sub-device.
717 */
718 static int
719 twe_submatch(struct device *parent, struct cfdata *cf, void *aux)
720 {
721 struct twe_attach_args *twea;
722
723 twea = aux;
724
725 if (cf->tweacf_unit != TWECF_UNIT_DEFAULT &&
726 cf->tweacf_unit != twea->twea_unit)
727 return (0);
728
729 return (config_match(parent, cf, aux));
730 }
731
732 /*
733 * Interrupt service routine.
734 */
735 static int
736 twe_intr(void *arg)
737 {
738 struct twe_softc *sc;
739 u_int status;
740 int caught, rv;
741
742 sc = arg;
743 caught = 0;
744 status = twe_inl(sc, TWE_REG_STS);
745 twe_status_check(sc, status);
746
747 /* Host interrupts - purpose unknown. */
748 if ((status & TWE_STS_HOST_INTR) != 0) {
749 #ifdef DEBUG
750 printf("%s: host interrupt\n", sc->sc_dv.dv_xname);
751 #endif
752 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
753 caught = 1;
754 }
755
756 /*
757 * Attention interrupts, signalled when a controller or child device
758 * state change has occurred.
759 */
760 if ((status & TWE_STS_ATTN_INTR) != 0) {
761 rv = twe_aen_get(sc, NULL);
762 if (rv != 0)
763 printf("%s: unable to retrieve AEN (%d)\n",
764 sc->sc_dv.dv_xname, rv);
765 else
766 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
767 caught = 1;
768 }
769
770 /*
771 * Command interrupts, signalled when the controller can accept more
772 * commands. We don't use this; instead, we try to submit commands
773 * when we receive them, and when other commands have completed.
774 * Mask it so we don't get another one.
775 */
776 if ((status & TWE_STS_CMD_INTR) != 0) {
777 #ifdef DEBUG
778 printf("%s: command interrupt\n", sc->sc_dv.dv_xname);
779 #endif
780 twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
781 caught = 1;
782 }
783
784 if ((status & TWE_STS_RESP_INTR) != 0) {
785 twe_poll(sc);
786 caught = 1;
787 }
788
789 return (caught);
790 }
791
792 /*
793 * Fetch an AEN. Even though this is really like parameter
794 * retrieval, we handle this specially, because we issue this
795 * AEN retrieval command from interrupt context, and thus
796 * reserve a CCB for it to avoid resource shortage.
797 *
798 * XXX There are still potential resource shortages we could
799 * XXX encounter. Consider pre-allocating all AEN-related
800 * XXX resources.
801 *
802 * MUST BE CALLED AT splbio()!
803 */
804 static int
805 twe_aen_get(struct twe_softc *sc, uint16_t *aenp)
806 {
807 struct twe_ccb *ccb;
808 struct twe_cmd *tc;
809 struct twe_param *tp;
810 int rv;
811
812 /*
813 * If we're already retrieving an AEN, just wait; another
814 * retrieval will be chained after the current one completes.
815 */
816 if (sc->sc_flags & TWEF_AEN) {
817 /*
818 * It is a fatal software programming error to attempt
819 * to fetch an AEN synchronously when an AEN fetch is
820 * already pending.
821 */
822 KASSERT(aenp == NULL);
823 return (0);
824 }
825
826 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
827 if (tp == NULL)
828 return (ENOMEM);
829
830 rv = twe_ccb_alloc(sc, &ccb,
831 TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
832 if (rv != 0)
833 goto done;
834
835 ccb->ccb_data = tp;
836 ccb->ccb_datasize = TWE_SECTOR_SIZE;
837 ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL;
838 ccb->ccb_tx.tx_context = tp;
839 ccb->ccb_tx.tx_dv = &sc->sc_dv;
840
841 tc = ccb->ccb_cmd;
842 tc->tc_size = 2;
843 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
844 tc->tc_unit = 0;
845 tc->tc_count = htole16(1);
846
847 /* Fill in the outbound parameter data. */
848 tp->tp_table_id = htole16(TWE_PARAM_AEN);
849 tp->tp_param_id = TWE_PARAM_AEN_UnitCode;
850 tp->tp_param_size = 2;
851
852 /* Map the transfer. */
853 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
854 twe_ccb_free(sc, ccb);
855 goto done;
856 }
857
858 /* Enqueue the command and wait. */
859 if (aenp != NULL) {
860 rv = twe_ccb_poll(sc, ccb, 5);
861 twe_ccb_unmap(sc, ccb);
862 twe_ccb_free(sc, ccb);
863 if (rv == 0)
864 *aenp = le16toh(*(uint16_t *)tp->tp_data);
865 free(tp, M_DEVBUF);
866 } else {
867 sc->sc_flags |= TWEF_AEN;
868 twe_ccb_enqueue(sc, ccb);
869 rv = 0;
870 }
871
872 done:
873 return (rv);
874 }
875
876 /*
877 * Handle an AEN returned by the controller.
