twe.c revision 1.60 1 /* $NetBSD: twe.c,v 1.60 2004/09/23 01:16:34 heas Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 2000 Michael Smith
41 * Copyright (c) 2000 BSDi
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
66 */
67
68 /*
69 * Driver for the 3ware Escalade family of RAID controllers.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.60 2004/09/23 01:16:34 heas Exp $");
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/device.h>
79 #include <sys/queue.h>
80 #include <sys/proc.h>
81 #include <sys/buf.h>
82 #include <sys/endian.h>
83 #include <sys/malloc.h>
84 #include <sys/conf.h>
85 #include <sys/disk.h>
86 #include <sys/syslog.h>
87
88 #include <uvm/uvm_extern.h>
89
90 #include <machine/bswap.h>
91 #include <machine/bus.h>
92
93 #include <dev/pci/pcireg.h>
94 #include <dev/pci/pcivar.h>
95 #include <dev/pci/pcidevs.h>
96 #include <dev/pci/twereg.h>
97 #include <dev/pci/twevar.h>
98 #include <dev/pci/tweio.h>
99
100 #include "locators.h"
101
102 #define PCI_CBIO 0x10
103
104 static int twe_aen_get(struct twe_softc *, uint16_t *);
105 static void twe_aen_handler(struct twe_ccb *, int);
106 static void twe_aen_enqueue(struct twe_softc *sc, uint16_t, int);
107 static uint16_t twe_aen_dequeue(struct twe_softc *);
108
109 static void twe_attach(struct device *, struct device *, void *);
110 static int twe_init_connection(struct twe_softc *);
111 static int twe_intr(void *);
112 static int twe_match(struct device *, struct cfdata *, void *);
113 static int twe_param_set(struct twe_softc *, int, int, size_t, void *);
114 static void twe_poll(struct twe_softc *);
115 static int twe_print(void *, const char *);
116 static int twe_reset(struct twe_softc *);
117 static int twe_submatch(struct device *, struct cfdata *,
118 const locdesc_t *, void *);
119 static int twe_status_check(struct twe_softc *, u_int);
120 static int twe_status_wait(struct twe_softc *, u_int, int);
121 static void twe_describe_controller(struct twe_softc *);
122
123 static int twe_add_unit(struct twe_softc *, int);
124 static int twe_del_unit(struct twe_softc *, int);
125
126 static inline u_int32_t twe_inl(struct twe_softc *, int);
127 static inline void twe_outl(struct twe_softc *, int, u_int32_t);
128
129 dev_type_open(tweopen);
130 dev_type_close(tweclose);
131 dev_type_ioctl(tweioctl);
132
133 const struct cdevsw twe_cdevsw = {
134 tweopen, tweclose, noread, nowrite, tweioctl,
135 nostop, notty, nopoll, nommap,
136 };
137
138 extern struct cfdriver twe_cd;
139
140 CFATTACH_DECL(twe, sizeof(struct twe_softc),
141 twe_match, twe_attach, NULL, NULL);
142
143 /*
144 * Tables to convert numeric codes to strings.
145 */
146 const struct twe_code_table twe_table_status[] = {
147 { 0x00, "successful completion" },
148
149 /* info */
150 { 0x42, "command in progress" },
151 { 0x6c, "retrying interface CRC error from UDMA command" },
152
153 /* warning */
154 { 0x81, "redundant/inconsequential request ignored" },
155 { 0x8e, "failed to write zeroes to LBA 0" },
156 { 0x8f, "failed to profile TwinStor zones" },
157
158 /* fatal */
159 { 0xc1, "aborted due to system command or reconfiguration" },
160 { 0xc4, "aborted" },
161 { 0xc5, "access error" },
162 { 0xc6, "access violation" },
163 { 0xc7, "device failure" }, /* high byte may be port # */
164 { 0xc8, "controller error" },
165 { 0xc9, "timed out" },
166 { 0xcb, "invalid unit number" },
167 { 0xcf, "unit not available" },
168 { 0xd2, "undefined opcode" },
169 { 0xdb, "request incompatible with unit" },
170 { 0xdc, "invalid request" },
171 { 0xff, "firmware error, reset requested" },
172
173 { 0, NULL }
174 };
175
176 const struct twe_code_table twe_table_unitstate[] = {
177 { TWE_PARAM_UNITSTATUS_Normal, "Normal" },
178 { TWE_PARAM_UNITSTATUS_Initialising, "Initializing" },
179 { TWE_PARAM_UNITSTATUS_Degraded, "Degraded" },
180 { TWE_PARAM_UNITSTATUS_Rebuilding, "Rebuilding" },
181 { TWE_PARAM_UNITSTATUS_Verifying, "Verifying" },
182 { TWE_PARAM_UNITSTATUS_Corrupt, "Corrupt" },
183 { TWE_PARAM_UNITSTATUS_Missing, "Missing" },
184
185 { 0, NULL }
186 };
187
188 const struct twe_code_table twe_table_unittype[] = {
189 /* array descriptor configuration */
190 { TWE_AD_CONFIG_RAID0, "RAID0" },
191 { TWE_AD_CONFIG_RAID1, "RAID1" },
192 { TWE_AD_CONFIG_TwinStor, "TwinStor" },
193 { TWE_AD_CONFIG_RAID5, "RAID5" },
194 { TWE_AD_CONFIG_RAID10, "RAID10" },
195
196 { 0, NULL }
197 };
198
199 const struct twe_code_table twe_table_stripedepth[] = {
200 { TWE_AD_STRIPE_4k, "4K" },
201 { TWE_AD_STRIPE_8k, "8K" },
202 { TWE_AD_STRIPE_16k, "16K" },
203 { TWE_AD_STRIPE_32k, "32K" },
204 { TWE_AD_STRIPE_64k, "64K" },
205
206 { 0, NULL }
207 };
208
209 /*
210 * Asynchronous event notification messages are qualified:
211 * a - not unit/port specific
212 * u - unit specific
213 * p - port specific
214 *
215 * They are further qualified with a severity:
216 * E - LOG_EMERG
217 * a - LOG_ALERT
218 * c - LOG_CRIT
219 * e - LOG_ERR
220 * w - LOG_WARNING
221 * n - LOG_NOTICE
222 * i - LOG_INFO
223 * d - LOG_DEBUG
224 * blank - just use printf
225 */
226 const struct twe_code_table twe_table_aen[] = {
227 { 0x00, "a queue empty" },
228 { 0x01, "a soft reset" },
229 { 0x02, "uc degraded mode" },
230 { 0x03, "aa controller error" },
231 { 0x04, "uE rebuild fail" },
232 { 0x05, "un rebuild done" },
233 { 0x06, "ue incomplete unit" },
234 { 0x07, "un initialization done" },
235 { 0x08, "uw unclean shutdown detected" },
236 { 0x09, "pe drive timeout" },
237 { 0x0a, "pc drive error" },
238 { 0x0b, "un rebuild started" },
239 { 0x0c, "un initialization started" },
240 { 0x0d, "ui logical unit deleted" },
241 { 0x0f, "pc SMART threshold exceeded" },
242 { 0x15, "a table undefined" }, /* XXX: Not in FreeBSD's table */
243 { 0x21, "pe ATA UDMA downgrade" },
244 { 0x22, "pi ATA UDMA upgrade" },
245 { 0x23, "pw sector repair occurred" },
246 { 0x24, "aa SBUF integrity check failure" },
247 { 0x25, "pa lost cached write" },
248 { 0x26, "pa drive ECC error detected" },
249 { 0x27, "pe DCB checksum error" },
250 { 0x28, "pn DCB unsupported version" },
251 { 0x29, "ui verify started" },
252 { 0x2a, "ua verify failed" },
253 { 0x2b, "ui verify complete" },
254 { 0x2c, "pw overwrote bad sector during rebuild" },
255 { 0x2d, "pa encountered bad sector during rebuild" },
256 { 0x2e, "pe replacement drive too small" },
257 { 0x2f, "ue array not previously initialized" },
258 { 0x30, "p drive not supported" },
259 { 0xff, "a aen queue full" },
260
261 { 0, NULL },
262 };
263
264 const char *
265 twe_describe_code(const struct twe_code_table *table, uint32_t code)
266 {
267
268 for (; table->string != NULL; table++) {
269 if (table->code == code)
270 return (table->string);
271 }
272 return (NULL);
273 }
274
275 static inline u_int32_t
276 twe_inl(struct twe_softc *sc, int off)
277 {
278
279 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
280 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
281 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
282 }
283
284 static inline void
285 twe_outl(struct twe_softc *sc, int off, u_int32_t val)
286 {
287
288 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
289 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
290 BUS_SPACE_BARRIER_WRITE);
291 }
292
293 /*
294 * Match a supported board.
