twe.c revision 1.80 1 /* $NetBSD: twe.c,v 1.80 2006/11/08 00:17:09 elad Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 2000 Michael Smith
41 * Copyright (c) 2000 BSDi
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
66 */
67
68 /*
69 * Driver for the 3ware Escalade family of RAID controllers.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.80 2006/11/08 00:17:09 elad Exp $");
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/device.h>
79 #include <sys/queue.h>
80 #include <sys/proc.h>
81 #include <sys/buf.h>
82 #include <sys/endian.h>
83 #include <sys/malloc.h>
84 #include <sys/conf.h>
85 #include <sys/disk.h>
86 #include <sys/sysctl.h>
87 #include <sys/syslog.h>
88 #include <sys/kauth.h>
89
90 #include <uvm/uvm_extern.h>
91
92 #include <sys/bswap.h>
93 #include <machine/bus.h>
94
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 #include <dev/pci/pcidevs.h>
98 #include <dev/pci/twereg.h>
99 #include <dev/pci/twevar.h>
100 #include <dev/pci/tweio.h>
101
102 #include "locators.h"
103
104 #define PCI_CBIO 0x10
105
106 static int twe_aen_get(struct twe_softc *, uint16_t *);
107 static void twe_aen_handler(struct twe_ccb *, int);
108 static void twe_aen_enqueue(struct twe_softc *sc, uint16_t, int);
109 static uint16_t twe_aen_dequeue(struct twe_softc *);
110
111 static void twe_attach(struct device *, struct device *, void *);
112 static int twe_init_connection(struct twe_softc *);
113 static int twe_intr(void *);
114 static int twe_match(struct device *, struct cfdata *, void *);
115 static int twe_param_set(struct twe_softc *, int, int, size_t, void *);
116 static void twe_poll(struct twe_softc *);
117 static int twe_print(void *, const char *);
118 static int twe_reset(struct twe_softc *);
119 static int twe_status_check(struct twe_softc *, u_int);
120 static int twe_status_wait(struct twe_softc *, u_int, int);
121 static void twe_describe_controller(struct twe_softc *);
122 static void twe_clear_pci_abort(struct twe_softc *sc);
123 static void twe_clear_pci_parity_error(struct twe_softc *sc);
124
125 static int twe_add_unit(struct twe_softc *, int);
126 static int twe_del_unit(struct twe_softc *, int);
127 static int twe_init_connection(struct twe_softc *);
128
129 static inline u_int32_t twe_inl(struct twe_softc *, int);
130 static inline void twe_outl(struct twe_softc *, int, u_int32_t);
131
132 extern struct cfdriver twe_cd;
133
134 CFATTACH_DECL(twe, sizeof(struct twe_softc),
135 twe_match, twe_attach, NULL, NULL);
136
137 /* FreeBSD driver revision for sysctl expected by the 3ware cli */
138 const char twever[] = "1.50.01.002";
139
140 /*
141 * Tables to convert numeric codes to strings.
142 */
143 const struct twe_code_table twe_table_status[] = {
144 { 0x00, "successful completion" },
145
146 /* info */
147 { 0x42, "command in progress" },
148 { 0x6c, "retrying interface CRC error from UDMA command" },
149
150 /* warning */
151 { 0x81, "redundant/inconsequential request ignored" },
152 { 0x8e, "failed to write zeroes to LBA 0" },
153 { 0x8f, "failed to profile TwinStor zones" },
154
155 /* fatal */
156 { 0xc1, "aborted due to system command or reconfiguration" },
157 { 0xc4, "aborted" },
158 { 0xc5, "access error" },
159 { 0xc6, "access violation" },
160 { 0xc7, "device failure" }, /* high byte may be port # */
161 { 0xc8, "controller error" },
162 { 0xc9, "timed out" },
163 { 0xcb, "invalid unit number" },
164 { 0xcf, "unit not available" },
165 { 0xd2, "undefined opcode" },
166 { 0xdb, "request incompatible with unit" },
167 { 0xdc, "invalid request" },
168 { 0xff, "firmware error, reset requested" },
169
170 { 0, NULL }
171 };
172
173 const struct twe_code_table twe_table_unitstate[] = {
174 { TWE_PARAM_UNITSTATUS_Normal, "Normal" },
175 { TWE_PARAM_UNITSTATUS_Initialising, "Initializing" },
176 { TWE_PARAM_UNITSTATUS_Degraded, "Degraded" },
177 { TWE_PARAM_UNITSTATUS_Rebuilding, "Rebuilding" },
178 { TWE_PARAM_UNITSTATUS_Verifying, "Verifying" },
179 { TWE_PARAM_UNITSTATUS_Corrupt, "Corrupt" },
180 { TWE_PARAM_UNITSTATUS_Missing, "Missing" },
181
182 { 0, NULL }
183 };
184
185 const struct twe_code_table twe_table_unittype[] = {
186 /* array descriptor configuration */
187 { TWE_AD_CONFIG_RAID0, "RAID0" },
188 { TWE_AD_CONFIG_RAID1, "RAID1" },
189 { TWE_AD_CONFIG_TwinStor, "TwinStor" },
190 { TWE_AD_CONFIG_RAID5, "RAID5" },
191 { TWE_AD_CONFIG_RAID10, "RAID10" },
192 { TWE_UD_CONFIG_JBOD, "JBOD" },
193
194 { 0, NULL }
195 };
196
197 const struct twe_code_table twe_table_stripedepth[] = {
198 { TWE_AD_STRIPE_4k, "4K" },
199 { TWE_AD_STRIPE_8k, "8K" },
200 { TWE_AD_STRIPE_16k, "16K" },
201 { TWE_AD_STRIPE_32k, "32K" },
202 { TWE_AD_STRIPE_64k, "64K" },
203 { TWE_AD_STRIPE_128k, "128K" },
204 { TWE_AD_STRIPE_256k, "256K" },
205 { TWE_AD_STRIPE_512k, "512K" },
206 { TWE_AD_STRIPE_1024k, "1024K" },
207
208 { 0, NULL }
209 };
