twe.c revision 1.79 1 /* $NetBSD: twe.c,v 1.79 2006/10/12 01:31:33 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 2000 Michael Smith
41 * Copyright (c) 2000 BSDi
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
66 */
67
68 /*
69 * Driver for the 3ware Escalade family of RAID controllers.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.79 2006/10/12 01:31:33 christos Exp $");
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/device.h>
79 #include <sys/queue.h>
80 #include <sys/proc.h>
81 #include <sys/buf.h>
82 #include <sys/endian.h>
83 #include <sys/malloc.h>
84 #include <sys/conf.h>
85 #include <sys/disk.h>
86 #include <sys/sysctl.h>
87 #include <sys/syslog.h>
88
89 #include <uvm/uvm_extern.h>
90
91 #include <sys/bswap.h>
92 #include <machine/bus.h>
93
94 #include <dev/pci/pcireg.h>
95 #include <dev/pci/pcivar.h>
96 #include <dev/pci/pcidevs.h>
97 #include <dev/pci/twereg.h>
98 #include <dev/pci/twevar.h>
99 #include <dev/pci/tweio.h>
100
101 #include "locators.h"
102
103 #define PCI_CBIO 0x10
104
105 static int twe_aen_get(struct twe_softc *, uint16_t *);
106 static void twe_aen_handler(struct twe_ccb *, int);
107 static void twe_aen_enqueue(struct twe_softc *sc, uint16_t, int);
108 static uint16_t twe_aen_dequeue(struct twe_softc *);
109
110 static void twe_attach(struct device *, struct device *, void *);
111 static int twe_init_connection(struct twe_softc *);
112 static int twe_intr(void *);
113 static int twe_match(struct device *, struct cfdata *, void *);
114 static int twe_param_set(struct twe_softc *, int, int, size_t, void *);
115 static void twe_poll(struct twe_softc *);
116 static int twe_print(void *, const char *);
117 static int twe_reset(struct twe_softc *);
118 static int twe_status_check(struct twe_softc *, u_int);
119 static int twe_status_wait(struct twe_softc *, u_int, int);
120 static void twe_describe_controller(struct twe_softc *);
121 static void twe_clear_pci_abort(struct twe_softc *sc);
122 static void twe_clear_pci_parity_error(struct twe_softc *sc);
123
124 static int twe_add_unit(struct twe_softc *, int);
125 static int twe_del_unit(struct twe_softc *, int);
126 static int twe_init_connection(struct twe_softc *);
127
128 static inline u_int32_t twe_inl(struct twe_softc *, int);
129 static inline void twe_outl(struct twe_softc *, int, u_int32_t);
130
131 extern struct cfdriver twe_cd;
132
133 CFATTACH_DECL(twe, sizeof(struct twe_softc),
134 twe_match, twe_attach, NULL, NULL);
135
136 /* FreeBSD driver revision for sysctl expected by the 3ware cli */
137 const char twever[] = "1.50.01.002";
138
139 /*
140 * Tables to convert numeric codes to strings.
141 */
142 const struct twe_code_table twe_table_status[] = {
143 { 0x00, "successful completion" },
144
145 /* info */
146 { 0x42, "command in progress" },
147 { 0x6c, "retrying interface CRC error from UDMA command" },
148
149 /* warning */
150 { 0x81, "redundant/inconsequential request ignored" },
151 { 0x8e, "failed to write zeroes to LBA 0" },
152 { 0x8f, "failed to profile TwinStor zones" },
153
154 /* fatal */
155 { 0xc1, "aborted due to system command or reconfiguration" },
156 { 0xc4, "aborted" },
157 { 0xc5, "access error" },
158 { 0xc6, "access violation" },
159 { 0xc7, "device failure" }, /* high byte may be port # */
160 { 0xc8, "controller error" },
161 { 0xc9, "timed out" },
162 { 0xcb, "invalid unit number" },
163 { 0xcf, "unit not available" },
164 { 0xd2, "undefined opcode" },
165 { 0xdb, "request incompatible with unit" },
166 { 0xdc, "invalid request" },
167 { 0xff, "firmware error, reset requested" },
168
169 { 0, NULL }
170 };
171
172 const struct twe_code_table twe_table_unitstate[] = {
173 { TWE_PARAM_UNITSTATUS_Normal, "Normal" },
174 { TWE_PARAM_UNITSTATUS_Initialising, "Initializing" },
175 { TWE_PARAM_UNITSTATUS_Degraded, "Degraded" },
176 { TWE_PARAM_UNITSTATUS_Rebuilding, "Rebuilding" },
177 { TWE_PARAM_UNITSTATUS_Verifying, "Verifying" },
178 { TWE_PARAM_UNITSTATUS_Corrupt, "Corrupt" },
179 { TWE_PARAM_UNITSTATUS_Missing, "Missing" },
180
181 { 0, NULL }
182 };
183
184 const struct twe_code_table twe_table_unittype[] = {
185 /* array descriptor configuration */
186 { TWE_AD_CONFIG_RAID0, "RAID0" },
187 { TWE_AD_CONFIG_RAID1, "RAID1" },
188 { TWE_AD_CONFIG_TwinStor, "TwinStor" },
189 { TWE_AD_CONFIG_RAID5, "RAID5" },
190 { TWE_AD_CONFIG_RAID10, "RAID10" },
191 { TWE_UD_CONFIG_JBOD, "JBOD" },
192
193 { 0, NULL }
194 };
195
196 const struct twe_code_table twe_table_stripedepth[] = {
197 { TWE_AD_STRIPE_4k, "4K" },
198 { TWE_AD_STRIPE_8k, "8K" },
199 { TWE_AD_STRIPE_16k, "16K" },
200 { TWE_AD_STRIPE_32k, "32K" },
201 { TWE_AD_STRIPE_64k, "64K" },
202 { TWE_AD_STRIPE_128k, "128K" },
203 { TWE_AD_STRIPE_256k, "256K" },
204 { TWE_AD_STRIPE_512k, "512K" },
205 { TWE_AD_STRIPE_1024k, "1024K" },
206
207 { 0, NULL }
208 };
209
210 /*
211 * Asynchronous event notification messages are qualified:
212 * a - not unit/port specific
213 * u - unit specific
214 * p - port specific
215 *
216 * They are further qualified with a severity:
217 * E - LOG_EMERG
218 * a - LOG_ALERT
219 * c - LOG_CRIT
220 * e - LOG_ERR
221 * w - LOG_WARNING
222 * n - LOG_NOTICE
223 * i - LOG_INFO
224 * d - LOG_DEBUG
225 * blank - just use printf
226 */
227 const struct twe_code_table twe_table_aen[] = {
228 { 0x00, "a queue empty" },
229 { 0x01, "a soft reset" },
230 { 0x02, "uc degraded mode" },
231 { 0x03, "aa controller error" },
232 { 0x04, "uE rebuild fail" },
233 { 0x05, "un rebuild done" },
234 { 0x06, "ue incomplete unit" },
235 { 0x07, "un initialization done" },
236 { 0x08, "uw unclean shutdown detected" },
237 { 0x09, "pe drive timeout" },
238 { 0x0a, "pc drive error" },
239 { 0x0b, "un rebuild started" },
240 { 0x0c, "un initialization started" },
241 { 0x0d, "ui logical unit deleted" },
242 { 0x0f, "pc SMART threshold exceeded" },
243 { 0x15, "a table undefined" }, /* XXX: Not in FreeBSD's table */
244 { 0x21, "pe ATA UDMA downgrade" },
245 { 0x22, "pi ATA UDMA upgrade" },
246 { 0x23, "pw sector repair occurred" },
247 { 0x24, "aa SBUF integrity check failure" },
248 { 0x25, "pa lost cached write" },
249 { 0x26, "pa drive ECC error detected" },
250 { 0x27, "pe DCB checksum error" },
251 { 0x28, "pn DCB unsupported version" },
252 { 0x29, "ui verify started" },
253 { 0x2a, "ua verify failed" },
254 { 0x2b, "ui verify complete" },
255 { 0x2c, "pw overwrote bad sector during rebuild" },
256 { 0x2d, "pa encountered bad sector during rebuild" },
257 { 0x2e, "pe replacement drive too small" },
258 { 0x2f, "ue array not previously initialized" },
259 { 0x30, "p drive not supported" },
260 { 0xff, "a aen queue full" },
261
262 { 0, NULL },
263 };
264
265 const char *
266 twe_describe_code(const struct twe_code_table *table, uint32_t code)
267 {
268
269 for (; table->string != NULL; table++) {
270 if (table->code == code)
271 return (table->string);
272 }
273 return (NULL);
274 }
275
276 static inline u_int32_t
277 twe_inl(struct twe_softc *sc, int off)
278 {
279
280 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
281 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
282 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
283 }
284
285 static inline void
286 twe_outl(struct twe_softc *sc, int off, u_int32_t val)
287 {
288
289 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
290 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
291 BUS_SPACE_BARRIER_WRITE);
292 }
293
294 /*
295 * Match a supported board.
