twe.c revision 1.78 1 /* $NetBSD: twe.c,v 1.78 2006/09/03 07:05:16 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 2000 Michael Smith
41 * Copyright (c) 2000 BSDi
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
66 */
67
68 /*
69 * Driver for the 3ware Escalade family of RAID controllers.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.78 2006/09/03 07:05:16 christos Exp $");
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/device.h>
79 #include <sys/queue.h>
80 #include <sys/proc.h>
81 #include <sys/buf.h>
82 #include <sys/endian.h>
83 #include <sys/malloc.h>
84 #include <sys/conf.h>
85 #include <sys/disk.h>
86 #include <sys/sysctl.h>
87 #include <sys/syslog.h>
88
89 #include <uvm/uvm_extern.h>
90
91 #include <sys/bswap.h>
92 #include <machine/bus.h>
93
94 #include <dev/pci/pcireg.h>
95 #include <dev/pci/pcivar.h>
96 #include <dev/pci/pcidevs.h>
97 #include <dev/pci/twereg.h>
98 #include <dev/pci/twevar.h>
99 #include <dev/pci/tweio.h>
100
101 #include "locators.h"
102
103 #define PCI_CBIO 0x10
104
105 static int twe_aen_get(struct twe_softc *, uint16_t *);
106 static void twe_aen_handler(struct twe_ccb *, int);
107 static void twe_aen_enqueue(struct twe_softc *sc, uint16_t, int);
108 static uint16_t twe_aen_dequeue(struct twe_softc *);
109
110 static void twe_attach(struct device *, struct device *, void *);
111 static int twe_init_connection(struct twe_softc *);
112 static int twe_intr(void *);
113 static int twe_match(struct device *, struct cfdata *, void *);
114 static int twe_param_set(struct twe_softc *, int, int, size_t, void *);
115 static void twe_poll(struct twe_softc *);
116 static int twe_print(void *, const char *);
117 static int twe_reset(struct twe_softc *);
118 static int twe_status_check(struct twe_softc *, u_int);
119 static int twe_status_wait(struct twe_softc *, u_int, int);
120 static void twe_describe_controller(struct twe_softc *);
121 static void twe_clear_pci_abort(struct twe_softc *sc);
122 static void twe_clear_pci_parity_error(struct twe_softc *sc);
123
124 static int twe_add_unit(struct twe_softc *, int);
125 static int twe_del_unit(struct twe_softc *, int);
126 static int twe_init_connection(struct twe_softc *);
127
128 static inline u_int32_t twe_inl(struct twe_softc *, int);
129 static inline void twe_outl(struct twe_softc *, int, u_int32_t);
130
131 extern struct cfdriver twe_cd;
132
133 CFATTACH_DECL(twe, sizeof(struct twe_softc),
134 twe_match, twe_attach, NULL, NULL);
135
136 /* FreeBSD driver revision for sysctl expected by the 3ware cli */
137 const char twever[] = "1.50.01.002";
138
139 /*
140 * Tables to convert numeric codes to strings.
141 */
142 const struct twe_code_table twe_table_status[] = {
143 { 0x00, "successful completion" },
144
145 /* info */
146 { 0x42, "command in progress" },
147 { 0x6c, "retrying interface CRC error from UDMA command" },
148
149 /* warning */
150 { 0x81, "redundant/inconsequential request ignored" },
151 { 0x8e, "failed to write zeroes to LBA 0" },
152 { 0x8f, "failed to profile TwinStor zones" },
153
154 /* fatal */
155 { 0xc1, "aborted due to system command or reconfiguration" },
156 { 0xc4, "aborted" },
157 { 0xc5, "access error" },
158 { 0xc6, "access violation" },
159 { 0xc7, "device failure" }, /* high byte may be port # */
160 { 0xc8, "controller error" },
161 { 0xc9, "timed out" },
162 { 0xcb, "invalid unit number" },
163 { 0xcf, "unit not available" },
164 { 0xd2, "undefined opcode" },
165 { 0xdb, "request incompatible with unit" },
166 { 0xdc, "invalid request" },
167 { 0xff, "firmware error, reset requested" },
168
169 { 0, NULL }
170 };
171
172 const struct twe_code_table twe_table_unitstate[] = {
173 { TWE_PARAM_UNITSTATUS_Normal, "Normal" },
174 { TWE_PARAM_UNITSTATUS_Initialising, "Initializing" },
175 { TWE_PARAM_UNITSTATUS_Degraded, "Degraded" },
176 { TWE_PARAM_UNITSTATUS_Rebuilding, "Rebuilding" },
177 { TWE_PARAM_UNITSTATUS_Verifying, "Verifying" },
178 { TWE_PARAM_UNITSTATUS_Corrupt, "Corrupt" },
179 { TWE_PARAM_UNITSTATUS_Missing, "Missing" },
180
181 { 0, NULL }
182 };
183
184 const struct twe_code_table twe_table_unittype[] = {
185 /* array descriptor configuration */
186 { TWE_AD_CONFIG_RAID0, "RAID0" },
187 { TWE_AD_CONFIG_RAID1, "RAID1" },
188 { TWE_AD_CONFIG_TwinStor, "TwinStor" },
189 { TWE_AD_CONFIG_RAID5, "RAID5" },
190 { TWE_AD_CONFIG_RAID10, "RAID10" },
191 { TWE_UD_CONFIG_JBOD, "JBOD" },
192
193 { 0, NULL }
194 };
195
196 const struct twe_code_table twe_table_stripedepth[] = {
197 { TWE_AD_STRIPE_4k, "4K" },
198 { TWE_AD_STRIPE_8k, "8K" },
199 { TWE_AD_STRIPE_16k, "16K" },
200 { TWE_AD_STRIPE_32k, "32K" },
201 { TWE_AD_STRIPE_64k, "64K" },
202 { TWE_AD_STRIPE_128k, "128K" },
203 { TWE_AD_STRIPE_256k, "256K" },
204 { TWE_AD_STRIPE_512k, "512K" },
205 { TWE_AD_STRIPE_1024k, "1024K" },
206
207 { 0, NULL }
208 };
209
210 /*
211 * Asynchronous event notification messages are qualified:
212 * a - not unit/port specific
213 * u - unit specific
214 * p - port specific
215 *
216 * They are further qualified with a severity:
217 * E - LOG_EMERG
218 * a - LOG_ALERT
219 * c - LOG_CRIT
220 * e - LOG_ERR
221 * w - LOG_WARNING
222 * n - LOG_NOTICE
223 * i - LOG_INFO
224 * d - LOG_DEBUG
225 * blank - just use printf
226 */
227 const struct twe_code_table twe_table_aen[] = {
228 { 0x00, "a queue empty" },
229 { 0x01, "a soft reset" },
230 { 0x02, "uc degraded mode" },
231 { 0x03, "aa controller error" },
232 { 0x04, "uE rebuild fail" },
233 { 0x05, "un rebuild done" },
234 { 0x06, "ue incomplete unit" },
235 { 0x07, "un initialization done" },
236 { 0x08, "uw unclean shutdown detected" },
237 { 0x09, "pe drive timeout" },
238 { 0x0a, "pc drive error" },
239 { 0x0b, "un rebuild started" },
240 { 0x0c, "un initialization started" },
241 { 0x0d, "ui logical unit deleted" },
242 { 0x0f, "pc SMART threshold exceeded" },
243 { 0x15, "a table undefined" }, /* XXX: Not in FreeBSD's table */
244 { 0x21, "pe ATA UDMA downgrade" },
245 { 0x22, "pi ATA UDMA upgrade" },
246 { 0x23, "pw sector repair occurred" },
247 { 0x24, "aa SBUF integrity check failure" },
248 { 0x25, "pa lost cached write" },
249 { 0x26, "pa drive ECC error detected" },
250 { 0x27, "pe DCB checksum error" },
251 { 0x28, "pn DCB unsupported version" },
252 { 0x29, "ui verify started" },
253 { 0x2a, "ua verify failed" },
254 { 0x2b, "ui verify complete" },
255 { 0x2c, "pw overwrote bad sector during rebuild" },
256 { 0x2d, "pa encountered bad sector during rebuild" },
257 { 0x2e, "pe replacement drive too small" },
258 { 0x2f, "ue array not previously initialized" },
259 { 0x30, "p drive not supported" },
260 { 0xff, "a aen queue full" },
261
262 { 0, NULL },
263 };
264
265 const char *
266 twe_describe_code(const struct twe_code_table *table, uint32_t code)
267 {
268
269 for (; table->string != NULL; table++) {
270 if (table->code == code)
271 return (table->string);
272 }
273 return (NULL);
274 }
275
276 static inline u_int32_t
277 twe_inl(struct twe_softc *sc, int off)
278 {
279
280 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
281 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
282 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
283 }
284
285 static inline void
286 twe_outl(struct twe_softc *sc, int off, u_int32_t val)
287 {
288
289 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
290 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
291 BUS_SPACE_BARRIER_WRITE);
292 }
293
294 /*
295 * Match a supported board.
