twe.c revision 1.68 1 /* $NetBSD: twe.c,v 1.68 2005/06/28 00:28:42 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 2000 Michael Smith
41 * Copyright (c) 2000 BSDi
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
66 */
67
68 /*
69 * Driver for the 3ware Escalade family of RAID controllers.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.68 2005/06/28 00:28:42 thorpej Exp $");
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/device.h>
79 #include <sys/queue.h>
80 #include <sys/proc.h>
81 #include <sys/buf.h>
82 #include <sys/endian.h>
83 #include <sys/malloc.h>
84 #include <sys/conf.h>
85 #include <sys/disk.h>
86 #include <sys/sysctl.h>
87 #include <sys/syslog.h>
88
89 #include <uvm/uvm_extern.h>
90
91 #include <machine/bswap.h>
92 #include <machine/bus.h>
93
94 #include <dev/pci/pcireg.h>
95 #include <dev/pci/pcivar.h>
96 #include <dev/pci/pcidevs.h>
97 #include <dev/pci/twereg.h>
98 #include <dev/pci/twevar.h>
99 #include <dev/pci/tweio.h>
100
101 #include "locators.h"
102
103 #define PCI_CBIO 0x10
104
105 static int twe_aen_get(struct twe_softc *, uint16_t *);
106 static void twe_aen_handler(struct twe_ccb *, int);
107 static void twe_aen_enqueue(struct twe_softc *sc, uint16_t, int);
108 static uint16_t twe_aen_dequeue(struct twe_softc *);
109
110 static void twe_attach(struct device *, struct device *, void *);
111 static int twe_init_connection(struct twe_softc *);
112 static int twe_intr(void *);
113 static int twe_match(struct device *, struct cfdata *, void *);
114 static int twe_param_set(struct twe_softc *, int, int, size_t, void *);
115 static void twe_poll(struct twe_softc *);
116 static int twe_print(void *, const char *);
117 static int twe_reset(struct twe_softc *);
118 static int twe_submatch(struct device *, struct cfdata *,
119 const locdesc_t *, void *);
120 static int twe_status_check(struct twe_softc *, u_int);
121 static int twe_status_wait(struct twe_softc *, u_int, int);
122 static void twe_describe_controller(struct twe_softc *);
123 static void twe_clear_pci_abort(struct twe_softc *sc);
124 static void twe_clear_pci_parity_error(struct twe_softc *sc);
125
126 static int twe_add_unit(struct twe_softc *, int);
127 static int twe_del_unit(struct twe_softc *, int);
128
129 static inline u_int32_t twe_inl(struct twe_softc *, int);
130 static inline void twe_outl(struct twe_softc *, int, u_int32_t);
131
132 extern struct cfdriver twe_cd;
133
134 CFATTACH_DECL(twe, sizeof(struct twe_softc),
135 twe_match, twe_attach, NULL, NULL);
136
137 /* FreeBSD driver revision for sysctl expected by the 3ware cli */
138 const char twever[] = "1.50.01.002";
139
140 /*
141 * Tables to convert numeric codes to strings.
142 */
143 const struct twe_code_table twe_table_status[] = {
144 { 0x00, "successful completion" },
145
146 /* info */
147 { 0x42, "command in progress" },
148 { 0x6c, "retrying interface CRC error from UDMA command" },
149
150 /* warning */
151 { 0x81, "redundant/inconsequential request ignored" },
152 { 0x8e, "failed to write zeroes to LBA 0" },
153 { 0x8f, "failed to profile TwinStor zones" },
154
155 /* fatal */
156 { 0xc1, "aborted due to system command or reconfiguration" },
157 { 0xc4, "aborted" },
158 { 0xc5, "access error" },
159 { 0xc6, "access violation" },
160 { 0xc7, "device failure" }, /* high byte may be port # */
161 { 0xc8, "controller error" },
162 { 0xc9, "timed out" },
163 { 0xcb, "invalid unit number" },
164 { 0xcf, "unit not available" },
165 { 0xd2, "undefined opcode" },
166 { 0xdb, "request incompatible with unit" },
167 { 0xdc, "invalid request" },
168 { 0xff, "firmware error, reset requested" },
169
170 { 0, NULL }
171 };
172
173 const struct twe_code_table twe_table_unitstate[] = {
174 { TWE_PARAM_UNITSTATUS_Normal, "Normal" },
175 { TWE_PARAM_UNITSTATUS_Initialising, "Initializing" },
176 { TWE_PARAM_UNITSTATUS_Degraded, "Degraded" },
177 { TWE_PARAM_UNITSTATUS_Rebuilding, "Rebuilding" },
178 { TWE_PARAM_UNITSTATUS_Verifying, "Verifying" },
179 { TWE_PARAM_UNITSTATUS_Corrupt, "Corrupt" },
180 { TWE_PARAM_UNITSTATUS_Missing, "Missing" },
181
182 { 0, NULL }
183 };
184
185 const struct twe_code_table twe_table_unittype[] = {
186 /* array descriptor configuration */
187 { TWE_AD_CONFIG_RAID0, "RAID0" },
188 { TWE_AD_CONFIG_RAID1, "RAID1" },
189 { TWE_AD_CONFIG_TwinStor, "TwinStor" },
190 { TWE_AD_CONFIG_RAID5, "RAID5" },
191 { TWE_AD_CONFIG_RAID10, "RAID10" },
192 { TWE_UD_CONFIG_JBOD, "JBOD" },
193
194 { 0, NULL }
195 };
196
197 const struct twe_code_table twe_table_stripedepth[] = {
198 { TWE_AD_STRIPE_4k, "4K" },
199 { TWE_AD_STRIPE_8k, "8K" },
200 { TWE_AD_STRIPE_16k, "16K" },
201 { TWE_AD_STRIPE_32k, "32K" },
202 { TWE_AD_STRIPE_64k, "64K" },
203 { TWE_AD_STRIPE_128k, "128K" },
204 { TWE_AD_STRIPE_256k, "256K" },
205 { TWE_AD_STRIPE_512k, "512K" },
206 { TWE_AD_STRIPE_1024k, "1024K" },
207
208 { 0, NULL }
209 };
210
211 /*
212 * Asynchronous event notification messages are qualified:
213 * a - not unit/port specific
214 * u - unit specific
215 * p - port specific
216 *
217 * They are further qualified with a severity:
218 * E - LOG_EMERG
219 * a - LOG_ALERT
220 * c - LOG_CRIT
221 * e - LOG_ERR
222 * w - LOG_WARNING
223 * n - LOG_NOTICE
224 * i - LOG_INFO
225 * d - LOG_DEBUG
226 * blank - just use printf
227 */
228 const struct twe_code_table twe_table_aen[] = {
229 { 0x00, "a queue empty" },
230 { 0x01, "a soft reset" },
231 { 0x02, "uc degraded mode" },
232 { 0x03, "aa controller error" },
233 { 0x04, "uE rebuild fail" },
234 { 0x05, "un rebuild done" },
235 { 0x06, "ue incomplete unit" },
236 { 0x07, "un initialization done" },
237 { 0x08, "uw unclean shutdown detected" },
238 { 0x09, "pe drive timeout" },
239 { 0x0a, "pc drive error" },
240 { 0x0b, "un rebuild started" },
241 { 0x0c, "un initialization started" },
242 { 0x0d, "ui logical unit deleted" },
243 { 0x0f, "pc SMART threshold exceeded" },
244 { 0x15, "a table undefined" }, /* XXX: Not in FreeBSD's table */
245 { 0x21, "pe ATA UDMA downgrade" },
246 { 0x22, "pi ATA UDMA upgrade" },
247 { 0x23, "pw sector repair occurred" },
248 { 0x24, "aa SBUF integrity check failure" },
249 { 0x25, "pa lost cached write" },
250 { 0x26, "pa drive ECC error detected" },
251 { 0x27, "pe DCB checksum error" },
252 { 0x28, "pn DCB unsupported version" },
253 { 0x29, "ui verify started" },
254 { 0x2a, "ua verify failed" },
255 { 0x2b, "ui verify complete" },
256 { 0x2c, "pw overwrote bad sector during rebuild" },
257 { 0x2d, "pa encountered bad sector during rebuild" },
258 { 0x2e, "pe replacement drive too small" },
259 { 0x2f, "ue array not previously initialized" },
260 { 0x30, "p drive not supported" },
261 { 0xff, "a aen queue full" },
262
263 { 0, NULL },
264 };
265
266 const char *
267 twe_describe_code(const struct twe_code_table *table, uint32_t code)
268 {
269
270 for (; table->string != NULL; table++) {
271 if (table->code == code)
272 return (table->string);
273 }
274 return (NULL);
275 }
276
277 static inline u_int32_t
278 twe_inl(struct twe_softc *sc, int off)
279 {
280
281 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
282 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
283 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
284 }
285
286 static inline void
287 twe_outl(struct twe_softc *sc, int off, u_int32_t val)
288 {
289
290 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
291 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
292 BUS_SPACE_BARRIER_WRITE);
293 }
294
295 /*
296 * Match a supported board.
