twe.c revision 1.66 1 /* $NetBSD: twe.c,v 1.66 2005/05/30 04:35:23 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 2000 Michael Smith
41 * Copyright (c) 2000 BSDi
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
66 */
67
68 /*
69 * Driver for the 3ware Escalade family of RAID controllers.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.66 2005/05/30 04:35:23 christos Exp $");
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/device.h>
79 #include <sys/queue.h>
80 #include <sys/proc.h>
81 #include <sys/buf.h>
82 #include <sys/endian.h>
83 #include <sys/malloc.h>
84 #include <sys/conf.h>
85 #include <sys/disk.h>
86 #include <sys/sysctl.h>
87 #include <sys/syslog.h>
88
89 #include <uvm/uvm_extern.h>
90
91 #include <machine/bswap.h>
92 #include <machine/bus.h>
93
94 #include <dev/pci/pcireg.h>
95 #include <dev/pci/pcivar.h>
96 #include <dev/pci/pcidevs.h>
97 #include <dev/pci/twereg.h>
98 #include <dev/pci/twevar.h>
99 #include <dev/pci/tweio.h>
100
101 #include "locators.h"
102
103 #define PCI_CBIO 0x10
104
105 static int twe_aen_get(struct twe_softc *, uint16_t *);
106 static void twe_aen_handler(struct twe_ccb *, int);
107 static void twe_aen_enqueue(struct twe_softc *sc, uint16_t, int);
108 static uint16_t twe_aen_dequeue(struct twe_softc *);
109
110 static void twe_attach(struct device *, struct device *, void *);
111 static int twe_init_connection(struct twe_softc *);
112 static int twe_intr(void *);
113 static int twe_match(struct device *, struct cfdata *, void *);
114 static int twe_param_set(struct twe_softc *, int, int, size_t, void *);
115 static void twe_poll(struct twe_softc *);
116 static int twe_print(void *, const char *);
117 static int twe_reset(struct twe_softc *);
118 static int twe_submatch(struct device *, struct cfdata *,
119 const locdesc_t *, void *);
120 static int twe_status_check(struct twe_softc *, u_int);
121 static int twe_status_wait(struct twe_softc *, u_int, int);
122 static void twe_describe_controller(struct twe_softc *);
123 static void twe_clear_pci_abort(struct twe_softc *sc);
124 static void twe_clear_pci_parity_error(struct twe_softc *sc);
125
126 static int twe_add_unit(struct twe_softc *, int);
127 static int twe_del_unit(struct twe_softc *, int);
128
129 static inline u_int32_t twe_inl(struct twe_softc *, int);
130 static inline void twe_outl(struct twe_softc *, int, u_int32_t);
131
132 dev_type_open(tweopen);
133 dev_type_close(tweclose);
134 dev_type_ioctl(tweioctl);
135
136 const struct cdevsw twe_cdevsw = {
137 tweopen, tweclose, noread, nowrite, tweioctl,
138 nostop, notty, nopoll, nommap,
139 };
140
141 extern struct cfdriver twe_cd;
142
143 CFATTACH_DECL(twe, sizeof(struct twe_softc),
144 twe_match, twe_attach, NULL, NULL);
145
146 /* FreeBSD driver revision for sysctl expected by the 3ware cli */
147 const char twever[] = "1.50.01.002";
148
149 /*
150 * Tables to convert numeric codes to strings.
151 */
152 const struct twe_code_table twe_table_status[] = {
153 { 0x00, "successful completion" },
154
155 /* info */
156 { 0x42, "command in progress" },
157 { 0x6c, "retrying interface CRC error from UDMA command" },
158
159 /* warning */
160 { 0x81, "redundant/inconsequential request ignored" },
161 { 0x8e, "failed to write zeroes to LBA 0" },
162 { 0x8f, "failed to profile TwinStor zones" },
163
164 /* fatal */
165 { 0xc1, "aborted due to system command or reconfiguration" },
166 { 0xc4, "aborted" },
167 { 0xc5, "access error" },
168 { 0xc6, "access violation" },
169 { 0xc7, "device failure" }, /* high byte may be port # */
170 { 0xc8, "controller error" },
171 { 0xc9, "timed out" },
172 { 0xcb, "invalid unit number" },
173 { 0xcf, "unit not available" },
174 { 0xd2, "undefined opcode" },
175 { 0xdb, "request incompatible with unit" },
176 { 0xdc, "invalid request" },
177 { 0xff, "firmware error, reset requested" },
178
179 { 0, NULL }
180 };
181
182 const struct twe_code_table twe_table_unitstate[] = {
183 { TWE_PARAM_UNITSTATUS_Normal, "Normal" },
184 { TWE_PARAM_UNITSTATUS_Initialising, "Initializing" },
185 { TWE_PARAM_UNITSTATUS_Degraded, "Degraded" },
186 { TWE_PARAM_UNITSTATUS_Rebuilding, "Rebuilding" },
187 { TWE_PARAM_UNITSTATUS_Verifying, "Verifying" },
188 { TWE_PARAM_UNITSTATUS_Corrupt, "Corrupt" },
189 { TWE_PARAM_UNITSTATUS_Missing, "Missing" },
190
191 { 0, NULL }
192 };
193
194 const struct twe_code_table twe_table_unittype[] = {
195 /* array descriptor configuration */
196 { TWE_AD_CONFIG_RAID0, "RAID0" },
197 { TWE_AD_CONFIG_RAID1, "RAID1" },
198 { TWE_AD_CONFIG_TwinStor, "TwinStor" },
199 { TWE_AD_CONFIG_RAID5, "RAID5" },
200 { TWE_AD_CONFIG_RAID10, "RAID10" },
201 { TWE_UD_CONFIG_JBOD, "JBOD" },
202
203 { 0, NULL }
204 };
205
206 const struct twe_code_table twe_table_stripedepth[] = {
207 { TWE_AD_STRIPE_4k, "4K" },
208 { TWE_AD_STRIPE_8k, "8K" },
209 { TWE_AD_STRIPE_16k, "16K" },
210 { TWE_AD_STRIPE_32k, "32K" },
211 { TWE_AD_STRIPE_64k, "64K" },
212 { TWE_AD_STRIPE_128k, "128K" },
213 { TWE_AD_STRIPE_256k, "256K" },
214 { TWE_AD_STRIPE_512k, "512K" },
215 { TWE_AD_STRIPE_1024k, "1024K" },
216
217 { 0, NULL }
218 };
219
220 /*
221 * Asynchronous event notification messages are qualified:
222 * a - not unit/port specific
223 * u - unit specific
224 * p - port specific
225 *
226 * They are further qualified with a severity:
227 * E - LOG_EMERG
228 * a - LOG_ALERT
229 * c - LOG_CRIT
230 * e - LOG_ERR
231 * w - LOG_WARNING
232 * n - LOG_NOTICE
233 * i - LOG_INFO
234 * d - LOG_DEBUG
235 * blank - just use printf
236 */
237 const struct twe_code_table twe_table_aen[] = {
238 { 0x00, "a queue empty" },
239 { 0x01, "a soft reset" },
240 { 0x02, "uc degraded mode" },
241 { 0x03, "aa controller error" },
242 { 0x04, "uE rebuild fail" },
243 { 0x05, "un rebuild done" },
244 { 0x06, "ue incomplete unit" },
245 { 0x07, "un initialization done" },
246 { 0x08, "uw unclean shutdown detected" },
247 { 0x09, "pe drive timeout" },
248 { 0x0a, "pc drive error" },
249 { 0x0b, "un rebuild started" },
250 { 0x0c, "un initialization started" },
251 { 0x0d, "ui logical unit deleted" },
252 { 0x0f, "pc SMART threshold exceeded" },
253 { 0x15, "a table undefined" }, /* XXX: Not in FreeBSD's table */
254 { 0x21, "pe ATA UDMA downgrade" },
255 { 0x22, "pi ATA UDMA upgrade" },
256 { 0x23, "pw sector repair occurred" },
257 { 0x24, "aa SBUF integrity check failure" },
258 { 0x25, "pa lost cached write" },
259 { 0x26, "pa drive ECC error detected" },
260 { 0x27, "pe DCB checksum error" },
261 { 0x28, "pn DCB unsupported version" },
262 { 0x29, "ui verify started" },
263 { 0x2a, "ua verify failed" },
264 { 0x2b, "ui verify complete" },
265 { 0x2c, "pw overwrote bad sector during rebuild" },
266 { 0x2d, "pa encountered bad sector during rebuild" },
267 { 0x2e, "pe replacement drive too small" },
268 { 0x2f, "ue array not previously initialized" },
269 { 0x30, "p drive not supported" },
270 { 0xff, "a aen queue full" },
271
272 { 0, NULL },
273 };
274
275 const char *
276 twe_describe_code(const struct twe_code_table *table, uint32_t code)
277 {
278
279 for (; table->string != NULL; table++) {
280 if (table->code == code)
281 return (table->string);
282 }
283 return (NULL);
284 }
285
286 static inline u_int32_t
287 twe_inl(struct twe_softc *sc, int off)
288 {
289
290 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
291 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
292 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
293 }
294
295 static inline void
296 twe_outl(struct twe_softc *sc, int off, u_int32_t val)
297 {
298
299 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
300 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
301 BUS_SPACE_BARRIER_WRITE);
302 }
303
304 /*
305 * Match a supported board.