296 */
297 static int
298 twe_match(struct device *parent, struct cfdata *cfdata, void *aux)
299 {
300 struct pci_attach_args *pa;
301
302 pa = aux;
303
304 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
305 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
306 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
307 }
308
309 /*
310 * Attach a supported board.
311 *
312 * XXX This doesn't fail gracefully.
313 */
314 static void
315 twe_attach(struct device *parent, struct device *self, void *aux)
316 {
317 struct pci_attach_args *pa;
318 struct twe_softc *sc;
319 pci_chipset_tag_t pc;
320 pci_intr_handle_t ih;
321 pcireg_t csr;
322 const char *intrstr;
323 int s, size, i, rv, rseg;
324 size_t max_segs, max_xfer;
325 bus_dma_segment_t seg;
326 struct ctlname ctlnames[] = CTL_NAMES;
327 const struct sysctlnode *node;
328 struct twe_cmd *tc;
329 struct twe_ccb *ccb;
330
331 sc = (struct twe_softc *)self;
332 pa = aux;
333 pc = pa->pa_pc;
334 sc->sc_dmat = pa->pa_dmat;
335 SIMPLEQ_INIT(&sc->sc_ccb_queue);
336 SLIST_INIT(&sc->sc_ccb_freelist);
337
338 aprint_naive(": RAID controller\n");
339 aprint_normal(": 3ware Escalade\n");
340
341
342 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
343 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
344 aprint_error("%s: can't map i/o space\n", sc->sc_dv.dv_xname);
345 return;
346 }
347
348 /* Enable the device. */
349 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
350 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
351 csr | PCI_COMMAND_MASTER_ENABLE);
352
353 /* Map and establish the interrupt. */
354 if (pci_intr_map(pa, &ih)) {
355 aprint_error("%s: can't map interrupt\n", sc->sc_dv.dv_xname);
356 return;
357 }
358
359 intrstr = pci_intr_string(pc, ih);
360 sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc);
361 if (sc->sc_ih == NULL) {
362 aprint_error("%s: can't establish interrupt%s%s\n",
363 sc->sc_dv.dv_xname,
364 (intrstr) ? " at " : "",
365 (intrstr) ? intrstr : "");
366 return;
367 }
368
369 if (intrstr != NULL)
370 aprint_normal("%s: interrupting at %s\n",
371 sc->sc_dv.dv_xname, intrstr);
372
373 /*
374 * Allocate and initialise the command blocks and CCBs.
375 */
376 size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
377
378 if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
379 &rseg, BUS_DMA_NOWAIT)) != 0) {
380 aprint_error("%s: unable to allocate commands, rv = %d\n",
381 sc->sc_dv.dv_xname, rv);
382 return;
383 }
384
385 if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
386 (caddr_t *)&sc->sc_cmds,
387 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
388 aprint_error("%s: unable to map commands, rv = %d\n",
389 sc->sc_dv.dv_xname, rv);
390 return;
391 }
392
393 if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
394 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
395 aprint_error("%s: unable to create command DMA map, rv = %d\n",
396 sc->sc_dv.dv_xname, rv);
397 return;
398 }
399
400 if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
401 size, NULL, BUS_DMA_NOWAIT)) != 0) {
402 aprint_error("%s: unable to load command DMA map, rv = %d\n",
403 sc->sc_dv.dv_xname, rv);
404 return;
405 }
406
407 ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT);
408 if (ccb == NULL) {
409 aprint_error("%s: unable to allocate memory for ccbs\n",
410 sc->sc_dv.dv_xname);
411 return;
412 }
413
414 sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
415 memset(sc->sc_cmds, 0, size);
416
417 sc->sc_ccbs = ccb;
418 tc = (struct twe_cmd *)sc->sc_cmds;
419 max_segs = twe_get_maxsegs();
420 max_xfer = twe_get_maxxfer(max_segs);
421
422 for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
423 ccb->ccb_cmd = tc;
424 ccb->ccb_cmdid = i;
425 ccb->ccb_flags = 0;
426 rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
427 max_segs, PAGE_SIZE, 0,
428 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
429 &ccb->ccb_dmamap_xfer);
430 if (rv != 0) {
431 aprint_error("%s: can't create dmamap, rv = %d\n",
432 sc->sc_dv.dv_xname, rv);
433 return;
434 }
435
436 /* Save the first CCB for AEN retrieval. */
437 if (i != 0)
438 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
439 ccb_chain.slist);
440 }
441
442 /* Wait for the controller to become ready. */
443 if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
444 aprint_error("%s: microcontroller not ready\n",
445 sc->sc_dv.dv_xname);
446 return;
447 }
448
449 twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
450
451 /* Reset the controller. */
452 s = splbio();
453 rv = twe_reset(sc);
454 splx(s);
455 if (rv) {
456 aprint_error("%s: reset failed\n", sc->sc_dv.dv_xname);
457 return;
458 }
459
460 /* Initialise connection with controller. */
461 twe_init_connection(sc);
462
463 twe_describe_controller(sc);
464
465 /* Find and attach RAID array units. */
466 sc->sc_nunits = 0;
467 for (i = 0; i < TWE_MAX_UNITS; i++)
468 (void) twe_add_unit(sc, i);
469
470 /* ...and finally, enable interrupts. */
471 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
472 TWE_CTL_UNMASK_RESP_INTR |
473 TWE_CTL_ENABLE_INTRS);
474
475 /* sysctl set-up for 3ware cli */
476 if (sysctl_createv(NULL, 0, NULL, NULL,
477 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw",
478 NULL, NULL, 0, NULL, 0,
479 CTL_HW, CTL_EOL) != 0) {
480 printf("%s: could not create %s sysctl node\n",
481 sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name);
482 return;
483 }
484 if (sysctl_createv(NULL, 0, NULL, &node,
485 0, CTLTYPE_NODE, sc->sc_dv.dv_xname,
486 SYSCTL_DESCR("twe driver information"),
487 NULL, 0, NULL, 0,
488 CTL_HW, CTL_CREATE, CTL_EOL) != 0) {
489 printf("%s: could not create %s.%s sysctl node\n",
490 sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name,
491 sc->sc_dv.dv_xname);
492 return;
493 }
494 if ((i = sysctl_createv(NULL, 0, NULL, NULL,
495 0, CTLTYPE_STRING, "driver_version",
496 SYSCTL_DESCR("twe0 driver version"),
497 NULL, 0, &twever, 0,
498 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL))
499 != 0) {
500 printf("%s: could not create %s.%s.driver_version sysctl\n",
501 sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name,
502 sc->sc_dv.dv_xname);
503 return;
504 }
505 }
506
507 void
508 twe_register_callbacks(struct twe_softc *sc, int unit,
509 const struct twe_callbacks *tcb)
510 {
511
512 sc->sc_units[unit].td_callbacks = tcb;
513 }
514
515 static void
516 twe_recompute_openings(struct twe_softc *sc)
517 {
518 struct twe_drive *td;
519 int unit, openings;
520
521 if (sc->sc_nunits != 0)