210
211 /*
212 * Asynchronous event notification messages are qualified:
213 * a - not unit/port specific
214 * u - unit specific
215 * p - port specific
216 *
217 * They are further qualified with a severity:
218 * E - LOG_EMERG
219 * a - LOG_ALERT
220 * c - LOG_CRIT
221 * e - LOG_ERR
222 * w - LOG_WARNING
223 * n - LOG_NOTICE
224 * i - LOG_INFO
225 * d - LOG_DEBUG
226 * blank - just use printf
227 */
228 const struct twe_code_table twe_table_aen[] = {
229 { 0x00, "a queue empty" },
230 { 0x01, "a soft reset" },
231 { 0x02, "uc degraded mode" },
232 { 0x03, "aa controller error" },
233 { 0x04, "uE rebuild fail" },
234 { 0x05, "un rebuild done" },
235 { 0x06, "ue incomplete unit" },
236 { 0x07, "un initialization done" },
237 { 0x08, "uw unclean shutdown detected" },
238 { 0x09, "pe drive timeout" },
239 { 0x0a, "pc drive error" },
240 { 0x0b, "un rebuild started" },
241 { 0x0c, "un initialization started" },
242 { 0x0d, "ui logical unit deleted" },
243 { 0x0f, "pc SMART threshold exceeded" },
244 { 0x15, "a table undefined" }, /* XXX: Not in FreeBSD's table */
245 { 0x21, "pe ATA UDMA downgrade" },
246 { 0x22, "pi ATA UDMA upgrade" },
247 { 0x23, "pw sector repair occurred" },
248 { 0x24, "aa SBUF integrity check failure" },
249 { 0x25, "pa lost cached write" },
250 { 0x26, "pa drive ECC error detected" },
251 { 0x27, "pe DCB checksum error" },
252 { 0x28, "pn DCB unsupported version" },
253 { 0x29, "ui verify started" },
254 { 0x2a, "ua verify failed" },
255 { 0x2b, "ui verify complete" },
256 { 0x2c, "pw overwrote bad sector during rebuild" },
257 { 0x2d, "pa encountered bad sector during rebuild" },
258 { 0x2e, "pe replacement drive too small" },
259 { 0x2f, "ue array not previously initialized" },
260 { 0x30, "p drive not supported" },
261 { 0xff, "a aen queue full" },
262
263 { 0, NULL },
264 };
265
266 const char *
267 twe_describe_code(const struct twe_code_table *table, uint32_t code)
268 {
269
270 for (; table->string != NULL; table++) {
271 if (table->code == code)
272 return (table->string);
273 }
274 return (NULL);
275 }
276
277 static inline u_int32_t
278 twe_inl(struct twe_softc *sc, int off)
279 {
280
281 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
282 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
283 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
284 }
285
286 static inline void
287 twe_outl(struct twe_softc *sc, int off, u_int32_t val)
288 {
289
290 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
291 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
292 BUS_SPACE_BARRIER_WRITE);
293 }
294
295 /*
296 * Match a supported board.
297 */
298 static int
299 twe_match(struct device *parent __unused, struct cfdata *cfdata __unused,
300 void *aux)
301 {
302 struct pci_attach_args *pa;
303
304 pa = aux;
305
306 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
307 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
308 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
309 }
310
311 /*
312 * Attach a supported board.
313 *
314 * XXX This doesn't fail gracefully.
315 */
316 static void
317 twe_attach(struct device *parent __unused, struct device *self, void *aux)
318 {
319 struct pci_attach_args *pa;
320 struct twe_softc *sc;
321 pci_chipset_tag_t pc;
322 pci_intr_handle_t ih;
323 pcireg_t csr;
324 const char *intrstr;
325 int s, size, i, rv, rseg;
326 size_t max_segs, max_xfer;
327 bus_dma_segment_t seg;
328 struct ctlname ctlnames[] = CTL_NAMES;
329 const struct sysctlnode *node;
330 struct twe_cmd *tc;
331 struct twe_ccb *ccb;
332
333 sc = (struct twe_softc *)self;
334 pa = aux;
335 pc = pa->pa_pc;
336 sc->sc_dmat = pa->pa_dmat;
337 SIMPLEQ_INIT(&sc->sc_ccb_queue);
338 SLIST_INIT(&sc->sc_ccb_freelist);
339
340 aprint_naive(": RAID controller\n");
341 aprint_normal(": 3ware Escalade\n");
342
343
344 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
345 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
346 aprint_error("%s: can't map i/o space\n", sc->sc_dv.dv_xname);
347 return;
348 }
349
350 /* Enable the device. */
351 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
352 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
353 csr | PCI_COMMAND_MASTER_ENABLE);
354
355 /* Map and establish the interrupt. */
356 if (pci_intr_map(pa, &ih)) {
357 aprint_error("%s: can't map interrupt\n", sc->sc_dv.dv_xname);
358 return;
359 }
360
361 intrstr = pci_intr_string(pc, ih);
362 sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc);
363 if (sc->sc_ih == NULL) {
364 aprint_error("%s: can't establish interrupt%s%s\n",
365 sc->sc_dv.dv_xname,
366 (intrstr) ? " at " : "",
367 (intrstr) ? intrstr : "");
368 return;
369 }
370
371 if (intrstr != NULL)
372 aprint_normal("%s: interrupting at %s\n",
373 sc->sc_dv.dv_xname, intrstr);
374
375 /*
376 * Allocate and initialise the command blocks and CCBs.