295 */
296 static int
297 twe_match(struct device *parent, struct cfdata *cfdata, void *aux)
298 {
299 struct pci_attach_args *pa;
300
301 pa = aux;
302
303 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
304 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
305 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
306 }
307
308 /*
309 * Attach a supported board.
310 *
311 * XXX This doesn't fail gracefully.
312 */
313 static void
314 twe_attach(struct device *parent, struct device *self, void *aux)
315 {
316 struct pci_attach_args *pa;
317 struct twe_softc *sc;
318 pci_chipset_tag_t pc;
319 pci_intr_handle_t ih;
320 pcireg_t csr;
321 const char *intrstr;
322 int s, size, i, rv, rseg;
323 size_t max_segs, max_xfer;
324 bus_dma_segment_t seg;
325 struct twe_cmd *tc;
326 struct twe_ccb *ccb;
327
328 sc = (struct twe_softc *)self;
329 pa = aux;
330 pc = pa->pa_pc;
331 sc->sc_dmat = pa->pa_dmat;
332 SIMPLEQ_INIT(&sc->sc_ccb_queue);
333 SLIST_INIT(&sc->sc_ccb_freelist);
334
335 aprint_naive(": RAID controller\n");
336 aprint_normal(": 3ware Escalade\n");
337
338 ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT);
339 if (ccb == NULL) {
340 aprint_error("%s: unable to allocate memory for ccbs\n",
341 sc->sc_dv.dv_xname);
342 return;
343 }
344
345 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
346 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
347 aprint_error("%s: can't map i/o space\n", sc->sc_dv.dv_xname);
348 return;
349 }
350
351 /* Enable the device. */
352 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
353 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
354 csr | PCI_COMMAND_MASTER_ENABLE);
355
356 /* Map and establish the interrupt. */
357 if (pci_intr_map(pa, &ih)) {
358 aprint_error("%s: can't map interrupt\n", sc->sc_dv.dv_xname);
359 return;
360 }
361
362 intrstr = pci_intr_string(pc, ih);
363 sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc);
364 if (sc->sc_ih == NULL) {
365 aprint_error("%s: can't establish interrupt%s%s\n",
366 sc->sc_dv.dv_xname,
367 (intrstr) ? " at " : "",
368 (intrstr) ? intrstr : "");
369 return;
370 }
371
372 if (intrstr != NULL)
373 aprint_normal("%s: interrupting at %s\n",
374 sc->sc_dv.dv_xname, intrstr);
375
376 /*
377 * Allocate and initialise the command blocks and CCBs.
378 */
379 size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
380
381 if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
382 &rseg, BUS_DMA_NOWAIT)) != 0) {
383 aprint_error("%s: unable to allocate commands, rv = %d\n",
384 sc->sc_dv.dv_xname, rv);
385 return;
386 }
387
388 if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
389 (caddr_t *)&sc->sc_cmds,
390 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
391 aprint_error("%s: unable to map commands, rv = %d\n",
392 sc->sc_dv.dv_xname, rv);
393 return;
394 }
395
396 if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
397 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
398 aprint_error("%s: unable to create command DMA map, rv = %d\n",
399 sc->sc_dv.dv_xname, rv);
400 return;
401 }
402
403 if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
404 size, NULL, BUS_DMA_NOWAIT)) != 0) {
405 aprint_error("%s: unable to load command DMA map, rv = %d\n",
406 sc->sc_dv.dv_xname, rv);
407 return;
408 }
409
410 sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
411 memset(sc->sc_cmds, 0, size);
412
413 sc->sc_ccbs = ccb;
414 tc = (struct twe_cmd *)sc->sc_cmds;
415 max_segs = twe_get_maxsegs();
416 max_xfer = twe_get_maxxfer(max_segs);
417
418 for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
419 ccb->ccb_cmd = tc;
420 ccb->ccb_cmdid = i;
421 ccb->ccb_flags = 0;
422 rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
423 max_segs, PAGE_SIZE, 0,
424 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
425 &ccb->ccb_dmamap_xfer);
426 if (rv != 0) {
427 aprint_error("%s: can't create dmamap, rv = %d\n",
428 sc->sc_dv.dv_xname, rv);
429 return;
430 }
431
432 /* Save the first CCB for AEN retrieval. */
433 if (i != 0)
434 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
435 ccb_chain.slist);
436 }
437
438 /* Wait for the controller to become ready. */
439 if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
440 aprint_error("%s: microcontroller not ready\n",
441 sc->sc_dv.dv_xname);
442 return;
443 }
444
445 twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
446
447 /* Reset the controller. */
448 s = splbio();
449 rv = twe_reset(sc);
450 splx(s);
451 if (rv) {
452 aprint_error("%s: reset failed\n", sc->sc_dv.dv_xname);
453 return;
454 }
455
456 /* Initialise connection with controller. */
457 twe_init_connection(sc);
458
459 twe_describe_controller(sc);
460
461 /* Find and attach RAID array units. */
462 sc->sc_nunits = 0;
463 for (i = 0; i < TWE_MAX_UNITS; i++)
464 (void) twe_add_unit(sc, i);
465
466 /* ...and finally, enable interrupts. */
467 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
468 TWE_CTL_UNMASK_RESP_INTR |
469 TWE_CTL_ENABLE_INTRS);
470 }
471
472 void
473 twe_register_callbacks(struct twe_softc *sc, int unit,
474 const struct twe_callbacks *tcb)
475 {
476
477 sc->sc_units[unit].td_callbacks = tcb;
478 }
479
480 static void
481 twe_recompute_openings(struct twe_softc *sc)
482 {
483 struct twe_drive *td;
484 int unit, openings;
485
486 if (sc->sc_nunits != 0)
487 openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits;
488 else
489 openings = 0;
490 if (openings == sc->sc_openings)
491 return;
492 sc->sc_openings = openings;
493
494 #ifdef TWE_DEBUG
495 printf("%s: %d array%s, %d openings per array\n",
496 sc->sc_dv.dv_xname, sc->sc_nunits,
497 sc->sc_nunits == 1 ? "" : "s", sc->sc_openings);
498 #endif
499
500 for (unit = 0; unit < TWE_MAX_UNITS; unit++) {
501 td = &sc->sc_units[unit];
502 if (td->td_dev != NULL)
503 (*td->td_callbacks->tcb_openings)(td->td_dev,
504 sc->sc_openings);
505 }
506 }
507
508 static int
509 twe_add_unit(struct twe_softc *sc, int unit)
510 {
511 struct twe_param *dtp, *atp;
512 struct twe_array_descriptor *ad;
513 struct twe_drive *td;
514 struct twe_attach_args twea;
515 uint32_t newsize;