296 */
297 static int
298 twe_match(struct device *parent __unused, struct cfdata *cfdata __unused,
299 void *aux)
300 {
301 struct pci_attach_args *pa;
302
303 pa = aux;
304
305 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
306 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
307 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
308 }
309
310 /*
311 * Attach a supported board.
312 *
313 * XXX This doesn't fail gracefully.
314 */
315 static void
316 twe_attach(struct device *parent __unused, struct device *self, void *aux)
317 {
318 struct pci_attach_args *pa;
319 struct twe_softc *sc;
320 pci_chipset_tag_t pc;
321 pci_intr_handle_t ih;
322 pcireg_t csr;
323 const char *intrstr;
324 int s, size, i, rv, rseg;
325 size_t max_segs, max_xfer;
326 bus_dma_segment_t seg;
327 struct ctlname ctlnames[] = CTL_NAMES;
328 const struct sysctlnode *node;
329 struct twe_cmd *tc;
330 struct twe_ccb *ccb;
331
332 sc = (struct twe_softc *)self;
333 pa = aux;
334 pc = pa->pa_pc;
335 sc->sc_dmat = pa->pa_dmat;
336 SIMPLEQ_INIT(&sc->sc_ccb_queue);
337 SLIST_INIT(&sc->sc_ccb_freelist);
338
339 aprint_naive(": RAID controller\n");
340 aprint_normal(": 3ware Escalade\n");
341
342
343 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
344 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
345 aprint_error("%s: can't map i/o space\n", sc->sc_dv.dv_xname);
346 return;
347 }
348
349 /* Enable the device. */
350 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
351 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
352 csr | PCI_COMMAND_MASTER_ENABLE);
353
354 /* Map and establish the interrupt. */
355 if (pci_intr_map(pa, &ih)) {
356 aprint_error("%s: can't map interrupt\n", sc->sc_dv.dv_xname);
357 return;
358 }
359
360 intrstr = pci_intr_string(pc, ih);
361 sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc);
362 if (sc->sc_ih == NULL) {
363 aprint_error("%s: can't establish interrupt%s%s\n",
364 sc->sc_dv.dv_xname,
365 (intrstr) ? " at " : "",
366 (intrstr) ? intrstr : "");
367 return;
368 }
369
370 if (intrstr != NULL)
371 aprint_normal("%s: interrupting at %s\n",
372 sc->sc_dv.dv_xname, intrstr);
373
374 /*
375 * Allocate and initialise the command blocks and CCBs.
376 */
377 size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
378
379 if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
380 &rseg, BUS_DMA_NOWAIT)) != 0) {
381 aprint_error("%s: unable to allocate commands, rv = %d\n",
382 sc->sc_dv.dv_xname, rv);
383 return;
384 }
385
386 if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
387 (caddr_t *)&sc->sc_cmds,
388 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
389 aprint_error("%s: unable to map commands, rv = %d\n",
390 sc->sc_dv.dv_xname, rv);
391 return;
392 }
393
394 if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
395 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
396 aprint_error("%s: unable to create command DMA map, rv = %d\n",
397 sc->sc_dv.dv_xname, rv);
398 return;
399 }
400
401 if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
402 size, NULL, BUS_DMA_NOWAIT)) != 0) {
403 aprint_error("%s: unable to load command DMA map, rv = %d\n",
404 sc->sc_dv.dv_xname, rv);
405 return;
406 }
407
408 ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT);
409 if (ccb == NULL) {
410 aprint_error("%s: unable to allocate memory for ccbs\n",
411 sc->sc_dv.dv_xname);
412 return;
413 }
414
415 sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
416 memset(sc->sc_cmds, 0, size);
417
418 sc->sc_ccbs = ccb;
419 tc = (struct twe_cmd *)sc->sc_cmds;
420 max_segs = twe_get_maxsegs();
421 max_xfer = twe_get_maxxfer(max_segs);
422
423 for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
424 ccb->ccb_cmd = tc;
425 ccb->ccb_cmdid = i;
426 ccb->ccb_flags = 0;
427 rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
428 max_segs, PAGE_SIZE, 0,
429 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
430 &ccb->ccb_dmamap_xfer);
431 if (rv != 0) {
432 aprint_error("%s: can't create dmamap, rv = %d\n",
433 sc->sc_dv.dv_xname, rv);
434 return;
435 }
436
437 /* Save the first CCB for AEN retrieval. */
438 if (i != 0)
439 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
440 ccb_chain.slist);
441 }
442
443 /* Wait for the controller to become ready. */
444 if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
445 aprint_error("%s: microcontroller not ready\n",
446 sc->sc_dv.dv_xname);
447 return;
448 }
449
450 twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
451
452 /* Reset the controller. */
453 s = splbio();
454 rv = twe_reset(sc);
455 splx(s);
456 if (rv) {
457 aprint_error("%s: reset failed\n", sc->sc_dv.dv_xname);
458 return;
459 }
460
461 /* Initialise connection with controller. */
462 twe_init_connection(sc);
463
464 twe_describe_controller(sc);
465
466 /* Find and attach RAID array units. */
467 sc->sc_nunits = 0;
468 for (i = 0; i < TWE_MAX_UNITS; i++)
469 (void) twe_add_unit(sc, i);
470
471 /* ...and finally, enable interrupts. */
472 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
473 TWE_CTL_UNMASK_RESP_INTR |
474 TWE_CTL_ENABLE_INTRS);
475
476 /* sysctl set-up for 3ware cli */
477 if (sysctl_createv(NULL, 0, NULL, NULL,
478 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw",
479 NULL, NULL, 0, NULL, 0,
480 CTL_HW, CTL_EOL) != 0) {
481 printf("%s: could not create %s sysctl node\n",
482 sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name);
483 return;
484 }
485 if (sysctl_createv(NULL, 0, NULL, &node,
486 0, CTLTYPE_NODE, sc->sc_dv.dv_xname,
487 SYSCTL_DESCR("twe driver information"),
488 NULL, 0, NULL, 0,
489 CTL_HW, CTL_CREATE, CTL_EOL) != 0) {
490 printf("%s: could not create %s.%s sysctl node\n",
491 sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name,
492 sc->sc_dv.dv_xname);
493 return;
494 }
495 if ((i = sysctl_createv(NULL, 0, NULL, NULL,
496 0, CTLTYPE_STRING, "driver_version",
497 SYSCTL_DESCR("twe0 driver version"),
498 NULL, 0, &twever, 0,
499 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL))
500 != 0) {
501 printf("%s: could not create %s.%s.driver_version sysctl\n",
502 sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name,
503 sc->sc_dv.dv_xname);
504 return;
505 }
506 }
507
508 void
509 twe_register_callbacks(struct twe_softc *sc, int unit,
510 const struct twe_callbacks *tcb)
511 {
512
513 sc->sc_units[unit].td_callbacks = tcb;
514 }
515
516 static void
517 twe_recompute_openings(struct twe_softc *sc)
518 {
519 struct twe_drive *td;
520 int unit, openings;
521
522 if (sc->sc_nunits != 0)