377 */
378 size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
379
380 if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
381 &rseg, BUS_DMA_NOWAIT)) != 0) {
382 aprint_error("%s: unable to allocate commands, rv = %d\n",
383 sc->sc_dv.dv_xname, rv);
384 return;
385 }
386
387 if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
388 (caddr_t *)&sc->sc_cmds,
389 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
390 aprint_error("%s: unable to map commands, rv = %d\n",
391 sc->sc_dv.dv_xname, rv);
392 return;
393 }
394
395 if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
396 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
397 aprint_error("%s: unable to create command DMA map, rv = %d\n",
398 sc->sc_dv.dv_xname, rv);
399 return;
400 }
401
402 if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
403 size, NULL, BUS_DMA_NOWAIT)) != 0) {
404 aprint_error("%s: unable to load command DMA map, rv = %d\n",
405 sc->sc_dv.dv_xname, rv);
406 return;
407 }
408
409 ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT);
410 if (ccb == NULL) {
411 aprint_error("%s: unable to allocate memory for ccbs\n",
412 sc->sc_dv.dv_xname);
413 return;
414 }
415
416 sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
417 memset(sc->sc_cmds, 0, size);
418
419 sc->sc_ccbs = ccb;
420 tc = (struct twe_cmd *)sc->sc_cmds;
421 max_segs = twe_get_maxsegs();
422 max_xfer = twe_get_maxxfer(max_segs);
423
424 for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
425 ccb->ccb_cmd = tc;
426 ccb->ccb_cmdid = i;
427 ccb->ccb_flags = 0;
428 rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
429 max_segs, PAGE_SIZE, 0,
430 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
431 &ccb->ccb_dmamap_xfer);
432 if (rv != 0) {
433 aprint_error("%s: can't create dmamap, rv = %d\n",
434 sc->sc_dv.dv_xname, rv);
435 return;
436 }
437
438 /* Save the first CCB for AEN retrieval. */
439 if (i != 0)
440 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
441 ccb_chain.slist);
442 }
443
444 /* Wait for the controller to become ready. */
445 if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
446 aprint_error("%s: microcontroller not ready\n",
447 sc->sc_dv.dv_xname);
448 return;
449 }
450
451 twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
452
453 /* Reset the controller. */
454 s = splbio();
455 rv = twe_reset(sc);
456 splx(s);
457 if (rv) {
458 aprint_error("%s: reset failed\n", sc->sc_dv.dv_xname);
459 return;
460 }
461
462 /* Initialise connection with controller. */
463 twe_init_connection(sc);
464
465 twe_describe_controller(sc);
466
467 /* Find and attach RAID array units. */
468 sc->sc_nunits = 0;
469 for (i = 0; i < TWE_MAX_UNITS; i++)
470 (void) twe_add_unit(sc, i);
471
472 /* ...and finally, enable interrupts. */
473 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
474 TWE_CTL_UNMASK_RESP_INTR |
475 TWE_CTL_ENABLE_INTRS);
476
477 /* sysctl set-up for 3ware cli */
478 if (sysctl_createv(NULL, 0, NULL, NULL,
479 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw",
480 NULL, NULL, 0, NULL, 0,
481 CTL_HW, CTL_EOL) != 0) {
482 printf("%s: could not create %s sysctl node\n",
483 sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name);
484 return;
485 }
486 if (sysctl_createv(NULL, 0, NULL, &node,
487 0, CTLTYPE_NODE, sc->sc_dv.dv_xname,
488 SYSCTL_DESCR("twe driver information"),
489 NULL, 0, NULL, 0,
490 CTL_HW, CTL_CREATE, CTL_EOL) != 0) {
491 printf("%s: could not create %s.%s sysctl node\n",
492 sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name,
493 sc->sc_dv.dv_xname);
494 return;
495 }
496 if ((i = sysctl_createv(NULL, 0, NULL, NULL,
497 0, CTLTYPE_STRING, "driver_version",
498 SYSCTL_DESCR("twe0 driver version"),
499 NULL, 0, &twever, 0,
500 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL))
501 != 0) {
502 printf("%s: could not create %s.%s.driver_version sysctl\n",
503 sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name,
504 sc->sc_dv.dv_xname);
505 return;
506 }
507 }
508
509 void
510 twe_register_callbacks(struct twe_softc *sc, int unit,
511 const struct twe_callbacks *tcb)
512 {
513
514 sc->sc_units[unit].td_callbacks = tcb;
515 }
516
517 static void
518 twe_recompute_openings(struct twe_softc *sc)
519 {
520 struct twe_drive *td;
521 int unit, openings;
522
523 if (sc->sc_nunits != 0)
524 openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits;
525 else
526 openings = 0;
527 if (openings == sc->sc_openings)
528 return;
529 sc->sc_openings = openings;
530
531 #ifdef TWE_DEBUG
532 printf("%s: %d array%s, %d openings per array\n",
533 sc->sc_dv.dv_xname, sc->sc_nunits,
534 sc->sc_nunits == 1 ? "" : "s", sc->sc_openings);
535 #endif
536
537 for (unit = 0; unit < TWE_MAX_UNITS; unit++) {
538 td = &sc->sc_units[unit];
539 if (td->td_dev != NULL)
540 (*td->td_callbacks->tcb_openings)(td->td_dev,
541 sc->sc_openings);
542 }
543 }
544
545 static int
546 twe_add_unit(struct twe_softc *sc, int unit)
547 {
548 struct twe_param *dtp, *atp;
549 struct twe_array_descriptor *ad;
550 struct twe_drive *td;
551 struct twe_attach_args twea;
552 uint32_t newsize;
553 int rv;
554 uint16_t dsize;
555 uint8_t newtype, newstripe;
556 int locs[TWECF_NLOCS];
557
558 if (unit < 0 || unit >= TWE_MAX_UNITS)
559 return (EINVAL);
560
561 /* Find attached units. */
562 rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
563 TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
564 if (rv != 0) {
565 aprint_error("%s: error %d fetching unit summary\n",
566 sc->sc_dv.dv_xname, rv);
567 return (rv);
568 }
569
570 /* For each detected unit, collect size and store in an array. */
571 td = &sc->sc_units[unit];
572
573 /* Unit present? */
574 if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) {
575 /*
576 * XXX Should we check to see if a device has been
577 * XXX attached at this index and detach it if it
578 * XXX has? ("rescan" semantics)
579 */
580 rv = 0;
581 goto out;
582 }
583
584 rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit,
585 TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
586 if (rv != 0) {
587 aprint_error("%s: error %d fetching descriptor size "
588 "for unit %d\n", sc->sc_dv.dv_xname, rv, unit);
589 goto out;
590 }
591
592 rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit,
593 TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
594 if (rv != 0) {
595 aprint_error("%s: error %d fetching array descriptor "
596 "for unit %d\n", sc->sc_dv.dv_xname, rv, unit);
597 goto out;
598 }
599
600 ad = (struct twe_array_descriptor *)atp->tp_data;
601 newtype = ad->configuration;
602 newstripe = ad->stripe_size;
603 free(atp, M_DEVBUF);
604
605 rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit,
606 TWE_PARAM_UNITINFO_Capacity, &newsize);
607 if (rv != 0) {
608 aprint_error(
609 "%s: error %d fetching capacity for unit %d\n",
610 sc->sc_dv.dv_xname, rv, unit);
611 goto out;
612 }
613
614 /*
615 * Have a device, so we need to attach it. If there is currently
616 * something sitting at the slot, and the parameters are different,
617 * then we detach the old device before attaching the new one.