516 int rv;
517 uint16_t dsize;
518 uint8_t newtype, newstripe;
519 int help[2];
520 locdesc_t *ldesc = (void *)help; /* XXX */
521
522 if (unit < 0 || unit >= TWE_MAX_UNITS)
523 return (EINVAL);
524
525 /* Find attached units. */
526 rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
527 TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
528 if (rv != 0) {
529 aprint_error("%s: error %d fetching unit summary\n",
530 sc->sc_dv.dv_xname, rv);
531 return (rv);
532 }
533
534 /* For each detected unit, collect size and store in an array. */
535 td = &sc->sc_units[unit];
536
537 /* Unit present? */
538 if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) {
539 /*
540 * XXX Should we check to see if a device has been
541 * XXX attached at this index and detach it if it
542 * XXX has? ("rescan" semantics)
543 */
544 rv = 0;
545 goto out;
546 }
547
548 rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit,
549 TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
550 if (rv != 0) {
551 aprint_error("%s: error %d fetching descriptor size "
552 "for unit %d\n", sc->sc_dv.dv_xname, rv, unit);
553 goto out;
554 }
555
556 rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit,
557 TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
558 if (rv != 0) {
559 aprint_error("%s: error %d fetching array descriptor "
560 "for unit %d\n", sc->sc_dv.dv_xname, rv, unit);
561 goto out;
562 }
563
564 ad = (struct twe_array_descriptor *)atp->tp_data;
565 newtype = ad->configuration;
566 newstripe = ad->stripe_size;
567 free(atp, M_DEVBUF);
568
569 rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit,
570 TWE_PARAM_UNITINFO_Capacity, &newsize);
571 if (rv != 0) {
572 aprint_error(
573 "%s: error %d fetching capacity for unit %d\n",
574 sc->sc_dv.dv_xname, rv, unit);
575 goto out;
576 }
577
578 /*
579 * Have a device, so we need to attach it. If there is currently
580 * something sitting at the slot, and the parameters are different,
581 * then we detach the old device before attaching the new one.
582 */
583 if (td->td_dev != NULL &&
584 td->td_size == newsize &&
585 td->td_type == newtype &&
586 td->td_stripe == newstripe) {
587 /* Same as the old device; just keep using it. */
588 rv = 0;
589 goto out;
590 } else if (td->td_dev != NULL) {
591 /* Detach the old device first. */
592 (void) config_detach(td->td_dev, DETACH_FORCE);
593 td->td_dev = NULL;
594 } else if (td->td_size == 0)
595 sc->sc_nunits++;
596
597 /*
598 * Committed to the new array unit; assign its parameters and
599 * recompute the number of available command openings.
600 */
601 td->td_size = newsize;
602 td->td_type = newtype;
603 td->td_stripe = newstripe;
604 twe_recompute_openings(sc);
605
606 twea.twea_unit = unit;
607
608 ldesc->len = 1;
609 ldesc->locs[TWECF_UNIT] = unit;
610
611 td->td_dev = config_found_sm_loc(&sc->sc_dv, "twe", NULL, &twea,
612 twe_print, twe_submatch);
613
614 rv = 0;
615 out:
616 free(dtp, M_DEVBUF);
617 return (rv);
618 }
619
620 static int
621 twe_del_unit(struct twe_softc *sc, int unit)
622 {
623 struct twe_drive *td;
624
625 if (unit < 0 || unit >= TWE_MAX_UNITS)
626 return (EINVAL);
627
628 td = &sc->sc_units[unit];
629 if (td->td_size != 0)
630 sc->sc_nunits--;
631 td->td_size = 0;
632 td->td_type = 0;
633 td->td_stripe = 0;
634 if (td->td_dev != NULL) {
635 (void) config_detach(td->td_dev, DETACH_FORCE);
636 td->td_dev = NULL;
637 }
638 twe_recompute_openings(sc);
639 return (0);
640 }
641
642 /*
643 * Reset the controller.
644 * MUST BE CALLED AT splbio()!
645 */
646 static int
647 twe_reset(struct twe_softc *sc)
648 {
649 uint16_t aen;
650 u_int status;
651 volatile u_int32_t junk;
652 int got, rv;
653
654 /* Issue a soft reset. */
655 twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
656 TWE_CTL_CLEAR_HOST_INTR |
657 TWE_CTL_CLEAR_ATTN_INTR |
658 TWE_CTL_MASK_CMD_INTR |
659 TWE_CTL_MASK_RESP_INTR |
660 TWE_CTL_CLEAR_ERROR_STS |
661 TWE_CTL_DISABLE_INTRS);
662
663 /* Wait for attention... */
664 if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) {
665 printf("%s: timeout waiting for attention interrupt\n",
666 sc->sc_dv.dv_xname);
667 return (-1);
668 }
669
670 /* ...and ACK it. */
671 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
672
673 /*
674 * Pull AENs out of the controller; look for a soft reset AEN.
675 * Open code this, since we want to detect reset even if the
676 * queue for management tools is full.
677 *
678 * Note that since:
679 * - interrupts are blocked
680 * - we have reset the controller
681 * - acknowledged the pending ATTENTION
682 * that there is no way a pending asynchronous AEN fetch would
683 * finish, so clear the flag.
684 */
685 sc->sc_flags &= ~TWEF_AEN;
686 for (got = 0;;) {
687 rv = twe_aen_get(sc, &aen);
688 if (rv != 0)
689 printf("%s: error %d while draining event queue\n",
690 sc->sc_dv.dv_xname, rv);
691 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
692 break;
693 if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
694 got = 1;
695 twe_aen_enqueue(sc, aen, 1);
696 }
697
698 if (!got) {
699 printf("%s: reset not reported\n", sc->sc_dv.dv_xname);
700 return (-1);
701 }
702
703 /* Check controller status. */
704 status = twe_inl(sc, TWE_REG_STS);
705 if (twe_status_check(sc, status)) {
706 printf("%s: controller errors detected\n",
707 sc->sc_dv.dv_xname);
708 return (-1);
709 }
710
711 /* Drain the response queue. */
712 for (;;) {
713 status = twe_inl(sc, TWE_REG_STS);
714 if (twe_status_check(sc, status) != 0) {
715 printf("%s: can't drain response queue\n",
716 sc->sc_dv.dv_xname);
717 return (-1);
718 }
719 if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
720 break;
721 junk = twe_inl(sc, TWE_REG_RESP_QUEUE);
722 }
723
724 return (0);
725 }
726
727 /*
728 * Print autoconfiguration message for a sub-device.
729 */
730 static int
731 twe_print(void *aux, const char *pnp)
732 {
733 struct twe_attach_args *twea;
734
735 twea = aux;
736
737 if (pnp != NULL)
738 aprint_normal("block device at %s", pnp);
739 aprint_normal(" unit %d", twea->twea_unit);
740 return (UNCONF);
741 }
742
743 /*
744 * Match a sub-device.