523 openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits;
524 else
525 openings = 0;
526 if (openings == sc->sc_openings)
527 return;
528 sc->sc_openings = openings;
529
530 #ifdef TWE_DEBUG
531 printf("%s: %d array%s, %d openings per array\n",
532 sc->sc_dv.dv_xname, sc->sc_nunits,
533 sc->sc_nunits == 1 ? "" : "s", sc->sc_openings);
534 #endif
535
536 for (unit = 0; unit < TWE_MAX_UNITS; unit++) {
537 td = &sc->sc_units[unit];
538 if (td->td_dev != NULL)
539 (*td->td_callbacks->tcb_openings)(td->td_dev,
540 sc->sc_openings);
541 }
542 }
543
544 static int
545 twe_add_unit(struct twe_softc *sc, int unit)
546 {
547 struct twe_param *dtp, *atp;
548 struct twe_array_descriptor *ad;
549 struct twe_drive *td;
550 struct twe_attach_args twea;
551 uint32_t newsize;
552 int rv;
553 uint16_t dsize;
554 uint8_t newtype, newstripe;
555 int locs[TWECF_NLOCS];
556
557 if (unit < 0 || unit >= TWE_MAX_UNITS)
558 return (EINVAL);
559
560 /* Find attached units. */
561 rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
562 TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
563 if (rv != 0) {
564 aprint_error("%s: error %d fetching unit summary\n",
565 sc->sc_dv.dv_xname, rv);
566 return (rv);
567 }
568
569 /* For each detected unit, collect size and store in an array. */
570 td = &sc->sc_units[unit];
571
572 /* Unit present? */
573 if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) {
574 /*
575 * XXX Should we check to see if a device has been
576 * XXX attached at this index and detach it if it
577 * XXX has? ("rescan" semantics)
578 */
579 rv = 0;
580 goto out;
581 }
582
583 rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit,
584 TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
585 if (rv != 0) {
586 aprint_error("%s: error %d fetching descriptor size "
587 "for unit %d\n", sc->sc_dv.dv_xname, rv, unit);
588 goto out;
589 }
590
591 rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit,
592 TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
593 if (rv != 0) {
594 aprint_error("%s: error %d fetching array descriptor "
595 "for unit %d\n", sc->sc_dv.dv_xname, rv, unit);
596 goto out;
597 }
598
599 ad = (struct twe_array_descriptor *)atp->tp_data;
600 newtype = ad->configuration;
601 newstripe = ad->stripe_size;
602 free(atp, M_DEVBUF);
603
604 rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit,
605 TWE_PARAM_UNITINFO_Capacity, &newsize);
606 if (rv != 0) {
607 aprint_error(
608 "%s: error %d fetching capacity for unit %d\n",
609 sc->sc_dv.dv_xname, rv, unit);
610 goto out;
611 }
612
613 /*
614 * Have a device, so we need to attach it. If there is currently
615 * something sitting at the slot, and the parameters are different,
616 * then we detach the old device before attaching the new one.
617 */
618 if (td->td_dev != NULL &&
619 td->td_size == newsize &&
620 td->td_type == newtype &&
621 td->td_stripe == newstripe) {
622 /* Same as the old device; just keep using it. */
623 rv = 0;
624 goto out;
625 } else if (td->td_dev != NULL) {
626 /* Detach the old device first. */
627 (void) config_detach(td->td_dev, DETACH_FORCE);
628 td->td_dev = NULL;
629 } else if (td->td_size == 0)
630 sc->sc_nunits++;
631
632 /*
633 * Committed to the new array unit; assign its parameters and
634 * recompute the number of available command openings.
635 */
636 td->td_size = newsize;
637 td->td_type = newtype;
638 td->td_stripe = newstripe;
639 twe_recompute_openings(sc);
640
641 twea.twea_unit = unit;
642
643 locs[TWECF_UNIT] = unit;
644
645 td->td_dev = config_found_sm_loc(&sc->sc_dv, "twe", locs, &twea,
646 twe_print, config_stdsubmatch);
647
648 rv = 0;
649 out:
650 free(dtp, M_DEVBUF);
651 return (rv);
652 }
653
654 static int
655 twe_del_unit(struct twe_softc *sc, int unit)
656 {
657 struct twe_drive *td;
658
659 if (unit < 0 || unit >= TWE_MAX_UNITS)
660 return (EINVAL);
661
662 td = &sc->sc_units[unit];
663 if (td->td_size != 0)
664 sc->sc_nunits--;
665 td->td_size = 0;
666 td->td_type = 0;
667 td->td_stripe = 0;
668 if (td->td_dev != NULL) {
669 (void) config_detach(td->td_dev, DETACH_FORCE);
670 td->td_dev = NULL;
671 }
672 twe_recompute_openings(sc);
673 return (0);
674 }
675
676 /*
677 * Reset the controller.
678 * MUST BE CALLED AT splbio()!
679 */
680 static int
681 twe_reset(struct twe_softc *sc)
682 {
683 uint16_t aen;
684 u_int status;
685 volatile u_int32_t junk;
686 int got, rv;
687
688 /* Issue a soft reset. */
689 twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
690 TWE_CTL_CLEAR_HOST_INTR |
691 TWE_CTL_CLEAR_ATTN_INTR |
692 TWE_CTL_MASK_CMD_INTR |
693 TWE_CTL_MASK_RESP_INTR |
694 TWE_CTL_CLEAR_ERROR_STS |
695 TWE_CTL_DISABLE_INTRS);
696
697 /* Wait for attention... */
698 if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) {
699 printf("%s: timeout waiting for attention interrupt\n",
700 sc->sc_dv.dv_xname);
701 return (-1);
702 }
703
704 /* ...and ACK it. */
705 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
706
707 /*
708 * Pull AENs out of the controller; look for a soft reset AEN.
709 * Open code this, since we want to detect reset even if the
710 * queue for management tools is full.
711 *
712 * Note that since:
713 * - interrupts are blocked
714 * - we have reset the controller
715 * - acknowledged the pending ATTENTION
716 * that there is no way a pending asynchronous AEN fetch would
717 * finish, so clear the flag.
718 */
719 sc->sc_flags &= ~TWEF_AEN;
720 for (got = 0;;) {
721 rv = twe_aen_get(sc, &aen);
722 if (rv != 0)
723 printf("%s: error %d while draining event queue\n",
724 sc->sc_dv.dv_xname, rv);
725 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
726 break;
727 if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
728 got = 1;
729 twe_aen_enqueue(sc, aen, 1);
730 }
731
732 if (!got) {
733 printf("%s: reset not reported\n", sc->sc_dv.dv_xname);
734 return (-1);
735 }
736
737 /* Check controller status. */
738 status = twe_inl(sc, TWE_REG_STS);
739 if (twe_status_check(sc, status)) {
740 printf("%s: controller errors detected\n",
741 sc->sc_dv.dv_xname);
742 return (-1);
743 }
744
745 /* Drain the response queue. */
746 for (;;) {
747 status = twe_inl(sc, TWE_REG_STS);
748 if (twe_status_check(sc, status) != 0) {
749 printf("%s: can't drain response queue\n",
750 sc->sc_dv.dv_xname);
751 return (-1);
752 }
753 if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
754 break;
755 junk = twe_inl(sc, TWE_REG_RESP_QUEUE);
756 }
757
758 return (0);
759 }
760
761 /*
762 * Print autoconfiguration message for a sub-device.