522 openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits;
523 else
524 openings = 0;
525 if (openings == sc->sc_openings)
526 return;
527 sc->sc_openings = openings;
528
529 #ifdef TWE_DEBUG
530 printf("%s: %d array%s, %d openings per array\n",
531 sc->sc_dv.dv_xname, sc->sc_nunits,
532 sc->sc_nunits == 1 ? "" : "s", sc->sc_openings);
533 #endif
534
535 for (unit = 0; unit < TWE_MAX_UNITS; unit++) {
536 td = &sc->sc_units[unit];
537 if (td->td_dev != NULL)
538 (*td->td_callbacks->tcb_openings)(td->td_dev,
539 sc->sc_openings);
540 }
541 }
542
543 static int
544 twe_add_unit(struct twe_softc *sc, int unit)
545 {
546 struct twe_param *dtp, *atp;
547 struct twe_array_descriptor *ad;
548 struct twe_drive *td;
549 struct twe_attach_args twea;
550 uint32_t newsize;
551 int rv;
552 uint16_t dsize;
553 uint8_t newtype, newstripe;
554 int locs[TWECF_NLOCS];
555
556 if (unit < 0 || unit >= TWE_MAX_UNITS)
557 return (EINVAL);
558
559 /* Find attached units. */
560 rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
561 TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
562 if (rv != 0) {
563 aprint_error("%s: error %d fetching unit summary\n",
564 sc->sc_dv.dv_xname, rv);
565 return (rv);
566 }
567
568 /* For each detected unit, collect size and store in an array. */
569 td = &sc->sc_units[unit];
570
571 /* Unit present? */
572 if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) {
573 /*
574 * XXX Should we check to see if a device has been
575 * XXX attached at this index and detach it if it
576 * XXX has? ("rescan" semantics)
577 */
578 rv = 0;
579 goto out;
580 }
581
582 rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit,
583 TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
584 if (rv != 0) {
585 aprint_error("%s: error %d fetching descriptor size "
586 "for unit %d\n", sc->sc_dv.dv_xname, rv, unit);
587 goto out;
588 }
589
590 rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit,
591 TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
592 if (rv != 0) {
593 aprint_error("%s: error %d fetching array descriptor "
594 "for unit %d\n", sc->sc_dv.dv_xname, rv, unit);
595 goto out;
596 }
597
598 ad = (struct twe_array_descriptor *)atp->tp_data;
599 newtype = ad->configuration;
600 newstripe = ad->stripe_size;
601 free(atp, M_DEVBUF);
602
603 rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit,
604 TWE_PARAM_UNITINFO_Capacity, &newsize);
605 if (rv != 0) {
606 aprint_error(
607 "%s: error %d fetching capacity for unit %d\n",
608 sc->sc_dv.dv_xname, rv, unit);
609 goto out;
610 }
611
612 /*
613 * Have a device, so we need to attach it. If there is currently
614 * something sitting at the slot, and the parameters are different,
615 * then we detach the old device before attaching the new one.
616 */
617 if (td->td_dev != NULL &&
618 td->td_size == newsize &&
619 td->td_type == newtype &&
620 td->td_stripe == newstripe) {
621 /* Same as the old device; just keep using it. */
622 rv = 0;
623 goto out;
624 } else if (td->td_dev != NULL) {
625 /* Detach the old device first. */
626 (void) config_detach(td->td_dev, DETACH_FORCE);
627 td->td_dev = NULL;
628 } else if (td->td_size == 0)
629 sc->sc_nunits++;
630
631 /*
632 * Committed to the new array unit; assign its parameters and
633 * recompute the number of available command openings.
634 */
635 td->td_size = newsize;
636 td->td_type = newtype;
637 td->td_stripe = newstripe;
638 twe_recompute_openings(sc);
639
640 twea.twea_unit = unit;
641
642 locs[TWECF_UNIT] = unit;
643
644 td->td_dev = config_found_sm_loc(&sc->sc_dv, "twe", locs, &twea,
645 twe_print, config_stdsubmatch);
646
647 rv = 0;
648 out:
649 free(dtp, M_DEVBUF);
650 return (rv);
651 }
652
653 static int
654 twe_del_unit(struct twe_softc *sc, int unit)
655 {
656 struct twe_drive *td;
657
658 if (unit < 0 || unit >= TWE_MAX_UNITS)
659 return (EINVAL);
660
661 td = &sc->sc_units[unit];
662 if (td->td_size != 0)
663 sc->sc_nunits--;
664 td->td_size = 0;
665 td->td_type = 0;
666 td->td_stripe = 0;
667 if (td->td_dev != NULL) {
668 (void) config_detach(td->td_dev, DETACH_FORCE);
669 td->td_dev = NULL;
670 }
671 twe_recompute_openings(sc);
672 return (0);
673 }
674
675 /*
676 * Reset the controller.
677 * MUST BE CALLED AT splbio()!
678 */
679 static int
680 twe_reset(struct twe_softc *sc)
681 {
682 uint16_t aen;
683 u_int status;
684 volatile u_int32_t junk;
685 int got, rv;
686
687 /* Issue a soft reset. */
688 twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
689 TWE_CTL_CLEAR_HOST_INTR |
690 TWE_CTL_CLEAR_ATTN_INTR |
691 TWE_CTL_MASK_CMD_INTR |
692 TWE_CTL_MASK_RESP_INTR |
693 TWE_CTL_CLEAR_ERROR_STS |
694 TWE_CTL_DISABLE_INTRS);
695
696 /* Wait for attention... */
697 if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) {
698 printf("%s: timeout waiting for attention interrupt\n",
699 sc->sc_dv.dv_xname);
700 return (-1);
701 }
702
703 /* ...and ACK it. */
704 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
705
706 /*
707 * Pull AENs out of the controller; look for a soft reset AEN.
708 * Open code this, since we want to detect reset even if the
709 * queue for management tools is full.
710 *
711 * Note that since:
712 * - interrupts are blocked
713 * - we have reset the controller
714 * - acknowledged the pending ATTENTION
715 * that there is no way a pending asynchronous AEN fetch would
716 * finish, so clear the flag.
717 */
718 sc->sc_flags &= ~TWEF_AEN;
719 for (got = 0;;) {
720 rv = twe_aen_get(sc, &aen);
721 if (rv != 0)
722 printf("%s: error %d while draining event queue\n",
723 sc->sc_dv.dv_xname, rv);
724 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
725 break;
726 if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
727 got = 1;
728 twe_aen_enqueue(sc, aen, 1);
729 }
730
731 if (!got) {
732 printf("%s: reset not reported\n", sc->sc_dv.dv_xname);
733 return (-1);
734 }
735
736 /* Check controller status. */
737 status = twe_inl(sc, TWE_REG_STS);
738 if (twe_status_check(sc, status)) {
739 printf("%s: controller errors detected\n",
740 sc->sc_dv.dv_xname);
741 return (-1);
742 }
743
744 /* Drain the response queue. */
745 for (;;) {
746 status = twe_inl(sc, TWE_REG_STS);
747 if (twe_status_check(sc, status) != 0) {
748 printf("%s: can't drain response queue\n",
749 sc->sc_dv.dv_xname);
750 return (-1);
751 }
752 if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
753 break;
754 junk = twe_inl(sc, TWE_REG_RESP_QUEUE);
755 }
756
757 return (0);
758 }
759
760 /*
761 * Print autoconfiguration message for a sub-device.