878 * MUST BE CALLED AT splbio()!
879 */
880 static void
881 twe_aen_handler(struct twe_ccb *ccb, int error)
882 {
883 struct twe_softc *sc;
884 struct twe_param *tp;
885 uint16_t aen;
886 int rv;
887
888 sc = (struct twe_softc *)ccb->ccb_tx.tx_dv;
889 tp = ccb->ccb_tx.tx_context;
890 twe_ccb_unmap(sc, ccb);
891
892 sc->sc_flags &= ~TWEF_AEN;
893
894 if (error) {
895 printf("%s: error retrieving AEN\n", sc->sc_dv.dv_xname);
896 aen = TWE_AEN_QUEUE_EMPTY;
897 } else
898 aen = le16toh(*(u_int16_t *)tp->tp_data);
899 free(tp, M_DEVBUF);
900 twe_ccb_free(sc, ccb);
901
902 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
903 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
904 return;
905 }
906
907 twe_aen_enqueue(sc, aen, 0);
908
909 /*
910 * Chain another retrieval in case interrupts have been
911 * coalesced.
912 */
913 rv = twe_aen_get(sc, NULL);
914 if (rv != 0)
915 printf("%s: unable to retrieve AEN (%d)\n",
916 sc->sc_dv.dv_xname, rv);
917 }
918
919 static void
920 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet)
921 {
922 const char *str, *msg;
923 int s, next, nextnext;
924
925 /*
926 * First report the AEN on the console. Maybe.
927 */
928 if (! quiet) {
929 str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen));
930 if (str == NULL) {
931 printf("%s: unknown AEN 0x%04x\n",
932 sc->sc_dv.dv_xname, aen);
933 } else {
934 msg = str + 2;
935 switch (*str) {
936 case 'u':
937 printf("%s: unit %d: %s\n",
938 sc->sc_dv.dv_xname, TWE_AEN_UNIT(aen), msg);
939 break;
940
941 case 'p':
942 printf("%s: port %d: %s\n",
943 sc->sc_dv.dv_xname, TWE_AEN_UNIT(aen), msg);
944 break;
945
946 default:
947 printf("%s: %s\n", sc->sc_dv.dv_xname, msg);
948 }
949 }
950 }
951
952 /* Now enqueue the AEN for mangement tools. */
953 s = splbio();
954
955 next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH;
956 nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH;
957
958 /*
959 * If this is the last free slot, then queue up a "queue
960 * full" message.
961 */
962 if (nextnext == sc->sc_aen_tail)
963 aen = TWE_AEN_QUEUE_FULL;
964
965 if (next != sc->sc_aen_tail) {
966 sc->sc_aen_queue[sc->sc_aen_head] = aen;
967 sc->sc_aen_head = next;
968 }
969
970 if (sc->sc_flags & TWEF_AENQ_WAIT) {
971 sc->sc_flags &= ~TWEF_AENQ_WAIT;
972 wakeup(&sc->sc_aen_queue);
973 }
974
975 splx(s);
976 }
977
978 /* NOTE: Must be called at splbio(). */
979 static uint16_t
980 twe_aen_dequeue(struct twe_softc *sc)
981 {
982 uint16_t aen;
983
984 if (sc->sc_aen_tail == sc->sc_aen_head)
985 aen = TWE_AEN_QUEUE_EMPTY;
986 else {
987 aen = sc->sc_aen_queue[sc->sc_aen_tail];
988 sc->sc_aen_tail = (sc->sc_aen_tail + 1) & TWE_AEN_Q_LENGTH;
989 }
990
991 return (aen);
992 }
993
994 /*
995 * These are short-hand functions that execute TWE_OP_GET_PARAM to
996 * fetch 1, 2, and 4 byte parameter values, respectively.