306 */
307 static int
308 twe_match(struct device *parent, struct cfdata *cfdata, void *aux)
309 {
310 struct pci_attach_args *pa;
311
312 pa = aux;
313
314 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
315 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
316 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
317 }
318
319 /*
320 * Attach a supported board.
321 *
322 * XXX This doesn't fail gracefully.
323 */
324 static void
325 twe_attach(struct device *parent, struct device *self, void *aux)
326 {
327 struct pci_attach_args *pa;
328 struct twe_softc *sc;
329 pci_chipset_tag_t pc;
330 pci_intr_handle_t ih;
331 pcireg_t csr;
332 const char *intrstr;
333 int s, size, i, rv, rseg;
334 size_t max_segs, max_xfer;
335 bus_dma_segment_t seg;
336 struct ctlname ctlnames[] = CTL_NAMES;
337 struct sysctlnode *node;
338 struct twe_cmd *tc;
339 struct twe_ccb *ccb;
340
341 sc = (struct twe_softc *)self;
342 pa = aux;
343 pc = pa->pa_pc;
344 sc->sc_dmat = pa->pa_dmat;
345 SIMPLEQ_INIT(&sc->sc_ccb_queue);
346 SLIST_INIT(&sc->sc_ccb_freelist);
347
348 aprint_naive(": RAID controller\n");
349 aprint_normal(": 3ware Escalade\n");
350
351 ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT);
352 if (ccb == NULL) {
353 aprint_error("%s: unable to allocate memory for ccbs\n",
354 sc->sc_dv.dv_xname);
355 return;
356 }
357
358 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
359 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
360 aprint_error("%s: can't map i/o space\n", sc->sc_dv.dv_xname);
361 return;
362 }
363
364 /* Enable the device. */
365 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
366 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
367 csr | PCI_COMMAND_MASTER_ENABLE);
368
369 /* Map and establish the interrupt. */
370 if (pci_intr_map(pa, &ih)) {
371 aprint_error("%s: can't map interrupt\n", sc->sc_dv.dv_xname);
372 return;
373 }
374
375 intrstr = pci_intr_string(pc, ih);
376 sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc);
377 if (sc->sc_ih == NULL) {
378 aprint_error("%s: can't establish interrupt%s%s\n",
379 sc->sc_dv.dv_xname,
380 (intrstr) ? " at " : "",
381 (intrstr) ? intrstr : "");
382 return;
383 }
384
385 if (intrstr != NULL)
386 aprint_normal("%s: interrupting at %s\n",
387 sc->sc_dv.dv_xname, intrstr);
388
389 /*
390 * Allocate and initialise the command blocks and CCBs.
391 */
392 size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
393
394 if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
395 &rseg, BUS_DMA_NOWAIT)) != 0) {
396 aprint_error("%s: unable to allocate commands, rv = %d\n",
397 sc->sc_dv.dv_xname, rv);
398 return;
399 }
400
401 if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
402 (caddr_t *)&sc->sc_cmds,
403 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
404 aprint_error("%s: unable to map commands, rv = %d\n",
405 sc->sc_dv.dv_xname, rv);
406 return;
407 }
408
409 if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
410 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
411 aprint_error("%s: unable to create command DMA map, rv = %d\n",
412 sc->sc_dv.dv_xname, rv);
413 return;
414 }
415
416 if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
417 size, NULL, BUS_DMA_NOWAIT)) != 0) {
418 aprint_error("%s: unable to load command DMA map, rv = %d\n",
419 sc->sc_dv.dv_xname, rv);
420 return;
421 }
422
423 sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
424 memset(sc->sc_cmds, 0, size);
425
426 sc->sc_ccbs = ccb;
427 tc = (struct twe_cmd *)sc->sc_cmds;
428 max_segs = twe_get_maxsegs();
429 max_xfer = twe_get_maxxfer(max_segs);
430
431 for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
432 ccb->ccb_cmd = tc;
433 ccb->ccb_cmdid = i;
434 ccb->ccb_flags = 0;
435 rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
436 max_segs, PAGE_SIZE, 0,
437 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
438 &ccb->ccb_dmamap_xfer);
439 if (rv != 0) {
440 aprint_error("%s: can't create dmamap, rv = %d\n",
441 sc->sc_dv.dv_xname, rv);
442 return;
443 }
444
445 /* Save the first CCB for AEN retrieval. */
446 if (i != 0)
447 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
448 ccb_chain.slist);
449 }
450
451 /* Wait for the controller to become ready. */
452 if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
453 aprint_error("%s: microcontroller not ready\n",
454 sc->sc_dv.dv_xname);
455 return;
456 }
457
458 twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
459
460 /* Reset the controller. */
461 s = splbio();
462 rv = twe_reset(sc);
463 splx(s);
464 if (rv) {
465 aprint_error("%s: reset failed\n", sc->sc_dv.dv_xname);
466 return;
467 }
468
469 /* Initialise connection with controller. */
470 twe_init_connection(sc);
471
472 twe_describe_controller(sc);
473
474 /* Find and attach RAID array units. */
475 sc->sc_nunits = 0;
476 for (i = 0; i < TWE_MAX_UNITS; i++)
477 (void) twe_add_unit(sc, i);
478
479 /* ...and finally, enable interrupts. */
480 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
481 TWE_CTL_UNMASK_RESP_INTR |
482 TWE_CTL_ENABLE_INTRS);
483
484 /* sysctl set-up for 3ware cli */
485 if (sysctl_createv(NULL, 0, NULL, NULL,
486 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw",
487 NULL, NULL, 0, NULL, 0,
488 CTL_HW, CTL_EOL) != 0) {
489 printf("%s: could not create %s sysctl node\n",
490 sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name);
491 return;
492 }
493 if (sysctl_createv(NULL, 0, NULL, &node,
494 0, CTLTYPE_NODE, sc->sc_dv.dv_xname,
495 SYSCTL_DESCR("twe driver information"),
496 NULL, 0, NULL, 0,
497 CTL_HW, CTL_CREATE, CTL_EOL) != 0) {
498 printf("%s: could not create %s.%s sysctl node\n",
499 sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name,
500 sc->sc_dv.dv_xname);
501 return;
502 }
503 if ((i = sysctl_createv(NULL, 0, NULL, NULL,
504 0, CTLTYPE_STRING, "driver_version",
505 SYSCTL_DESCR("twe0 driver version"),
506 NULL, 0, &twever, 0,
507 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL))
508 != 0) {
509 printf("%s: could not create %s.%s.driver_version sysctl\n",
510 sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name,
511 sc->sc_dv.dv_xname);
512 return;
513 }
514 }
515
516 void
517 twe_register_callbacks(struct twe_softc *sc, int unit,
518 const struct twe_callbacks *tcb)
519 {
520
521 sc->sc_units[unit].td_callbacks = tcb;
522 }
523
524 static void
525 twe_recompute_openings(struct twe_softc *sc)
526 {
527 struct twe_drive *td;
528 int unit, openings;
529
530 if (sc->sc_nunits != 0)
531 openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits;