297 */
298 static int
299 twe_match(struct device *parent, struct cfdata *cfdata, void *aux)
300 {
301 struct pci_attach_args *pa;
302
303 pa = aux;
304
305 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
306 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
307 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
308 }
309
310 /*
311 * Attach a supported board.
312 *
313 * XXX This doesn't fail gracefully.
314 */
315 static void
316 twe_attach(struct device *parent, struct device *self, void *aux)
317 {
318 struct pci_attach_args *pa;
319 struct twe_softc *sc;
320 pci_chipset_tag_t pc;
321 pci_intr_handle_t ih;
322 pcireg_t csr;
323 const char *intrstr;
324 int s, size, i, rv, rseg;
325 size_t max_segs, max_xfer;
326 bus_dma_segment_t seg;
327 struct ctlname ctlnames[] = CTL_NAMES;
328 const struct sysctlnode *node;
329 struct twe_cmd *tc;
330 struct twe_ccb *ccb;
331
332 sc = (struct twe_softc *)self;
333 pa = aux;
334 pc = pa->pa_pc;
335 sc->sc_dmat = pa->pa_dmat;
336 SIMPLEQ_INIT(&sc->sc_ccb_queue);
337 SLIST_INIT(&sc->sc_ccb_freelist);
338
339 aprint_naive(": RAID controller\n");
340 aprint_normal(": 3ware Escalade\n");
341
342 ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT);
343 if (ccb == NULL) {
344 aprint_error("%s: unable to allocate memory for ccbs\n",
345 sc->sc_dv.dv_xname);
346 return;
347 }
348
349 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
350 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
351 aprint_error("%s: can't map i/o space\n", sc->sc_dv.dv_xname);
352 return;
353 }
354
355 /* Enable the device. */
356 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
357 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
358 csr | PCI_COMMAND_MASTER_ENABLE);
359
360 /* Map and establish the interrupt. */
361 if (pci_intr_map(pa, &ih)) {
362 aprint_error("%s: can't map interrupt\n", sc->sc_dv.dv_xname);
363 return;
364 }
365
366 intrstr = pci_intr_string(pc, ih);
367 sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc);
368 if (sc->sc_ih == NULL) {
369 aprint_error("%s: can't establish interrupt%s%s\n",
370 sc->sc_dv.dv_xname,
371 (intrstr) ? " at " : "",
372 (intrstr) ? intrstr : "");
373 return;
374 }
375
376 if (intrstr != NULL)
377 aprint_normal("%s: interrupting at %s\n",
378 sc->sc_dv.dv_xname, intrstr);
379
380 /*
381 * Allocate and initialise the command blocks and CCBs.
382 */
383 size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
384
385 if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
386 &rseg, BUS_DMA_NOWAIT)) != 0) {
387 aprint_error("%s: unable to allocate commands, rv = %d\n",
388 sc->sc_dv.dv_xname, rv);
389 return;
390 }
391
392 if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
393 (caddr_t *)&sc->sc_cmds,
394 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
395 aprint_error("%s: unable to map commands, rv = %d\n",
396 sc->sc_dv.dv_xname, rv);
397 return;
398 }
399
400 if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
401 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
402 aprint_error("%s: unable to create command DMA map, rv = %d\n",
403 sc->sc_dv.dv_xname, rv);
404 return;
405 }
406
407 if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
408 size, NULL, BUS_DMA_NOWAIT)) != 0) {
409 aprint_error("%s: unable to load command DMA map, rv = %d\n",
410 sc->sc_dv.dv_xname, rv);
411 return;
412 }
413
414 sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
415 memset(sc->sc_cmds, 0, size);
416
417 sc->sc_ccbs = ccb;
418 tc = (struct twe_cmd *)sc->sc_cmds;
419 max_segs = twe_get_maxsegs();
420 max_xfer = twe_get_maxxfer(max_segs);
421
422 for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
423 ccb->ccb_cmd = tc;
424 ccb->ccb_cmdid = i;
425 ccb->ccb_flags = 0;
426 rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
427 max_segs, PAGE_SIZE, 0,
428 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
429 &ccb->ccb_dmamap_xfer);
430 if (rv != 0) {
431 aprint_error("%s: can't create dmamap, rv = %d\n",
432 sc->sc_dv.dv_xname, rv);
433 return;
434 }
435
436 /* Save the first CCB for AEN retrieval. */
437 if (i != 0)
438 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
439 ccb_chain.slist);
440 }
441
442 /* Wait for the controller to become ready. */
443 if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
444 aprint_error("%s: microcontroller not ready\n",
445 sc->sc_dv.dv_xname);
446 return;
447 }
448
449 twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
450
451 /* Reset the controller. */
452 s = splbio();
453 rv = twe_reset(sc);
454 splx(s);
455 if (rv) {
456 aprint_error("%s: reset failed\n", sc->sc_dv.dv_xname);
457 return;
458 }
459
460 /* Initialise connection with controller. */
461 twe_init_connection(sc);
462
463 twe_describe_controller(sc);
464
465 /* Find and attach RAID array units. */
466 sc->sc_nunits = 0;
467 for (i = 0; i < TWE_MAX_UNITS; i++)
468 (void) twe_add_unit(sc, i);
469
470 /* ...and finally, enable interrupts. */
471 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
472 TWE_CTL_UNMASK_RESP_INTR |
473 TWE_CTL_ENABLE_INTRS);
474
475 /* sysctl set-up for 3ware cli */
476 if (sysctl_createv(NULL, 0, NULL, NULL,
477 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw",
478 NULL, NULL, 0, NULL, 0,
479 CTL_HW, CTL_EOL) != 0) {
480 printf("%s: could not create %s sysctl node\n",
481 sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name);
482 return;
483 }
484 if (sysctl_createv(NULL, 0, NULL, &node,
485 0, CTLTYPE_NODE, sc->sc_dv.dv_xname,
486 SYSCTL_DESCR("twe driver information"),
487 NULL, 0, NULL, 0,
488 CTL_HW, CTL_CREATE, CTL_EOL) != 0) {
489 printf("%s: could not create %s.%s sysctl node\n",
490 sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name,
491 sc->sc_dv.dv_xname);
492 return;
493 }
494 if ((i = sysctl_createv(NULL, 0, NULL, NULL,
495 0, CTLTYPE_STRING, "driver_version",
496 SYSCTL_DESCR("twe0 driver version"),
497 NULL, 0, &twever, 0,
498 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL))
499 != 0) {
500 printf("%s: could not create %s.%s.driver_version sysctl\n",
501 sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name,
502 sc->sc_dv.dv_xname);
503 return;
504 }
505 }
506
507 void
508 twe_register_callbacks(struct twe_softc *sc, int unit,
509 const struct twe_callbacks *tcb)
510 {
511
512 sc->sc_units[unit].td_callbacks = tcb;
513 }
514
515 static void
516 twe_recompute_openings(struct twe_softc *sc)
517 {
518 struct twe_drive *td;
519 int unit, openings;
520
521 if (sc->sc_nunits != 0)
522 openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits;