997 */
998 int
999 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
1000 uint8_t *valp)
1001 {
1002 struct twe_param *tp;
1003 int rv;
1004
1005 rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
1006 if (rv != 0)
1007 return (rv);
1008 *valp = *(uint8_t *)tp->tp_data;
1009 free(tp, M_DEVBUF);
1010 return (0);
1011 }
1012
1013 int
1014 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
1015 uint16_t *valp)
1016 {
1017 struct twe_param *tp;
1018 int rv;
1019
1020 rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
1021 if (rv != 0)
1022 return (rv);
1023 *valp = le16toh(*(uint16_t *)tp->tp_data);
1024 free(tp, M_DEVBUF);
1025 return (0);
1026 }
1027
1028 int
1029 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
1030 uint32_t *valp)
1031 {
1032 struct twe_param *tp;
1033 int rv;
1034
1035 rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
1036 if (rv != 0)
1037 return (rv);
1038 *valp = le32toh(*(uint32_t *)tp->tp_data);
1039 free(tp, M_DEVBUF);
1040 return (0);
1041 }
1042
1043 /*
1044 * Execute a TWE_OP_GET_PARAM command. If a callback function is provided,
1045 * it will be called with generated context when the command has completed.
1046 * If no callback is provided, the command will be executed synchronously
1047 * and a pointer to a buffer containing the data returned.
1048 *
1049 * The caller or callback is responsible for freeing the buffer.
1050 */
1051 int
1052 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
1053 void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
1054 {
1055 struct twe_ccb *ccb;
1056 struct twe_cmd *tc;
1057 struct twe_param *tp;
1058 int rv, s;
1059
1060 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1061 if (tp == NULL)
1062 return ENOMEM;
1063
1064 rv = twe_ccb_alloc(sc, &ccb, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1065 if (rv != 0)
1066 goto done;
1067
1068 ccb->ccb_data = tp;
1069 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1070 ccb->ccb_tx.tx_handler = func;
1071 ccb->ccb_tx.tx_context = tp;
1072 ccb->ccb_tx.tx_dv = &sc->sc_dv;
1073
1074 tc = ccb->ccb_cmd;
1075 tc->tc_size = 2;
1076 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
1077 tc->tc_unit = 0;
1078 tc->tc_count = htole16(1);
1079
1080 /* Fill in the outbound parameter data. */
1081 tp->tp_table_id = htole16(table_id);
1082 tp->tp_param_id = param_id;
1083 tp->tp_param_size = size;
1084
1085 /* Map the transfer. */
1086 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1087 twe_ccb_free(sc, ccb);
1088 goto done;
1089 }
1090
1091 /* Submit the command and either wait or let the callback handle it. */
1092 if (func == NULL) {
1093 s = splbio();
1094 rv = twe_ccb_poll(sc, ccb, 5);
1095 twe_ccb_unmap(sc, ccb);
1096 twe_ccb_free(sc, ccb);
1097 splx(s);
1098 } else {
1099 #ifdef DEBUG
1100 if (pbuf != NULL)
1101 panic("both func and pbuf defined");
1102 #endif
1103 twe_ccb_enqueue(sc, ccb);
1104 return 0;
1105 }
1106
1107 done:
1108 if (pbuf == NULL || rv != 0)
1109 free(tp, M_DEVBUF);
1110 else if (pbuf != NULL && rv == 0)
1111 *pbuf = tp;
1112 return rv;
1113 }
1114
1115 /*
1116 * Execute a TWE_OP_SET_PARAM command.