532 else
533 openings = 0;
534 if (openings == sc->sc_openings)
535 return;
536 sc->sc_openings = openings;
537
538 #ifdef TWE_DEBUG
539 printf("%s: %d array%s, %d openings per array\n",
540 sc->sc_dv.dv_xname, sc->sc_nunits,
541 sc->sc_nunits == 1 ? "" : "s", sc->sc_openings);
542 #endif
543
544 for (unit = 0; unit < TWE_MAX_UNITS; unit++) {
545 td = &sc->sc_units[unit];
546 if (td->td_dev != NULL)
547 (*td->td_callbacks->tcb_openings)(td->td_dev,
548 sc->sc_openings);
549 }
550 }
551
552 static int
553 twe_add_unit(struct twe_softc *sc, int unit)
554 {
555 struct twe_param *dtp, *atp;
556 struct twe_array_descriptor *ad;
557 struct twe_drive *td;
558 struct twe_attach_args twea;
559 uint32_t newsize;
560 int rv;
561 uint16_t dsize;
562 uint8_t newtype, newstripe;
563 int help[2];
564 locdesc_t *ldesc = (void *)help; /* XXX */
565
566 if (unit < 0 || unit >= TWE_MAX_UNITS)
567 return (EINVAL);
568
569 /* Find attached units. */
570 rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
571 TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
572 if (rv != 0) {
573 aprint_error("%s: error %d fetching unit summary\n",
574 sc->sc_dv.dv_xname, rv);
575 return (rv);
576 }
577
578 /* For each detected unit, collect size and store in an array. */
579 td = &sc->sc_units[unit];
580
581 /* Unit present? */
582 if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) {
583 /*
584 * XXX Should we check to see if a device has been
585 * XXX attached at this index and detach it if it
586 * XXX has? ("rescan" semantics)
587 */
588 rv = 0;
589 goto out;
590 }
591
592 rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit,
593 TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
594 if (rv != 0) {
595 aprint_error("%s: error %d fetching descriptor size "
596 "for unit %d\n", sc->sc_dv.dv_xname, rv, unit);
597 goto out;
598 }
599
600 rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit,
601 TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
602 if (rv != 0) {
603 aprint_error("%s: error %d fetching array descriptor "
604 "for unit %d\n", sc->sc_dv.dv_xname, rv, unit);
605 goto out;
606 }
607
608 ad = (struct twe_array_descriptor *)atp->tp_data;
609 newtype = ad->configuration;
610 newstripe = ad->stripe_size;
611 free(atp, M_DEVBUF);
612
613 rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit,
614 TWE_PARAM_UNITINFO_Capacity, &newsize);
615 if (rv != 0) {
616 aprint_error(
617 "%s: error %d fetching capacity for unit %d\n",
618 sc->sc_dv.dv_xname, rv, unit);
619 goto out;
620 }
621
622 /*
623 * Have a device, so we need to attach it. If there is currently
624 * something sitting at the slot, and the parameters are different,
625 * then we detach the old device before attaching the new one.
626 */
627 if (td->td_dev != NULL &&
628 td->td_size == newsize &&
629 td->td_type == newtype &&
630 td->td_stripe == newstripe) {
631 /* Same as the old device; just keep using it. */
632 rv = 0;
633 goto out;
634 } else if (td->td_dev != NULL) {
635 /* Detach the old device first. */
636 (void) config_detach(td->td_dev, DETACH_FORCE);
637 td->td_dev = NULL;
638 } else if (td->td_size == 0)
639 sc->sc_nunits++;
640
641 /*
642 * Committed to the new array unit; assign its parameters and
643 * recompute the number of available command openings.
644 */
645 td->td_size = newsize;
646 td->td_type = newtype;
647 td->td_stripe = newstripe;
648 twe_recompute_openings(sc);
649
650 twea.twea_unit = unit;
651
652 ldesc->len = 1;
653 ldesc->locs[TWECF_UNIT] = unit;
654
655 td->td_dev = config_found_sm_loc(&sc->sc_dv, "twe", NULL, &twea,
656 twe_print, twe_submatch);
657
658 rv = 0;
659 out:
660 free(dtp, M_DEVBUF);
661 return (rv);
662 }
663
664 static int
665 twe_del_unit(struct twe_softc *sc, int unit)
666 {
667 struct twe_drive *td;
668
669 if (unit < 0 || unit >= TWE_MAX_UNITS)
670 return (EINVAL);
671
672 td = &sc->sc_units[unit];
673 if (td->td_size != 0)
674 sc->sc_nunits--;
675 td->td_size = 0;
676 td->td_type = 0;
677 td->td_stripe = 0;
678 if (td->td_dev != NULL) {
679 (void) config_detach(td->td_dev, DETACH_FORCE);
680 td->td_dev = NULL;
681 }
682 twe_recompute_openings(sc);
683 return (0);
684 }
685
686 /*
687 * Reset the controller.
688 * MUST BE CALLED AT splbio()!
689 */
690 static int
691 twe_reset(struct twe_softc *sc)
692 {
693 uint16_t aen;
694 u_int status;
695 volatile u_int32_t junk;
696 int got, rv;
697
698 /* Issue a soft reset. */
699 twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
700 TWE_CTL_CLEAR_HOST_INTR |
701 TWE_CTL_CLEAR_ATTN_INTR |
702 TWE_CTL_MASK_CMD_INTR |
703 TWE_CTL_MASK_RESP_INTR |
704 TWE_CTL_CLEAR_ERROR_STS |
705 TWE_CTL_DISABLE_INTRS);
706
707 /* Wait for attention... */
708 if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) {
709 printf("%s: timeout waiting for attention interrupt\n",
710 sc->sc_dv.dv_xname);
711 return (-1);
712 }
713
714 /* ...and ACK it. */
715 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
716
717 /*
718 * Pull AENs out of the controller; look for a soft reset AEN.
719 * Open code this, since we want to detect reset even if the
720 * queue for management tools is full.
721 *
722 * Note that since:
723 * - interrupts are blocked
724 * - we have reset the controller
725 * - acknowledged the pending ATTENTION
726 * that there is no way a pending asynchronous AEN fetch would
727 * finish, so clear the flag.
728 */
729 sc->sc_flags &= ~TWEF_AEN;
730 for (got = 0;;) {
731 rv = twe_aen_get(sc, &aen);
732 if (rv != 0)
733 printf("%s: error %d while draining event queue\n",
734 sc->sc_dv.dv_xname, rv);
735 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
736 break;
737 if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
738 got = 1;
739 twe_aen_enqueue(sc, aen, 1);
740 }
741
742 if (!got) {
743 printf("%s: reset not reported\n", sc->sc_dv.dv_xname);
744 return (-1);
745 }
746
747 /* Check controller status. */
748 status = twe_inl(sc, TWE_REG_STS);
749 if (twe_status_check(sc, status)) {
750 printf("%s: controller errors detected\n",
751 sc->sc_dv.dv_xname);
752 return (-1);
753 }
754
755 /* Drain the response queue. */
756 for (;;) {
757 status = twe_inl(sc, TWE_REG_STS);
758 if (twe_status_check(sc, status) != 0) {
759 printf("%s: can't drain response queue\n",
760 sc->sc_dv.dv_xname);
761 return (-1);
762 }
763 if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
764 break;
765 junk = twe_inl(sc, TWE_REG_RESP_QUEUE);
766 }
767
768 return (0);
769 }
770
771 /*
772 * Print autoconfiguration message for a sub-device.