523 else
524 openings = 0;
525 if (openings == sc->sc_openings)
526 return;
527 sc->sc_openings = openings;
528
529 #ifdef TWE_DEBUG
530 printf("%s: %d array%s, %d openings per array\n",
531 sc->sc_dv.dv_xname, sc->sc_nunits,
532 sc->sc_nunits == 1 ? "" : "s", sc->sc_openings);
533 #endif
534
535 for (unit = 0; unit < TWE_MAX_UNITS; unit++) {
536 td = &sc->sc_units[unit];
537 if (td->td_dev != NULL)
538 (*td->td_callbacks->tcb_openings)(td->td_dev,
539 sc->sc_openings);
540 }
541 }
542
543 static int
544 twe_add_unit(struct twe_softc *sc, int unit)
545 {
546 struct twe_param *dtp, *atp;
547 struct twe_array_descriptor *ad;
548 struct twe_drive *td;
549 struct twe_attach_args twea;
550 uint32_t newsize;
551 int rv;
552 uint16_t dsize;
553 uint8_t newtype, newstripe;
554 int help[2];
555 locdesc_t *ldesc = (void *)help; /* XXX */
556
557 if (unit < 0 || unit >= TWE_MAX_UNITS)
558 return (EINVAL);
559
560 /* Find attached units. */
561 rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
562 TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
563 if (rv != 0) {
564 aprint_error("%s: error %d fetching unit summary\n",
565 sc->sc_dv.dv_xname, rv);
566 return (rv);
567 }
568
569 /* For each detected unit, collect size and store in an array. */
570 td = &sc->sc_units[unit];
571
572 /* Unit present? */
573 if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) {
574 /*
575 * XXX Should we check to see if a device has been
576 * XXX attached at this index and detach it if it
577 * XXX has? ("rescan" semantics)
578 */
579 rv = 0;
580 goto out;
581 }
582
583 rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit,
584 TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
585 if (rv != 0) {
586 aprint_error("%s: error %d fetching descriptor size "
587 "for unit %d\n", sc->sc_dv.dv_xname, rv, unit);
588 goto out;
589 }
590
591 rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit,
592 TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
593 if (rv != 0) {
594 aprint_error("%s: error %d fetching array descriptor "
595 "for unit %d\n", sc->sc_dv.dv_xname, rv, unit);
596 goto out;
597 }
598
599 ad = (struct twe_array_descriptor *)atp->tp_data;
600 newtype = ad->configuration;
601 newstripe = ad->stripe_size;
602 free(atp, M_DEVBUF);
603
604 rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit,
605 TWE_PARAM_UNITINFO_Capacity, &newsize);
606 if (rv != 0) {
607 aprint_error(
608 "%s: error %d fetching capacity for unit %d\n",
609 sc->sc_dv.dv_xname, rv, unit);
610 goto out;
611 }
612
613 /*
614 * Have a device, so we need to attach it. If there is currently
615 * something sitting at the slot, and the parameters are different,
616 * then we detach the old device before attaching the new one.
617 */
618 if (td->td_dev != NULL &&
619 td->td_size == newsize &&
620 td->td_type == newtype &&
621 td->td_stripe == newstripe) {
622 /* Same as the old device; just keep using it. */
623 rv = 0;
624 goto out;
625 } else if (td->td_dev != NULL) {
626 /* Detach the old device first. */
627 (void) config_detach(td->td_dev, DETACH_FORCE);
628 td->td_dev = NULL;
629 } else if (td->td_size == 0)
630 sc->sc_nunits++;
631
632 /*
633 * Committed to the new array unit; assign its parameters and
634 * recompute the number of available command openings.
635 */
636 td->td_size = newsize;
637 td->td_type = newtype;
638 td->td_stripe = newstripe;
639 twe_recompute_openings(sc);
640
641 twea.twea_unit = unit;
642
643 ldesc->len = 1;
644 ldesc->locs[TWECF_UNIT] = unit;
645
646 td->td_dev = config_found_sm_loc(&sc->sc_dv, "twe", NULL, &twea,
647 twe_print, twe_submatch);
648
649 rv = 0;
650 out:
651 free(dtp, M_DEVBUF);
652 return (rv);
653 }
654
655 static int
656 twe_del_unit(struct twe_softc *sc, int unit)
657 {
658 struct twe_drive *td;
659
660 if (unit < 0 || unit >= TWE_MAX_UNITS)
661 return (EINVAL);
662
663 td = &sc->sc_units[unit];
664 if (td->td_size != 0)
665 sc->sc_nunits--;
666 td->td_size = 0;
667 td->td_type = 0;
668 td->td_stripe = 0;
669 if (td->td_dev != NULL) {
670 (void) config_detach(td->td_dev, DETACH_FORCE);
671 td->td_dev = NULL;
672 }
673 twe_recompute_openings(sc);
674 return (0);
675 }
676
677 /*
678 * Reset the controller.
679 * MUST BE CALLED AT splbio()!
680 */
681 static int
682 twe_reset(struct twe_softc *sc)
683 {
684 uint16_t aen;
685 u_int status;
686 volatile u_int32_t junk;
687 int got, rv;
688
689 /* Issue a soft reset. */
690 twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
691 TWE_CTL_CLEAR_HOST_INTR |
692 TWE_CTL_CLEAR_ATTN_INTR |
693 TWE_CTL_MASK_CMD_INTR |
694 TWE_CTL_MASK_RESP_INTR |
695 TWE_CTL_CLEAR_ERROR_STS |
696 TWE_CTL_DISABLE_INTRS);
697
698 /* Wait for attention... */
699 if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) {
700 printf("%s: timeout waiting for attention interrupt\n",
701 sc->sc_dv.dv_xname);
702 return (-1);
703 }
704
705 /* ...and ACK it. */
706 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
707
708 /*
709 * Pull AENs out of the controller; look for a soft reset AEN.
710 * Open code this, since we want to detect reset even if the
711 * queue for management tools is full.
712 *
713 * Note that since:
714 * - interrupts are blocked
715 * - we have reset the controller
716 * - acknowledged the pending ATTENTION
717 * that there is no way a pending asynchronous AEN fetch would
718 * finish, so clear the flag.
719 */
720 sc->sc_flags &= ~TWEF_AEN;
721 for (got = 0;;) {
722 rv = twe_aen_get(sc, &aen);
723 if (rv != 0)
724 printf("%s: error %d while draining event queue\n",
725 sc->sc_dv.dv_xname, rv);
726 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
727 break;
728 if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
729 got = 1;
730 twe_aen_enqueue(sc, aen, 1);
731 }
732
733 if (!got) {
734 printf("%s: reset not reported\n", sc->sc_dv.dv_xname);
735 return (-1);
736 }
737
738 /* Check controller status. */
739 status = twe_inl(sc, TWE_REG_STS);
740 if (twe_status_check(sc, status)) {
741 printf("%s: controller errors detected\n",
742 sc->sc_dv.dv_xname);
743 return (-1);
744 }
745
746 /* Drain the response queue. */
747 for (;;) {
748 status = twe_inl(sc, TWE_REG_STS);
749 if (twe_status_check(sc, status) != 0) {
750 printf("%s: can't drain response queue\n",
751 sc->sc_dv.dv_xname);
752 return (-1);
753 }
754 if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
755 break;
756 junk = twe_inl(sc, TWE_REG_RESP_QUEUE);
757 }
758
759 return (0);
760 }
761
762 /*
763 * Print autoconfiguration message for a sub-device.