763 */
764 static int
765 twe_print(void *aux, const char *pnp)
766 {
767 struct twe_attach_args *twea;
768
769 twea = aux;
770
771 if (pnp != NULL)
772 aprint_normal("block device at %s", pnp);
773 aprint_normal(" unit %d", twea->twea_unit);
774 return (UNCONF);
775 }
776
777 /*
778 * Interrupt service routine.
779 */
780 static int
781 twe_intr(void *arg)
782 {
783 struct twe_softc *sc;
784 u_int status;
785 int caught, rv;
786
787 sc = arg;
788 caught = 0;
789 status = twe_inl(sc, TWE_REG_STS);
790 twe_status_check(sc, status);
791
792 /* Host interrupts - purpose unknown. */
793 if ((status & TWE_STS_HOST_INTR) != 0) {
794 #ifdef DEBUG
795 printf("%s: host interrupt\n", sc->sc_dv.dv_xname);
796 #endif
797 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
798 caught = 1;
799 }
800
801 /*
802 * Attention interrupts, signalled when a controller or child device
803 * state change has occurred.
804 */
805 if ((status & TWE_STS_ATTN_INTR) != 0) {
806 rv = twe_aen_get(sc, NULL);
807 if (rv != 0)
808 printf("%s: unable to retrieve AEN (%d)\n",
809 sc->sc_dv.dv_xname, rv);
810 else
811 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
812 caught = 1;
813 }
814
815 /*
816 * Command interrupts, signalled when the controller can accept more
817 * commands. We don't use this; instead, we try to submit commands
818 * when we receive them, and when other commands have completed.
819 * Mask it so we don't get another one.
820 */
821 if ((status & TWE_STS_CMD_INTR) != 0) {
822 #ifdef DEBUG
823 printf("%s: command interrupt\n", sc->sc_dv.dv_xname);
824 #endif
825 twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
826 caught = 1;
827 }
828
829 if ((status & TWE_STS_RESP_INTR) != 0) {
830 twe_poll(sc);
831 caught = 1;
832 }
833
834 return (caught);
835 }
836
837 /*
838 * Fetch an AEN. Even though this is really like parameter
839 * retrieval, we handle this specially, because we issue this
840 * AEN retrieval command from interrupt context, and thus
841 * reserve a CCB for it to avoid resource shortage.
842 *
843 * XXX There are still potential resource shortages we could
844 * XXX encounter. Consider pre-allocating all AEN-related
845 * XXX resources.
846 *
847 * MUST BE CALLED AT splbio()!
848 */
849 static int
850 twe_aen_get(struct twe_softc *sc, uint16_t *aenp)
851 {
852 struct twe_ccb *ccb;
853 struct twe_cmd *tc;
854 struct twe_param *tp;
855 int rv;
856
857 /*
858 * If we're already retrieving an AEN, just wait; another
859 * retrieval will be chained after the current one completes.
860 */
861 if (sc->sc_flags & TWEF_AEN) {
862 /*
863 * It is a fatal software programming error to attempt
864 * to fetch an AEN synchronously when an AEN fetch is
865 * already pending.
866 */
867 KASSERT(aenp == NULL);
868 return (0);
869 }
870
871 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
872 if (tp == NULL)
873 return (ENOMEM);
874
875 ccb = twe_ccb_alloc(sc,
876 TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
877 KASSERT(ccb != NULL);
878
879 ccb->ccb_data = tp;
880 ccb->ccb_datasize = TWE_SECTOR_SIZE;
881 ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL;
882 ccb->ccb_tx.tx_context = tp;
883 ccb->ccb_tx.tx_dv = &sc->sc_dv;
884
885 tc = ccb->ccb_cmd;
886 tc->tc_size = 2;
887 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
888 tc->tc_unit = 0;
889 tc->tc_count = htole16(1);
890
891 /* Fill in the outbound parameter data. */
892 tp->tp_table_id = htole16(TWE_PARAM_AEN);
893 tp->tp_param_id = TWE_PARAM_AEN_UnitCode;
894 tp->tp_param_size = 2;
895
896 /* Map the transfer. */
897 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
898 twe_ccb_free(sc, ccb);
899 goto done;
900 }
901
902 /* Enqueue the command and wait. */
903 if (aenp != NULL) {
904 rv = twe_ccb_poll(sc, ccb, 5);
905 twe_ccb_unmap(sc, ccb);
906 twe_ccb_free(sc, ccb);
907 if (rv == 0)
908 *aenp = le16toh(*(uint16_t *)tp->tp_data);
909 free(tp, M_DEVBUF);
910 } else {
911 sc->sc_flags |= TWEF_AEN;
912 twe_ccb_enqueue(sc, ccb);
913 rv = 0;
914 }
915
916 done:
917 return (rv);
918 }
919
920 /*
921 * Handle an AEN returned by the controller.
922 * MUST BE CALLED AT splbio()!
923 */
924 static void
925 twe_aen_handler(struct twe_ccb *ccb, int error)
926 {
927 struct twe_softc *sc;
928 struct twe_param *tp;
929 uint16_t aen;
930 int rv;
931
932 sc = (struct twe_softc *)ccb->ccb_tx.tx_dv;
933 tp = ccb->ccb_tx.tx_context;
934 twe_ccb_unmap(sc, ccb);
935
936 sc->sc_flags &= ~TWEF_AEN;
937
938 if (error) {
939 printf("%s: error retrieving AEN\n", sc->sc_dv.dv_xname);
940 aen = TWE_AEN_QUEUE_EMPTY;
941 } else
942 aen = le16toh(*(u_int16_t *)tp->tp_data);
943 free(tp, M_DEVBUF);
944 twe_ccb_free(sc, ccb);
945
946 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
947 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
948 return;
949 }
950
951 twe_aen_enqueue(sc, aen, 0);
952
953 /*
954 * Chain another retrieval in case interrupts have been
955 * coalesced.
956 */
957 rv = twe_aen_get(sc, NULL);
958 if (rv != 0)
959 printf("%s: unable to retrieve AEN (%d)\n",
960 sc->sc_dv.dv_xname, rv);
961 }
962
963 static void
964 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet)
965 {
966 const char *str, *msg;
967 int s, next, nextnext, level;
968
969 /*
970 * First report the AEN on the console. Maybe.
971 */
972 if (! quiet) {
973 str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen));
974 if (str == NULL) {
975 printf("%s: unknown AEN 0x%04x\n",
976 sc->sc_dv.dv_xname, aen);
977 } else {
978 msg = str + 3;
979 switch (str[1]) {
980 case 'E': level = LOG_EMERG; break;
981 case 'a': level = LOG_ALERT; break;
982 case 'c': level = LOG_CRIT; break;
983 case 'e': level = LOG_ERR; break;
984 case 'w': level = LOG_WARNING; break;
985 case 'n': level = LOG_NOTICE; break;
986 case 'i': level = LOG_INFO; break;
987 case 'd': level = LOG_DEBUG; break;
988 default:
989 /* Don't use syslog. */
990 level = -1;
991 }
992
993 if (level < 0) {
994 switch (str[0]) {
995 case 'u':
996 case 'p':
997 printf("%s: %s %d: %s\n",
998 sc->sc_dv.dv_xname,
999 str[0] == 'u' ? "unit" : "port",
1000 TWE_AEN_UNIT(aen), msg);
1001 break;
1002
1003 default:
1004 printf("%s: %s\n",
1005 sc->sc_dv.dv_xname, msg);
1006 }
1007 } else {
1008 switch (str[0]) {
1009 case 'u':
1010 case 'p':
1011 log(level, "%s: %s %d: %s\n",
1012 sc->sc_dv.dv_xname,
1013 str[0] == 'u' ? "unit" : "port",
1014 TWE_AEN_UNIT(aen), msg);
1015 break;
1016
1017 default:
1018 log(level, "%s: %s\n",
1019 sc->sc_dv.dv_xname, msg);
1020 }
1021 }
1022 }
1023 }
1024
1025 /* Now enqueue the AEN for mangement tools. */
1026 s = splbio();
1027
1028 next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH;
1029 nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH;
1030
1031 /*
1032 * If this is the last free slot, then queue up a "queue
1033 * full" message.