773 */
774 static int
775 twe_print(void *aux, const char *pnp)
776 {
777 struct twe_attach_args *twea;
778
779 twea = aux;
780
781 if (pnp != NULL)
782 aprint_normal("block device at %s", pnp);
783 aprint_normal(" unit %d", twea->twea_unit);
784 return (UNCONF);
785 }
786
787 /*
788 * Match a sub-device.
789 */
790 static int
791 twe_submatch(struct device *parent, struct cfdata *cf,
792 const locdesc_t *ldesc, void *aux)
793 {
794
795 if (cf->cf_loc[TWECF_UNIT] != TWECF_UNIT_DEFAULT &&
796 cf->cf_loc[TWECF_UNIT] != ldesc->locs[TWECF_UNIT])
797 return (0);
798
799 return (config_match(parent, cf, aux));
800 }
801
802 /*
803 * Interrupt service routine.
804 */
805 static int
806 twe_intr(void *arg)
807 {
808 struct twe_softc *sc;
809 u_int status;
810 int caught, rv;
811
812 sc = arg;
813 caught = 0;
814 status = twe_inl(sc, TWE_REG_STS);
815 twe_status_check(sc, status);
816
817 /* Host interrupts - purpose unknown. */
818 if ((status & TWE_STS_HOST_INTR) != 0) {
819 #ifdef DEBUG
820 printf("%s: host interrupt\n", sc->sc_dv.dv_xname);
821 #endif
822 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
823 caught = 1;
824 }
825
826 /*
827 * Attention interrupts, signalled when a controller or child device
828 * state change has occurred.
829 */
830 if ((status & TWE_STS_ATTN_INTR) != 0) {
831 rv = twe_aen_get(sc, NULL);
832 if (rv != 0)
833 printf("%s: unable to retrieve AEN (%d)\n",
834 sc->sc_dv.dv_xname, rv);
835 else
836 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
837 caught = 1;
838 }
839
840 /*
841 * Command interrupts, signalled when the controller can accept more
842 * commands. We don't use this; instead, we try to submit commands
843 * when we receive them, and when other commands have completed.
844 * Mask it so we don't get another one.
845 */
846 if ((status & TWE_STS_CMD_INTR) != 0) {
847 #ifdef DEBUG
848 printf("%s: command interrupt\n", sc->sc_dv.dv_xname);
849 #endif
850 twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
851 caught = 1;
852 }
853
854 if ((status & TWE_STS_RESP_INTR) != 0) {
855 twe_poll(sc);
856 caught = 1;
857 }
858
859 return (caught);
860 }
861
862 /*
863 * Fetch an AEN. Even though this is really like parameter
864 * retrieval, we handle this specially, because we issue this
865 * AEN retrieval command from interrupt context, and thus
866 * reserve a CCB for it to avoid resource shortage.
867 *
868 * XXX There are still potential resource shortages we could
869 * XXX encounter. Consider pre-allocating all AEN-related
870 * XXX resources.
871 *
872 * MUST BE CALLED AT splbio()!
873 */
874 static int
875 twe_aen_get(struct twe_softc *sc, uint16_t *aenp)
876 {
877 struct twe_ccb *ccb;
878 struct twe_cmd *tc;
879 struct twe_param *tp;
880 int rv;
881
882 /*
883 * If we're already retrieving an AEN, just wait; another
884 * retrieval will be chained after the current one completes.
885 */
886 if (sc->sc_flags & TWEF_AEN) {
887 /*
888 * It is a fatal software programming error to attempt
889 * to fetch an AEN synchronously when an AEN fetch is
890 * already pending.
891 */
892 KASSERT(aenp == NULL);
893 return (0);
894 }
895
896 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
897 if (tp == NULL)
898 return (ENOMEM);
899
900 ccb = twe_ccb_alloc(sc,
901 TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
902 KASSERT(ccb != NULL);
903
904 ccb->ccb_data = tp;
905 ccb->ccb_datasize = TWE_SECTOR_SIZE;
906 ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL;
907 ccb->ccb_tx.tx_context = tp;
908 ccb->ccb_tx.tx_dv = &sc->sc_dv;
909
910 tc = ccb->ccb_cmd;
911 tc->tc_size = 2;
912 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
913 tc->tc_unit = 0;
914 tc->tc_count = htole16(1);
915
916 /* Fill in the outbound parameter data. */
917 tp->tp_table_id = htole16(TWE_PARAM_AEN);
918 tp->tp_param_id = TWE_PARAM_AEN_UnitCode;
919 tp->tp_param_size = 2;
920
921 /* Map the transfer. */
922 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
923 twe_ccb_free(sc, ccb);
924 goto done;
925 }
926
927 /* Enqueue the command and wait. */
928 if (aenp != NULL) {
929 rv = twe_ccb_poll(sc, ccb, 5);
930 twe_ccb_unmap(sc, ccb);
931 twe_ccb_free(sc, ccb);
932 if (rv == 0)
933 *aenp = le16toh(*(uint16_t *)tp->tp_data);
934 free(tp, M_DEVBUF);
935 } else {
936 sc->sc_flags |= TWEF_AEN;
937 twe_ccb_enqueue(sc, ccb);
938 rv = 0;
939 }
940
941 done:
942 return (rv);
943 }
944
945 /*
946 * Handle an AEN returned by the controller.
947 * MUST BE CALLED AT splbio()!
948 */
949 static void
950 twe_aen_handler(struct twe_ccb *ccb, int error)
951 {
952 struct twe_softc *sc;
953 struct twe_param *tp;
954 uint16_t aen;
955 int rv;
956
957 sc = (struct twe_softc *)ccb->ccb_tx.tx_dv;
958 tp = ccb->ccb_tx.tx_context;
959 twe_ccb_unmap(sc, ccb);
960
961 sc->sc_flags &= ~TWEF_AEN;
962
963 if (error) {
964 printf("%s: error retrieving AEN\n", sc->sc_dv.dv_xname);
965 aen = TWE_AEN_QUEUE_EMPTY;
966 } else
967 aen = le16toh(*(u_int16_t *)tp->tp_data);
968 free(tp, M_DEVBUF);
969 twe_ccb_free(sc, ccb);
970
971 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
972 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
973 return;
974 }
975
976 twe_aen_enqueue(sc, aen, 0);
977
978 /*
979 * Chain another retrieval in case interrupts have been
980 * coalesced.
981 */
982 rv = twe_aen_get(sc, NULL);
983 if (rv != 0)
984 printf("%s: unable to retrieve AEN (%d)\n",
985 sc->sc_dv.dv_xname, rv);
986 }
987
988 static void
989 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet)
990 {
991 const char *str, *msg;
992 int s, next, nextnext, level;
993
994 /*
995 * First report the AEN on the console. Maybe.