618 */
619 if (td->td_dev != NULL &&
620 td->td_size == newsize &&
621 td->td_type == newtype &&
622 td->td_stripe == newstripe) {
623 /* Same as the old device; just keep using it. */
624 rv = 0;
625 goto out;
626 } else if (td->td_dev != NULL) {
627 /* Detach the old device first. */
628 (void) config_detach(td->td_dev, DETACH_FORCE);
629 td->td_dev = NULL;
630 } else if (td->td_size == 0)
631 sc->sc_nunits++;
632
633 /*
634 * Committed to the new array unit; assign its parameters and
635 * recompute the number of available command openings.
636 */
637 td->td_size = newsize;
638 td->td_type = newtype;
639 td->td_stripe = newstripe;
640 twe_recompute_openings(sc);
641
642 twea.twea_unit = unit;
643
644 locs[TWECF_UNIT] = unit;
645
646 td->td_dev = config_found_sm_loc(&sc->sc_dv, "twe", locs, &twea,
647 twe_print, config_stdsubmatch);
648
649 rv = 0;
650 out:
651 free(dtp, M_DEVBUF);
652 return (rv);
653 }
654
655 static int
656 twe_del_unit(struct twe_softc *sc, int unit)
657 {
658 struct twe_drive *td;
659
660 if (unit < 0 || unit >= TWE_MAX_UNITS)
661 return (EINVAL);
662
663 td = &sc->sc_units[unit];
664 if (td->td_size != 0)
665 sc->sc_nunits--;
666 td->td_size = 0;
667 td->td_type = 0;
668 td->td_stripe = 0;
669 if (td->td_dev != NULL) {
670 (void) config_detach(td->td_dev, DETACH_FORCE);
671 td->td_dev = NULL;
672 }
673 twe_recompute_openings(sc);
674 return (0);
675 }
676
677 /*
678 * Reset the controller.
679 * MUST BE CALLED AT splbio()!
680 */
681 static int
682 twe_reset(struct twe_softc *sc)
683 {
684 uint16_t aen;
685 u_int status;
686 volatile u_int32_t junk;
687 int got, rv;
688
689 /* Issue a soft reset. */
690 twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
691 TWE_CTL_CLEAR_HOST_INTR |
692 TWE_CTL_CLEAR_ATTN_INTR |
693 TWE_CTL_MASK_CMD_INTR |
694 TWE_CTL_MASK_RESP_INTR |
695 TWE_CTL_CLEAR_ERROR_STS |
696 TWE_CTL_DISABLE_INTRS);
697
698 /* Wait for attention... */
699 if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) {
700 printf("%s: timeout waiting for attention interrupt\n",
701 sc->sc_dv.dv_xname);
702 return (-1);
703 }
704
705 /* ...and ACK it. */
706 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
707
708 /*
709 * Pull AENs out of the controller; look for a soft reset AEN.
710 * Open code this, since we want to detect reset even if the
711 * queue for management tools is full.
712 *
713 * Note that since:
714 * - interrupts are blocked
715 * - we have reset the controller
716 * - acknowledged the pending ATTENTION
717 * that there is no way a pending asynchronous AEN fetch would
718 * finish, so clear the flag.
719 */
720 sc->sc_flags &= ~TWEF_AEN;
721 for (got = 0;;) {
722 rv = twe_aen_get(sc, &aen);
723 if (rv != 0)
724 printf("%s: error %d while draining event queue\n",
725 sc->sc_dv.dv_xname, rv);
726 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
727 break;
728 if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
729 got = 1;
730 twe_aen_enqueue(sc, aen, 1);
731 }
732
733 if (!got) {
734 printf("%s: reset not reported\n", sc->sc_dv.dv_xname);
735 return (-1);
736 }
737
738 /* Check controller status. */
739 status = twe_inl(sc, TWE_REG_STS);
740 if (twe_status_check(sc, status)) {
741 printf("%s: controller errors detected\n",
742 sc->sc_dv.dv_xname);
743 return (-1);
744 }
745
746 /* Drain the response queue. */
747 for (;;) {
748 status = twe_inl(sc, TWE_REG_STS);
749 if (twe_status_check(sc, status) != 0) {
750 printf("%s: can't drain response queue\n",
751 sc->sc_dv.dv_xname);
752 return (-1);
753 }
754 if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
755 break;
756 junk = twe_inl(sc, TWE_REG_RESP_QUEUE);
757 }
758
759 return (0);
760 }
761
762 /*
763 * Print autoconfiguration message for a sub-device.