1117 */
1118 static int
1119 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
1120 void *buf)
1121 {
1122 struct twe_ccb *ccb;
1123 struct twe_cmd *tc;
1124 struct twe_param *tp;
1125 int rv, s;
1126
1127 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1128 if (tp == NULL)
1129 return ENOMEM;
1130
1131 rv = twe_ccb_alloc(sc, &ccb, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1132 if (rv != 0)
1133 goto done;
1134
1135 ccb->ccb_data = tp;
1136 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1137 ccb->ccb_tx.tx_handler = 0;
1138 ccb->ccb_tx.tx_context = tp;
1139 ccb->ccb_tx.tx_dv = &sc->sc_dv;
1140
1141 tc = ccb->ccb_cmd;
1142 tc->tc_size = 2;
1143 tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
1144 tc->tc_unit = 0;
1145 tc->tc_count = htole16(1);
1146
1147 /* Fill in the outbound parameter data. */
1148 tp->tp_table_id = htole16(table_id);
1149 tp->tp_param_id = param_id;
1150 tp->tp_param_size = size;
1151 memcpy(tp->tp_data, buf, size);
1152
1153 /* Map the transfer. */
1154 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1155 twe_ccb_free(sc, ccb);
1156 goto done;
1157 }
1158
1159 /* Submit the command and wait. */
1160 s = splbio();
1161 rv = twe_ccb_poll(sc, ccb, 5);
1162 twe_ccb_unmap(sc, ccb);
1163 twe_ccb_free(sc, ccb);
1164 splx(s);
1165 done:
1166 free(tp, M_DEVBUF);
1167 return (rv);
1168 }
1169
1170 /*
1171 * Execute a TWE_OP_INIT_CONNECTION command. Return non-zero on error.
1172 * Must be called with interrupts blocked.
1173 */
1174 static int
1175 twe_init_connection(struct twe_softc *sc)
1176 /*###762 [cc] warning: `twe_init_connection' was used with no prototype before its definition%%%*/
1177 /*###762 [cc] warning: `twe_init_connection' was declared implicitly `extern' and later `static'%%%*/
1178 {
1179 struct twe_ccb *ccb;
1180 struct twe_cmd *tc;
1181 int rv;
1182
1183 if ((rv = twe_ccb_alloc(sc, &ccb, 0)) != 0)
1184 return (rv);
1185
1186 /* Build the command. */
1187 tc = ccb->ccb_cmd;
1188 tc->tc_size = 3;
1189 tc->tc_opcode = TWE_OP_INIT_CONNECTION;
1190 tc->tc_unit = 0;
1191 tc->tc_count = htole16(TWE_MAX_CMDS);
1192 tc->tc_args.init_connection.response_queue_pointer = 0;
1193
1194 /* Submit the command for immediate execution. */
1195 rv = twe_ccb_poll(sc, ccb, 5);
1196 twe_ccb_free(sc, ccb);
1197 return (rv);
1198 }
1199
1200 /*
1201 * Poll the controller for completed commands. Must be called with
1202 * interrupts blocked.
1203 */
1204 static void
1205 twe_poll(struct twe_softc *sc)
1206 {
1207 struct twe_ccb *ccb;
1208 int found;
1209 u_int status, cmdid;
1210
1211 found = 0;
1212
1213 for (;;) {
1214 status = twe_inl(sc, TWE_REG_STS);
1215 twe_status_check(sc, status);
1216
1217 if ((status & TWE_STS_RESP_QUEUE_EMPTY))
1218 break;
1219
1220 found = 1;
1221 cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
1222 cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
1223 if (cmdid >= TWE_MAX_QUEUECNT) {
1224 printf("%s: bad completion\n", sc->sc_dv.dv_xname);
1225 continue;
1226 }
1227
1228 ccb = sc->sc_ccbs + cmdid;
1229 if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
1230 printf("%s: bad completion (not active)\n",
1231 sc->sc_dv.dv_xname);
1232 continue;
1233 }
1234 ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
1235
1236 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1237 (caddr_t)ccb->ccb_cmd - sc->sc_cmds,
1238 sizeof(struct twe_cmd),
1239 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1240
1241 /* Pass notification to upper layers. */
1242 if (ccb->ccb_tx.tx_handler != NULL)
1243 (*ccb->ccb_tx.tx_handler)(ccb,
1244 ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
1245 }
1246
1247 /* If any commands have completed, run the software queue. */
1248 if (found)
1249 twe_ccb_enqueue(sc, NULL);
1250 }
1251
1252 /*
1253 * Wait for `status' to be set in the controller status register. Return
1254 * zero if found, non-zero if the operation timed out.
1255 */
1256 static int
1257 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
1258 {
1259
1260 for (timo *= 10; timo != 0; timo--) {
1261 if ((twe_inl(sc, TWE_REG_STS) & status) == status)
1262 break;
1263 delay(100000);
1264 }
1265
1266 return (timo == 0);
1267 }
1268
1269 /*
1270 * Complain if the status bits aren't what we expect.