762 */
763 static int
764 twe_print(void *aux, const char *pnp)
765 {
766 struct twe_attach_args *twea;
767
768 twea = aux;
769
770 if (pnp != NULL)
771 aprint_normal("block device at %s", pnp);
772 aprint_normal(" unit %d", twea->twea_unit);
773 return (UNCONF);
774 }
775
776 /*
777 * Interrupt service routine.
778 */
779 static int
780 twe_intr(void *arg)
781 {
782 struct twe_softc *sc;
783 u_int status;
784 int caught, rv;
785
786 sc = arg;
787 caught = 0;
788 status = twe_inl(sc, TWE_REG_STS);
789 twe_status_check(sc, status);
790
791 /* Host interrupts - purpose unknown. */
792 if ((status & TWE_STS_HOST_INTR) != 0) {
793 #ifdef DEBUG
794 printf("%s: host interrupt\n", sc->sc_dv.dv_xname);
795 #endif
796 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
797 caught = 1;
798 }
799
800 /*
801 * Attention interrupts, signalled when a controller or child device
802 * state change has occurred.
803 */
804 if ((status & TWE_STS_ATTN_INTR) != 0) {
805 rv = twe_aen_get(sc, NULL);
806 if (rv != 0)
807 printf("%s: unable to retrieve AEN (%d)\n",
808 sc->sc_dv.dv_xname, rv);
809 else
810 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
811 caught = 1;
812 }
813
814 /*
815 * Command interrupts, signalled when the controller can accept more
816 * commands. We don't use this; instead, we try to submit commands
817 * when we receive them, and when other commands have completed.
818 * Mask it so we don't get another one.
819 */
820 if ((status & TWE_STS_CMD_INTR) != 0) {
821 #ifdef DEBUG
822 printf("%s: command interrupt\n", sc->sc_dv.dv_xname);
823 #endif
824 twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
825 caught = 1;
826 }
827
828 if ((status & TWE_STS_RESP_INTR) != 0) {
829 twe_poll(sc);
830 caught = 1;
831 }
832
833 return (caught);
834 }
835
836 /*
837 * Fetch an AEN. Even though this is really like parameter
838 * retrieval, we handle this specially, because we issue this
839 * AEN retrieval command from interrupt context, and thus
840 * reserve a CCB for it to avoid resource shortage.
841 *
842 * XXX There are still potential resource shortages we could
843 * XXX encounter. Consider pre-allocating all AEN-related
844 * XXX resources.
845 *
846 * MUST BE CALLED AT splbio()!
847 */
848 static int
849 twe_aen_get(struct twe_softc *sc, uint16_t *aenp)
850 {
851 struct twe_ccb *ccb;
852 struct twe_cmd *tc;
853 struct twe_param *tp;
854 int rv;
855
856 /*
857 * If we're already retrieving an AEN, just wait; another
858 * retrieval will be chained after the current one completes.
859 */
860 if (sc->sc_flags & TWEF_AEN) {
861 /*
862 * It is a fatal software programming error to attempt
863 * to fetch an AEN synchronously when an AEN fetch is
864 * already pending.
865 */
866 KASSERT(aenp == NULL);
867 return (0);
868 }
869
870 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
871 if (tp == NULL)
872 return (ENOMEM);
873
874 ccb = twe_ccb_alloc(sc,
875 TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
876 KASSERT(ccb != NULL);
877
878 ccb->ccb_data = tp;
879 ccb->ccb_datasize = TWE_SECTOR_SIZE;
880 ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL;
881 ccb->ccb_tx.tx_context = tp;
882 ccb->ccb_tx.tx_dv = &sc->sc_dv;
883
884 tc = ccb->ccb_cmd;
885 tc->tc_size = 2;
886 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
887 tc->tc_unit = 0;
888 tc->tc_count = htole16(1);
889
890 /* Fill in the outbound parameter data. */
891 tp->tp_table_id = htole16(TWE_PARAM_AEN);
892 tp->tp_param_id = TWE_PARAM_AEN_UnitCode;
893 tp->tp_param_size = 2;
894
895 /* Map the transfer. */
896 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
897 twe_ccb_free(sc, ccb);
898 goto done;
899 }
900
901 /* Enqueue the command and wait. */
902 if (aenp != NULL) {
903 rv = twe_ccb_poll(sc, ccb, 5);
904 twe_ccb_unmap(sc, ccb);
905 twe_ccb_free(sc, ccb);
906 if (rv == 0)
907 *aenp = le16toh(*(uint16_t *)tp->tp_data);
908 free(tp, M_DEVBUF);
909 } else {
910 sc->sc_flags |= TWEF_AEN;
911 twe_ccb_enqueue(sc, ccb);
912 rv = 0;
913 }
914
915 done:
916 return (rv);
917 }
918
919 /*
920 * Handle an AEN returned by the controller.
921 * MUST BE CALLED AT splbio()!
922 */
923 static void
924 twe_aen_handler(struct twe_ccb *ccb, int error)
925 {
926 struct twe_softc *sc;
927 struct twe_param *tp;
928 uint16_t aen;
929 int rv;
930
931 sc = (struct twe_softc *)ccb->ccb_tx.tx_dv;
932 tp = ccb->ccb_tx.tx_context;
933 twe_ccb_unmap(sc, ccb);
934
935 sc->sc_flags &= ~TWEF_AEN;
936
937 if (error) {
938 printf("%s: error retrieving AEN\n", sc->sc_dv.dv_xname);
939 aen = TWE_AEN_QUEUE_EMPTY;
940 } else
941 aen = le16toh(*(u_int16_t *)tp->tp_data);
942 free(tp, M_DEVBUF);
943 twe_ccb_free(sc, ccb);
944
945 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
946 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
947 return;
948 }
949
950 twe_aen_enqueue(sc, aen, 0);
951
952 /*
953 * Chain another retrieval in case interrupts have been
954 * coalesced.
955 */
956 rv = twe_aen_get(sc, NULL);
957 if (rv != 0)
958 printf("%s: unable to retrieve AEN (%d)\n",
959 sc->sc_dv.dv_xname, rv);
960 }
961
962 static void
963 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet)
964 {
965 const char *str, *msg;
966 int s, next, nextnext, level;
967
968 /*
969 * First report the AEN on the console. Maybe.