764 */
765 static int
766 twe_print(void *aux, const char *pnp)
767 {
768 struct twe_attach_args *twea;
769
770 twea = aux;
771
772 if (pnp != NULL)
773 aprint_normal("block device at %s", pnp);
774 aprint_normal(" unit %d", twea->twea_unit);
775 return (UNCONF);
776 }
777
778 /*
779 * Match a sub-device.
780 */
781 static int
782 twe_submatch(struct device *parent, struct cfdata *cf,
783 const locdesc_t *ldesc, void *aux)
784 {
785
786 if (cf->cf_loc[TWECF_UNIT] != TWECF_UNIT_DEFAULT &&
787 cf->cf_loc[TWECF_UNIT] != ldesc->locs[TWECF_UNIT])
788 return (0);
789
790 return (config_match(parent, cf, aux));
791 }
792
793 /*
794 * Interrupt service routine.
795 */
796 static int
797 twe_intr(void *arg)
798 {
799 struct twe_softc *sc;
800 u_int status;
801 int caught, rv;
802
803 sc = arg;
804 caught = 0;
805 status = twe_inl(sc, TWE_REG_STS);
806 twe_status_check(sc, status);
807
808 /* Host interrupts - purpose unknown. */
809 if ((status & TWE_STS_HOST_INTR) != 0) {
810 #ifdef DEBUG
811 printf("%s: host interrupt\n", sc->sc_dv.dv_xname);
812 #endif
813 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
814 caught = 1;
815 }
816
817 /*
818 * Attention interrupts, signalled when a controller or child device
819 * state change has occurred.
820 */
821 if ((status & TWE_STS_ATTN_INTR) != 0) {
822 rv = twe_aen_get(sc, NULL);
823 if (rv != 0)
824 printf("%s: unable to retrieve AEN (%d)\n",
825 sc->sc_dv.dv_xname, rv);
826 else
827 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
828 caught = 1;
829 }
830
831 /*
832 * Command interrupts, signalled when the controller can accept more
833 * commands. We don't use this; instead, we try to submit commands
834 * when we receive them, and when other commands have completed.
835 * Mask it so we don't get another one.
836 */
837 if ((status & TWE_STS_CMD_INTR) != 0) {
838 #ifdef DEBUG
839 printf("%s: command interrupt\n", sc->sc_dv.dv_xname);
840 #endif
841 twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
842 caught = 1;
843 }
844
845 if ((status & TWE_STS_RESP_INTR) != 0) {
846 twe_poll(sc);
847 caught = 1;
848 }
849
850 return (caught);
851 }
852
853 /*
854 * Fetch an AEN. Even though this is really like parameter
855 * retrieval, we handle this specially, because we issue this
856 * AEN retrieval command from interrupt context, and thus
857 * reserve a CCB for it to avoid resource shortage.
858 *
859 * XXX There are still potential resource shortages we could
860 * XXX encounter. Consider pre-allocating all AEN-related
861 * XXX resources.
862 *
863 * MUST BE CALLED AT splbio()!
864 */
865 static int
866 twe_aen_get(struct twe_softc *sc, uint16_t *aenp)
867 {
868 struct twe_ccb *ccb;
869 struct twe_cmd *tc;
870 struct twe_param *tp;
871 int rv;
872
873 /*
874 * If we're already retrieving an AEN, just wait; another
875 * retrieval will be chained after the current one completes.
876 */
877 if (sc->sc_flags & TWEF_AEN) {
878 /*
879 * It is a fatal software programming error to attempt
880 * to fetch an AEN synchronously when an AEN fetch is
881 * already pending.
882 */
883 KASSERT(aenp == NULL);
884 return (0);
885 }
886
887 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
888 if (tp == NULL)
889 return (ENOMEM);
890
891 ccb = twe_ccb_alloc(sc,
892 TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
893 KASSERT(ccb != NULL);
894
895 ccb->ccb_data = tp;
896 ccb->ccb_datasize = TWE_SECTOR_SIZE;
897 ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL;
898 ccb->ccb_tx.tx_context = tp;
899 ccb->ccb_tx.tx_dv = &sc->sc_dv;
900
901 tc = ccb->ccb_cmd;
902 tc->tc_size = 2;
903 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
904 tc->tc_unit = 0;
905 tc->tc_count = htole16(1);
906
907 /* Fill in the outbound parameter data. */
908 tp->tp_table_id = htole16(TWE_PARAM_AEN);
909 tp->tp_param_id = TWE_PARAM_AEN_UnitCode;
910 tp->tp_param_size = 2;
911
912 /* Map the transfer. */
913 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
914 twe_ccb_free(sc, ccb);
915 goto done;
916 }
917
918 /* Enqueue the command and wait. */
919 if (aenp != NULL) {
920 rv = twe_ccb_poll(sc, ccb, 5);
921 twe_ccb_unmap(sc, ccb);
922 twe_ccb_free(sc, ccb);
923 if (rv == 0)
924 *aenp = le16toh(*(uint16_t *)tp->tp_data);
925 free(tp, M_DEVBUF);
926 } else {
927 sc->sc_flags |= TWEF_AEN;
928 twe_ccb_enqueue(sc, ccb);
929 rv = 0;
930 }
931
932 done:
933 return (rv);
934 }
935
936 /*
937 * Handle an AEN returned by the controller.
938 * MUST BE CALLED AT splbio()!
939 */
940 static void
941 twe_aen_handler(struct twe_ccb *ccb, int error)
942 {
943 struct twe_softc *sc;
944 struct twe_param *tp;
945 uint16_t aen;
946 int rv;
947
948 sc = (struct twe_softc *)ccb->ccb_tx.tx_dv;
949 tp = ccb->ccb_tx.tx_context;
950 twe_ccb_unmap(sc, ccb);
951
952 sc->sc_flags &= ~TWEF_AEN;
953
954 if (error) {
955 printf("%s: error retrieving AEN\n", sc->sc_dv.dv_xname);
956 aen = TWE_AEN_QUEUE_EMPTY;
957 } else
958 aen = le16toh(*(u_int16_t *)tp->tp_data);
959 free(tp, M_DEVBUF);
960 twe_ccb_free(sc, ccb);
961
962 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
963 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
964 return;
965 }
966
967 twe_aen_enqueue(sc, aen, 0);
968
969 /*
970 * Chain another retrieval in case interrupts have been
971 * coalesced.
972 */
973 rv = twe_aen_get(sc, NULL);
974 if (rv != 0)
975 printf("%s: unable to retrieve AEN (%d)\n",
976 sc->sc_dv.dv_xname, rv);
977 }
978
979 static void
980 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet)
981 {
982 const char *str, *msg;
983 int s, next, nextnext, level;
984
985 /*
986 * First report the AEN on the console. Maybe.