1271 */
1272 static int
1273 twe_status_check(struct twe_softc *sc, u_int status)
1274 {
1275 int rv;
1276
1277 rv = 0;
1278
1279 if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
1280 printf("%s: missing status bits: 0x%08x\n", sc->sc_dv.dv_xname,
1281 status & ~TWE_STS_EXPECTED_BITS);
1282 rv = -1;
1283 }
1284
1285 if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
1286 printf("%s: unexpected status bits: 0x%08x\n",
1287 sc->sc_dv.dv_xname, status & TWE_STS_UNEXPECTED_BITS);
1288 rv = -1;
1289 }
1290
1291 return (rv);
1292 }
1293
1294 /*
1295 * Allocate and initialise a CCB.
1296 */
1297 int
1298 twe_ccb_alloc(struct twe_softc *sc, struct twe_ccb **ccbp, int flags)
1299 {
1300 struct twe_cmd *tc;
1301 struct twe_ccb *ccb;
1302 int s;
1303
1304 s = splbio();
1305 if ((flags & TWE_CCB_AEN) != 0) {
1306 /* Use the reserved CCB. */
1307 ccb = sc->sc_ccbs;
1308 } else {
1309 /* Allocate a CCB and command block. */
1310 if (SLIST_FIRST(&sc->sc_ccb_freelist) == NULL) {
1311 splx(s);
1312 return (EAGAIN);
1313 }
1314 ccb = SLIST_FIRST(&sc->sc_ccb_freelist);
1315 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1316 }
1317 #ifdef DIAGNOSTIC
1318 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1319 panic("twe_ccb_alloc: CCB already allocated");
1320 flags |= TWE_CCB_ALLOCED;
1321 #endif
1322 splx(s);
1323
1324 /* Initialise some fields and return. */
1325 ccb->ccb_tx.tx_handler = NULL;
1326 ccb->ccb_flags = flags;
1327 tc = ccb->ccb_cmd;
1328 tc->tc_status = 0;
1329 tc->tc_flags = 0;
1330 tc->tc_cmdid = ccb->ccb_cmdid;
1331 *ccbp = ccb;
1332
1333 return (0);
1334 }
1335
1336 /*
1337 * Free a CCB.
1338 */
1339 void
1340 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
1341 {
1342 int s;
1343
1344 s = splbio();
1345 if ((ccb->ccb_flags & TWE_CCB_AEN) == 0)
1346 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
1347 ccb->ccb_flags = 0;
1348 splx(s);
1349 }
1350
1351 /*
1352 * Map the specified CCB's command block and data buffer (if any) into
1353 * controller visible space. Perform DMA synchronisation.
1354 */
1355 int
1356 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
1357 {
1358 struct twe_cmd *tc;
1359 int flags, nsegs, i, s, rv;
1360 void *data;
1361
1362 /*
1363 * The data as a whole must be 512-byte aligned.
1364 */
1365 if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
1366 s = splvm();
1367 /* XXX */
1368 ccb->ccb_abuf = uvm_km_kmemalloc(kmem_map, NULL,
1369 ccb->ccb_datasize, UVM_KMF_NOWAIT);
1370 splx(s);
1371 data = (void *)ccb->ccb_abuf;
1372 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1373 memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
1374 } else {
1375 ccb->ccb_abuf = (vaddr_t)0;
1376 data = ccb->ccb_data;
1377 }
1378
1379 /*
1380 * Map the data buffer into bus space and build the S/G list.