764 */
765 static int
766 twe_print(void *aux, const char *pnp)
767 {
768 struct twe_attach_args *twea;
769
770 twea = aux;
771
772 if (pnp != NULL)
773 aprint_normal("block device at %s", pnp);
774 aprint_normal(" unit %d", twea->twea_unit);
775 return (UNCONF);
776 }
777
778 /*
779 * Interrupt service routine.
780 */
781 static int
782 twe_intr(void *arg)
783 {
784 struct twe_softc *sc;
785 u_int status;
786 int caught, rv;
787
788 sc = arg;
789 caught = 0;
790 status = twe_inl(sc, TWE_REG_STS);
791 twe_status_check(sc, status);
792
793 /* Host interrupts - purpose unknown. */
794 if ((status & TWE_STS_HOST_INTR) != 0) {
795 #ifdef DEBUG
796 printf("%s: host interrupt\n", sc->sc_dv.dv_xname);
797 #endif
798 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
799 caught = 1;
800 }
801
802 /*
803 * Attention interrupts, signalled when a controller or child device
804 * state change has occurred.
805 */
806 if ((status & TWE_STS_ATTN_INTR) != 0) {
807 rv = twe_aen_get(sc, NULL);
808 if (rv != 0)
809 printf("%s: unable to retrieve AEN (%d)\n",
810 sc->sc_dv.dv_xname, rv);
811 else
812 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
813 caught = 1;
814 }
815
816 /*
817 * Command interrupts, signalled when the controller can accept more
818 * commands. We don't use this; instead, we try to submit commands
819 * when we receive them, and when other commands have completed.
820 * Mask it so we don't get another one.
821 */
822 if ((status & TWE_STS_CMD_INTR) != 0) {
823 #ifdef DEBUG
824 printf("%s: command interrupt\n", sc->sc_dv.dv_xname);
825 #endif
826 twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
827 caught = 1;
828 }
829
830 if ((status & TWE_STS_RESP_INTR) != 0) {
831 twe_poll(sc);
832 caught = 1;
833 }
834
835 return (caught);
836 }
837
838 /*
839 * Fetch an AEN. Even though this is really like parameter
840 * retrieval, we handle this specially, because we issue this
841 * AEN retrieval command from interrupt context, and thus
842 * reserve a CCB for it to avoid resource shortage.
843 *
844 * XXX There are still potential resource shortages we could
845 * XXX encounter. Consider pre-allocating all AEN-related
846 * XXX resources.
847 *
848 * MUST BE CALLED AT splbio()!
849 */
850 static int
851 twe_aen_get(struct twe_softc *sc, uint16_t *aenp)
852 {
853 struct twe_ccb *ccb;
854 struct twe_cmd *tc;
855 struct twe_param *tp;
856 int rv;
857
858 /*
859 * If we're already retrieving an AEN, just wait; another
860 * retrieval will be chained after the current one completes.
861 */
862 if (sc->sc_flags & TWEF_AEN) {
863 /*
864 * It is a fatal software programming error to attempt
865 * to fetch an AEN synchronously when an AEN fetch is
866 * already pending.
867 */
868 KASSERT(aenp == NULL);
869 return (0);
870 }
871
872 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
873 if (tp == NULL)
874 return (ENOMEM);
875
876 ccb = twe_ccb_alloc(sc,
877 TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
878 KASSERT(ccb != NULL);
879
880 ccb->ccb_data = tp;
881 ccb->ccb_datasize = TWE_SECTOR_SIZE;
882 ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL;
883 ccb->ccb_tx.tx_context = tp;
884 ccb->ccb_tx.tx_dv = &sc->sc_dv;
885
886 tc = ccb->ccb_cmd;
887 tc->tc_size = 2;
888 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
889 tc->tc_unit = 0;
890 tc->tc_count = htole16(1);
891
892 /* Fill in the outbound parameter data. */
893 tp->tp_table_id = htole16(TWE_PARAM_AEN);
894 tp->tp_param_id = TWE_PARAM_AEN_UnitCode;
895 tp->tp_param_size = 2;
896
897 /* Map the transfer. */
898 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
899 twe_ccb_free(sc, ccb);
900 goto done;
901 }
902
903 /* Enqueue the command and wait. */
904 if (aenp != NULL) {
905 rv = twe_ccb_poll(sc, ccb, 5);
906 twe_ccb_unmap(sc, ccb);
907 twe_ccb_free(sc, ccb);
908 if (rv == 0)
909 *aenp = le16toh(*(uint16_t *)tp->tp_data);
910 free(tp, M_DEVBUF);
911 } else {
912 sc->sc_flags |= TWEF_AEN;
913 twe_ccb_enqueue(sc, ccb);
914 rv = 0;
915 }
916
917 done:
918 return (rv);
919 }
920
921 /*
922 * Handle an AEN returned by the controller.
923 * MUST BE CALLED AT splbio()!
924 */
925 static void
926 twe_aen_handler(struct twe_ccb *ccb, int error)
927 {
928 struct twe_softc *sc;
929 struct twe_param *tp;
930 uint16_t aen;
931 int rv;
932
933 sc = (struct twe_softc *)ccb->ccb_tx.tx_dv;
934 tp = ccb->ccb_tx.tx_context;
935 twe_ccb_unmap(sc, ccb);
936
937 sc->sc_flags &= ~TWEF_AEN;
938
939 if (error) {
940 printf("%s: error retrieving AEN\n", sc->sc_dv.dv_xname);
941 aen = TWE_AEN_QUEUE_EMPTY;
942 } else
943 aen = le16toh(*(u_int16_t *)tp->tp_data);
944 free(tp, M_DEVBUF);
945 twe_ccb_free(sc, ccb);
946
947 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
948 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
949 return;
950 }
951
952 twe_aen_enqueue(sc, aen, 0);
953
954 /*
955 * Chain another retrieval in case interrupts have been
956 * coalesced.