987 */
988 if (! quiet) {
989 str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen));
990 if (str == NULL) {
991 printf("%s: unknown AEN 0x%04x\n",
992 sc->sc_dv.dv_xname, aen);
993 } else {
994 msg = str + 3;
995 switch (str[1]) {
996 case 'E': level = LOG_EMERG; break;
997 case 'a': level = LOG_ALERT; break;
998 case 'c': level = LOG_CRIT; break;
999 case 'e': level = LOG_ERR; break;
1000 case 'w': level = LOG_WARNING; break;
1001 case 'n': level = LOG_NOTICE; break;
1002 case 'i': level = LOG_INFO; break;
1003 case 'd': level = LOG_DEBUG; break;
1004 default:
1005 /* Don't use syslog. */
1006 level = -1;
1007 }
1008
1009 if (level < 0) {
1010 switch (str[0]) {
1011 case 'u':
1012 case 'p':
1013 printf("%s: %s %d: %s\n",
1014 sc->sc_dv.dv_xname,
1015 str[0] == 'u' ? "unit" : "port",
1016 TWE_AEN_UNIT(aen), msg);
1017 break;
1018
1019 default:
1020 printf("%s: %s\n",
1021 sc->sc_dv.dv_xname, msg);
1022 }
1023 } else {
1024 switch (str[0]) {
1025 case 'u':
1026 case 'p':
1027 log(level, "%s: %s %d: %s\n",
1028 sc->sc_dv.dv_xname,
1029 str[0] == 'u' ? "unit" : "port",
1030 TWE_AEN_UNIT(aen), msg);
1031 break;
1032
1033 default:
1034 log(level, "%s: %s\n",
1035 sc->sc_dv.dv_xname, msg);
1036 }
1037 }
1038 }
1039 }
1040
1041 /* Now enqueue the AEN for mangement tools. */
1042 s = splbio();
1043
1044 next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH;
1045 nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH;
1046
1047 /*
1048 * If this is the last free slot, then queue up a "queue
1049 * full" message.
1050 */
1051 if (nextnext == sc->sc_aen_tail)
1052 aen = TWE_AEN_QUEUE_FULL;
1053
1054 if (next != sc->sc_aen_tail) {
1055 sc->sc_aen_queue[sc->sc_aen_head] = aen;
1056 sc->sc_aen_head = next;
1057 }
1058
1059 if (sc->sc_flags & TWEF_AENQ_WAIT) {
1060 sc->sc_flags &= ~TWEF_AENQ_WAIT;
1061 wakeup(&sc->sc_aen_queue);
1062 }
1063
1064 splx(s);
1065 }
1066
1067 /* NOTE: Must be called at splbio(). */
1068 static uint16_t
1069 twe_aen_dequeue(struct twe_softc *sc)
1070 {
1071 uint16_t aen;
1072
1073 if (sc->sc_aen_tail == sc->sc_aen_head)
1074 aen = TWE_AEN_QUEUE_EMPTY;
1075 else {
1076 aen = sc->sc_aen_queue[sc->sc_aen_tail];
1077 sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH;
1078 }
1079
1080 return (aen);
1081 }
1082
1083 /*
1084 * These are short-hand functions that execute TWE_OP_GET_PARAM to
1085 * fetch 1, 2, and 4 byte parameter values, respectively.
1086 */
1087 int
1088 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
1089 uint8_t *valp)
1090 {
1091 struct twe_param *tp;
1092 int rv;
1093
1094 rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
1095 if (rv != 0)
1096 return (rv);
1097 *valp = *(uint8_t *)tp->tp_data;
1098 free(tp, M_DEVBUF);
1099 return (0);
1100 }
1101
1102 int
1103 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
1104 uint16_t *valp)
1105 {
1106 struct twe_param *tp;
1107 int rv;
1108
1109 rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
1110 if (rv != 0)
1111 return (rv);
1112 *valp = le16toh(*(uint16_t *)tp->tp_data);
1113 free(tp, M_DEVBUF);
1114 return (0);
1115 }
1116
1117 int
1118 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
1119 uint32_t *valp)
1120 {
1121 struct twe_param *tp;
1122 int rv;
1123
1124 rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
1125 if (rv != 0)
1126 return (rv);
1127 *valp = le32toh(*(uint32_t *)tp->tp_data);
1128 free(tp, M_DEVBUF);
1129 return (0);
1130 }
1131
1132 /*
1133 * Execute a TWE_OP_GET_PARAM command. If a callback function is provided,
1134 * it will be called with generated context when the command has completed.
1135 * If no callback is provided, the command will be executed synchronously
1136 * and a pointer to a buffer containing the data returned.
1137 *
1138 * The caller or callback is responsible for freeing the buffer.
1139 *
1140 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1141 */
1142 int
1143 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
1144 void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
1145 {
1146 struct twe_ccb *ccb;
1147 struct twe_cmd *tc;
1148 struct twe_param *tp;
1149 int rv, s;
1150
1151 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1152 if (tp == NULL)
1153 return ENOMEM;
1154
1155 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1156 KASSERT(ccb != NULL);
1157
1158 ccb->ccb_data = tp;
1159 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1160 ccb->ccb_tx.tx_handler = func;
1161 ccb->ccb_tx.tx_context = tp;
1162 ccb->ccb_tx.tx_dv = &sc->sc_dv;
1163
1164 tc = ccb->ccb_cmd;
1165 tc->tc_size = 2;
1166 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
1167 tc->tc_unit = 0;
1168 tc->tc_count = htole16(1);
1169
1170 /* Fill in the outbound parameter data. */
1171 tp->tp_table_id = htole16(table_id);
1172 tp->tp_param_id = param_id;
1173 tp->tp_param_size = size;
1174
1175 /* Map the transfer. */
1176 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1177 twe_ccb_free(sc, ccb);
1178 goto done;
1179 }
1180
1181 /* Submit the command and either wait or let the callback handle it. */
1182 if (func == NULL) {
1183 s = splbio();
1184 rv = twe_ccb_poll(sc, ccb, 5);
1185 twe_ccb_unmap(sc, ccb);
1186 twe_ccb_free(sc, ccb);
1187 splx(s);
1188 } else {
1189 #ifdef DEBUG
1190 if (pbuf != NULL)
1191 panic("both func and pbuf defined");
1192 #endif
1193 twe_ccb_enqueue(sc, ccb);
1194 return 0;
1195 }
1196
1197 done:
1198 if (pbuf == NULL || rv != 0)
1199 free(tp, M_DEVBUF);
1200 else if (pbuf != NULL && rv == 0)
1201 *pbuf = tp;
1202 return rv;
1203 }
1204
1205 /*
1206 * Execute a TWE_OP_SET_PARAM command.
1207 *
1208 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1209 */
1210 static int
1211 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
1212 void *sbuf)
1213 {
1214 struct twe_ccb *ccb;
1215 struct twe_cmd *tc;
1216 struct twe_param *tp;
1217 int rv, s;
1218
1219 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1220 if (tp == NULL)
1221 return ENOMEM;
1222
1223 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1224 KASSERT(ccb != NULL);
1225
1226 ccb->ccb_data = tp;
1227 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1228 ccb->ccb_tx.tx_handler = 0;
1229 ccb->ccb_tx.tx_context = tp;
1230 ccb->ccb_tx.tx_dv = &sc->sc_dv;
1231
1232 tc = ccb->ccb_cmd;
1233 tc->tc_size = 2;
1234 tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
1235 tc->tc_unit = 0;
1236 tc->tc_count = htole16(1);
1237
1238 /* Fill in the outbound parameter data. */
1239 tp->tp_table_id = htole16(table_id);
1240 tp->tp_param_id = param_id;
1241 tp->tp_param_size = size;
1242 memcpy(tp->tp_data, sbuf, size);
1243
1244 /* Map the transfer. */
1245 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1246 twe_ccb_free(sc, ccb);
1247 goto done;
1248 }
1249
1250 /* Submit the command and wait. */
1251 s = splbio();
1252 rv = twe_ccb_poll(sc, ccb, 5);
1253 twe_ccb_unmap(sc, ccb);
1254 twe_ccb_free(sc, ccb);
1255 splx(s);
1256 done:
1257 free(tp, M_DEVBUF);
1258 return (rv);
1259 }
1260
1261 /*
1262 * Execute a TWE_OP_INIT_CONNECTION command. Return non-zero on error.
1263 * Must be called with interrupts blocked.