745 */
746 static int
747 twe_submatch(struct device *parent, struct cfdata *cf,
748 const locdesc_t *ldesc, void *aux)
749 {
750
751 if (cf->cf_loc[TWECF_UNIT] != TWECF_UNIT_DEFAULT &&
752 cf->cf_loc[TWECF_UNIT] != ldesc->locs[TWECF_UNIT])
753 return (0);
754
755 return (config_match(parent, cf, aux));
756 }
757
758 /*
759 * Interrupt service routine.
760 */
761 static int
762 twe_intr(void *arg)
763 {
764 struct twe_softc *sc;
765 u_int status;
766 int caught, rv;
767
768 sc = arg;
769 caught = 0;
770 status = twe_inl(sc, TWE_REG_STS);
771 twe_status_check(sc, status);
772
773 /* Host interrupts - purpose unknown. */
774 if ((status & TWE_STS_HOST_INTR) != 0) {
775 #ifdef DEBUG
776 printf("%s: host interrupt\n", sc->sc_dv.dv_xname);
777 #endif
778 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
779 caught = 1;
780 }
781
782 /*
783 * Attention interrupts, signalled when a controller or child device
784 * state change has occurred.
785 */
786 if ((status & TWE_STS_ATTN_INTR) != 0) {
787 rv = twe_aen_get(sc, NULL);
788 if (rv != 0)
789 printf("%s: unable to retrieve AEN (%d)\n",
790 sc->sc_dv.dv_xname, rv);
791 else
792 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
793 caught = 1;
794 }
795
796 /*
797 * Command interrupts, signalled when the controller can accept more
798 * commands. We don't use this; instead, we try to submit commands
799 * when we receive them, and when other commands have completed.
800 * Mask it so we don't get another one.
801 */
802 if ((status & TWE_STS_CMD_INTR) != 0) {
803 #ifdef DEBUG
804 printf("%s: command interrupt\n", sc->sc_dv.dv_xname);
805 #endif
806 twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
807 caught = 1;
808 }
809
810 if ((status & TWE_STS_RESP_INTR) != 0) {
811 twe_poll(sc);
812 caught = 1;
813 }
814
815 return (caught);
816 }
817
818 /*
819 * Fetch an AEN. Even though this is really like parameter
820 * retrieval, we handle this specially, because we issue this
821 * AEN retrieval command from interrupt context, and thus
822 * reserve a CCB for it to avoid resource shortage.
823 *
824 * XXX There are still potential resource shortages we could
825 * XXX encounter. Consider pre-allocating all AEN-related
826 * XXX resources.
827 *
828 * MUST BE CALLED AT splbio()!
829 */
830 static int
831 twe_aen_get(struct twe_softc *sc, uint16_t *aenp)
832 {
833 struct twe_ccb *ccb;
834 struct twe_cmd *tc;
835 struct twe_param *tp;
836 int rv;
837
838 /*
839 * If we're already retrieving an AEN, just wait; another
840 * retrieval will be chained after the current one completes.
841 */
842 if (sc->sc_flags & TWEF_AEN) {
843 /*
844 * It is a fatal software programming error to attempt
845 * to fetch an AEN synchronously when an AEN fetch is
846 * already pending.
847 */
848 KASSERT(aenp == NULL);
849 return (0);
850 }
851
852 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
853 if (tp == NULL)
854 return (ENOMEM);
855
856 ccb = twe_ccb_alloc(sc,
857 TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
858 KASSERT(ccb != NULL);
859
860 ccb->ccb_data = tp;
861 ccb->ccb_datasize = TWE_SECTOR_SIZE;
862 ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL;
863 ccb->ccb_tx.tx_context = tp;
864 ccb->ccb_tx.tx_dv = &sc->sc_dv;
865
866 tc = ccb->ccb_cmd;
867 tc->tc_size = 2;
868 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
869 tc->tc_unit = 0;
870 tc->tc_count = htole16(1);
871
872 /* Fill in the outbound parameter data. */
873 tp->tp_table_id = htole16(TWE_PARAM_AEN);
874 tp->tp_param_id = TWE_PARAM_AEN_UnitCode;
875 tp->tp_param_size = 2;
876
877 /* Map the transfer. */
878 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
879 twe_ccb_free(sc, ccb);
880 goto done;
881 }
882
883 /* Enqueue the command and wait. */
884 if (aenp != NULL) {
885 rv = twe_ccb_poll(sc, ccb, 5);
886 twe_ccb_unmap(sc, ccb);
887 twe_ccb_free(sc, ccb);
888 if (rv == 0)
889 *aenp = le16toh(*(uint16_t *)tp->tp_data);
890 free(tp, M_DEVBUF);
891 } else {
892 sc->sc_flags |= TWEF_AEN;
893 twe_ccb_enqueue(sc, ccb);
894 rv = 0;
895 }
896
897 done:
898 return (rv);
899 }
900
901 /*
902 * Handle an AEN returned by the controller.
903 * MUST BE CALLED AT splbio()!
904 */
905 static void
906 twe_aen_handler(struct twe_ccb *ccb, int error)
907 {
908 struct twe_softc *sc;
909 struct twe_param *tp;
910 uint16_t aen;
911 int rv;
912
913 sc = (struct twe_softc *)ccb->ccb_tx.tx_dv;
914 tp = ccb->ccb_tx.tx_context;
915 twe_ccb_unmap(sc, ccb);
916
917 sc->sc_flags &= ~TWEF_AEN;
918
919 if (error) {
920 printf("%s: error retrieving AEN\n", sc->sc_dv.dv_xname);
921 aen = TWE_AEN_QUEUE_EMPTY;
922 } else
923 aen = le16toh(*(u_int16_t *)tp->tp_data);
924 free(tp, M_DEVBUF);
925 twe_ccb_free(sc, ccb);
926
927 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
928 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
929 return;
930 }
931
932 twe_aen_enqueue(sc, aen, 0);
933
934 /*
935 * Chain another retrieval in case interrupts have been
936 * coalesced.
937 */
938 rv = twe_aen_get(sc, NULL);
939 if (rv != 0)
940 printf("%s: unable to retrieve AEN (%d)\n",
941 sc->sc_dv.dv_xname, rv);
942 }
943
944 static void
945 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet)
946 {
947 const char *str, *msg;
948 int s, next, nextnext, level;
949
950 /*
951 * First report the AEN on the console. Maybe.