1034 */
1035 if (nextnext == sc->sc_aen_tail)
1036 aen = TWE_AEN_QUEUE_FULL;
1037
1038 if (next != sc->sc_aen_tail) {
1039 sc->sc_aen_queue[sc->sc_aen_head] = aen;
1040 sc->sc_aen_head = next;
1041 }
1042
1043 if (sc->sc_flags & TWEF_AENQ_WAIT) {
1044 sc->sc_flags &= ~TWEF_AENQ_WAIT;
1045 wakeup(&sc->sc_aen_queue);
1046 }
1047
1048 splx(s);
1049 }
1050
1051 /* NOTE: Must be called at splbio(). */
1052 static uint16_t
1053 twe_aen_dequeue(struct twe_softc *sc)
1054 {
1055 uint16_t aen;
1056
1057 if (sc->sc_aen_tail == sc->sc_aen_head)
1058 aen = TWE_AEN_QUEUE_EMPTY;
1059 else {
1060 aen = sc->sc_aen_queue[sc->sc_aen_tail];
1061 sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH;
1062 }
1063
1064 return (aen);
1065 }
1066
1067 /*
1068 * These are short-hand functions that execute TWE_OP_GET_PARAM to
1069 * fetch 1, 2, and 4 byte parameter values, respectively.
1070 */
1071 int
1072 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
1073 uint8_t *valp)
1074 {
1075 struct twe_param *tp;
1076 int rv;
1077
1078 rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
1079 if (rv != 0)
1080 return (rv);
1081 *valp = *(uint8_t *)tp->tp_data;
1082 free(tp, M_DEVBUF);
1083 return (0);
1084 }
1085
1086 int
1087 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
1088 uint16_t *valp)
1089 {
1090 struct twe_param *tp;
1091 int rv;
1092
1093 rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
1094 if (rv != 0)
1095 return (rv);
1096 *valp = le16toh(*(uint16_t *)tp->tp_data);
1097 free(tp, M_DEVBUF);
1098 return (0);
1099 }
1100
1101 int
1102 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
1103 uint32_t *valp)
1104 {
1105 struct twe_param *tp;
1106 int rv;
1107
1108 rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
1109 if (rv != 0)
1110 return (rv);
1111 *valp = le32toh(*(uint32_t *)tp->tp_data);
1112 free(tp, M_DEVBUF);
1113 return (0);
1114 }
1115
1116 /*
1117 * Execute a TWE_OP_GET_PARAM command. If a callback function is provided,
1118 * it will be called with generated context when the command has completed.
1119 * If no callback is provided, the command will be executed synchronously
1120 * and a pointer to a buffer containing the data returned.
1121 *
1122 * The caller or callback is responsible for freeing the buffer.
1123 *
1124 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1125 */
1126 int
1127 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
1128 void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
1129 {
1130 struct twe_ccb *ccb;
1131 struct twe_cmd *tc;
1132 struct twe_param *tp;
1133 int rv, s;
1134
1135 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1136 if (tp == NULL)
1137 return ENOMEM;
1138
1139 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1140 KASSERT(ccb != NULL);
1141
1142 ccb->ccb_data = tp;
1143 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1144 ccb->ccb_tx.tx_handler = func;
1145 ccb->ccb_tx.tx_context = tp;
1146 ccb->ccb_tx.tx_dv = &sc->sc_dv;
1147
1148 tc = ccb->ccb_cmd;
1149 tc->tc_size = 2;
1150 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
1151 tc->tc_unit = 0;
1152 tc->tc_count = htole16(1);
1153
1154 /* Fill in the outbound parameter data. */
1155 tp->tp_table_id = htole16(table_id);
1156 tp->tp_param_id = param_id;
1157 tp->tp_param_size = size;
1158
1159 /* Map the transfer. */
1160 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1161 twe_ccb_free(sc, ccb);
1162 goto done;
1163 }
1164
1165 /* Submit the command and either wait or let the callback handle it. */
1166 if (func == NULL) {
1167 s = splbio();
1168 rv = twe_ccb_poll(sc, ccb, 5);
1169 twe_ccb_unmap(sc, ccb);
1170 twe_ccb_free(sc, ccb);
1171 splx(s);
1172 } else {
1173 #ifdef DEBUG
1174 if (pbuf != NULL)
1175 panic("both func and pbuf defined");
1176 #endif
1177 twe_ccb_enqueue(sc, ccb);
1178 return 0;
1179 }
1180
1181 done:
1182 if (pbuf == NULL || rv != 0)
1183 free(tp, M_DEVBUF);
1184 else if (pbuf != NULL && rv == 0)
1185 *pbuf = tp;
1186 return rv;
1187 }
1188
1189 /*
1190 * Execute a TWE_OP_SET_PARAM command.
1191 *
1192 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1193 */
1194 static int
1195 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
1196 void *sbuf)
1197 {
1198 struct twe_ccb *ccb;
1199 struct twe_cmd *tc;
1200 struct twe_param *tp;
1201 int rv, s;
1202
1203 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1204 if (tp == NULL)
1205 return ENOMEM;
1206
1207 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1208 KASSERT(ccb != NULL);
1209
1210 ccb->ccb_data = tp;
1211 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1212 ccb->ccb_tx.tx_handler = 0;
1213 ccb->ccb_tx.tx_context = tp;
1214 ccb->ccb_tx.tx_dv = &sc->sc_dv;
1215
1216 tc = ccb->ccb_cmd;
1217 tc->tc_size = 2;
1218 tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
1219 tc->tc_unit = 0;
1220 tc->tc_count = htole16(1);
1221
1222 /* Fill in the outbound parameter data. */
1223 tp->tp_table_id = htole16(table_id);
1224 tp->tp_param_id = param_id;
1225 tp->tp_param_size = size;
1226 memcpy(tp->tp_data, sbuf, size);
1227
1228 /* Map the transfer. */
1229 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1230 twe_ccb_free(sc, ccb);
1231 goto done;
1232 }
1233
1234 /* Submit the command and wait. */
1235 s = splbio();
1236 rv = twe_ccb_poll(sc, ccb, 5);
1237 twe_ccb_unmap(sc, ccb);
1238 twe_ccb_free(sc, ccb);
1239 splx(s);
1240 done:
1241 free(tp, M_DEVBUF);
1242 return (rv);
1243 }
1244
1245 /*
1246 * Execute a TWE_OP_INIT_CONNECTION command. Return non-zero on error.
1247 * Must be called with interrupts blocked.