957 */
958 rv = twe_aen_get(sc, NULL);
959 if (rv != 0)
960 printf("%s: unable to retrieve AEN (%d)\n",
961 sc->sc_dv.dv_xname, rv);
962 }
963
964 static void
965 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet)
966 {
967 const char *str, *msg;
968 int s, next, nextnext, level;
969
970 /*
971 * First report the AEN on the console. Maybe.
972 */
973 if (! quiet) {
974 str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen));
975 if (str == NULL) {
976 printf("%s: unknown AEN 0x%04x\n",
977 sc->sc_dv.dv_xname, aen);
978 } else {
979 msg = str + 3;
980 switch (str[1]) {
981 case 'E': level = LOG_EMERG; break;
982 case 'a': level = LOG_ALERT; break;
983 case 'c': level = LOG_CRIT; break;
984 case 'e': level = LOG_ERR; break;
985 case 'w': level = LOG_WARNING; break;
986 case 'n': level = LOG_NOTICE; break;
987 case 'i': level = LOG_INFO; break;
988 case 'd': level = LOG_DEBUG; break;
989 default:
990 /* Don't use syslog. */
991 level = -1;
992 }
993
994 if (level < 0) {
995 switch (str[0]) {
996 case 'u':
997 case 'p':
998 printf("%s: %s %d: %s\n",
999 sc->sc_dv.dv_xname,
1000 str[0] == 'u' ? "unit" : "port",
1001 TWE_AEN_UNIT(aen), msg);
1002 break;
1003
1004 default:
1005 printf("%s: %s\n",
1006 sc->sc_dv.dv_xname, msg);
1007 }
1008 } else {
1009 switch (str[0]) {
1010 case 'u':
1011 case 'p':
1012 log(level, "%s: %s %d: %s\n",
1013 sc->sc_dv.dv_xname,
1014 str[0] == 'u' ? "unit" : "port",
1015 TWE_AEN_UNIT(aen), msg);
1016 break;
1017
1018 default:
1019 log(level, "%s: %s\n",
1020 sc->sc_dv.dv_xname, msg);
1021 }
1022 }
1023 }
1024 }
1025
1026 /* Now enqueue the AEN for mangement tools. */
1027 s = splbio();
1028
1029 next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH;
1030 nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH;
1031
1032 /*
1033 * If this is the last free slot, then queue up a "queue
1034 * full" message.
1035 */
1036 if (nextnext == sc->sc_aen_tail)
1037 aen = TWE_AEN_QUEUE_FULL;
1038
1039 if (next != sc->sc_aen_tail) {
1040 sc->sc_aen_queue[sc->sc_aen_head] = aen;
1041 sc->sc_aen_head = next;
1042 }
1043
1044 if (sc->sc_flags & TWEF_AENQ_WAIT) {
1045 sc->sc_flags &= ~TWEF_AENQ_WAIT;
1046 wakeup(&sc->sc_aen_queue);
1047 }
1048
1049 splx(s);
1050 }
1051
1052 /* NOTE: Must be called at splbio(). */
1053 static uint16_t
1054 twe_aen_dequeue(struct twe_softc *sc)
1055 {
1056 uint16_t aen;
1057
1058 if (sc->sc_aen_tail == sc->sc_aen_head)
1059 aen = TWE_AEN_QUEUE_EMPTY;
1060 else {
1061 aen = sc->sc_aen_queue[sc->sc_aen_tail];
1062 sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH;
1063 }
1064
1065 return (aen);
1066 }
1067
1068 /*
1069 * These are short-hand functions that execute TWE_OP_GET_PARAM to
1070 * fetch 1, 2, and 4 byte parameter values, respectively.
1071 */
1072 int
1073 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
1074 uint8_t *valp)
1075 {
1076 struct twe_param *tp;
1077 int rv;
1078
1079 rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
1080 if (rv != 0)
1081 return (rv);
1082 *valp = *(uint8_t *)tp->tp_data;
1083 free(tp, M_DEVBUF);
1084 return (0);
1085 }
1086
1087 int
1088 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
1089 uint16_t *valp)
1090 {
1091 struct twe_param *tp;
1092 int rv;
1093
1094 rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
1095 if (rv != 0)
1096 return (rv);
1097 *valp = le16toh(*(uint16_t *)tp->tp_data);
1098 free(tp, M_DEVBUF);
1099 return (0);
1100 }
1101
1102 int
1103 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
1104 uint32_t *valp)
1105 {
1106 struct twe_param *tp;
1107 int rv;
1108
1109 rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
1110 if (rv != 0)
1111 return (rv);
1112 *valp = le32toh(*(uint32_t *)tp->tp_data);
1113 free(tp, M_DEVBUF);
1114 return (0);
1115 }
1116
1117 /*
1118 * Execute a TWE_OP_GET_PARAM command. If a callback function is provided,
1119 * it will be called with generated context when the command has completed.
1120 * If no callback is provided, the command will be executed synchronously
1121 * and a pointer to a buffer containing the data returned.
1122 *
1123 * The caller or callback is responsible for freeing the buffer.