952 */
953 if (! quiet) {
954 str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen));
955 if (str == NULL) {
956 printf("%s: unknown AEN 0x%04x\n",
957 sc->sc_dv.dv_xname, aen);
958 } else {
959 msg = str + 3;
960 switch (str[1]) {
961 case 'E': level = LOG_EMERG; break;
962 case 'a': level = LOG_ALERT; break;
963 case 'c': level = LOG_CRIT; break;
964 case 'e': level = LOG_ERR; break;
965 case 'w': level = LOG_WARNING; break;
966 case 'n': level = LOG_NOTICE; break;
967 case 'i': level = LOG_INFO; break;
968 case 'd': level = LOG_DEBUG; break;
969 default:
970 /* Don't use syslog. */
971 level = -1;
972 }
973
974 if (level < 0) {
975 switch (str[0]) {
976 case 'u':
977 case 'p':
978 printf("%s: %s %d: %s\n",
979 sc->sc_dv.dv_xname,
980 str[0] == 'u' ? "unit" : "port",
981 TWE_AEN_UNIT(aen), msg);
982 break;
983
984 default:
985 printf("%s: %s\n",
986 sc->sc_dv.dv_xname, msg);
987 }
988 } else {
989 switch (str[0]) {
990 case 'u':
991 case 'p':
992 log(level, "%s: %s %d: %s\n",
993 sc->sc_dv.dv_xname,
994 str[0] == 'u' ? "unit" : "port",
995 TWE_AEN_UNIT(aen), msg);
996 break;
997
998 default:
999 log(level, "%s: %s\n",
1000 sc->sc_dv.dv_xname, msg);
1001 }
1002 }
1003 }
1004 }
1005
1006 /* Now enqueue the AEN for mangement tools. */
1007 s = splbio();
1008
1009 next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH;
1010 nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH;
1011
1012 /*
1013 * If this is the last free slot, then queue up a "queue
1014 * full" message.
1015 */
1016 if (nextnext == sc->sc_aen_tail)
1017 aen = TWE_AEN_QUEUE_FULL;
1018
1019 if (next != sc->sc_aen_tail) {
1020 sc->sc_aen_queue[sc->sc_aen_head] = aen;
1021 sc->sc_aen_head = next;
1022 }
1023
1024 if (sc->sc_flags & TWEF_AENQ_WAIT) {
1025 sc->sc_flags &= ~TWEF_AENQ_WAIT;
1026 wakeup(&sc->sc_aen_queue);
1027 }
1028
1029 splx(s);
1030 }
1031
1032 /* NOTE: Must be called at splbio(). */
1033 static uint16_t
1034 twe_aen_dequeue(struct twe_softc *sc)
1035 {
1036 uint16_t aen;
1037
1038 if (sc->sc_aen_tail == sc->sc_aen_head)
1039 aen = TWE_AEN_QUEUE_EMPTY;
1040 else {
1041 aen = sc->sc_aen_queue[sc->sc_aen_tail];
1042 sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH;
1043 }
1044
1045 return (aen);
1046 }
1047
1048 /*
1049 * These are short-hand functions that execute TWE_OP_GET_PARAM to
1050 * fetch 1, 2, and 4 byte parameter values, respectively.
1051 */
1052 int
1053 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
1054 uint8_t *valp)
1055 {
1056 struct twe_param *tp;
1057 int rv;
1058
1059 rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
1060 if (rv != 0)
1061 return (rv);
1062 *valp = *(uint8_t *)tp->tp_data;
1063 free(tp, M_DEVBUF);
1064 return (0);
1065 }
1066
1067 int
1068 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
1069 uint16_t *valp)
1070 {
1071 struct twe_param *tp;
1072 int rv;
1073
1074 rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
1075 if (rv != 0)
1076 return (rv);
1077 *valp = le16toh(*(uint16_t *)tp->tp_data);
1078 free(tp, M_DEVBUF);
1079 return (0);
1080 }
1081
1082 int
1083 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
1084 uint32_t *valp)
1085 {
1086 struct twe_param *tp;
1087 int rv;
1088
1089 rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
1090 if (rv != 0)
1091 return (rv);
1092 *valp = le32toh(*(uint32_t *)tp->tp_data);
1093 free(tp, M_DEVBUF);
1094 return (0);
1095 }
1096
1097 /*
1098 * Execute a TWE_OP_GET_PARAM command. If a callback function is provided,
1099 * it will be called with generated context when the command has completed.
1100 * If no callback is provided, the command will be executed synchronously
1101 * and a pointer to a buffer containing the data returned.
1102 *
1103 * The caller or callback is responsible for freeing the buffer.
1104 *
1105 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1106 */
1107 int
1108 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
1109 void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
1110 {
1111 struct twe_ccb *ccb;
1112 struct twe_cmd *tc;
1113 struct twe_param *tp;
1114 int rv, s;
1115
1116 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1117 if (tp == NULL)
1118 return ENOMEM;
1119
1120 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1121 KASSERT(ccb != NULL);
1122
1123 ccb->ccb_data = tp;
1124 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1125 ccb->ccb_tx.tx_handler = func;
1126 ccb->ccb_tx.tx_context = tp;
1127 ccb->ccb_tx.tx_dv = &sc->sc_dv;
1128
1129 tc = ccb->ccb_cmd;
1130 tc->tc_size = 2;
1131 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
1132 tc->tc_unit = 0;
1133 tc->tc_count = htole16(1);
1134
1135 /* Fill in the outbound parameter data. */
1136 tp->tp_table_id = htole16(table_id);
1137 tp->tp_param_id = param_id;
1138 tp->tp_param_size = size;
1139
1140 /* Map the transfer. */
1141 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1142 twe_ccb_free(sc, ccb);
1143 goto done;
1144 }
1145
1146 /* Submit the command and either wait or let the callback handle it. */
1147 if (func == NULL) {
1148 s = splbio();
1149 rv = twe_ccb_poll(sc, ccb, 5);
1150 twe_ccb_unmap(sc, ccb);
1151 twe_ccb_free(sc, ccb);
1152 splx(s);
1153 } else {
1154 #ifdef DEBUG
1155 if (pbuf != NULL)
1156 panic("both func and pbuf defined");
1157 #endif
1158 twe_ccb_enqueue(sc, ccb);
1159 return 0;
1160 }
1161
1162 done:
1163 if (pbuf == NULL || rv != 0)
1164 free(tp, M_DEVBUF);
1165 else if (pbuf != NULL && rv == 0)
1166 *pbuf = tp;
1167 return rv;
1168 }
1169
1170 /*
1171 * Execute a TWE_OP_SET_PARAM command.
1172 *
1173 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1174 */
1175 static int
1176 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
1177 void *buf)
1178 {
1179 struct twe_ccb *ccb;
1180 struct twe_cmd *tc;
1181 struct twe_param *tp;
1182 int rv, s;
1183
1184 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1185 if (tp == NULL)
1186 return ENOMEM;
1187
1188 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1189 KASSERT(ccb != NULL);
1190
1191 ccb->ccb_data = tp;
1192 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1193 ccb->ccb_tx.tx_handler = 0;
1194 ccb->ccb_tx.tx_context = tp;
1195 ccb->ccb_tx.tx_dv = &sc->sc_dv;
1196
1197 tc = ccb->ccb_cmd;
1198 tc->tc_size = 2;
1199 tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
1200 tc->tc_unit = 0;
1201 tc->tc_count = htole16(1);
1202
1203 /* Fill in the outbound parameter data. */
1204 tp->tp_table_id = htole16(table_id);
1205 tp->tp_param_id = param_id;
1206 tp->tp_param_size = size;
1207 memcpy(tp->tp_data, buf, size);
1208
1209 /* Map the transfer. */
1210 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1211 twe_ccb_free(sc, ccb);
1212 goto done;
1213 }
1214
1215 /* Submit the command and wait. */
1216 s = splbio();
1217 rv = twe_ccb_poll(sc, ccb, 5);
1218 twe_ccb_unmap(sc, ccb);
1219 twe_ccb_free(sc, ccb);
1220 splx(s);
1221 done:
1222 free(tp, M_DEVBUF);
1223 return (rv);
1224 }
1225
1226 /*
1227 * Execute a TWE_OP_INIT_CONNECTION command. Return non-zero on error.