1264 */
1265 static int
1266 twe_init_connection(struct twe_softc *sc)
1267 /*###762 [cc] warning: `twe_init_connection' was used with no prototype before its definition%%%*/
1268 /*###762 [cc] warning: `twe_init_connection' was declared implicitly `extern' and later `static'%%%*/
1269 {
1270 struct twe_ccb *ccb;
1271 struct twe_cmd *tc;
1272 int rv;
1273
1274 if ((ccb = twe_ccb_alloc(sc, 0)) == NULL)
1275 return (EAGAIN);
1276
1277 /* Build the command. */
1278 tc = ccb->ccb_cmd;
1279 tc->tc_size = 3;
1280 tc->tc_opcode = TWE_OP_INIT_CONNECTION;
1281 tc->tc_unit = 0;
1282 tc->tc_count = htole16(TWE_MAX_CMDS);
1283 tc->tc_args.init_connection.response_queue_pointer = 0;
1284
1285 /* Submit the command for immediate execution. */
1286 rv = twe_ccb_poll(sc, ccb, 5);
1287 twe_ccb_free(sc, ccb);
1288 return (rv);
1289 }
1290
1291 /*
1292 * Poll the controller for completed commands. Must be called with
1293 * interrupts blocked.
1294 */
1295 static void
1296 twe_poll(struct twe_softc *sc)
1297 {
1298 struct twe_ccb *ccb;
1299 int found;
1300 u_int status, cmdid;
1301
1302 found = 0;
1303
1304 for (;;) {
1305 status = twe_inl(sc, TWE_REG_STS);
1306 twe_status_check(sc, status);
1307
1308 if ((status & TWE_STS_RESP_QUEUE_EMPTY))
1309 break;
1310
1311 found = 1;
1312 cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
1313 cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
1314 if (cmdid >= TWE_MAX_QUEUECNT) {
1315 printf("%s: bad cmdid %d\n", sc->sc_dv.dv_xname, cmdid);
1316 continue;
1317 }
1318
1319 ccb = sc->sc_ccbs + cmdid;
1320 if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
1321 printf("%s: CCB for cmdid %d not active\n",
1322 sc->sc_dv.dv_xname, cmdid);
1323 continue;
1324 }
1325 ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
1326
1327 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1328 (caddr_t)ccb->ccb_cmd - sc->sc_cmds,
1329 sizeof(struct twe_cmd),
1330 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1331
1332 /* Pass notification to upper layers. */
1333 if (ccb->ccb_tx.tx_handler != NULL)
1334 (*ccb->ccb_tx.tx_handler)(ccb,
1335 ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
1336 }
1337
1338 /* If any commands have completed, run the software queue. */
1339 if (found)
1340 twe_ccb_enqueue(sc, NULL);
1341 }
1342
1343 /*
1344 * Wait for `status' to be set in the controller status register. Return
1345 * zero if found, non-zero if the operation timed out.
1346 */
1347 static int
1348 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
1349 {
1350
1351 for (timo *= 10; timo != 0; timo--) {
1352 if ((twe_inl(sc, TWE_REG_STS) & status) == status)
1353 break;
1354 delay(100000);
1355 }
1356
1357 return (timo == 0);
1358 }
1359
1360 /*
1361 * Clear a PCI parity error.
1362 */
1363 static void
1364 twe_clear_pci_parity_error(struct twe_softc *sc)
1365 {
1366 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PARITY_ERROR);
1367
1368 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
1369 }
1370
1371
1372 /*
1373 * Clear a PCI abort.
1374 */
1375 static void
1376 twe_clear_pci_abort(struct twe_softc *sc)
1377 {
1378 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT);
1379
1380 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
1381 }
1382
1383 /*
1384 * Complain if the status bits aren't what we expect.
1385 */
1386 static int
1387 twe_status_check(struct twe_softc *sc, u_int status)
1388 {
1389 int rv;
1390
1391 rv = 0;
1392
1393 if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
1394 printf("%s: missing status bits: 0x%08x\n", sc->sc_dv.dv_xname,
1395 status & ~TWE_STS_EXPECTED_BITS);
1396 rv = -1;
1397 }
1398
1399 if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
1400 printf("%s: unexpected status bits: 0x%08x\n",
1401 sc->sc_dv.dv_xname, status & TWE_STS_UNEXPECTED_BITS);
1402 rv = -1;
1403 if (status & TWE_STS_PCI_PARITY_ERROR) {
1404 printf("%s: PCI parity error: Reseat card, move card "
1405 "or buggy device present.\n",
1406 sc->sc_dv.dv_xname);
1407 twe_clear_pci_parity_error(sc);
1408 }
1409 if (status & TWE_STS_PCI_ABORT) {
1410 printf("%s: PCI abort, clearing.\n",
1411 sc->sc_dv.dv_xname);
1412 twe_clear_pci_abort(sc);
1413 }
1414 }
1415
1416 return (rv);
1417 }
1418
1419 /*
1420 * Allocate and initialise a CCB.
1421 */
1422 static __inline void
1423 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags)
1424 {
1425 struct twe_cmd *tc;
1426
1427 ccb->ccb_tx.tx_handler = NULL;
1428 ccb->ccb_flags = flags;
1429 tc = ccb->ccb_cmd;
1430 tc->tc_status = 0;
1431 tc->tc_flags = 0;
1432 tc->tc_cmdid = ccb->ccb_cmdid;
1433 }
1434
1435 struct twe_ccb *
1436 twe_ccb_alloc(struct twe_softc *sc, int flags)
1437 {
1438 struct twe_ccb *ccb;
1439 int s;
1440
1441 s = splbio();
1442 if (__predict_false((flags & TWE_CCB_AEN) != 0)) {
1443 /* Use the reserved CCB. */
1444 ccb = sc->sc_ccbs;
1445 } else {
1446 /* Allocate a CCB and command block. */
1447 if (__predict_false((ccb =
1448 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1449 splx(s);
1450 return (NULL);
1451 }
1452 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1453 }
1454 #ifdef DIAGNOSTIC
1455 if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0)
1456 panic("twe_ccb_alloc: got reserved CCB for non-AEN");
1457 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1458 panic("twe_ccb_alloc: CCB %ld already allocated",
1459 (long)(ccb - sc->sc_ccbs));
1460 flags |= TWE_CCB_ALLOCED;
1461 #endif
1462 splx(s);
1463
1464 twe_ccb_init(sc, ccb, flags);
1465 return (ccb);
1466 }
1467
1468 struct twe_ccb *
1469 twe_ccb_alloc_wait(struct twe_softc *sc, int flags)
1470 {
1471 struct twe_ccb *ccb;
1472 int s;
1473
1474 KASSERT((flags & TWE_CCB_AEN) == 0);
1475
1476 s = splbio();
1477 while (__predict_false((ccb =
1478 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1479 sc->sc_flags |= TWEF_WAIT_CCB;
1480 (void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0);
1481 }
1482 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1483 #ifdef DIAGNOSTIC
1484 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1485 panic("twe_ccb_alloc_wait: CCB %ld already allocated",
1486 (long)(ccb - sc->sc_ccbs));
1487 flags |= TWE_CCB_ALLOCED;
1488 #endif
1489 splx(s);
1490
1491 twe_ccb_init(sc, ccb, flags);
1492 return (ccb);
1493 }
1494
1495 /*
1496 * Free a CCB.
1497 */
1498 void
1499 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
1500 {
1501 int s;
1502
1503 s = splbio();
1504 if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) {
1505 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
1506 if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) {
1507 sc->sc_flags &= ~TWEF_WAIT_CCB;
1508 wakeup(&sc->sc_ccb_freelist);
1509 }
1510 }
1511 ccb->ccb_flags = 0;
1512 splx(s);
1513 }
1514
1515 /*
1516 * Map the specified CCB's command block and data buffer (if any) into
1517 * controller visible space. Perform DMA synchronisation.