970 */
971 if (! quiet) {
972 str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen));
973 if (str == NULL) {
974 printf("%s: unknown AEN 0x%04x\n",
975 sc->sc_dv.dv_xname, aen);
976 } else {
977 msg = str + 3;
978 switch (str[1]) {
979 case 'E': level = LOG_EMERG; break;
980 case 'a': level = LOG_ALERT; break;
981 case 'c': level = LOG_CRIT; break;
982 case 'e': level = LOG_ERR; break;
983 case 'w': level = LOG_WARNING; break;
984 case 'n': level = LOG_NOTICE; break;
985 case 'i': level = LOG_INFO; break;
986 case 'd': level = LOG_DEBUG; break;
987 default:
988 /* Don't use syslog. */
989 level = -1;
990 }
991
992 if (level < 0) {
993 switch (str[0]) {
994 case 'u':
995 case 'p':
996 printf("%s: %s %d: %s\n",
997 sc->sc_dv.dv_xname,
998 str[0] == 'u' ? "unit" : "port",
999 TWE_AEN_UNIT(aen), msg);
1000 break;
1001
1002 default:
1003 printf("%s: %s\n",
1004 sc->sc_dv.dv_xname, msg);
1005 }
1006 } else {
1007 switch (str[0]) {
1008 case 'u':
1009 case 'p':
1010 log(level, "%s: %s %d: %s\n",
1011 sc->sc_dv.dv_xname,
1012 str[0] == 'u' ? "unit" : "port",
1013 TWE_AEN_UNIT(aen), msg);
1014 break;
1015
1016 default:
1017 log(level, "%s: %s\n",
1018 sc->sc_dv.dv_xname, msg);
1019 }
1020 }
1021 }
1022 }
1023
1024 /* Now enqueue the AEN for mangement tools. */
1025 s = splbio();
1026
1027 next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH;
1028 nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH;
1029
1030 /*
1031 * If this is the last free slot, then queue up a "queue
1032 * full" message.
1033 */
1034 if (nextnext == sc->sc_aen_tail)
1035 aen = TWE_AEN_QUEUE_FULL;
1036
1037 if (next != sc->sc_aen_tail) {
1038 sc->sc_aen_queue[sc->sc_aen_head] = aen;
1039 sc->sc_aen_head = next;
1040 }
1041
1042 if (sc->sc_flags & TWEF_AENQ_WAIT) {
1043 sc->sc_flags &= ~TWEF_AENQ_WAIT;
1044 wakeup(&sc->sc_aen_queue);
1045 }
1046
1047 splx(s);
1048 }
1049
1050 /* NOTE: Must be called at splbio(). */
1051 static uint16_t
1052 twe_aen_dequeue(struct twe_softc *sc)
1053 {
1054 uint16_t aen;
1055
1056 if (sc->sc_aen_tail == sc->sc_aen_head)
1057 aen = TWE_AEN_QUEUE_EMPTY;
1058 else {
1059 aen = sc->sc_aen_queue[sc->sc_aen_tail];
1060 sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH;
1061 }
1062
1063 return (aen);
1064 }
1065
1066 /*
1067 * These are short-hand functions that execute TWE_OP_GET_PARAM to
1068 * fetch 1, 2, and 4 byte parameter values, respectively.
1069 */
1070 int
1071 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
1072 uint8_t *valp)
1073 {
1074 struct twe_param *tp;
1075 int rv;
1076
1077 rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
1078 if (rv != 0)
1079 return (rv);
1080 *valp = *(uint8_t *)tp->tp_data;
1081 free(tp, M_DEVBUF);
1082 return (0);
1083 }
1084
1085 int
1086 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
1087 uint16_t *valp)
1088 {
1089 struct twe_param *tp;
1090 int rv;
1091
1092 rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
1093 if (rv != 0)
1094 return (rv);
1095 *valp = le16toh(*(uint16_t *)tp->tp_data);
1096 free(tp, M_DEVBUF);
1097 return (0);
1098 }
1099
1100 int
1101 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
1102 uint32_t *valp)
1103 {
1104 struct twe_param *tp;
1105 int rv;
1106
1107 rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
1108 if (rv != 0)
1109 return (rv);
1110 *valp = le32toh(*(uint32_t *)tp->tp_data);
1111 free(tp, M_DEVBUF);
1112 return (0);
1113 }
1114
1115 /*
1116 * Execute a TWE_OP_GET_PARAM command. If a callback function is provided,
1117 * it will be called with generated context when the command has completed.
1118 * If no callback is provided, the command will be executed synchronously
1119 * and a pointer to a buffer containing the data returned.
1120 *
1121 * The caller or callback is responsible for freeing the buffer.
1122 *
1123 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1124 */
1125 int
1126 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
1127 void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
1128 {
1129 struct twe_ccb *ccb;
1130 struct twe_cmd *tc;
1131 struct twe_param *tp;
1132 int rv, s;
1133
1134 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1135 if (tp == NULL)
1136 return ENOMEM;
1137
1138 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1139 KASSERT(ccb != NULL);
1140
1141 ccb->ccb_data = tp;
1142 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1143 ccb->ccb_tx.tx_handler = func;
1144 ccb->ccb_tx.tx_context = tp;
1145 ccb->ccb_tx.tx_dv = &sc->sc_dv;
1146
1147 tc = ccb->ccb_cmd;
1148 tc->tc_size = 2;
1149 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
1150 tc->tc_unit = 0;
1151 tc->tc_count = htole16(1);
1152
1153 /* Fill in the outbound parameter data. */
1154 tp->tp_table_id = htole16(table_id);
1155 tp->tp_param_id = param_id;
1156 tp->tp_param_size = size;
1157
1158 /* Map the transfer. */
1159 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1160 twe_ccb_free(sc, ccb);
1161 goto done;
1162 }
1163
1164 /* Submit the command and either wait or let the callback handle it. */
1165 if (func == NULL) {
1166 s = splbio();
1167 rv = twe_ccb_poll(sc, ccb, 5);
1168 twe_ccb_unmap(sc, ccb);
1169 twe_ccb_free(sc, ccb);
1170 splx(s);
1171 } else {
1172 #ifdef DEBUG
1173 if (pbuf != NULL)
1174 panic("both func and pbuf defined");
1175 #endif
1176 twe_ccb_enqueue(sc, ccb);
1177 return 0;
1178 }
1179
1180 done:
1181 if (pbuf == NULL || rv != 0)
1182 free(tp, M_DEVBUF);
1183 else if (pbuf != NULL && rv == 0)
1184 *pbuf = tp;
1185 return rv;
1186 }
1187
1188 /*
1189 * Execute a TWE_OP_SET_PARAM command.
1190 *
1191 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1192 */
1193 static int
1194 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
1195 void *sbuf)
1196 {
1197 struct twe_ccb *ccb;
1198 struct twe_cmd *tc;
1199 struct twe_param *tp;
1200 int rv, s;
1201
1202 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1203 if (tp == NULL)
1204 return ENOMEM;
1205
1206 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1207 KASSERT(ccb != NULL);
1208
1209 ccb->ccb_data = tp;
1210 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1211 ccb->ccb_tx.tx_handler = 0;
1212 ccb->ccb_tx.tx_context = tp;
1213 ccb->ccb_tx.tx_dv = &sc->sc_dv;
1214
1215 tc = ccb->ccb_cmd;
1216 tc->tc_size = 2;
1217 tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
1218 tc->tc_unit = 0;
1219 tc->tc_count = htole16(1);
1220
1221 /* Fill in the outbound parameter data. */
1222 tp->tp_table_id = htole16(table_id);
1223 tp->tp_param_id = param_id;
1224 tp->tp_param_size = size;
1225 memcpy(tp->tp_data, sbuf, size);
1226
1227 /* Map the transfer. */
1228 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1229 twe_ccb_free(sc, ccb);
1230 goto done;
1231 }
1232
1233 /* Submit the command and wait. */
1234 s = splbio();
1235 rv = twe_ccb_poll(sc, ccb, 5);
1236 twe_ccb_unmap(sc, ccb);
1237 twe_ccb_free(sc, ccb);
1238 splx(s);
1239 done:
1240 free(tp, M_DEVBUF);
1241 return (rv);
1242 }
1243
1244 /*
1245 * Execute a TWE_OP_INIT_CONNECTION command. Return non-zero on error.
1246 * Must be called with interrupts blocked.