996 */
997 if (! quiet) {
998 str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen));
999 if (str == NULL) {
1000 printf("%s: unknown AEN 0x%04x\n",
1001 sc->sc_dv.dv_xname, aen);
1002 } else {
1003 msg = str + 3;
1004 switch (str[1]) {
1005 case 'E': level = LOG_EMERG; break;
1006 case 'a': level = LOG_ALERT; break;
1007 case 'c': level = LOG_CRIT; break;
1008 case 'e': level = LOG_ERR; break;
1009 case 'w': level = LOG_WARNING; break;
1010 case 'n': level = LOG_NOTICE; break;
1011 case 'i': level = LOG_INFO; break;
1012 case 'd': level = LOG_DEBUG; break;
1013 default:
1014 /* Don't use syslog. */
1015 level = -1;
1016 }
1017
1018 if (level < 0) {
1019 switch (str[0]) {
1020 case 'u':
1021 case 'p':
1022 printf("%s: %s %d: %s\n",
1023 sc->sc_dv.dv_xname,
1024 str[0] == 'u' ? "unit" : "port",
1025 TWE_AEN_UNIT(aen), msg);
1026 break;
1027
1028 default:
1029 printf("%s: %s\n",
1030 sc->sc_dv.dv_xname, msg);
1031 }
1032 } else {
1033 switch (str[0]) {
1034 case 'u':
1035 case 'p':
1036 log(level, "%s: %s %d: %s\n",
1037 sc->sc_dv.dv_xname,
1038 str[0] == 'u' ? "unit" : "port",
1039 TWE_AEN_UNIT(aen), msg);
1040 break;
1041
1042 default:
1043 log(level, "%s: %s\n",
1044 sc->sc_dv.dv_xname, msg);
1045 }
1046 }
1047 }
1048 }
1049
1050 /* Now enqueue the AEN for mangement tools. */
1051 s = splbio();
1052
1053 next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH;
1054 nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH;
1055
1056 /*
1057 * If this is the last free slot, then queue up a "queue
1058 * full" message.
1059 */
1060 if (nextnext == sc->sc_aen_tail)
1061 aen = TWE_AEN_QUEUE_FULL;
1062
1063 if (next != sc->sc_aen_tail) {
1064 sc->sc_aen_queue[sc->sc_aen_head] = aen;
1065 sc->sc_aen_head = next;
1066 }
1067
1068 if (sc->sc_flags & TWEF_AENQ_WAIT) {
1069 sc->sc_flags &= ~TWEF_AENQ_WAIT;
1070 wakeup(&sc->sc_aen_queue);
1071 }
1072
1073 splx(s);
1074 }
1075
1076 /* NOTE: Must be called at splbio(). */
1077 static uint16_t
1078 twe_aen_dequeue(struct twe_softc *sc)
1079 {
1080 uint16_t aen;
1081
1082 if (sc->sc_aen_tail == sc->sc_aen_head)
1083 aen = TWE_AEN_QUEUE_EMPTY;
1084 else {
1085 aen = sc->sc_aen_queue[sc->sc_aen_tail];
1086 sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH;
1087 }
1088
1089 return (aen);
1090 }
1091
1092 /*
1093 * These are short-hand functions that execute TWE_OP_GET_PARAM to
1094 * fetch 1, 2, and 4 byte parameter values, respectively.
1095 */
1096 int
1097 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
1098 uint8_t *valp)
1099 {
1100 struct twe_param *tp;
1101 int rv;
1102
1103 rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
1104 if (rv != 0)
1105 return (rv);
1106 *valp = *(uint8_t *)tp->tp_data;
1107 free(tp, M_DEVBUF);
1108 return (0);
1109 }
1110
1111 int
1112 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
1113 uint16_t *valp)
1114 {
1115 struct twe_param *tp;
1116 int rv;
1117
1118 rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
1119 if (rv != 0)
1120 return (rv);
1121 *valp = le16toh(*(uint16_t *)tp->tp_data);
1122 free(tp, M_DEVBUF);
1123 return (0);
1124 }
1125
1126 int
1127 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
1128 uint32_t *valp)
1129 {
1130 struct twe_param *tp;
1131 int rv;
1132
1133 rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
1134 if (rv != 0)
1135 return (rv);
1136 *valp = le32toh(*(uint32_t *)tp->tp_data);
1137 free(tp, M_DEVBUF);
1138 return (0);
1139 }
1140
1141 /*
1142 * Execute a TWE_OP_GET_PARAM command. If a callback function is provided,
1143 * it will be called with generated context when the command has completed.
1144 * If no callback is provided, the command will be executed synchronously
1145 * and a pointer to a buffer containing the data returned.
1146 *
1147 * The caller or callback is responsible for freeing the buffer.
1148 *
1149 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1150 */
1151 int
1152 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
1153 void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
1154 {
1155 struct twe_ccb *ccb;
1156 struct twe_cmd *tc;
1157 struct twe_param *tp;
1158 int rv, s;
1159
1160 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1161 if (tp == NULL)
1162 return ENOMEM;
1163
1164 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1165 KASSERT(ccb != NULL);
1166
1167 ccb->ccb_data = tp;
1168 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1169 ccb->ccb_tx.tx_handler = func;
1170 ccb->ccb_tx.tx_context = tp;
1171 ccb->ccb_tx.tx_dv = &sc->sc_dv;
1172
1173 tc = ccb->ccb_cmd;
1174 tc->tc_size = 2;
1175 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
1176 tc->tc_unit = 0;
1177 tc->tc_count = htole16(1);
1178
1179 /* Fill in the outbound parameter data. */
1180 tp->tp_table_id = htole16(table_id);
1181 tp->tp_param_id = param_id;
1182 tp->tp_param_size = size;
1183
1184 /* Map the transfer. */
1185 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1186 twe_ccb_free(sc, ccb);
1187 goto done;
1188 }
1189
1190 /* Submit the command and either wait or let the callback handle it. */
1191 if (func == NULL) {
1192 s = splbio();
1193 rv = twe_ccb_poll(sc, ccb, 5);
1194 twe_ccb_unmap(sc, ccb);
1195 twe_ccb_free(sc, ccb);
1196 splx(s);
1197 } else {
1198 #ifdef DEBUG
1199 if (pbuf != NULL)
1200 panic("both func and pbuf defined");
1201 #endif
1202 twe_ccb_enqueue(sc, ccb);
1203 return 0;
1204 }
1205
1206 done:
1207 if (pbuf == NULL || rv != 0)
1208 free(tp, M_DEVBUF);
1209 else if (pbuf != NULL && rv == 0)
1210 *pbuf = tp;
1211 return rv;
1212 }
1213
1214 /*
1215 * Execute a TWE_OP_SET_PARAM command.
1216 *
1217 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1218 */
1219 static int
1220 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
1221 void *sbuf)
1222 {
1223 struct twe_ccb *ccb;
1224 struct twe_cmd *tc;
1225 struct twe_param *tp;
1226 int rv, s;
1227
1228 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1229 if (tp == NULL)
1230 return ENOMEM;
1231
1232 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1233 KASSERT(ccb != NULL);
1234
1235 ccb->ccb_data = tp;
1236 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1237 ccb->ccb_tx.tx_handler = 0;
1238 ccb->ccb_tx.tx_context = tp;
1239 ccb->ccb_tx.tx_dv = &sc->sc_dv;
1240
1241 tc = ccb->ccb_cmd;
1242 tc->tc_size = 2;
1243 tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
1244 tc->tc_unit = 0;
1245 tc->tc_count = htole16(1);
1246
1247 /* Fill in the outbound parameter data. */
1248 tp->tp_table_id = htole16(table_id);
1249 tp->tp_param_id = param_id;
1250 tp->tp_param_size = size;
1251 memcpy(tp->tp_data, sbuf, size);
1252
1253 /* Map the transfer. */
1254 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1255 twe_ccb_free(sc, ccb);
1256 goto done;
1257 }
1258
1259 /* Submit the command and wait. */
1260 s = splbio();
1261 rv = twe_ccb_poll(sc, ccb, 5);
1262 twe_ccb_unmap(sc, ccb);
1263 twe_ccb_free(sc, ccb);
1264 splx(s);
1265 done:
1266 free(tp, M_DEVBUF);
1267 return (rv);
1268 }
1269
1270 /*
1271 * Execute a TWE_OP_INIT_CONNECTION command. Return non-zero on error.