1248 */
1249 static int
1250 twe_init_connection(struct twe_softc *sc)
1251 {
1252 struct twe_ccb *ccb;
1253 struct twe_cmd *tc;
1254 int rv;
1255
1256 if ((ccb = twe_ccb_alloc(sc, 0)) == NULL)
1257 return (EAGAIN);
1258
1259 /* Build the command. */
1260 tc = ccb->ccb_cmd;
1261 tc->tc_size = 3;
1262 tc->tc_opcode = TWE_OP_INIT_CONNECTION;
1263 tc->tc_unit = 0;
1264 tc->tc_count = htole16(TWE_MAX_CMDS);
1265 tc->tc_args.init_connection.response_queue_pointer = 0;
1266
1267 /* Submit the command for immediate execution. */
1268 rv = twe_ccb_poll(sc, ccb, 5);
1269 twe_ccb_free(sc, ccb);
1270 return (rv);
1271 }
1272
1273 /*
1274 * Poll the controller for completed commands. Must be called with
1275 * interrupts blocked.
1276 */
1277 static void
1278 twe_poll(struct twe_softc *sc)
1279 {
1280 struct twe_ccb *ccb;
1281 int found;
1282 u_int status, cmdid;
1283
1284 found = 0;
1285
1286 for (;;) {
1287 status = twe_inl(sc, TWE_REG_STS);
1288 twe_status_check(sc, status);
1289
1290 if ((status & TWE_STS_RESP_QUEUE_EMPTY))
1291 break;
1292
1293 found = 1;
1294 cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
1295 cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
1296 if (cmdid >= TWE_MAX_QUEUECNT) {
1297 printf("%s: bad cmdid %d\n", sc->sc_dv.dv_xname, cmdid);
1298 continue;
1299 }
1300
1301 ccb = sc->sc_ccbs + cmdid;
1302 if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
1303 printf("%s: CCB for cmdid %d not active\n",
1304 sc->sc_dv.dv_xname, cmdid);
1305 continue;
1306 }
1307 ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
1308
1309 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1310 (caddr_t)ccb->ccb_cmd - sc->sc_cmds,
1311 sizeof(struct twe_cmd),
1312 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1313
1314 /* Pass notification to upper layers. */
1315 if (ccb->ccb_tx.tx_handler != NULL)
1316 (*ccb->ccb_tx.tx_handler)(ccb,
1317 ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
1318 }
1319
1320 /* If any commands have completed, run the software queue. */
1321 if (found)
1322 twe_ccb_enqueue(sc, NULL);
1323 }
1324
1325 /*
1326 * Wait for `status' to be set in the controller status register. Return
1327 * zero if found, non-zero if the operation timed out.
1328 */
1329 static int
1330 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
1331 {
1332
1333 for (timo *= 10; timo != 0; timo--) {
1334 if ((twe_inl(sc, TWE_REG_STS) & status) == status)
1335 break;
1336 delay(100000);
1337 }
1338
1339 return (timo == 0);
1340 }
1341
1342 /*
1343 * Clear a PCI parity error.
1344 */
1345 static void
1346 twe_clear_pci_parity_error(struct twe_softc *sc)
1347 {
1348 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PARITY_ERROR);
1349
1350 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
1351 }
1352
1353
1354 /*
1355 * Clear a PCI abort.
1356 */
1357 static void
1358 twe_clear_pci_abort(struct twe_softc *sc)
1359 {
1360 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT);
1361
1362 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
1363 }
1364
1365 /*
1366 * Complain if the status bits aren't what we expect.
1367 */
1368 static int
1369 twe_status_check(struct twe_softc *sc, u_int status)
1370 {
1371 int rv;
1372
1373 rv = 0;
1374
1375 if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
1376 printf("%s: missing status bits: 0x%08x\n", sc->sc_dv.dv_xname,
1377 status & ~TWE_STS_EXPECTED_BITS);
1378 rv = -1;
1379 }
1380
1381 if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
1382 printf("%s: unexpected status bits: 0x%08x\n",
1383 sc->sc_dv.dv_xname, status & TWE_STS_UNEXPECTED_BITS);
1384 rv = -1;
1385 if (status & TWE_STS_PCI_PARITY_ERROR) {
1386 printf("%s: PCI parity error: Reseat card, move card "
1387 "or buggy device present.\n",
1388 sc->sc_dv.dv_xname);
1389 twe_clear_pci_parity_error(sc);
1390 }
1391 if (status & TWE_STS_PCI_ABORT) {
1392 printf("%s: PCI abort, clearing.\n",
1393 sc->sc_dv.dv_xname);
1394 twe_clear_pci_abort(sc);
1395 }
1396 }
1397
1398 return (rv);
1399 }
1400
1401 /*
1402 * Allocate and initialise a CCB.
1403 */
1404 static inline void
1405 twe_ccb_init(struct twe_softc *sc __unused, struct twe_ccb *ccb, int flags)
1406 {
1407 struct twe_cmd *tc;
1408
1409 ccb->ccb_tx.tx_handler = NULL;
1410 ccb->ccb_flags = flags;
1411 tc = ccb->ccb_cmd;
1412 tc->tc_status = 0;
1413 tc->tc_flags = 0;
1414 tc->tc_cmdid = ccb->ccb_cmdid;
1415 }
1416
1417 struct twe_ccb *
1418 twe_ccb_alloc(struct twe_softc *sc, int flags)
1419 {
1420 struct twe_ccb *ccb;
1421 int s;
1422
1423 s = splbio();
1424 if (__predict_false((flags & TWE_CCB_AEN) != 0)) {
1425 /* Use the reserved CCB. */
1426 ccb = sc->sc_ccbs;
1427 } else {
1428 /* Allocate a CCB and command block. */
1429 if (__predict_false((ccb =
1430 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1431 splx(s);
1432 return (NULL);
1433 }
1434 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1435 }
1436 #ifdef DIAGNOSTIC
1437 if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0)
1438 panic("twe_ccb_alloc: got reserved CCB for non-AEN");
1439 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1440 panic("twe_ccb_alloc: CCB %ld already allocated",
1441 (long)(ccb - sc->sc_ccbs));
1442 flags |= TWE_CCB_ALLOCED;
1443 #endif
1444 splx(s);
1445
1446 twe_ccb_init(sc, ccb, flags);
1447 return (ccb);
1448 }
1449
1450 struct twe_ccb *
1451 twe_ccb_alloc_wait(struct twe_softc *sc, int flags)
1452 {
1453 struct twe_ccb *ccb;
1454 int s;
1455
1456 KASSERT((flags & TWE_CCB_AEN) == 0);
1457
1458 s = splbio();
1459 while (__predict_false((ccb =
1460 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1461 sc->sc_flags |= TWEF_WAIT_CCB;
1462 (void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0);
1463 }
1464 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1465 #ifdef DIAGNOSTIC
1466 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1467 panic("twe_ccb_alloc_wait: CCB %ld already allocated",
1468 (long)(ccb - sc->sc_ccbs));
1469 flags |= TWE_CCB_ALLOCED;
1470 #endif
1471 splx(s);
1472
1473 twe_ccb_init(sc, ccb, flags);
1474 return (ccb);
1475 }
1476
1477 /*
1478 * Free a CCB.
1479 */
1480 void
1481 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
1482 {
1483 int s;
1484
1485 s = splbio();
1486 if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) {
1487 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
1488 if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) {
1489 sc->sc_flags &= ~TWEF_WAIT_CCB;
1490 wakeup(&sc->sc_ccb_freelist);
1491 }
1492 }
1493 ccb->ccb_flags = 0;
1494 splx(s);
1495 }
1496
1497 /*
1498 * Map the specified CCB's command block and data buffer (if any) into
1499 * controller visible space. Perform DMA synchronisation.
1500 */
1501 int
1502 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
1503 {
1504 struct twe_cmd *tc;
1505 int flags, nsegs, i, s, rv;
1506 void *data;
1507
1508 /*
1509 * The data as a whole must be 512-byte aligned.