1518 */
1519 int
1520 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
1521 {
1522 struct twe_cmd *tc;
1523 int flags, nsegs, i, s, rv;
1524 void *data;
1525
1526 /*
1527 * The data as a whole must be 512-byte aligned.
1528 */
1529 if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
1530 s = splvm();
1531 /* XXX */
1532 ccb->ccb_abuf = uvm_km_alloc(kmem_map,
1533 ccb->ccb_datasize, 0, UVM_KMF_NOWAIT|UVM_KMF_WIRED);
1534 splx(s);
1535 data = (void *)ccb->ccb_abuf;
1536 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1537 memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
1538 } else {
1539 ccb->ccb_abuf = (vaddr_t)0;
1540 data = ccb->ccb_data;
1541 }
1542
1543 /*
1544 * Map the data buffer into bus space and build the S/G list.
1545 */
1546 rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
1547 ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1548 ((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
1549 BUS_DMA_READ : BUS_DMA_WRITE));
1550 if (rv != 0) {
1551 if (ccb->ccb_abuf != (vaddr_t)0) {
1552 s = splvm();
1553 /* XXX */
1554 uvm_km_free(kmem_map, ccb->ccb_abuf,
1555 ccb->ccb_datasize, UVM_KMF_WIRED);
1556 splx(s);
1557 }
1558 return (rv);
1559 }
1560
1561 nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
1562 tc = ccb->ccb_cmd;
1563 tc->tc_size += 2 * nsegs;
1564
1565 /* The location of the S/G list is dependant upon command type. */
1566 switch (tc->tc_opcode >> 5) {
1567 case 2:
1568 for (i = 0; i < nsegs; i++) {
1569 tc->tc_args.param.sgl[i].tsg_address =
1570 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1571 tc->tc_args.param.sgl[i].tsg_length =
1572 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1573 }
1574 /* XXX Needed? */
1575 for (; i < TWE_SG_SIZE; i++) {
1576 tc->tc_args.param.sgl[i].tsg_address = 0;
1577 tc->tc_args.param.sgl[i].tsg_length = 0;
1578 }
1579 break;
1580 case 3:
1581 for (i = 0; i < nsegs; i++) {
1582 tc->tc_args.io.sgl[i].tsg_address =
1583 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1584 tc->tc_args.io.sgl[i].tsg_length =
1585 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1586 }
1587 /* XXX Needed? */
1588 for (; i < TWE_SG_SIZE; i++) {
1589 tc->tc_args.io.sgl[i].tsg_address = 0;
1590 tc->tc_args.io.sgl[i].tsg_length = 0;
1591 }
1592 break;
1593 default:
1594 /*
1595 * In all likelihood, this is a command passed from
1596 * management tools in userspace where no S/G list is
1597 * necessary because no data is being passed.
1598 */
1599 break;
1600 }
1601
1602 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1603 flags = BUS_DMASYNC_PREREAD;
1604 else
1605 flags = 0;
1606 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1607 flags |= BUS_DMASYNC_PREWRITE;
1608
1609 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1610 ccb->ccb_datasize, flags);
1611 return (0);
1612 }
1613
1614 /*
1615 * Unmap the specified CCB's command block and data buffer (if any) and
1616 * perform DMA synchronisation.
1617 */
1618 void
1619 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
1620 {
1621 int flags, s;
1622
1623 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1624 flags = BUS_DMASYNC_POSTREAD;
1625 else
1626 flags = 0;
1627 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1628 flags |= BUS_DMASYNC_POSTWRITE;
1629
1630 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1631 ccb->ccb_datasize, flags);
1632 bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
1633
1634 if (ccb->ccb_abuf != (vaddr_t)0) {
1635 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1636 memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
1637 ccb->ccb_datasize);
1638 s = splvm();
1639 /* XXX */
1640 uvm_km_free(kmem_map, ccb->ccb_abuf, ccb->ccb_datasize,
1641 UVM_KMF_WIRED);
1642 splx(s);
1643 }
1644 }
1645
1646 /*
1647 * Submit a command to the controller and poll on completion. Return
1648 * non-zero on timeout (but don't check status, as some command types don't
1649 * return status). Must be called with interrupts blocked.
1650 */
1651 int
1652 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
1653 {
1654 int rv;
1655
1656 if ((rv = twe_ccb_submit(sc, ccb)) != 0)
1657 return (rv);
1658
1659 for (timo *= 1000; timo != 0; timo--) {
1660 twe_poll(sc);
1661 if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
1662 break;
1663 DELAY(100);
1664 }
1665
1666 return (timo == 0);
1667 }
1668
1669 /*
1670 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1671 * the order that they were enqueued and try to submit their command blocks
1672 * to the controller for execution.
1673 */
1674 void
1675 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
1676 {
1677 int s;
1678
1679 s = splbio();
1680
1681 if (ccb != NULL)
1682 SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
1683
1684 while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
1685 if (twe_ccb_submit(sc, ccb))
1686 break;
1687 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
1688 }
1689
1690 splx(s);
1691 }
1692
1693 /*
1694 * Submit the command block associated with the specified CCB to the
1695 * controller for execution. Must be called with interrupts blocked.
1696 */
1697 int
1698 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
1699 {
1700 bus_addr_t pa;
1701 int rv;
1702 u_int status;
1703
1704 /* Check to see if we can post a command. */
1705 status = twe_inl(sc, TWE_REG_STS);
1706 twe_status_check(sc, status);
1707
1708 if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
1709 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1710 (caddr_t)ccb->ccb_cmd - sc->sc_cmds, sizeof(struct twe_cmd),
1711 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1712 #ifdef DIAGNOSTIC
1713 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0)
1714 panic("%s: CCB %ld not ALLOCED\n",
1715 sc->sc_dv.dv_xname, (long)(ccb - sc->sc_ccbs));
1716 #endif
1717 ccb->ccb_flags |= TWE_CCB_ACTIVE;
1718 pa = sc->sc_cmds_paddr +
1719 ccb->ccb_cmdid * sizeof(struct twe_cmd);
1720 twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
1721 rv = 0;
1722 } else
1723 rv = EBUSY;
1724
1725 return (rv);
1726 }
1727
1728
1729 /*
1730 * Accept an open operation on the control device.
1731 */
1732 static int
1733 tweopen(dev_t dev, int flag, int mode, struct proc *p)
1734 {
1735 struct twe_softc *twe;
1736
1737 if ((twe = device_lookup(&twe_cd, minor(dev))) == NULL)
1738 return (ENXIO);
1739 if ((twe->sc_flags & TWEF_OPEN) != 0)
1740 return (EBUSY);
1741
1742 twe->sc_flags |= TWEF_OPEN;
1743 return (0);
1744 }
1745
1746 /*
1747 * Accept the last close on the control device.
1748 */
1749 static int
1750 tweclose(dev_t dev, int flag, int mode, struct proc *p)
1751 {
1752 struct twe_softc *twe;
1753
1754 twe = device_lookup(&twe_cd, minor(dev));
1755 twe->sc_flags &= ~TWEF_OPEN;
1756 return (0);
1757 }
1758
1759 void
1760 twe_ccb_wait_handler(struct twe_ccb *ccb, int error)
1761 {
1762
1763 /* Just wake up the sleeper. */
1764 wakeup(ccb);
1765 }
1766
1767 /*
1768 * Handle control operations.