1124 *
1125 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1126 */
1127 int
1128 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
1129 void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
1130 {
1131 struct twe_ccb *ccb;
1132 struct twe_cmd *tc;
1133 struct twe_param *tp;
1134 int rv, s;
1135
1136 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1137 if (tp == NULL)
1138 return ENOMEM;
1139
1140 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1141 KASSERT(ccb != NULL);
1142
1143 ccb->ccb_data = tp;
1144 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1145 ccb->ccb_tx.tx_handler = func;
1146 ccb->ccb_tx.tx_context = tp;
1147 ccb->ccb_tx.tx_dv = &sc->sc_dv;
1148
1149 tc = ccb->ccb_cmd;
1150 tc->tc_size = 2;
1151 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
1152 tc->tc_unit = 0;
1153 tc->tc_count = htole16(1);
1154
1155 /* Fill in the outbound parameter data. */
1156 tp->tp_table_id = htole16(table_id);
1157 tp->tp_param_id = param_id;
1158 tp->tp_param_size = size;
1159
1160 /* Map the transfer. */
1161 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1162 twe_ccb_free(sc, ccb);
1163 goto done;
1164 }
1165
1166 /* Submit the command and either wait or let the callback handle it. */
1167 if (func == NULL) {
1168 s = splbio();
1169 rv = twe_ccb_poll(sc, ccb, 5);
1170 twe_ccb_unmap(sc, ccb);
1171 twe_ccb_free(sc, ccb);
1172 splx(s);
1173 } else {
1174 #ifdef DEBUG
1175 if (pbuf != NULL)
1176 panic("both func and pbuf defined");
1177 #endif
1178 twe_ccb_enqueue(sc, ccb);
1179 return 0;
1180 }
1181
1182 done:
1183 if (pbuf == NULL || rv != 0)
1184 free(tp, M_DEVBUF);
1185 else if (pbuf != NULL && rv == 0)
1186 *pbuf = tp;
1187 return rv;
1188 }
1189
1190 /*
1191 * Execute a TWE_OP_SET_PARAM command.
1192 *
1193 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1194 */
1195 static int
1196 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
1197 void *sbuf)
1198 {
1199 struct twe_ccb *ccb;
1200 struct twe_cmd *tc;
1201 struct twe_param *tp;
1202 int rv, s;
1203
1204 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1205 if (tp == NULL)
1206 return ENOMEM;
1207
1208 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1209 KASSERT(ccb != NULL);
1210
1211 ccb->ccb_data = tp;
1212 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1213 ccb->ccb_tx.tx_handler = 0;
1214 ccb->ccb_tx.tx_context = tp;
1215 ccb->ccb_tx.tx_dv = &sc->sc_dv;
1216
1217 tc = ccb->ccb_cmd;
1218 tc->tc_size = 2;
1219 tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
1220 tc->tc_unit = 0;
1221 tc->tc_count = htole16(1);
1222
1223 /* Fill in the outbound parameter data. */
1224 tp->tp_table_id = htole16(table_id);
1225 tp->tp_param_id = param_id;
1226 tp->tp_param_size = size;
1227 memcpy(tp->tp_data, sbuf, size);
1228
1229 /* Map the transfer. */
1230 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1231 twe_ccb_free(sc, ccb);
1232 goto done;
1233 }
1234
1235 /* Submit the command and wait. */
1236 s = splbio();
1237 rv = twe_ccb_poll(sc, ccb, 5);
1238 twe_ccb_unmap(sc, ccb);
1239 twe_ccb_free(sc, ccb);
1240 splx(s);
1241 done:
1242 free(tp, M_DEVBUF);
1243 return (rv);
1244 }
1245
1246 /*
1247 * Execute a TWE_OP_INIT_CONNECTION command. Return non-zero on error.
1248 * Must be called with interrupts blocked.
1249 */
1250 static int
1251 twe_init_connection(struct twe_softc *sc)
1252 {
1253 struct twe_ccb *ccb;
1254 struct twe_cmd *tc;
1255 int rv;
1256
1257 if ((ccb = twe_ccb_alloc(sc, 0)) == NULL)
1258 return (EAGAIN);
1259
1260 /* Build the command. */
1261 tc = ccb->ccb_cmd;
1262 tc->tc_size = 3;
1263 tc->tc_opcode = TWE_OP_INIT_CONNECTION;
1264 tc->tc_unit = 0;
1265 tc->tc_count = htole16(TWE_MAX_CMDS);
1266 tc->tc_args.init_connection.response_queue_pointer = 0;
1267
1268 /* Submit the command for immediate execution. */
1269 rv = twe_ccb_poll(sc, ccb, 5);
1270 twe_ccb_free(sc, ccb);
1271 return (rv);
1272 }
1273
1274 /*
1275 * Poll the controller for completed commands. Must be called with
1276 * interrupts blocked.
1277 */
1278 static void
1279 twe_poll(struct twe_softc *sc)
1280 {
1281 struct twe_ccb *ccb;
1282 int found;
1283 u_int status, cmdid;
1284
1285 found = 0;
1286
1287 for (;;) {
1288 status = twe_inl(sc, TWE_REG_STS);
1289 twe_status_check(sc, status);
1290
1291 if ((status & TWE_STS_RESP_QUEUE_EMPTY))
1292 break;
1293
1294 found = 1;
1295 cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
1296 cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
1297 if (cmdid >= TWE_MAX_QUEUECNT) {
1298 printf("%s: bad cmdid %d\n", sc->sc_dv.dv_xname, cmdid);
1299 continue;
1300 }
1301
1302 ccb = sc->sc_ccbs + cmdid;
1303 if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
1304 printf("%s: CCB for cmdid %d not active\n",
1305 sc->sc_dv.dv_xname, cmdid);
1306 continue;
1307 }
1308 ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
1309
1310 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1311 (caddr_t)ccb->ccb_cmd - sc->sc_cmds,
1312 sizeof(struct twe_cmd),
1313 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1314
1315 /* Pass notification to upper layers. */
1316 if (ccb->ccb_tx.tx_handler != NULL)
1317 (*ccb->ccb_tx.tx_handler)(ccb,
1318 ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
1319 }
1320
1321 /* If any commands have completed, run the software queue. */
1322 if (found)
1323 twe_ccb_enqueue(sc, NULL);
1324 }
1325
1326 /*
1327 * Wait for `status' to be set in the controller status register. Return
1328 * zero if found, non-zero if the operation timed out.