1228 * Must be called with interrupts blocked.
1229 */
1230 static int
1231 twe_init_connection(struct twe_softc *sc)
1232 /*###762 [cc] warning: `twe_init_connection' was used with no prototype before its definition%%%*/
1233 /*###762 [cc] warning: `twe_init_connection' was declared implicitly `extern' and later `static'%%%*/
1234 {
1235 struct twe_ccb *ccb;
1236 struct twe_cmd *tc;
1237 int rv;
1238
1239 if ((ccb = twe_ccb_alloc(sc, 0)) == NULL)
1240 return (EAGAIN);
1241
1242 /* Build the command. */
1243 tc = ccb->ccb_cmd;
1244 tc->tc_size = 3;
1245 tc->tc_opcode = TWE_OP_INIT_CONNECTION;
1246 tc->tc_unit = 0;
1247 tc->tc_count = htole16(TWE_MAX_CMDS);
1248 tc->tc_args.init_connection.response_queue_pointer = 0;
1249
1250 /* Submit the command for immediate execution. */
1251 rv = twe_ccb_poll(sc, ccb, 5);
1252 twe_ccb_free(sc, ccb);
1253 return (rv);
1254 }
1255
1256 /*
1257 * Poll the controller for completed commands. Must be called with
1258 * interrupts blocked.
1259 */
1260 static void
1261 twe_poll(struct twe_softc *sc)
1262 {
1263 struct twe_ccb *ccb;
1264 int found;
1265 u_int status, cmdid;
1266
1267 found = 0;
1268
1269 for (;;) {
1270 status = twe_inl(sc, TWE_REG_STS);
1271 twe_status_check(sc, status);
1272
1273 if ((status & TWE_STS_RESP_QUEUE_EMPTY))
1274 break;
1275
1276 found = 1;
1277 cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
1278 cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
1279 if (cmdid >= TWE_MAX_QUEUECNT) {
1280 printf("%s: bad cmdid %d\n", sc->sc_dv.dv_xname, cmdid);
1281 continue;
1282 }
1283
1284 ccb = sc->sc_ccbs + cmdid;
1285 if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
1286 printf("%s: CCB for cmdid %d not active\n",
1287 sc->sc_dv.dv_xname, cmdid);
1288 continue;
1289 }
1290 ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
1291
1292 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1293 (caddr_t)ccb->ccb_cmd - sc->sc_cmds,
1294 sizeof(struct twe_cmd),
1295 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1296
1297 /* Pass notification to upper layers. */
1298 if (ccb->ccb_tx.tx_handler != NULL)
1299 (*ccb->ccb_tx.tx_handler)(ccb,
1300 ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
1301 }
1302
1303 /* If any commands have completed, run the software queue. */
1304 if (found)
1305 twe_ccb_enqueue(sc, NULL);
1306 }
1307
1308 /*
1309 * Wait for `status' to be set in the controller status register. Return
1310 * zero if found, non-zero if the operation timed out.
1311 */
1312 static int
1313 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
1314 {
1315
1316 for (timo *= 10; timo != 0; timo--) {
1317 if ((twe_inl(sc, TWE_REG_STS) & status) == status)
1318 break;
1319 delay(100000);
1320 }
1321
1322 return (timo == 0);
1323 }
1324
1325 /*
1326 * Complain if the status bits aren't what we expect.
1327 */
1328 static int
1329 twe_status_check(struct twe_softc *sc, u_int status)
1330 {
1331 int rv;
1332
1333 rv = 0;
1334
1335 if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
1336 printf("%s: missing status bits: 0x%08x\n", sc->sc_dv.dv_xname,
1337 status & ~TWE_STS_EXPECTED_BITS);
1338 rv = -1;
1339 }
1340
1341 if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
1342 printf("%s: unexpected status bits: 0x%08x\n",
1343 sc->sc_dv.dv_xname, status & TWE_STS_UNEXPECTED_BITS);
1344 rv = -1;
1345 }
1346
1347 return (rv);
1348 }
1349
1350 /*
1351 * Allocate and initialise a CCB.
1352 */
1353 static __inline void
1354 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags)
1355 {
1356 struct twe_cmd *tc;
1357
1358 ccb->ccb_tx.tx_handler = NULL;
1359 ccb->ccb_flags = flags;
1360 tc = ccb->ccb_cmd;
1361 tc->tc_status = 0;
1362 tc->tc_flags = 0;
1363 tc->tc_cmdid = ccb->ccb_cmdid;
1364 }
1365
1366 struct twe_ccb *
1367 twe_ccb_alloc(struct twe_softc *sc, int flags)
1368 {
1369 struct twe_ccb *ccb;
1370 int s;
1371
1372 s = splbio();
1373 if (__predict_false((flags & TWE_CCB_AEN) != 0)) {
1374 /* Use the reserved CCB. */
1375 ccb = sc->sc_ccbs;
1376 } else {
1377 /* Allocate a CCB and command block. */
1378 if (__predict_false((ccb =
1379 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1380 splx(s);
1381 return (NULL);
1382 }
1383 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1384 }
1385 #ifdef DIAGNOSTIC
1386 if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0)
1387 panic("twe_ccb_alloc: got reserved CCB for non-AEN");
1388 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1389 panic("twe_ccb_alloc: CCB %ld already allocated",
1390 (long)(ccb - sc->sc_ccbs));
1391 flags |= TWE_CCB_ALLOCED;
1392 #endif
1393 splx(s);
1394
1395 twe_ccb_init(sc, ccb, flags);
1396 return (ccb);
1397 }
1398
1399 struct twe_ccb *
1400 twe_ccb_alloc_wait(struct twe_softc *sc, int flags)
1401 {
1402 struct twe_ccb *ccb;
1403 int s;
1404
1405 KASSERT((flags & TWE_CCB_AEN) == 0);
1406
1407 s = splbio();
1408 while (__predict_false((ccb =
1409 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1410 sc->sc_flags |= TWEF_WAIT_CCB;
1411 (void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0);
1412 }
1413 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1414 #ifdef DIAGNOSTIC
1415 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1416 panic("twe_ccb_alloc_wait: CCB %ld already allocated",
1417 (long)(ccb - sc->sc_ccbs));
1418 flags |= TWE_CCB_ALLOCED;
1419 #endif
1420 splx(s);
1421
1422 twe_ccb_init(sc, ccb, flags);
1423 return (ccb);
1424 }
1425
1426 /*
1427 * Free a CCB.
1428 */
1429 void
1430 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
1431 {
1432 int s;
1433
1434 s = splbio();
1435 if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) {
1436 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
1437 if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) {
1438 sc->sc_flags &= ~TWEF_WAIT_CCB;
1439 wakeup(&sc->sc_ccb_freelist);
1440 }
1441 }
1442 ccb->ccb_flags = 0;
1443 splx(s);
1444 }
1445
1446 /*
1447 * Map the specified CCB's command block and data buffer (if any) into
1448 * controller visible space. Perform DMA synchronisation.
1449 */
1450 int
1451 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
1452 {
1453 struct twe_cmd *tc;
1454 int flags, nsegs, i, s, rv;
1455 void *data;
1456
1457 /*
1458 * The data as a whole must be 512-byte aligned.