1247 */
1248 static int
1249 twe_init_connection(struct twe_softc *sc)
1250 {
1251 struct twe_ccb *ccb;
1252 struct twe_cmd *tc;
1253 int rv;
1254
1255 if ((ccb = twe_ccb_alloc(sc, 0)) == NULL)
1256 return (EAGAIN);
1257
1258 /* Build the command. */
1259 tc = ccb->ccb_cmd;
1260 tc->tc_size = 3;
1261 tc->tc_opcode = TWE_OP_INIT_CONNECTION;
1262 tc->tc_unit = 0;
1263 tc->tc_count = htole16(TWE_MAX_CMDS);
1264 tc->tc_args.init_connection.response_queue_pointer = 0;
1265
1266 /* Submit the command for immediate execution. */
1267 rv = twe_ccb_poll(sc, ccb, 5);
1268 twe_ccb_free(sc, ccb);
1269 return (rv);
1270 }
1271
1272 /*
1273 * Poll the controller for completed commands. Must be called with
1274 * interrupts blocked.
1275 */
1276 static void
1277 twe_poll(struct twe_softc *sc)
1278 {
1279 struct twe_ccb *ccb;
1280 int found;
1281 u_int status, cmdid;
1282
1283 found = 0;
1284
1285 for (;;) {
1286 status = twe_inl(sc, TWE_REG_STS);
1287 twe_status_check(sc, status);
1288
1289 if ((status & TWE_STS_RESP_QUEUE_EMPTY))
1290 break;
1291
1292 found = 1;
1293 cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
1294 cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
1295 if (cmdid >= TWE_MAX_QUEUECNT) {
1296 printf("%s: bad cmdid %d\n", sc->sc_dv.dv_xname, cmdid);
1297 continue;
1298 }
1299
1300 ccb = sc->sc_ccbs + cmdid;
1301 if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
1302 printf("%s: CCB for cmdid %d not active\n",
1303 sc->sc_dv.dv_xname, cmdid);
1304 continue;
1305 }
1306 ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
1307
1308 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1309 (caddr_t)ccb->ccb_cmd - sc->sc_cmds,
1310 sizeof(struct twe_cmd),
1311 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1312
1313 /* Pass notification to upper layers. */
1314 if (ccb->ccb_tx.tx_handler != NULL)
1315 (*ccb->ccb_tx.tx_handler)(ccb,
1316 ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
1317 }
1318
1319 /* If any commands have completed, run the software queue. */
1320 if (found)
1321 twe_ccb_enqueue(sc, NULL);
1322 }
1323
1324 /*
1325 * Wait for `status' to be set in the controller status register. Return
1326 * zero if found, non-zero if the operation timed out.
1327 */
1328 static int
1329 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
1330 {
1331
1332 for (timo *= 10; timo != 0; timo--) {
1333 if ((twe_inl(sc, TWE_REG_STS) & status) == status)
1334 break;
1335 delay(100000);
1336 }
1337
1338 return (timo == 0);
1339 }
1340
1341 /*
1342 * Clear a PCI parity error.
1343 */
1344 static void
1345 twe_clear_pci_parity_error(struct twe_softc *sc)
1346 {
1347 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PARITY_ERROR);
1348
1349 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
1350 }
1351
1352
1353 /*
1354 * Clear a PCI abort.
1355 */
1356 static void
1357 twe_clear_pci_abort(struct twe_softc *sc)
1358 {
1359 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT);
1360
1361 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
1362 }
1363
1364 /*
1365 * Complain if the status bits aren't what we expect.
1366 */
1367 static int
1368 twe_status_check(struct twe_softc *sc, u_int status)
1369 {
1370 int rv;
1371
1372 rv = 0;
1373
1374 if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
1375 printf("%s: missing status bits: 0x%08x\n", sc->sc_dv.dv_xname,
1376 status & ~TWE_STS_EXPECTED_BITS);
1377 rv = -1;
1378 }
1379
1380 if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
1381 printf("%s: unexpected status bits: 0x%08x\n",
1382 sc->sc_dv.dv_xname, status & TWE_STS_UNEXPECTED_BITS);
1383 rv = -1;
1384 if (status & TWE_STS_PCI_PARITY_ERROR) {
1385 printf("%s: PCI parity error: Reseat card, move card "
1386 "or buggy device present.\n",
1387 sc->sc_dv.dv_xname);
1388 twe_clear_pci_parity_error(sc);
1389 }
1390 if (status & TWE_STS_PCI_ABORT) {
1391 printf("%s: PCI abort, clearing.\n",
1392 sc->sc_dv.dv_xname);
1393 twe_clear_pci_abort(sc);
1394 }
1395 }
1396
1397 return (rv);
1398 }
1399
1400 /*
1401 * Allocate and initialise a CCB.
1402 */
1403 static inline void
1404 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags)
1405 {
1406 struct twe_cmd *tc;
1407
1408 ccb->ccb_tx.tx_handler = NULL;
1409 ccb->ccb_flags = flags;
1410 tc = ccb->ccb_cmd;
1411 tc->tc_status = 0;
1412 tc->tc_flags = 0;
1413 tc->tc_cmdid = ccb->ccb_cmdid;
1414 }
1415
1416 struct twe_ccb *
1417 twe_ccb_alloc(struct twe_softc *sc, int flags)
1418 {
1419 struct twe_ccb *ccb;
1420 int s;
1421
1422 s = splbio();
1423 if (__predict_false((flags & TWE_CCB_AEN) != 0)) {
1424 /* Use the reserved CCB. */
1425 ccb = sc->sc_ccbs;
1426 } else {
1427 /* Allocate a CCB and command block. */
1428 if (__predict_false((ccb =
1429 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1430 splx(s);
1431 return (NULL);
1432 }
1433 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1434 }
1435 #ifdef DIAGNOSTIC
1436 if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0)
1437 panic("twe_ccb_alloc: got reserved CCB for non-AEN");
1438 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1439 panic("twe_ccb_alloc: CCB %ld already allocated",
1440 (long)(ccb - sc->sc_ccbs));
1441 flags |= TWE_CCB_ALLOCED;
1442 #endif
1443 splx(s);
1444
1445 twe_ccb_init(sc, ccb, flags);
1446 return (ccb);
1447 }
1448
1449 struct twe_ccb *
1450 twe_ccb_alloc_wait(struct twe_softc *sc, int flags)
1451 {
1452 struct twe_ccb *ccb;
1453 int s;
1454
1455 KASSERT((flags & TWE_CCB_AEN) == 0);
1456
1457 s = splbio();
1458 while (__predict_false((ccb =
1459 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1460 sc->sc_flags |= TWEF_WAIT_CCB;
1461 (void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0);
1462 }
1463 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1464 #ifdef DIAGNOSTIC
1465 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1466 panic("twe_ccb_alloc_wait: CCB %ld already allocated",
1467 (long)(ccb - sc->sc_ccbs));
1468 flags |= TWE_CCB_ALLOCED;
1469 #endif
1470 splx(s);
1471
1472 twe_ccb_init(sc, ccb, flags);
1473 return (ccb);
1474 }
1475
1476 /*
1477 * Free a CCB.
1478 */
1479 void
1480 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
1481 {
1482 int s;
1483
1484 s = splbio();
1485 if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) {
1486 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
1487 if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) {
1488 sc->sc_flags &= ~TWEF_WAIT_CCB;
1489 wakeup(&sc->sc_ccb_freelist);
1490 }
1491 }
1492 ccb->ccb_flags = 0;
1493 splx(s);
1494 }
1495
1496 /*
1497 * Map the specified CCB's command block and data buffer (if any) into
1498 * controller visible space. Perform DMA synchronisation.
1499 */
1500 int
1501 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
1502 {
1503 struct twe_cmd *tc;
1504 int flags, nsegs, i, s, rv;
1505 void *data;
1506
1507 /*
1508 * The data as a whole must be 512-byte aligned.