1769 */
1770 static int
1771 tweioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
1772 {
1773 struct twe_softc *twe;
1774 struct twe_ccb *ccb;
1775 struct twe_param *param;
1776 struct twe_usercommand *tu;
1777 struct twe_paramcommand *tp;
1778 struct twe_drivecommand *td;
1779 void *pdata = NULL;
1780 int s, error = 0;
1781 u_int8_t cmdid;
1782
1783 if (securelevel >= 2)
1784 return (EPERM);
1785
1786 twe = device_lookup(&twe_cd, minor(dev));
1787 tu = (struct twe_usercommand *)data;
1788 tp = (struct twe_paramcommand *)data;
1789 td = (struct twe_drivecommand *)data;
1790
1791 /* This is intended to be compatible with the FreeBSD interface. */
1792 switch (cmd) {
1793 case TWEIO_COMMAND:
1794 /* XXX mutex */
1795 if (tu->tu_size > 0) {
1796 /*
1797 * XXX Handle > TWE_SECTOR_SIZE? Let's see if
1798 * it's really necessary, first.
1799 */
1800 if (tu->tu_size > TWE_SECTOR_SIZE) {
1801 #ifdef TWE_DEBUG
1802 printf("%s: TWEIO_COMMAND: tu_size = %d\n",
1803 twe->sc_dv.dv_xname, tu->tu_size);
1804 #endif
1805 return EINVAL;
1806 }
1807 pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
1808 error = copyin(tu->tu_data, pdata, tu->tu_size);
1809 if (error != 0)
1810 goto done;
1811 ccb = twe_ccb_alloc_wait(twe,
1812 TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1813 KASSERT(ccb != NULL);
1814 ccb->ccb_data = pdata;
1815 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1816 } else {
1817 ccb = twe_ccb_alloc_wait(twe, 0);
1818 KASSERT(ccb != NULL);
1819 }
1820
1821 ccb->ccb_tx.tx_handler = twe_ccb_wait_handler;
1822 ccb->ccb_tx.tx_context = NULL;
1823 ccb->ccb_tx.tx_dv = &twe->sc_dv;
1824
1825 cmdid = ccb->ccb_cmdid;
1826 memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
1827 ccb->ccb_cmd->tc_cmdid = cmdid;
1828
1829 /* Map the transfer. */
1830 if ((error = twe_ccb_map(twe, ccb)) != 0) {
1831 twe_ccb_free(twe, ccb);
1832 goto done;
1833 }
1834
1835 /* Submit the command and wait up to 1 minute. */
1836 error = 0;
1837 twe_ccb_enqueue(twe, ccb);
1838 s = splbio();
1839 while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0)
1840 if ((error = tsleep(ccb, PRIBIO, "tweioctl",
1841 60 * hz)) != 0)
1842 break;
1843 splx(s);
1844
1845 /* Copy the command back to the ioctl argument. */
1846 memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd));
1847 #ifdef TWE_DEBUG
1848 printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, "
1849 "tc_status = 0x%02x\n", twe->sc_dv.dv_xname,
1850 tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status);
1851 #endif
1852
1853 s = splbio();
1854 twe_ccb_free(twe, ccb);
1855 splx(s);
1856
1857 if (tu->tu_size > 0)
1858 error = copyout(pdata, tu->tu_data, tu->tu_size);
1859 goto done;
1860
1861 case TWEIO_STATS:
1862 return (ENOENT);
1863
1864 case TWEIO_AEN_POLL:
1865 s = splbio();
1866 *(u_int *)data = twe_aen_dequeue(twe);
1867 splx(s);
1868 return (0);
1869
1870 case TWEIO_AEN_WAIT:
1871 s = splbio();
1872 while ((*(u_int *)data =
1873 twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) {
1874 twe->sc_flags |= TWEF_AENQ_WAIT;
1875 error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH,
1876 "tweaen", 0);
1877 if (error == EINTR) {
1878 splx(s);
1879 return (error);
1880 }
1881 }
1882 splx(s);
1883 return (0);
1884
1885 case TWEIO_GET_PARAM:
1886 error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
1887 tp->tp_size, 0, ¶m);
1888 if (error != 0)
1889 return (error);
1890 if (param->tp_param_size > tp->tp_size) {
1891 error = EFAULT;
1892 goto done;
1893 }
1894 error = copyout(param->tp_data, tp->tp_data,
1895 param->tp_param_size);
1896 goto done;
1897
1898 case TWEIO_SET_PARAM:
1899 pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
1900 if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
1901 goto done;
1902 error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
1903 tp->tp_size, pdata);
1904 goto done;
1905
1906 case TWEIO_RESET:
1907 s = splbio();
1908 twe_reset(twe);
1909 splx(s);
1910 return (0);
1911
1912 case TWEIO_ADD_UNIT:
1913 /* XXX mutex */
1914 return (twe_add_unit(twe, td->td_unit));
1915
1916 case TWEIO_DEL_UNIT:
1917 /* XXX mutex */
1918 return (twe_del_unit(twe, td->td_unit));
1919
1920 default:
1921 return EINVAL;
1922 }
1923 done:
1924 if (pdata)
1925 free(pdata, M_DEVBUF);
1926 return error;
1927 }
1928
1929 const struct cdevsw twe_cdevsw = {
1930 tweopen, tweclose, noread, nowrite, tweioctl,
1931 nostop, notty, nopoll, nommap,
1932 };
1933
1934 /*
1935 * Print some information about the controller
1936 */
1937 static void
1938 twe_describe_controller(struct twe_softc *sc)
1939 {
1940 struct twe_param *p[6];
1941 int i, rv = 0;
1942 uint32_t dsize;
1943 uint8_t ports;
1944
1945 /* get the port count */
1946 rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
1947 TWE_PARAM_CONTROLLER_PortCount, &ports);
1948
1949 /* get version strings */
1950 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
1951 16, NULL, &p[0]);
1952 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
1953 16, NULL, &p[1]);
1954 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
1955 16, NULL, &p[2]);
1956 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
1957 8, NULL, &p[3]);
1958 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
1959 8, NULL, &p[4]);
1960 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
1961 8, NULL, &p[5]);
1962
1963 if (rv) {
1964 /* some error occurred */
1965 aprint_error("%s: failed to fetch version information\n",
1966 sc->sc_dv.dv_xname);
1967 return;
1968 }
1969
1970 aprint_normal("%s: %d ports, Firmware %.16s, BIOS %.16s\n",
1971 sc->sc_dv.dv_xname, ports,
1972 p[1]->tp_data, p[2]->tp_data);
1973
1974 aprint_verbose("%s: Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
1975 sc->sc_dv.dv_xname,
1976 p[0]->tp_data, p[3]->tp_data,
1977 p[4]->tp_data, p[5]->tp_data);
1978
1979 free(p[0], M_DEVBUF);
1980 free(p[1], M_DEVBUF);
1981 free(p[2], M_DEVBUF);
1982 free(p[3], M_DEVBUF);
1983 free(p[4], M_DEVBUF);
1984 free(p[5], M_DEVBUF);
1985
1986 rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY,
1987 TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]);
1988 if (rv) {
1989 aprint_error("%s: failed to get drive status summary\n",
1990 sc->sc_dv.dv_xname);
1991 return;
1992 }
1993 for (i = 0; i < ports; i++) {
1994 if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present)
1995 continue;
1996 rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i,
1997 TWE_PARAM_DRIVEINFO_Size, &dsize);
1998 if (rv) {
1999 aprint_error(
2000 "%s: unable to get drive size for port %d\n",
2001 sc->sc_dv.dv_xname, i);
2002 continue;
2003 }
2004 rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i,
2005 TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]);
2006 if (rv) {
2007 aprint_error(
2008 "%s: unable to get drive model for port %d\n",
2009 sc->sc_dv.dv_xname, i);
2010 continue;
2011 }
2012 aprint_verbose("%s: port %d: %.40s %d MB\n", sc->sc_dv.dv_xname,
2013 i, p[1]->tp_data, dsize / 2048);
2014 free(p[1], M_DEVBUF);
2015 }
2016 free(p[0], M_DEVBUF);
2017 }
2018