1381 */
1382 rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
1383 ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1384 ((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
1385 BUS_DMA_READ : BUS_DMA_WRITE));
1386 if (rv != 0) {
1387 if (ccb->ccb_abuf != (vaddr_t)0) {
1388 s = splvm();
1389 /* XXX */
1390 uvm_km_free(kmem_map, ccb->ccb_abuf,
1391 ccb->ccb_datasize);
1392 splx(s);
1393 }
1394 return (rv);
1395 }
1396
1397 nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
1398 tc = ccb->ccb_cmd;
1399 tc->tc_size += 2 * nsegs;
1400
1401 /* The location of the S/G list is dependant upon command type. */
1402 switch (tc->tc_opcode >> 5) {
1403 case 2:
1404 for (i = 0; i < nsegs; i++) {
1405 tc->tc_args.param.sgl[i].tsg_address =
1406 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1407 tc->tc_args.param.sgl[i].tsg_length =
1408 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1409 }
1410 /* XXX Needed? */
1411 for (; i < TWE_SG_SIZE; i++) {
1412 tc->tc_args.param.sgl[i].tsg_address = 0;
1413 tc->tc_args.param.sgl[i].tsg_length = 0;
1414 }
1415 break;
1416 case 3:
1417 for (i = 0; i < nsegs; i++) {
1418 tc->tc_args.io.sgl[i].tsg_address =
1419 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1420 tc->tc_args.io.sgl[i].tsg_length =
1421 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1422 }
1423 /* XXX Needed? */
1424 for (; i < TWE_SG_SIZE; i++) {
1425 tc->tc_args.io.sgl[i].tsg_address = 0;
1426 tc->tc_args.io.sgl[i].tsg_length = 0;
1427 }
1428 break;
1429 #ifdef DEBUG
1430 default:
1431 panic("twe_ccb_map: oops");
1432 #endif
1433 }
1434
1435 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1436 flags = BUS_DMASYNC_PREREAD;
1437 else
1438 flags = 0;
1439 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1440 flags |= BUS_DMASYNC_PREWRITE;
1441
1442 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1443 ccb->ccb_datasize, flags);
1444 return (0);
1445 }
1446
1447 /*
1448 * Unmap the specified CCB's command block and data buffer (if any) and
1449 * perform DMA synchronisation.
1450 */
1451 void
1452 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
1453 {
1454 int flags, s;
1455
1456 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1457 flags = BUS_DMASYNC_POSTREAD;
1458 else
1459 flags = 0;
1460 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1461 flags |= BUS_DMASYNC_POSTWRITE;
1462
1463 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1464 ccb->ccb_datasize, flags);
1465 bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
1466
1467 if (ccb->ccb_abuf != (vaddr_t)0) {
1468 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1469 memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
1470 ccb->ccb_datasize);
1471 s = splvm();
1472 /* XXX */
1473 uvm_km_free(kmem_map, ccb->ccb_abuf, ccb->ccb_datasize);
1474 splx(s);
1475 }
1476 }
1477
1478 /*
1479 * Submit a command to the controller and poll on completion. Return
1480 * non-zero on timeout (but don't check status, as some command types don't
1481 * return status). Must be called with interrupts blocked.
1482 */
1483 int
1484 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
1485 {
1486 int rv;
1487
1488 if ((rv = twe_ccb_submit(sc, ccb)) != 0)
1489 return (rv);
1490
1491 for (timo *= 1000; timo != 0; timo--) {
1492 twe_poll(sc);
1493 if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
1494 break;
1495 DELAY(100);
1496 }
1497
1498 return (timo == 0);
1499 }
1500
1501 /*
1502 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1503 * the order that they were enqueued and try to submit their command blocks
1504 * to the controller for execution.
1505 */
1506 void
1507 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
1508 {
1509 int s;
1510
1511 s = splbio();
1512
1513 if (ccb != NULL)
1514 SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
1515
1516 while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
1517 if (twe_ccb_submit(sc, ccb))
1518 break;
1519 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
1520 }
1521
1522 splx(s);
1523 }
1524
1525 /*
1526 * Submit the command block associated with the specified CCB to the
1527 * controller for execution. Must be called with interrupts blocked.
1528 */
1529 int
1530 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
1531 {
1532 bus_addr_t pa;
1533 int rv;
1534 u_int status;
1535
1536 /* Check to see if we can post a command. */
1537 status = twe_inl(sc, TWE_REG_STS);
1538 twe_status_check(sc, status);
1539
1540 if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
1541 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1542 (caddr_t)ccb->ccb_cmd - sc->sc_cmds, sizeof(struct twe_cmd),
1543 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1544 ccb->ccb_flags |= TWE_CCB_ACTIVE;
1545 pa = sc->sc_cmds_paddr +
1546 ccb->ccb_cmdid * sizeof(struct twe_cmd);
1547 twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
1548 rv = 0;
1549 } else
1550 rv = EBUSY;
1551
1552 return (rv);
1553 }
1554
1555
1556 /*
1557 * Accept an open operation on the control device.