1272 * Must be called with interrupts blocked.
1273 */
1274 static int
1275 twe_init_connection(struct twe_softc *sc)
1276 /*###762 [cc] warning: `twe_init_connection' was used with no prototype before its definition%%%*/
1277 /*###762 [cc] warning: `twe_init_connection' was declared implicitly `extern' and later `static'%%%*/
1278 {
1279 struct twe_ccb *ccb;
1280 struct twe_cmd *tc;
1281 int rv;
1282
1283 if ((ccb = twe_ccb_alloc(sc, 0)) == NULL)
1284 return (EAGAIN);
1285
1286 /* Build the command. */
1287 tc = ccb->ccb_cmd;
1288 tc->tc_size = 3;
1289 tc->tc_opcode = TWE_OP_INIT_CONNECTION;
1290 tc->tc_unit = 0;
1291 tc->tc_count = htole16(TWE_MAX_CMDS);
1292 tc->tc_args.init_connection.response_queue_pointer = 0;
1293
1294 /* Submit the command for immediate execution. */
1295 rv = twe_ccb_poll(sc, ccb, 5);
1296 twe_ccb_free(sc, ccb);
1297 return (rv);
1298 }
1299
1300 /*
1301 * Poll the controller for completed commands. Must be called with
1302 * interrupts blocked.
1303 */
1304 static void
1305 twe_poll(struct twe_softc *sc)
1306 {
1307 struct twe_ccb *ccb;
1308 int found;
1309 u_int status, cmdid;
1310
1311 found = 0;
1312
1313 for (;;) {
1314 status = twe_inl(sc, TWE_REG_STS);
1315 twe_status_check(sc, status);
1316
1317 if ((status & TWE_STS_RESP_QUEUE_EMPTY))
1318 break;
1319
1320 found = 1;
1321 cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
1322 cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
1323 if (cmdid >= TWE_MAX_QUEUECNT) {
1324 printf("%s: bad cmdid %d\n", sc->sc_dv.dv_xname, cmdid);
1325 continue;
1326 }
1327
1328 ccb = sc->sc_ccbs + cmdid;
1329 if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
1330 printf("%s: CCB for cmdid %d not active\n",
1331 sc->sc_dv.dv_xname, cmdid);
1332 continue;
1333 }
1334 ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
1335
1336 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1337 (caddr_t)ccb->ccb_cmd - sc->sc_cmds,
1338 sizeof(struct twe_cmd),
1339 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1340
1341 /* Pass notification to upper layers. */
1342 if (ccb->ccb_tx.tx_handler != NULL)
1343 (*ccb->ccb_tx.tx_handler)(ccb,
1344 ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
1345 }
1346
1347 /* If any commands have completed, run the software queue. */
1348 if (found)
1349 twe_ccb_enqueue(sc, NULL);
1350 }
1351
1352 /*
1353 * Wait for `status' to be set in the controller status register. Return
1354 * zero if found, non-zero if the operation timed out.
1355 */
1356 static int
1357 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
1358 {
1359
1360 for (timo *= 10; timo != 0; timo--) {
1361 if ((twe_inl(sc, TWE_REG_STS) & status) == status)
1362 break;
1363 delay(100000);
1364 }
1365
1366 return (timo == 0);
1367 }
1368
1369 /*
1370 * Clear a PCI parity error.
1371 */
1372 static void
1373 twe_clear_pci_parity_error(struct twe_softc *sc)
1374 {
1375 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PARITY_ERROR);
1376
1377 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
1378 }
1379
1380
1381 /*
1382 * Clear a PCI abort.
1383 */
1384 static void
1385 twe_clear_pci_abort(struct twe_softc *sc)
1386 {
1387 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT);
1388
1389 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
1390 }
1391
1392 /*
1393 * Complain if the status bits aren't what we expect.
1394 */
1395 static int
1396 twe_status_check(struct twe_softc *sc, u_int status)
1397 {
1398 int rv;
1399
1400 rv = 0;
1401
1402 if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
1403 printf("%s: missing status bits: 0x%08x\n", sc->sc_dv.dv_xname,
1404 status & ~TWE_STS_EXPECTED_BITS);
1405 rv = -1;
1406 }
1407
1408 if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
1409 printf("%s: unexpected status bits: 0x%08x\n",
1410 sc->sc_dv.dv_xname, status & TWE_STS_UNEXPECTED_BITS);
1411 rv = -1;
1412 if (status & TWE_STS_PCI_PARITY_ERROR) {
1413 printf("%s: PCI parity error: Reseat card, move card "
1414 "or buggy device present.\n",
1415 sc->sc_dv.dv_xname);
1416 twe_clear_pci_parity_error(sc);
1417 }
1418 if (status & TWE_STS_PCI_ABORT) {
1419 printf("%s: PCI abort, clearing.\n",
1420 sc->sc_dv.dv_xname);
1421 twe_clear_pci_abort(sc);
1422 }
1423 }
1424
1425 return (rv);
1426 }
1427
1428 /*
1429 * Allocate and initialise a CCB.
1430 */
1431 static __inline void
1432 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags)
1433 {
1434 struct twe_cmd *tc;
1435
1436 ccb->ccb_tx.tx_handler = NULL;
1437 ccb->ccb_flags = flags;
1438 tc = ccb->ccb_cmd;
1439 tc->tc_status = 0;
1440 tc->tc_flags = 0;
1441 tc->tc_cmdid = ccb->ccb_cmdid;
1442 }
1443
1444 struct twe_ccb *
1445 twe_ccb_alloc(struct twe_softc *sc, int flags)
1446 {
1447 struct twe_ccb *ccb;
1448 int s;
1449
1450 s = splbio();
1451 if (__predict_false((flags & TWE_CCB_AEN) != 0)) {
1452 /* Use the reserved CCB. */
1453 ccb = sc->sc_ccbs;
1454 } else {
1455 /* Allocate a CCB and command block. */
1456 if (__predict_false((ccb =
1457 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1458 splx(s);
1459 return (NULL);
1460 }
1461 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1462 }
1463 #ifdef DIAGNOSTIC
1464 if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0)
1465 panic("twe_ccb_alloc: got reserved CCB for non-AEN");
1466 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1467 panic("twe_ccb_alloc: CCB %ld already allocated",
1468 (long)(ccb - sc->sc_ccbs));
1469 flags |= TWE_CCB_ALLOCED;
1470 #endif
1471 splx(s);
1472
1473 twe_ccb_init(sc, ccb, flags);
1474 return (ccb);
1475 }
1476
1477 struct twe_ccb *
1478 twe_ccb_alloc_wait(struct twe_softc *sc, int flags)
1479 {
1480 struct twe_ccb *ccb;
1481 int s;
1482
1483 KASSERT((flags & TWE_CCB_AEN) == 0);
1484
1485 s = splbio();
1486 while (__predict_false((ccb =
1487 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1488 sc->sc_flags |= TWEF_WAIT_CCB;
1489 (void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0);
1490 }
1491 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1492 #ifdef DIAGNOSTIC
1493 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1494 panic("twe_ccb_alloc_wait: CCB %ld already allocated",
1495 (long)(ccb - sc->sc_ccbs));
1496 flags |= TWE_CCB_ALLOCED;
1497 #endif
1498 splx(s);
1499
1500 twe_ccb_init(sc, ccb, flags);
1501 return (ccb);
1502 }
1503
1504 /*
1505 * Free a CCB.