1509 */
1510 if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
1511 s = splvm();
1512 /* XXX */
1513 ccb->ccb_abuf = uvm_km_alloc(kmem_map,
1514 ccb->ccb_datasize, 0, UVM_KMF_NOWAIT|UVM_KMF_WIRED);
1515 splx(s);
1516 data = (void *)ccb->ccb_abuf;
1517 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1518 memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
1519 } else {
1520 ccb->ccb_abuf = (vaddr_t)0;
1521 data = ccb->ccb_data;
1522 }
1523
1524 /*
1525 * Map the data buffer into bus space and build the S/G list.
1526 */
1527 rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
1528 ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1529 ((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
1530 BUS_DMA_READ : BUS_DMA_WRITE));
1531 if (rv != 0) {
1532 if (ccb->ccb_abuf != (vaddr_t)0) {
1533 s = splvm();
1534 /* XXX */
1535 uvm_km_free(kmem_map, ccb->ccb_abuf,
1536 ccb->ccb_datasize, UVM_KMF_WIRED);
1537 splx(s);
1538 }
1539 return (rv);
1540 }
1541
1542 nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
1543 tc = ccb->ccb_cmd;
1544 tc->tc_size += 2 * nsegs;
1545
1546 /* The location of the S/G list is dependant upon command type. */
1547 switch (tc->tc_opcode >> 5) {
1548 case 2:
1549 for (i = 0; i < nsegs; i++) {
1550 tc->tc_args.param.sgl[i].tsg_address =
1551 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1552 tc->tc_args.param.sgl[i].tsg_length =
1553 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1554 }
1555 /* XXX Needed? */
1556 for (; i < TWE_SG_SIZE; i++) {
1557 tc->tc_args.param.sgl[i].tsg_address = 0;
1558 tc->tc_args.param.sgl[i].tsg_length = 0;
1559 }
1560 break;
1561 case 3:
1562 for (i = 0; i < nsegs; i++) {
1563 tc->tc_args.io.sgl[i].tsg_address =
1564 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1565 tc->tc_args.io.sgl[i].tsg_length =
1566 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1567 }
1568 /* XXX Needed? */
1569 for (; i < TWE_SG_SIZE; i++) {
1570 tc->tc_args.io.sgl[i].tsg_address = 0;
1571 tc->tc_args.io.sgl[i].tsg_length = 0;
1572 }
1573 break;
1574 default:
1575 /*
1576 * In all likelihood, this is a command passed from
1577 * management tools in userspace where no S/G list is
1578 * necessary because no data is being passed.
1579 */
1580 break;
1581 }
1582
1583 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1584 flags = BUS_DMASYNC_PREREAD;
1585 else
1586 flags = 0;
1587 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1588 flags |= BUS_DMASYNC_PREWRITE;
1589
1590 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1591 ccb->ccb_datasize, flags);
1592 return (0);
1593 }
1594
1595 /*
1596 * Unmap the specified CCB's command block and data buffer (if any) and
1597 * perform DMA synchronisation.
1598 */
1599 void
1600 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
1601 {
1602 int flags, s;
1603
1604 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1605 flags = BUS_DMASYNC_POSTREAD;
1606 else
1607 flags = 0;
1608 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1609 flags |= BUS_DMASYNC_POSTWRITE;
1610
1611 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1612 ccb->ccb_datasize, flags);
1613 bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
1614
1615 if (ccb->ccb_abuf != (vaddr_t)0) {
1616 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1617 memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
1618 ccb->ccb_datasize);
1619 s = splvm();
1620 /* XXX */
1621 uvm_km_free(kmem_map, ccb->ccb_abuf, ccb->ccb_datasize,
1622 UVM_KMF_WIRED);
1623 splx(s);
1624 }
1625 }
1626
1627 /*
1628 * Submit a command to the controller and poll on completion. Return
1629 * non-zero on timeout (but don't check status, as some command types don't
1630 * return status). Must be called with interrupts blocked.
1631 */
1632 int
1633 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
1634 {
1635 int rv;
1636
1637 if ((rv = twe_ccb_submit(sc, ccb)) != 0)
1638 return (rv);
1639
1640 for (timo *= 1000; timo != 0; timo--) {
1641 twe_poll(sc);
1642 if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
1643 break;
1644 DELAY(100);
1645 }
1646
1647 return (timo == 0);
1648 }
1649
1650 /*
1651 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1652 * the order that they were enqueued and try to submit their command blocks
1653 * to the controller for execution.
1654 */
1655 void
1656 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
1657 {
1658 int s;
1659
1660 s = splbio();
1661
1662 if (ccb != NULL)
1663 SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
1664
1665 while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
1666 if (twe_ccb_submit(sc, ccb))
1667 break;
1668 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
1669 }
1670
1671 splx(s);
1672 }
1673
1674 /*
1675 * Submit the command block associated with the specified CCB to the
1676 * controller for execution. Must be called with interrupts blocked.
1677 */
1678 int
1679 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
1680 {
1681 bus_addr_t pa;
1682 int rv;
1683 u_int status;
1684
1685 /* Check to see if we can post a command. */
1686 status = twe_inl(sc, TWE_REG_STS);
1687 twe_status_check(sc, status);
1688
1689 if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
1690 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1691 (caddr_t)ccb->ccb_cmd - sc->sc_cmds, sizeof(struct twe_cmd),
1692 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1693 #ifdef DIAGNOSTIC
1694 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0)
1695 panic("%s: CCB %ld not ALLOCED\n",
1696 sc->sc_dv.dv_xname, (long)(ccb - sc->sc_ccbs));
1697 #endif
1698 ccb->ccb_flags |= TWE_CCB_ACTIVE;
1699 pa = sc->sc_cmds_paddr +
1700 ccb->ccb_cmdid * sizeof(struct twe_cmd);
1701 twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
1702 rv = 0;
1703 } else
1704 rv = EBUSY;
1705
1706 return (rv);
1707 }
1708
1709
1710 /*
1711 * Accept an open operation on the control device.
1712 */
1713 static int
1714 tweopen(dev_t dev, int flag, int mode, struct lwp *l)
1715 {
1716 struct twe_softc *twe;
1717
1718 if ((twe = device_lookup(&twe_cd, minor(dev))) == NULL)
1719 return (ENXIO);
1720 if ((twe->sc_flags & TWEF_OPEN) != 0)
1721 return (EBUSY);
1722
1723 twe->sc_flags |= TWEF_OPEN;
1724 return (0);
1725 }
1726
1727 /*
1728 * Accept the last close on the control device.
1729 */
1730 static int
1731 tweclose(dev_t dev, int flag, int mode, struct lwp *l)
1732 {
1733 struct twe_softc *twe;
1734
1735 twe = device_lookup(&twe_cd, minor(dev));
1736 twe->sc_flags &= ~TWEF_OPEN;
1737 return (0);
1738 }
1739
1740 void
1741 twe_ccb_wait_handler(struct twe_ccb *ccb, int error)
1742 {
1743
1744 /* Just wake up the sleeper. */
1745 wakeup(ccb);
1746 }
1747
1748 /*
1749 * Handle control operations.
1750 */
1751 static int
1752 tweioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct lwp *l)
1753 {
1754 struct twe_softc *twe;
1755 struct twe_ccb *ccb;
1756 struct twe_param *param;
1757 struct twe_usercommand *tu;
1758 struct twe_paramcommand *tp;
1759 struct twe_drivecommand *td;
1760 void *pdata = NULL;
1761 int s, error = 0;
1762 u_int8_t cmdid;
1763
1764 twe = device_lookup(&twe_cd, minor(dev));
1765 tu = (struct twe_usercommand *)data;
1766 tp = (struct twe_paramcommand *)data;
1767 td = (struct twe_drivecommand *)data;
1768
1769 /* This is intended to be compatible with the FreeBSD interface. */
1770 switch (cmd) {
1771 case TWEIO_COMMAND:
1772 if (securelevel >= 2)
1773 return (EPERM);
1774
1775 /* XXX mutex */
1776 if (tu->tu_size > 0) {
1777 /*
1778 * XXX Handle > TWE_SECTOR_SIZE? Let's see if
1779 * it's really necessary, first.