1558 */
1559 int
1560 tweopen(dev_t dev, int flag, int mode, struct proc *p)
1561 {
1562 struct twe_softc *twe;
1563
1564 if ((twe = device_lookup(&twe_cd, minor(dev))) == NULL)
1565 return (ENXIO);
1566 if ((twe->sc_flags & TWEF_OPEN) != 0)
1567 return (EBUSY);
1568
1569 twe->sc_flags |= TWEF_OPEN;
1570 return (0);
1571 }
1572
1573 /*
1574 * Accept the last close on the control device.
1575 */
1576 int
1577 tweclose(dev_t dev, int flag, int mode, struct proc *p)
1578 {
1579 struct twe_softc *twe;
1580
1581 twe = device_lookup(&twe_cd, minor(dev));
1582 twe->sc_flags &= ~TWEF_OPEN;
1583 return (0);
1584 }
1585
1586 /*
1587 * Handle control operations.
1588 */
1589 int
1590 tweioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
1591 {
1592 struct twe_softc *twe;
1593 #if 0
1594 struct twe_ccb *ccb;
1595 #endif
1596 struct twe_param *param;
1597 struct twe_usercommand *tu;
1598 struct twe_paramcommand *tp;
1599 union twe_statrequest *ts;
1600 void *pdata = NULL;
1601 int rv, s, error = 0;
1602 #if 0
1603 u_int8_t cmdid;
1604 #endif
1605
1606 if (securelevel >= 2)
1607 return (EPERM);
1608
1609 twe = device_lookup(&twe_cd, minor(dev));
1610 tu = (struct twe_usercommand *)data;
1611 tp = (struct twe_paramcommand *)data;
1612 ts = (union twe_statrequest *)data;
1613
1614 /* Hmm, compatible with FreeBSD */
1615 switch (cmd) {
1616 case TWEIO_COMMAND:
1617 #if 0
1618 /* XXXJRT This whole path needs to be cleaned up. */
1619 if (tu->tu_size > 0) {
1620 if (tu->tu_size > TWE_SECTOR_SIZE)
1621 return EINVAL;
1622 pdata = malloc(tu->tu_size, M_DEVBUF, M_WAITOK);
1623 error = copyin(tu->tu_data, pdata, tu->tu_size);
1624 if (error != 0)
1625 goto done;
1626 error = twe_ccb_alloc(twe, &ccb, TWE_CCB_PARAM |
1627 TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1628 } else {
1629 error = twe_ccb_alloc(twe, &ccb, 0);
1630 }
1631 if (rv != 0)
1632 goto done;
1633 cmdid = ccb->ccb_cmdid;
1634 memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
1635 ccb->ccb_cmdid = cmdid;
1636 if (ccb->ccb_flags & TWE_CCB_PARAM) {
1637 ccb->ccb_data = pdata;
1638 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1639 ccb->ccb_tx.tx_handler = 0;
1640 ccb->ccb_tx.tx_context = pdata;
1641 ccb->ccb_tx.tx_dv = &twe->sc_dv;
1642 }
1643 /* Map the transfer. */
1644 if ((error = twe_ccb_map(twe, ccb)) != 0) {
1645 twe_ccb_free(twe, ccb);
1646 goto done;
1647 }
1648
1649 /* Submit the command and wait. */
1650 s = splbio();
1651 rv = twe_ccb_poll(twe, ccb, 5);
1652 twe_ccb_unmap(twe, ccb);
1653 twe_ccb_free(twe, ccb);
1654 splx(s);
1655
1656 if (tu->tu_size > 0)
1657 error = copyout(pdata, tu->tu_data, tu->tu_size);
1658 #else
1659 rv = EOPNOTSUPP;
1660 #endif
1661 goto done;
1662
1663 case TWEIO_STATS:
1664 return (ENOENT);
1665
1666 case TWEIO_AEN_POLL:
1667 s = splbio();
1668 *(u_int *)data = twe_aen_dequeue(twe);
1669 splx(s);
1670 return (0);
1671
1672 case TWEIO_AEN_WAIT:
1673 s = splbio();
1674 while ((*(u_int *)data =
1675 twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) {
1676 twe->sc_flags |= TWEF_AENQ_WAIT;
1677 error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH,
1678 "tweaen", 0);
1679 if (error == EINTR) {
1680 splx(s);
1681 return (error);
1682 }
1683 }
1684 splx(s);
1685 return (0);
1686
1687 case TWEIO_GET_PARAM:
1688 error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
1689 tp->tp_size, 0, ¶m);
1690 if (error != 0)
1691 return (error);
1692 if (param->tp_param_size > tp->tp_size) {