1459 */
1460 if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
1461 s = splvm();
1462 /* XXX */
1463 ccb->ccb_abuf = uvm_km_kmemalloc(kmem_map, NULL,
1464 ccb->ccb_datasize, UVM_KMF_NOWAIT);
1465 splx(s);
1466 data = (void *)ccb->ccb_abuf;
1467 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1468 memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
1469 } else {
1470 ccb->ccb_abuf = (vaddr_t)0;
1471 data = ccb->ccb_data;
1472 }
1473
1474 /*
1475 * Map the data buffer into bus space and build the S/G list.
1476 */
1477 rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
1478 ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1479 ((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
1480 BUS_DMA_READ : BUS_DMA_WRITE));
1481 if (rv != 0) {
1482 if (ccb->ccb_abuf != (vaddr_t)0) {
1483 s = splvm();
1484 /* XXX */
1485 uvm_km_free(kmem_map, ccb->ccb_abuf,
1486 ccb->ccb_datasize);
1487 splx(s);
1488 }
1489 return (rv);
1490 }
1491
1492 nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
1493 tc = ccb->ccb_cmd;
1494 tc->tc_size += 2 * nsegs;
1495
1496 /* The location of the S/G list is dependant upon command type. */
1497 switch (tc->tc_opcode >> 5) {
1498 case 2:
1499 for (i = 0; i < nsegs; i++) {
1500 tc->tc_args.param.sgl[i].tsg_address =
1501 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1502 tc->tc_args.param.sgl[i].tsg_length =
1503 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1504 }
1505 /* XXX Needed? */
1506 for (; i < TWE_SG_SIZE; i++) {
1507 tc->tc_args.param.sgl[i].tsg_address = 0;
1508 tc->tc_args.param.sgl[i].tsg_length = 0;
1509 }
1510 break;
1511 case 3:
1512 for (i = 0; i < nsegs; i++) {
1513 tc->tc_args.io.sgl[i].tsg_address =
1514 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1515 tc->tc_args.io.sgl[i].tsg_length =
1516 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1517 }
1518 /* XXX Needed? */
1519 for (; i < TWE_SG_SIZE; i++) {
1520 tc->tc_args.io.sgl[i].tsg_address = 0;
1521 tc->tc_args.io.sgl[i].tsg_length = 0;
1522 }
1523 break;
1524 default:
1525 /*
1526 * In all likelihood, this is a command passed from
1527 * management tools in userspace where no S/G list is
1528 * necessary because no data is being passed.
1529 */
1530 break;
1531 }
1532
1533 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1534 flags = BUS_DMASYNC_PREREAD;
1535 else
1536 flags = 0;
1537 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1538 flags |= BUS_DMASYNC_PREWRITE;
1539
1540 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1541 ccb->ccb_datasize, flags);
1542 return (0);
1543 }
1544
1545 /*
1546 * Unmap the specified CCB's command block and data buffer (if any) and
1547 * perform DMA synchronisation.
1548 */
1549 void
1550 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
1551 {
1552 int flags, s;
1553
1554 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1555 flags = BUS_DMASYNC_POSTREAD;
1556 else
1557 flags = 0;
1558 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1559 flags |= BUS_DMASYNC_POSTWRITE;
1560
1561 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1562 ccb->ccb_datasize, flags);
1563 bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
1564
1565 if (ccb->ccb_abuf != (vaddr_t)0) {
1566 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1567 memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
1568 ccb->ccb_datasize);
1569 s = splvm();
1570 /* XXX */
1571 uvm_km_free(kmem_map, ccb->ccb_abuf, ccb->ccb_datasize);
1572 splx(s);
1573 }
1574 }
1575
1576 /*
1577 * Submit a command to the controller and poll on completion. Return
1578 * non-zero on timeout (but don't check status, as some command types don't
1579 * return status). Must be called with interrupts blocked.
1580 */
1581 int
1582 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
1583 {
1584 int rv;
1585
1586 if ((rv = twe_ccb_submit(sc, ccb)) != 0)
1587 return (rv);
1588
1589 for (timo *= 1000; timo != 0; timo--) {
1590 twe_poll(sc);
1591 if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
1592 break;
1593 DELAY(100);
1594 }
1595
1596 return (timo == 0);
1597 }
1598
1599 /*
1600 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1601 * the order that they were enqueued and try to submit their command blocks
1602 * to the controller for execution.
1603 */
1604 void
1605 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
1606 {
1607 int s;
1608
1609 s = splbio();
1610
1611 if (ccb != NULL)
1612 SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
1613
1614 while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
1615 if (twe_ccb_submit(sc, ccb))
1616 break;
1617 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
1618 }
1619
1620 splx(s);
1621 }
1622
1623 /*
1624 * Submit the command block associated with the specified CCB to the
1625 * controller for execution. Must be called with interrupts blocked.
1626 */
1627 int
1628 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
1629 {
1630 bus_addr_t pa;
1631 int rv;
1632 u_int status;
1633
1634 /* Check to see if we can post a command. */
1635 status = twe_inl(sc, TWE_REG_STS);
1636 twe_status_check(sc, status);
1637
1638 if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
1639 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1640 (caddr_t)ccb->ccb_cmd - sc->sc_cmds, sizeof(struct twe_cmd),
1641 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1642 #ifdef DIAGNOSTIC
1643 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0)
1644 panic("%s: CCB %ld not ALLOCED\n",
1645 sc->sc_dv.dv_xname, (long)(ccb - sc->sc_ccbs));
1646 #endif
1647 ccb->ccb_flags |= TWE_CCB_ACTIVE;
1648 pa = sc->sc_cmds_paddr +
1649 ccb->ccb_cmdid * sizeof(struct twe_cmd);
1650 twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
1651 rv = 0;
1652 } else
1653 rv = EBUSY;
1654
1655 return (rv);
1656 }
1657
1658
1659 /*
1660 * Accept an open operation on the control device.
1661 */
1662 int
1663 tweopen(dev_t dev, int flag, int mode, struct proc *p)
1664 {
1665 struct twe_softc *twe;
1666
1667 if ((twe = device_lookup(&twe_cd, minor(dev))) == NULL)
1668 return (ENXIO);
1669 if ((twe->sc_flags & TWEF_OPEN) != 0)
1670 return (EBUSY);
1671
1672 twe->sc_flags |= TWEF_OPEN;
1673 return (0);
1674 }
1675
1676 /*
1677 * Accept the last close on the control device.
1678 */
1679 int
1680 tweclose(dev_t dev, int flag, int mode, struct proc *p)
1681 {
1682 struct twe_softc *twe;
1683
1684 twe = device_lookup(&twe_cd, minor(dev));
1685 twe->sc_flags &= ~TWEF_OPEN;
1686 return (0);
1687 }
1688
1689 void
1690 twe_ccb_wait_handler(struct twe_ccb *ccb, int error)
1691 {
1692
1693 /* Just wake up the sleeper. */
1694 wakeup(ccb);
1695 }
1696
1697 /*
1698 * Handle control operations.
1699 */
1700 int
1701 tweioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
1702 {
1703 struct twe_softc *twe;
1704 struct twe_ccb *ccb;
1705 struct twe_param *param;
1706 struct twe_usercommand *tu;
1707 struct twe_paramcommand *tp;
1708 struct twe_drivecommand *td;
1709 void *pdata = NULL;
1710 int s, error = 0;
1711 u_int8_t cmdid;
1712
1713 if (securelevel >= 2)
1714 return (EPERM);
1715
1716 twe = device_lookup(&twe_cd, minor(dev));
1717 tu = (struct twe_usercommand *)data;
1718 tp = (struct twe_paramcommand *)data;
1719 td = (struct twe_drivecommand *)data;
1720
1721 /* This is intended to be compatible with the FreeBSD interface. */
1722 switch (cmd) {
1723 case TWEIO_COMMAND:
1724 /* XXX mutex */
1725 if (tu->tu_size > 0) {
1726 /*
1727 * XXX Handle > TWE_SECTOR_SIZE? Let's see if
1728 * it's really necessary, first.