1506 */
1507 void
1508 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
1509 {
1510 int s;
1511
1512 s = splbio();
1513 if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) {
1514 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
1515 if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) {
1516 sc->sc_flags &= ~TWEF_WAIT_CCB;
1517 wakeup(&sc->sc_ccb_freelist);
1518 }
1519 }
1520 ccb->ccb_flags = 0;
1521 splx(s);
1522 }
1523
1524 /*
1525 * Map the specified CCB's command block and data buffer (if any) into
1526 * controller visible space. Perform DMA synchronisation.
1527 */
1528 int
1529 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
1530 {
1531 struct twe_cmd *tc;
1532 int flags, nsegs, i, s, rv;
1533 void *data;
1534
1535 /*
1536 * The data as a whole must be 512-byte aligned.
1537 */
1538 if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
1539 s = splvm();
1540 /* XXX */
1541 ccb->ccb_abuf = uvm_km_alloc(kmem_map,
1542 ccb->ccb_datasize, 0, UVM_KMF_NOWAIT|UVM_KMF_WIRED);
1543 splx(s);
1544 data = (void *)ccb->ccb_abuf;
1545 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1546 memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
1547 } else {
1548 ccb->ccb_abuf = (vaddr_t)0;
1549 data = ccb->ccb_data;
1550 }
1551
1552 /*
1553 * Map the data buffer into bus space and build the S/G list.
1554 */
1555 rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
1556 ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1557 ((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
1558 BUS_DMA_READ : BUS_DMA_WRITE));
1559 if (rv != 0) {
1560 if (ccb->ccb_abuf != (vaddr_t)0) {
1561 s = splvm();
1562 /* XXX */
1563 uvm_km_free(kmem_map, ccb->ccb_abuf,
1564 ccb->ccb_datasize, UVM_KMF_WIRED);
1565 splx(s);
1566 }
1567 return (rv);
1568 }
1569
1570 nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
1571 tc = ccb->ccb_cmd;
1572 tc->tc_size += 2 * nsegs;
1573
1574 /* The location of the S/G list is dependant upon command type. */
1575 switch (tc->tc_opcode >> 5) {
1576 case 2:
1577 for (i = 0; i < nsegs; i++) {
1578 tc->tc_args.param.sgl[i].tsg_address =
1579 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1580 tc->tc_args.param.sgl[i].tsg_length =
1581 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1582 }
1583 /* XXX Needed? */
1584 for (; i < TWE_SG_SIZE; i++) {
1585 tc->tc_args.param.sgl[i].tsg_address = 0;
1586 tc->tc_args.param.sgl[i].tsg_length = 0;
1587 }
1588 break;
1589 case 3:
1590 for (i = 0; i < nsegs; i++) {
1591 tc->tc_args.io.sgl[i].tsg_address =
1592 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1593 tc->tc_args.io.sgl[i].tsg_length =
1594 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1595 }
1596 /* XXX Needed? */
1597 for (; i < TWE_SG_SIZE; i++) {
1598 tc->tc_args.io.sgl[i].tsg_address = 0;
1599 tc->tc_args.io.sgl[i].tsg_length = 0;
1600 }
1601 break;
1602 default:
1603 /*
1604 * In all likelihood, this is a command passed from
1605 * management tools in userspace where no S/G list is
1606 * necessary because no data is being passed.
1607 */
1608 break;
1609 }
1610
1611 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1612 flags = BUS_DMASYNC_PREREAD;
1613 else
1614 flags = 0;
1615 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1616 flags |= BUS_DMASYNC_PREWRITE;
1617
1618 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1619 ccb->ccb_datasize, flags);
1620 return (0);
1621 }
1622
1623 /*
1624 * Unmap the specified CCB's command block and data buffer (if any) and
1625 * perform DMA synchronisation.
1626 */
1627 void
1628 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
1629 {
1630 int flags, s;
1631
1632 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1633 flags = BUS_DMASYNC_POSTREAD;
1634 else
1635 flags = 0;
1636 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1637 flags |= BUS_DMASYNC_POSTWRITE;
1638
1639 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1640 ccb->ccb_datasize, flags);
1641 bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
1642
1643 if (ccb->ccb_abuf != (vaddr_t)0) {
1644 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1645 memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
1646 ccb->ccb_datasize);
1647 s = splvm();
1648 /* XXX */
1649 uvm_km_free(kmem_map, ccb->ccb_abuf, ccb->ccb_datasize,
1650 UVM_KMF_WIRED);
1651 splx(s);
1652 }
1653 }
1654
1655 /*
1656 * Submit a command to the controller and poll on completion. Return
1657 * non-zero on timeout (but don't check status, as some command types don't
1658 * return status). Must be called with interrupts blocked.
1659 */
1660 int
1661 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
1662 {
1663 int rv;
1664
1665 if ((rv = twe_ccb_submit(sc, ccb)) != 0)
1666 return (rv);
1667
1668 for (timo *= 1000; timo != 0; timo--) {
1669 twe_poll(sc);
1670 if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
1671 break;
1672 DELAY(100);
1673 }
1674
1675 return (timo == 0);
1676 }
1677
1678 /*
1679 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1680 * the order that they were enqueued and try to submit their command blocks
1681 * to the controller for execution.
1682 */
1683 void
1684 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
1685 {
1686 int s;
1687
1688 s = splbio();
1689
1690 if (ccb != NULL)
1691 SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
1692
1693 while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
1694 if (twe_ccb_submit(sc, ccb))
1695 break;
1696 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
1697 }
1698
1699 splx(s);
1700 }
1701
1702 /*
1703 * Submit the command block associated with the specified CCB to the
1704 * controller for execution. Must be called with interrupts blocked.
1705 */
1706 int
1707 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
1708 {
1709 bus_addr_t pa;
1710 int rv;
1711 u_int status;
1712
1713 /* Check to see if we can post a command. */
1714 status = twe_inl(sc, TWE_REG_STS);
1715 twe_status_check(sc, status);
1716
1717 if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
1718 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1719 (caddr_t)ccb->ccb_cmd - sc->sc_cmds, sizeof(struct twe_cmd),
1720 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1721 #ifdef DIAGNOSTIC
1722 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0)
1723 panic("%s: CCB %ld not ALLOCED\n",
1724 sc->sc_dv.dv_xname, (long)(ccb - sc->sc_ccbs));
1725 #endif
1726 ccb->ccb_flags |= TWE_CCB_ACTIVE;
1727 pa = sc->sc_cmds_paddr +
1728 ccb->ccb_cmdid * sizeof(struct twe_cmd);
1729 twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
1730 rv = 0;
1731 } else
1732 rv = EBUSY;
1733
1734 return (rv);
1735 }
1736
1737
1738 /*
1739 * Accept an open operation on the control device.
1740 */
1741 int
1742 tweopen(dev_t dev, int flag, int mode, struct proc *p)
1743 {
1744 struct twe_softc *twe;
1745
1746 if ((twe = device_lookup(&twe_cd, minor(dev))) == NULL)
1747 return (ENXIO);
1748 if ((twe->sc_flags & TWEF_OPEN) != 0)
1749 return (EBUSY);
1750
1751 twe->sc_flags |= TWEF_OPEN;
1752 return (0);
1753 }
1754
1755 /*
1756 * Accept the last close on the control device.
1757 */
1758 int
1759 tweclose(dev_t dev, int flag, int mode, struct proc *p)
1760 {
1761 struct twe_softc *twe;
1762
1763 twe = device_lookup(&twe_cd, minor(dev));
1764 twe->sc_flags &= ~TWEF_OPEN;
1765 return (0);
1766 }
1767
1768 void
1769 twe_ccb_wait_handler(struct twe_ccb *ccb, int error)
1770 {
1771
1772 /* Just wake up the sleeper. */
1773 wakeup(ccb);
1774 }
1775
1776 /*
1777 * Handle control operations.