1693 error = EFAULT;
1694 goto done;
1695 }
1696 error = copyout(param->tp_data, tp->tp_data,
1697 param->tp_param_size);
1698 goto done;
1699
1700 case TWEIO_SET_PARAM:
1701 pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
1702 if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
1703 goto done;
1704 error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
1705 tp->tp_size, pdata);
1706 goto done;
1707
1708 case TWEIO_RESET:
1709 s = splbio();
1710 twe_reset(twe);
1711 splx(s);
1712 return (0);
1713
1714 case TWEIO_ADD_UNIT:
1715 /* XXX mutex */
1716 return (twe_add_unit(twe, *(int *)data));
1717
1718 case TWEIO_DEL_UNIT:
1719 /* XXX mutex */
1720 return (twe_del_unit(twe, *(int *)data));
1721
1722 default:
1723 return EINVAL;
1724 }
1725 done:
1726 if (pdata)
1727 free(pdata, M_DEVBUF);
1728 return error;
1729 }
1730
1731 /*
1732 * Print some information about the controller
1733 */
1734 static void
1735 twe_describe_controller(struct twe_softc *sc)
1736 {
1737 struct twe_param *p[6];
1738 int i, rv = 0;
1739 uint32_t dsize;
1740 uint8_t ports;
1741
1742 /* get the port count */
1743 rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
1744 TWE_PARAM_CONTROLLER_PortCount, &ports);
1745
1746 /* get version strings */
1747 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
1748 16, NULL, &p[0]);
1749 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
1750 16, NULL, &p[1]);
1751 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
1752 16, NULL, &p[2]);
1753 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
1754 8, NULL, &p[3]);
1755 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
1756 8, NULL, &p[4]);
1757 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
1758 8, NULL, &p[5]);
1759
1760 if (rv) {
1761 /* some error occurred */
1762 aprint_error("%s: failed to fetch version information\n",
1763 sc->sc_dv.dv_xname);
1764 return;
1765 }
1766
1767 aprint_normal("%s: %d ports, Firmware %.16s, BIOS %.16s\n",
1768 sc->sc_dv.dv_xname, ports,
1769 p[1]->tp_data, p[2]->tp_data);
1770
1771 aprint_verbose("%s: Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
1772 sc->sc_dv.dv_xname,
1773 p[0]->tp_data, p[3]->tp_data,
1774 p[4]->tp_data, p[5]->tp_data);
1775
1776 free(p[0], M_DEVBUF);
1777 free(p[1], M_DEVBUF);
1778 free(p[2], M_DEVBUF);
1779 free(p[3], M_DEVBUF);
1780 free(p[4], M_DEVBUF);
1781 free(p[5], M_DEVBUF);
1782
1783 rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY,
1784 TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]);
1785 if (rv) {
1786 aprint_error("%s: failed to get drive status summary\n",
1787 sc->sc_dv.dv_xname);
1788 return;
1789 }
1790 for (i = 0; i < ports; i++) {
1791 if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present)
1792 continue;
1793 rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i,
1794 TWE_PARAM_DRIVEINFO_Size, &dsize);
1795 if (rv) {
1796 aprint_error(
1797 "%s: unable to get drive size for port %d\n",
1798 sc->sc_dv.dv_xname, i);
1799 continue;
1800 }
1801 rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i,
1802 TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]);
1803 if (rv) {
1804 aprint_error(
1805 "%s: unable to get drive model for port %d\n",
1806 sc->sc_dv.dv_xname, i);
1807 continue;
1808 }
1809 aprint_verbose("%s: port %d: %.40s %d MB\n", sc->sc_dv.dv_xname,
1810 i, p[1]->tp_data, dsize / 2048);
1811 free(p[1], M_DEVBUF);
1812 }
1813 free(p[0], M_DEVBUF);
1814 }
1815