1729 */
1730 if (tu->tu_size > TWE_SECTOR_SIZE) {
1731 #ifdef TWE_DEBUG
1732 printf("%s: TWEIO_COMMAND: tu_size = %d\n",
1733 twe->sc_dv.dv_xname, tu->tu_size);
1734 #endif
1735 return EINVAL;
1736 }
1737 pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
1738 error = copyin(tu->tu_data, pdata, tu->tu_size);
1739 if (error != 0)
1740 goto done;
1741 ccb = twe_ccb_alloc_wait(twe,
1742 TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1743 KASSERT(ccb != NULL);
1744 ccb->ccb_data = pdata;
1745 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1746 } else {
1747 ccb = twe_ccb_alloc_wait(twe, 0);
1748 KASSERT(ccb != NULL);
1749 }
1750
1751 ccb->ccb_tx.tx_handler = twe_ccb_wait_handler;
1752 ccb->ccb_tx.tx_context = NULL;
1753 ccb->ccb_tx.tx_dv = &twe->sc_dv;
1754
1755 cmdid = ccb->ccb_cmdid;
1756 memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
1757 ccb->ccb_cmd->tc_cmdid = cmdid;
1758
1759 /* Map the transfer. */
1760 if ((error = twe_ccb_map(twe, ccb)) != 0) {
1761 twe_ccb_free(twe, ccb);
1762 goto done;
1763 }
1764
1765 /* Submit the command and wait up to 1 minute. */
1766 error = 0;
1767 twe_ccb_enqueue(twe, ccb);
1768 s = splbio();
1769 while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0)
1770 if ((error = tsleep(ccb, PRIBIO, "tweioctl",
1771 60 * hz)) != 0)
1772 break;
1773 splx(s);
1774
1775 /* Copy the command back to the ioctl argument. */
1776 memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd));
1777 #ifdef TWE_DEBUG
1778 printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, "
1779 "tc_status = 0x%02x\n", twe->sc_dv.dv_xname,
1780 tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status);
1781 #endif
1782
1783 s = splbio();
1784 twe_ccb_free(twe, ccb);
1785 splx(s);
1786
1787 if (tu->tu_size > 0)
1788 error = copyout(pdata, tu->tu_data, tu->tu_size);
1789 goto done;
1790
1791 case TWEIO_STATS:
1792 return (ENOENT);
1793
1794 case TWEIO_AEN_POLL:
1795 s = splbio();
1796 *(u_int *)data = twe_aen_dequeue(twe);
1797 splx(s);
1798 return (0);
1799
1800 case TWEIO_AEN_WAIT:
1801 s = splbio();
1802 while ((*(u_int *)data =
1803 twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) {
1804 twe->sc_flags |= TWEF_AENQ_WAIT;
1805 error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH,
1806 "tweaen", 0);
1807 if (error == EINTR) {
1808 splx(s);
1809 return (error);
1810 }
1811 }
1812 splx(s);
1813 return (0);
1814
1815 case TWEIO_GET_PARAM:
1816 error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
1817 tp->tp_size, 0, ¶m);
1818 if (error != 0)
1819 return (error);
1820 if (param->tp_param_size > tp->tp_size) {
1821 error = EFAULT;
1822 goto done;
1823 }
1824 error = copyout(param->tp_data, tp->tp_data,
1825 param->tp_param_size);
1826 goto done;
1827
1828 case TWEIO_SET_PARAM:
1829 pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
1830 if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
1831 goto done;
1832 error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
1833 tp->tp_size, pdata);
1834 goto done;
1835
1836 case TWEIO_RESET:
1837 s = splbio();
1838 twe_reset(twe);
1839 splx(s);
1840 return (0);
1841
1842 case TWEIO_ADD_UNIT:
1843 /* XXX mutex */
1844 return (twe_add_unit(twe, td->td_unit));
1845
1846 case TWEIO_DEL_UNIT:
1847 /* XXX mutex */
1848 return (twe_del_unit(twe, td->td_unit));
1849
1850 default:
1851 return EINVAL;
1852 }
1853 done:
1854 if (pdata)
1855 free(pdata, M_DEVBUF);
1856 return error;
1857 }
1858
1859 /*
1860 * Print some information about the controller
1861 */
1862 static void
1863 twe_describe_controller(struct twe_softc *sc)
1864 {
1865 struct twe_param *p[6];
1866 int i, rv = 0;
1867 uint32_t dsize;
1868 uint8_t ports;
1869
1870 /* get the port count */
1871 rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
1872 TWE_PARAM_CONTROLLER_PortCount, &ports);
1873
1874 /* get version strings */
1875 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
1876 16, NULL, &p[0]);
1877 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
1878 16, NULL, &p[1]);
1879 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
1880 16, NULL, &p[2]);
1881 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
1882 8, NULL, &p[3]);
1883 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
1884 8, NULL, &p[4]);
1885 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
1886 8, NULL, &p[5]);
1887
1888 if (rv) {
1889 /* some error occurred */
1890 aprint_error("%s: failed to fetch version information\n",
1891 sc->sc_dv.dv_xname);
1892 return;
1893 }
1894
1895 aprint_normal("%s: %d ports, Firmware %.16s, BIOS %.16s\n",
1896 sc->sc_dv.dv_xname, ports,
1897 p[1]->tp_data, p[2]->tp_data);
1898
1899 aprint_verbose("%s: Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
1900 sc->sc_dv.dv_xname,
1901 p[0]->tp_data, p[3]->tp_data,
1902 p[4]->tp_data, p[5]->tp_data);
1903
1904 free(p[0], M_DEVBUF);
1905 free(p[1], M_DEVBUF);
1906 free(p[2], M_DEVBUF);
1907 free(p[3], M_DEVBUF);
1908 free(p[4], M_DEVBUF);
1909 free(p[5], M_DEVBUF);
1910
1911 rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY,
1912 TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]);
1913 if (rv) {
1914 aprint_error("%s: failed to get drive status summary\n",
1915 sc->sc_dv.dv_xname);
1916 return;
1917 }
1918 for (i = 0; i < ports; i++) {
1919 if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present)
1920 continue;
1921 rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i,
1922 TWE_PARAM_DRIVEINFO_Size, &dsize);
1923 if (rv) {
1924 aprint_error(
1925 "%s: unable to get drive size for port %d\n",
1926 sc->sc_dv.dv_xname, i);
1927 continue;
1928 }
1929 rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i,
1930 TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]);
1931 if (rv) {
1932 aprint_error(
1933 "%s: unable to get drive model for port %d\n",
1934 sc->sc_dv.dv_xname, i);
1935 continue;
1936 }
1937 aprint_verbose("%s: port %d: %.40s %d MB\n", sc->sc_dv.dv_xname,
1938 i, p[1]->tp_data, dsize / 2048);
1939 free(p[1], M_DEVBUF);
1940 }
1941 free(p[0], M_DEVBUF);
1942 }
1943