1778 */
1779 int
1780 tweioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
1781 {
1782 struct twe_softc *twe;
1783 struct twe_ccb *ccb;
1784 struct twe_param *param;
1785 struct twe_usercommand *tu;
1786 struct twe_paramcommand *tp;
1787 struct twe_drivecommand *td;
1788 void *pdata = NULL;
1789 int s, error = 0;
1790 u_int8_t cmdid;
1791
1792 if (securelevel >= 2)
1793 return (EPERM);
1794
1795 twe = device_lookup(&twe_cd, minor(dev));
1796 tu = (struct twe_usercommand *)data;
1797 tp = (struct twe_paramcommand *)data;
1798 td = (struct twe_drivecommand *)data;
1799
1800 /* This is intended to be compatible with the FreeBSD interface. */
1801 switch (cmd) {
1802 case TWEIO_COMMAND:
1803 /* XXX mutex */
1804 if (tu->tu_size > 0) {
1805 /*
1806 * XXX Handle > TWE_SECTOR_SIZE? Let's see if
1807 * it's really necessary, first.
1808 */
1809 if (tu->tu_size > TWE_SECTOR_SIZE) {
1810 #ifdef TWE_DEBUG
1811 printf("%s: TWEIO_COMMAND: tu_size = %d\n",
1812 twe->sc_dv.dv_xname, tu->tu_size);
1813 #endif
1814 return EINVAL;
1815 }
1816 pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
1817 error = copyin(tu->tu_data, pdata, tu->tu_size);
1818 if (error != 0)
1819 goto done;
1820 ccb = twe_ccb_alloc_wait(twe,
1821 TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1822 KASSERT(ccb != NULL);
1823 ccb->ccb_data = pdata;
1824 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1825 } else {
1826 ccb = twe_ccb_alloc_wait(twe, 0);
1827 KASSERT(ccb != NULL);
1828 }
1829
1830 ccb->ccb_tx.tx_handler = twe_ccb_wait_handler;
1831 ccb->ccb_tx.tx_context = NULL;
1832 ccb->ccb_tx.tx_dv = &twe->sc_dv;
1833
1834 cmdid = ccb->ccb_cmdid;
1835 memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
1836 ccb->ccb_cmd->tc_cmdid = cmdid;
1837
1838 /* Map the transfer. */
1839 if ((error = twe_ccb_map(twe, ccb)) != 0) {
1840 twe_ccb_free(twe, ccb);
1841 goto done;
1842 }
1843
1844 /* Submit the command and wait up to 1 minute. */
1845 error = 0;
1846 twe_ccb_enqueue(twe, ccb);
1847 s = splbio();
1848 while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0)
1849 if ((error = tsleep(ccb, PRIBIO, "tweioctl",
1850 60 * hz)) != 0)
1851 break;
1852 splx(s);
1853
1854 /* Copy the command back to the ioctl argument. */
1855 memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd));
1856 #ifdef TWE_DEBUG
1857 printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, "
1858 "tc_status = 0x%02x\n", twe->sc_dv.dv_xname,
1859 tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status);
1860 #endif
1861
1862 s = splbio();
1863 twe_ccb_free(twe, ccb);
1864 splx(s);
1865
1866 if (tu->tu_size > 0)
1867 error = copyout(pdata, tu->tu_data, tu->tu_size);
1868 goto done;
1869
1870 case TWEIO_STATS:
1871 return (ENOENT);
1872
1873 case TWEIO_AEN_POLL:
1874 s = splbio();
1875 *(u_int *)data = twe_aen_dequeue(twe);
1876 splx(s);
1877 return (0);
1878
1879 case TWEIO_AEN_WAIT:
1880 s = splbio();
1881 while ((*(u_int *)data =
1882 twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) {
1883 twe->sc_flags |= TWEF_AENQ_WAIT;
1884 error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH,
1885 "tweaen", 0);
1886 if (error == EINTR) {
1887 splx(s);
1888 return (error);
1889 }
1890 }
1891 splx(s);
1892 return (0);
1893
1894 case TWEIO_GET_PARAM:
1895 error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
1896 tp->tp_size, 0, ¶m);
1897 if (error != 0)
1898 return (error);
1899 if (param->tp_param_size > tp->tp_size) {
1900 error = EFAULT;
1901 goto done;
1902 }
1903 error = copyout(param->tp_data, tp->tp_data,
1904 param->tp_param_size);
1905 goto done;
1906
1907 case TWEIO_SET_PARAM:
1908 pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
1909 if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
1910 goto done;
1911 error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
1912 tp->tp_size, pdata);
1913 goto done;
1914
1915 case TWEIO_RESET:
1916 s = splbio();
1917 twe_reset(twe);
1918 splx(s);
1919 return (0);
1920
1921 case TWEIO_ADD_UNIT:
1922 /* XXX mutex */
1923 return (twe_add_unit(twe, td->td_unit));
1924
1925 case TWEIO_DEL_UNIT:
1926 /* XXX mutex */
1927 return (twe_del_unit(twe, td->td_unit));
1928
1929 default:
1930 return EINVAL;
1931 }
1932 done:
1933 if (pdata)
1934 free(pdata, M_DEVBUF);
1935 return error;
1936 }
1937
1938 /*
1939 * Print some information about the controller
1940 */
1941 static void
1942 twe_describe_controller(struct twe_softc *sc)
1943 {
1944 struct twe_param *p[6];
1945 int i, rv = 0;
1946 uint32_t dsize;
1947 uint8_t ports;
1948
1949 /* get the port count */
1950 rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
1951 TWE_PARAM_CONTROLLER_PortCount, &ports);
1952
1953 /* get version strings */
1954 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
1955 16, NULL, &p[0]);
1956 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
1957 16, NULL, &p[1]);
1958 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
1959 16, NULL, &p[2]);
1960 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
1961 8, NULL, &p[3]);
1962 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
1963 8, NULL, &p[4]);
1964 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
1965 8, NULL, &p[5]);
1966
1967 if (rv) {
1968 /* some error occurred */
1969 aprint_error("%s: failed to fetch version information\n",
1970 sc->sc_dv.dv_xname);
1971 return;
1972 }
1973
1974 aprint_normal("%s: %d ports, Firmware %.16s, BIOS %.16s\n",
1975 sc->sc_dv.dv_xname, ports,
1976 p[1]->tp_data, p[2]->tp_data);
1977
1978 aprint_verbose("%s: Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
1979 sc->sc_dv.dv_xname,
1980 p[0]->tp_data, p[3]->tp_data,
1981 p[4]->tp_data, p[5]->tp_data);
1982
1983 free(p[0], M_DEVBUF);
1984 free(p[1], M_DEVBUF);
1985 free(p[2], M_DEVBUF);
1986 free(p[3], M_DEVBUF);
1987 free(p[4], M_DEVBUF);
1988 free(p[5], M_DEVBUF);
1989
1990 rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY,
1991 TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]);
1992 if (rv) {
1993 aprint_error("%s: failed to get drive status summary\n",
1994 sc->sc_dv.dv_xname);
1995 return;
1996 }
1997 for (i = 0; i < ports; i++) {
1998 if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present)
1999 continue;
2000 rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i,
2001 TWE_PARAM_DRIVEINFO_Size, &dsize);
2002 if (rv) {
2003 aprint_error(
2004 "%s: unable to get drive size for port %d\n",
2005 sc->sc_dv.dv_xname, i);
2006 continue;
2007 }
2008 rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i,
2009 TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]);
2010 if (rv) {
2011 aprint_error(
2012 "%s: unable to get drive model for port %d\n",
2013 sc->sc_dv.dv_xname, i);
2014 continue;
2015 }
2016 aprint_verbose("%s: port %d: %.40s %d MB\n", sc->sc_dv.dv_xname,
2017 i, p[1]->tp_data, dsize / 2048);
2018 free(p[1], M_DEVBUF);
2019 }
2020 free(p[0], M_DEVBUF);
2021 }
2022