1510 */
1511 if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
1512 s = splvm();
1513 /* XXX */
1514 ccb->ccb_abuf = uvm_km_alloc(kmem_map,
1515 ccb->ccb_datasize, 0, UVM_KMF_NOWAIT|UVM_KMF_WIRED);
1516 splx(s);
1517 data = (void *)ccb->ccb_abuf;
1518 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1519 memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
1520 } else {
1521 ccb->ccb_abuf = (vaddr_t)0;
1522 data = ccb->ccb_data;
1523 }
1524
1525 /*
1526 * Map the data buffer into bus space and build the S/G list.
1527 */
1528 rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
1529 ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1530 ((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
1531 BUS_DMA_READ : BUS_DMA_WRITE));
1532 if (rv != 0) {
1533 if (ccb->ccb_abuf != (vaddr_t)0) {
1534 s = splvm();
1535 /* XXX */
1536 uvm_km_free(kmem_map, ccb->ccb_abuf,
1537 ccb->ccb_datasize, UVM_KMF_WIRED);
1538 splx(s);
1539 }
1540 return (rv);
1541 }
1542
1543 nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
1544 tc = ccb->ccb_cmd;
1545 tc->tc_size += 2 * nsegs;
1546
1547 /* The location of the S/G list is dependant upon command type. */
1548 switch (tc->tc_opcode >> 5) {
1549 case 2:
1550 for (i = 0; i < nsegs; i++) {
1551 tc->tc_args.param.sgl[i].tsg_address =
1552 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1553 tc->tc_args.param.sgl[i].tsg_length =
1554 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1555 }
1556 /* XXX Needed? */
1557 for (; i < TWE_SG_SIZE; i++) {
1558 tc->tc_args.param.sgl[i].tsg_address = 0;
1559 tc->tc_args.param.sgl[i].tsg_length = 0;
1560 }
1561 break;
1562 case 3:
1563 for (i = 0; i < nsegs; i++) {
1564 tc->tc_args.io.sgl[i].tsg_address =
1565 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1566 tc->tc_args.io.sgl[i].tsg_length =
1567 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1568 }
1569 /* XXX Needed? */
1570 for (; i < TWE_SG_SIZE; i++) {
1571 tc->tc_args.io.sgl[i].tsg_address = 0;
1572 tc->tc_args.io.sgl[i].tsg_length = 0;
1573 }
1574 break;
1575 default:
1576 /*
1577 * In all likelihood, this is a command passed from
1578 * management tools in userspace where no S/G list is
1579 * necessary because no data is being passed.
1580 */
1581 break;
1582 }
1583
1584 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1585 flags = BUS_DMASYNC_PREREAD;
1586 else
1587 flags = 0;
1588 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1589 flags |= BUS_DMASYNC_PREWRITE;
1590
1591 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1592 ccb->ccb_datasize, flags);
1593 return (0);
1594 }
1595
1596 /*
1597 * Unmap the specified CCB's command block and data buffer (if any) and
1598 * perform DMA synchronisation.
1599 */
1600 void
1601 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
1602 {
1603 int flags, s;
1604
1605 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1606 flags = BUS_DMASYNC_POSTREAD;
1607 else
1608 flags = 0;
1609 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1610 flags |= BUS_DMASYNC_POSTWRITE;
1611
1612 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1613 ccb->ccb_datasize, flags);
1614 bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
1615
1616 if (ccb->ccb_abuf != (vaddr_t)0) {
1617 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1618 memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
1619 ccb->ccb_datasize);
1620 s = splvm();
1621 /* XXX */
1622 uvm_km_free(kmem_map, ccb->ccb_abuf, ccb->ccb_datasize,
1623 UVM_KMF_WIRED);
1624 splx(s);
1625 }
1626 }
1627
1628 /*
1629 * Submit a command to the controller and poll on completion. Return
1630 * non-zero on timeout (but don't check status, as some command types don't
1631 * return status). Must be called with interrupts blocked.
1632 */
1633 int
1634 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
1635 {
1636 int rv;
1637
1638 if ((rv = twe_ccb_submit(sc, ccb)) != 0)
1639 return (rv);
1640
1641 for (timo *= 1000; timo != 0; timo--) {
1642 twe_poll(sc);
1643 if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
1644 break;
1645 DELAY(100);
1646 }
1647
1648 return (timo == 0);
1649 }
1650
1651 /*
1652 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1653 * the order that they were enqueued and try to submit their command blocks
1654 * to the controller for execution.
1655 */
1656 void
1657 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
1658 {
1659 int s;
1660
1661 s = splbio();
1662
1663 if (ccb != NULL)
1664 SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
1665
1666 while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
1667 if (twe_ccb_submit(sc, ccb))
1668 break;
1669 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
1670 }
1671
1672 splx(s);
1673 }
1674
1675 /*
1676 * Submit the command block associated with the specified CCB to the
1677 * controller for execution. Must be called with interrupts blocked.
1678 */
1679 int
1680 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
1681 {
1682 bus_addr_t pa;
1683 int rv;
1684 u_int status;
1685
1686 /* Check to see if we can post a command. */
1687 status = twe_inl(sc, TWE_REG_STS);
1688 twe_status_check(sc, status);
1689
1690 if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
1691 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1692 (caddr_t)ccb->ccb_cmd - sc->sc_cmds, sizeof(struct twe_cmd),
1693 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1694 #ifdef DIAGNOSTIC
1695 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0)
1696 panic("%s: CCB %ld not ALLOCED\n",
1697 sc->sc_dv.dv_xname, (long)(ccb - sc->sc_ccbs));
1698 #endif
1699 ccb->ccb_flags |= TWE_CCB_ACTIVE;
1700 pa = sc->sc_cmds_paddr +
1701 ccb->ccb_cmdid * sizeof(struct twe_cmd);
1702 twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
1703 rv = 0;
1704 } else
1705 rv = EBUSY;
1706
1707 return (rv);
1708 }
1709
1710
1711 /*
1712 * Accept an open operation on the control device.
1713 */
1714 static int
1715 tweopen(dev_t dev, int flag __unused, int mode __unused, struct lwp *l __unused)
1716 {
1717 struct twe_softc *twe;
1718
1719 if ((twe = device_lookup(&twe_cd, minor(dev))) == NULL)
1720 return (ENXIO);
1721 if ((twe->sc_flags & TWEF_OPEN) != 0)
1722 return (EBUSY);
1723
1724 twe->sc_flags |= TWEF_OPEN;
1725 return (0);
1726 }
1727
1728 /*
1729 * Accept the last close on the control device.
1730 */
1731 static int
1732 tweclose(dev_t dev, int flag __unused, int mode __unused,
1733 struct lwp *l __unused)
1734 {
1735 struct twe_softc *twe;
1736
1737 twe = device_lookup(&twe_cd, minor(dev));
1738 twe->sc_flags &= ~TWEF_OPEN;
1739 return (0);
1740 }
1741
1742 void
1743 twe_ccb_wait_handler(struct twe_ccb *ccb, int error __unused)
1744 {
1745
1746 /* Just wake up the sleeper. */
1747 wakeup(ccb);
1748 }
1749
1750 /*
1751 * Handle control operations.
1752 */
1753 static int
1754 tweioctl(dev_t dev, u_long cmd, caddr_t data, int flag __unused,
1755 struct lwp *l __unused)
1756 {
1757 struct twe_softc *twe;
1758 struct twe_ccb *ccb;
1759 struct twe_param *param;
1760 struct twe_usercommand *tu;
1761 struct twe_paramcommand *tp;
1762 struct twe_drivecommand *td;
1763 void *pdata = NULL;
1764 int s, error = 0;
1765 u_int8_t cmdid;
1766
1767 twe = device_lookup(&twe_cd, minor(dev));
1768 tu = (struct twe_usercommand *)data;
1769 tp = (struct twe_paramcommand *)data;
1770 td = (struct twe_drivecommand *)data;
1771
1772 /* This is intended to be compatible with the FreeBSD interface. */
1773 switch (cmd) {
1774 case TWEIO_COMMAND:
1775 if (securelevel >= 2)
1776 return (EPERM);
1777
1778 /* XXX mutex */
1779 if (tu->tu_size > 0) {
1780 /*
1781 * XXX Handle > TWE_SECTOR_SIZE? Let's see if
1782 * it's really necessary, first.