1780 */
1781 if (tu->tu_size > TWE_SECTOR_SIZE) {
1782 #ifdef TWE_DEBUG
1783 printf("%s: TWEIO_COMMAND: tu_size = %d\n",
1784 twe->sc_dv.dv_xname, tu->tu_size);
1785 #endif
1786 return EINVAL;
1787 }
1788 pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
1789 error = copyin(tu->tu_data, pdata, tu->tu_size);
1790 if (error != 0)
1791 goto done;
1792 ccb = twe_ccb_alloc_wait(twe,
1793 TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1794 KASSERT(ccb != NULL);
1795 ccb->ccb_data = pdata;
1796 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1797 } else {
1798 ccb = twe_ccb_alloc_wait(twe, 0);
1799 KASSERT(ccb != NULL);
1800 }
1801
1802 ccb->ccb_tx.tx_handler = twe_ccb_wait_handler;
1803 ccb->ccb_tx.tx_context = NULL;
1804 ccb->ccb_tx.tx_dv = &twe->sc_dv;
1805
1806 cmdid = ccb->ccb_cmdid;
1807 memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
1808 ccb->ccb_cmd->tc_cmdid = cmdid;
1809
1810 /* Map the transfer. */
1811 if ((error = twe_ccb_map(twe, ccb)) != 0) {
1812 twe_ccb_free(twe, ccb);
1813 goto done;
1814 }
1815
1816 /* Submit the command and wait up to 1 minute. */
1817 error = 0;
1818 twe_ccb_enqueue(twe, ccb);
1819 s = splbio();
1820 while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0)
1821 if ((error = tsleep(ccb, PRIBIO, "tweioctl",
1822 60 * hz)) != 0)
1823 break;
1824 splx(s);
1825
1826 /* Copy the command back to the ioctl argument. */
1827 memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd));
1828 #ifdef TWE_DEBUG
1829 printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, "
1830 "tc_status = 0x%02x\n", twe->sc_dv.dv_xname,
1831 tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status);
1832 #endif
1833
1834 s = splbio();
1835 twe_ccb_free(twe, ccb);
1836 splx(s);
1837
1838 if (tu->tu_size > 0)
1839 error = copyout(pdata, tu->tu_data, tu->tu_size);
1840 goto done;
1841
1842 case TWEIO_STATS:
1843 return (ENOENT);
1844
1845 case TWEIO_AEN_POLL:
1846 s = splbio();
1847 *(u_int *)data = twe_aen_dequeue(twe);
1848 splx(s);
1849 return (0);
1850
1851 case TWEIO_AEN_WAIT:
1852 s = splbio();
1853 while ((*(u_int *)data =
1854 twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) {
1855 twe->sc_flags |= TWEF_AENQ_WAIT;
1856 error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH,
1857 "tweaen", 0);
1858 if (error == EINTR) {
1859 splx(s);
1860 return (error);
1861 }
1862 }
1863 splx(s);
1864 return (0);
1865
1866 case TWEIO_GET_PARAM:
1867 error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
1868 tp->tp_size, 0, ¶m);
1869 if (error != 0)
1870 return (error);
1871 if (param->tp_param_size > tp->tp_size) {
1872 error = EFAULT;
1873 goto done;
1874 }
1875 error = copyout(param->tp_data, tp->tp_data,
1876 param->tp_param_size);
1877 free(param, M_DEVBUF);
1878 goto done;
1879
1880 case TWEIO_SET_PARAM:
1881 pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
1882 if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
1883 goto done;
1884 error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
1885 tp->tp_size, pdata);
1886 goto done;
1887
1888 case TWEIO_RESET:
1889 s = splbio();
1890 twe_reset(twe);
1891 splx(s);
1892 return (0);
1893
1894 case TWEIO_ADD_UNIT:
1895 /* XXX mutex */
1896 return (twe_add_unit(twe, td->td_unit));
1897
1898 case TWEIO_DEL_UNIT:
1899 /* XXX mutex */
1900 return (twe_del_unit(twe, td->td_unit));
1901
1902 default:
1903 return EINVAL;
1904 }
1905 done:
1906 if (pdata)
1907 free(pdata, M_DEVBUF);
1908 return error;
1909 }
1910
1911 const struct cdevsw twe_cdevsw = {
1912 tweopen, tweclose, noread, nowrite, tweioctl,
1913 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1914 };
1915
1916 /*
1917 * Print some information about the controller
1918 */
1919 static void
1920 twe_describe_controller(struct twe_softc *sc)
1921 {
1922 struct twe_param *p[6];
1923 int i, rv = 0;
1924 uint32_t dsize;
1925 uint8_t ports;
1926
1927 ports = 0;
1928
1929 /* get the port count */
1930 rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
1931 TWE_PARAM_CONTROLLER_PortCount, &ports);
1932
1933 /* get version strings */
1934 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
1935 16, NULL, &p[0]);
1936 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
1937 16, NULL, &p[1]);
1938 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
1939 16, NULL, &p[2]);
1940 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
1941 8, NULL, &p[3]);
1942 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
1943 8, NULL, &p[4]);
1944 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
1945 8, NULL, &p[5]);
1946
1947 if (rv) {
1948 /* some error occurred */
1949 aprint_error("%s: failed to fetch version information\n",
1950 sc->sc_dv.dv_xname);
1951 return;
1952 }
1953
1954 aprint_normal("%s: %d ports, Firmware %.16s, BIOS %.16s\n",
1955 sc->sc_dv.dv_xname, ports,
1956 p[1]->tp_data, p[2]->tp_data);
1957
1958 aprint_verbose("%s: Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
1959 sc->sc_dv.dv_xname,
1960 p[0]->tp_data, p[3]->tp_data,
1961 p[4]->tp_data, p[5]->tp_data);
1962
1963 free(p[0], M_DEVBUF);
1964 free(p[1], M_DEVBUF);
1965 free(p[2], M_DEVBUF);
1966 free(p[3], M_DEVBUF);
1967 free(p[4], M_DEVBUF);
1968 free(p[5], M_DEVBUF);
1969
1970 rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY,
1971 TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]);
1972 if (rv) {
1973 aprint_error("%s: failed to get drive status summary\n",
1974 sc->sc_dv.dv_xname);
1975 return;
1976 }
1977 for (i = 0; i < ports; i++) {
1978 if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present)
1979 continue;
1980 rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i,
1981 TWE_PARAM_DRIVEINFO_Size, &dsize);
1982 if (rv) {
1983 aprint_error(
1984 "%s: unable to get drive size for port %d\n",
1985 sc->sc_dv.dv_xname, i);
1986 continue;
1987 }
1988 rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i,
1989 TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]);
1990 if (rv) {
1991 aprint_error(
1992 "%s: unable to get drive model for port %d\n",
1993 sc->sc_dv.dv_xname, i);
1994 continue;
1995 }
1996 aprint_verbose("%s: port %d: %.40s %d MB\n", sc->sc_dv.dv_xname,
1997 i, p[1]->tp_data, dsize / 2048);
1998 free(p[1], M_DEVBUF);
1999 }
2000 free(p[0], M_DEVBUF);
2001 }
2002