1783 */
1784 if (tu->tu_size > TWE_SECTOR_SIZE) {
1785 #ifdef TWE_DEBUG
1786 printf("%s: TWEIO_COMMAND: tu_size = %d\n",
1787 twe->sc_dv.dv_xname, tu->tu_size);
1788 #endif
1789 return EINVAL;
1790 }
1791 pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
1792 error = copyin(tu->tu_data, pdata, tu->tu_size);
1793 if (error != 0)
1794 goto done;
1795 ccb = twe_ccb_alloc_wait(twe,
1796 TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1797 KASSERT(ccb != NULL);
1798 ccb->ccb_data = pdata;
1799 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1800 } else {
1801 ccb = twe_ccb_alloc_wait(twe, 0);
1802 KASSERT(ccb != NULL);
1803 }
1804
1805 ccb->ccb_tx.tx_handler = twe_ccb_wait_handler;
1806 ccb->ccb_tx.tx_context = NULL;
1807 ccb->ccb_tx.tx_dv = &twe->sc_dv;
1808
1809 cmdid = ccb->ccb_cmdid;
1810 memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
1811 ccb->ccb_cmd->tc_cmdid = cmdid;
1812
1813 /* Map the transfer. */
1814 if ((error = twe_ccb_map(twe, ccb)) != 0) {
1815 twe_ccb_free(twe, ccb);
1816 goto done;
1817 }
1818
1819 /* Submit the command and wait up to 1 minute. */
1820 error = 0;
1821 twe_ccb_enqueue(twe, ccb);
1822 s = splbio();
1823 while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0)
1824 if ((error = tsleep(ccb, PRIBIO, "tweioctl",
1825 60 * hz)) != 0)
1826 break;
1827 splx(s);
1828
1829 /* Copy the command back to the ioctl argument. */
1830 memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd));
1831 #ifdef TWE_DEBUG
1832 printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, "
1833 "tc_status = 0x%02x\n", twe->sc_dv.dv_xname,
1834 tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status);
1835 #endif
1836
1837 s = splbio();
1838 twe_ccb_free(twe, ccb);
1839 splx(s);
1840
1841 if (tu->tu_size > 0)
1842 error = copyout(pdata, tu->tu_data, tu->tu_size);
1843 goto done;
1844
1845 case TWEIO_STATS:
1846 return (ENOENT);
1847
1848 case TWEIO_AEN_POLL:
1849 s = splbio();
1850 *(u_int *)data = twe_aen_dequeue(twe);
1851 splx(s);
1852 return (0);
1853
1854 case TWEIO_AEN_WAIT:
1855 s = splbio();
1856 while ((*(u_int *)data =
1857 twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) {
1858 twe->sc_flags |= TWEF_AENQ_WAIT;
1859 error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH,
1860 "tweaen", 0);
1861 if (error == EINTR) {
1862 splx(s);
1863 return (error);
1864 }
1865 }
1866 splx(s);
1867 return (0);
1868
1869 case TWEIO_GET_PARAM:
1870 error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
1871 tp->tp_size, 0, ¶m);
1872 if (error != 0)
1873 return (error);
1874 if (param->tp_param_size > tp->tp_size) {
1875 error = EFAULT;
1876 goto done;
1877 }
1878 error = copyout(param->tp_data, tp->tp_data,
1879 param->tp_param_size);
1880 free(param, M_DEVBUF);
1881 goto done;
1882
1883 case TWEIO_SET_PARAM:
1884 pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
1885 if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
1886 goto done;
1887 error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
1888 tp->tp_size, pdata);
1889 goto done;
1890
1891 case TWEIO_RESET:
1892 s = splbio();
1893 twe_reset(twe);
1894 splx(s);
1895 return (0);
1896
1897 case TWEIO_ADD_UNIT:
1898 /* XXX mutex */
1899 return (twe_add_unit(twe, td->td_unit));
1900
1901 case TWEIO_DEL_UNIT:
1902 /* XXX mutex */
1903 return (twe_del_unit(twe, td->td_unit));
1904
1905 default:
1906 return EINVAL;
1907 }
1908 done:
1909 if (pdata)
1910 free(pdata, M_DEVBUF);
1911 return error;
1912 }
1913
1914 const struct cdevsw twe_cdevsw = {
1915 tweopen, tweclose, noread, nowrite, tweioctl,
1916 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1917 };
1918
1919 /*
1920 * Print some information about the controller
1921 */
1922 static void
1923 twe_describe_controller(struct twe_softc *sc)
1924 {
1925 struct twe_param *p[6];
1926 int i, rv = 0;
1927 uint32_t dsize;
1928 uint8_t ports;
1929
1930 ports = 0;
1931
1932 /* get the port count */
1933 rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
1934 TWE_PARAM_CONTROLLER_PortCount, &ports);
1935
1936 /* get version strings */
1937 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
1938 16, NULL, &p[0]);
1939 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
1940 16, NULL, &p[1]);
1941 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
1942 16, NULL, &p[2]);
1943 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
1944 8, NULL, &p[3]);
1945 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
1946 8, NULL, &p[4]);
1947 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
1948 8, NULL, &p[5]);
1949
1950 if (rv) {
1951 /* some error occurred */
1952 aprint_error("%s: failed to fetch version information\n",
1953 sc->sc_dv.dv_xname);
1954 return;
1955 }
1956
1957 aprint_normal("%s: %d ports, Firmware %.16s, BIOS %.16s\n",
1958 sc->sc_dv.dv_xname, ports,
1959 p[1]->tp_data, p[2]->tp_data);
1960
1961 aprint_verbose("%s: Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
1962 sc->sc_dv.dv_xname,
1963 p[0]->tp_data, p[3]->tp_data,
1964 p[4]->tp_data, p[5]->tp_data);
1965
1966 free(p[0], M_DEVBUF);
1967 free(p[1], M_DEVBUF);
1968 free(p[2], M_DEVBUF);
1969 free(p[3], M_DEVBUF);
1970 free(p[4], M_DEVBUF);
1971 free(p[5], M_DEVBUF);
1972
1973 rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY,
1974 TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]);
1975 if (rv) {
1976 aprint_error("%s: failed to get drive status summary\n",
1977 sc->sc_dv.dv_xname);
1978 return;
1979 }
1980 for (i = 0; i < ports; i++) {
1981 if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present)
1982 continue;
1983 rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i,
1984 TWE_PARAM_DRIVEINFO_Size, &dsize);
1985 if (rv) {
1986 aprint_error(
1987 "%s: unable to get drive size for port %d\n",
1988 sc->sc_dv.dv_xname, i);
1989 continue;
1990 }
1991 rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i,
1992 TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]);
1993 if (rv) {
1994 aprint_error(
1995 "%s: unable to get drive model for port %d\n",
1996 sc->sc_dv.dv_xname, i);
1997 continue;
1998 }
1999 aprint_verbose("%s: port %d: %.40s %d MB\n", sc->sc_dv.dv_xname,
2000 i, p[1]->tp_data, dsize / 2048);
2001 free(p[1], M_DEVBUF);
2002 }
2003 free(p[0], M_DEVBUF);
2004 }
2005