1329 */
1330 static int
1331 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
1332 {
1333
1334 for (timo *= 10; timo != 0; timo--) {
1335 if ((twe_inl(sc, TWE_REG_STS) & status) == status)
1336 break;
1337 delay(100000);
1338 }
1339
1340 return (timo == 0);
1341 }
1342
1343 /*
1344 * Clear a PCI parity error.
1345 */
1346 static void
1347 twe_clear_pci_parity_error(struct twe_softc *sc)
1348 {
1349 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PARITY_ERROR);
1350
1351 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
1352 }
1353
1354
1355 /*
1356 * Clear a PCI abort.
1357 */
1358 static void
1359 twe_clear_pci_abort(struct twe_softc *sc)
1360 {
1361 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT);
1362
1363 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
1364 }
1365
1366 /*
1367 * Complain if the status bits aren't what we expect.
1368 */
1369 static int
1370 twe_status_check(struct twe_softc *sc, u_int status)
1371 {
1372 int rv;
1373
1374 rv = 0;
1375
1376 if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
1377 printf("%s: missing status bits: 0x%08x\n", sc->sc_dv.dv_xname,
1378 status & ~TWE_STS_EXPECTED_BITS);
1379 rv = -1;
1380 }
1381
1382 if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
1383 printf("%s: unexpected status bits: 0x%08x\n",
1384 sc->sc_dv.dv_xname, status & TWE_STS_UNEXPECTED_BITS);
1385 rv = -1;
1386 if (status & TWE_STS_PCI_PARITY_ERROR) {
1387 printf("%s: PCI parity error: Reseat card, move card "
1388 "or buggy device present.\n",
1389 sc->sc_dv.dv_xname);
1390 twe_clear_pci_parity_error(sc);
1391 }
1392 if (status & TWE_STS_PCI_ABORT) {
1393 printf("%s: PCI abort, clearing.\n",
1394 sc->sc_dv.dv_xname);
1395 twe_clear_pci_abort(sc);
1396 }
1397 }
1398
1399 return (rv);
1400 }
1401
1402 /*
1403 * Allocate and initialise a CCB.
1404 */
1405 static inline void
1406 twe_ccb_init(struct twe_softc *sc __unused, struct twe_ccb *ccb, int flags)
1407 {
1408 struct twe_cmd *tc;
1409
1410 ccb->ccb_tx.tx_handler = NULL;
1411 ccb->ccb_flags = flags;
1412 tc = ccb->ccb_cmd;
1413 tc->tc_status = 0;
1414 tc->tc_flags = 0;
1415 tc->tc_cmdid = ccb->ccb_cmdid;
1416 }
1417
1418 struct twe_ccb *
1419 twe_ccb_alloc(struct twe_softc *sc, int flags)
1420 {
1421 struct twe_ccb *ccb;
1422 int s;
1423
1424 s = splbio();
1425 if (__predict_false((flags & TWE_CCB_AEN) != 0)) {
1426 /* Use the reserved CCB. */
1427 ccb = sc->sc_ccbs;
1428 } else {
1429 /* Allocate a CCB and command block. */
1430 if (__predict_false((ccb =
1431 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1432 splx(s);
1433 return (NULL);
1434 }
1435 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1436 }
1437 #ifdef DIAGNOSTIC
1438 if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0)
1439 panic("twe_ccb_alloc: got reserved CCB for non-AEN");
1440 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1441 panic("twe_ccb_alloc: CCB %ld already allocated",
1442 (long)(ccb - sc->sc_ccbs));
1443 flags |= TWE_CCB_ALLOCED;
1444 #endif
1445 splx(s);
1446
1447 twe_ccb_init(sc, ccb, flags);
1448 return (ccb);
1449 }
1450
1451 struct twe_ccb *
1452 twe_ccb_alloc_wait(struct twe_softc *sc, int flags)
1453 {
1454 struct twe_ccb *ccb;
1455 int s;
1456
1457 KASSERT((flags & TWE_CCB_AEN) == 0);
1458
1459 s = splbio();
1460 while (__predict_false((ccb =
1461 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1462 sc->sc_flags |= TWEF_WAIT_CCB;
1463 (void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0);
1464 }
1465 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1466 #ifdef DIAGNOSTIC
1467 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1468 panic("twe_ccb_alloc_wait: CCB %ld already allocated",
1469 (long)(ccb - sc->sc_ccbs));
1470 flags |= TWE_CCB_ALLOCED;
1471 #endif
1472 splx(s);
1473
1474 twe_ccb_init(sc, ccb, flags);
1475 return (ccb);
1476 }
1477
1478 /*
1479 * Free a CCB.
1480 */
1481 void
1482 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
1483 {
1484 int s;
1485
1486 s = splbio();
1487 if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) {
1488 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
1489 if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) {
1490 sc->sc_flags &= ~TWEF_WAIT_CCB;
1491 wakeup(&sc->sc_ccb_freelist);
1492 }
1493 }
1494 ccb->ccb_flags = 0;
1495 splx(s);
1496 }
1497
1498 /*
1499 * Map the specified CCB's command block and data buffer (if any) into
1500 * controller visible space. Perform DMA synchronisation.
1501 */
1502 int
1503 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
1504 {
1505 struct twe_cmd *tc;
1506 int flags, nsegs, i, s, rv;
1507 void *data;
1508
1509 /*
1510 * The data as a whole must be 512-byte aligned.
1511 */
1512 if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
1513 s = splvm();
1514 /* XXX */
1515 ccb->ccb_abuf = uvm_km_alloc(kmem_map,
1516 ccb->ccb_datasize, 0, UVM_KMF_NOWAIT|UVM_KMF_WIRED);
1517 splx(s);
1518 data = (void *)ccb->ccb_abuf;
1519 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1520 memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
1521 } else {
1522 ccb->ccb_abuf = (vaddr_t)0;
1523 data = ccb->ccb_data;
1524 }
1525
1526 /*
1527 * Map the data buffer into bus space and build the S/G list.
1528 */
1529 rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
1530 ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1531 ((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
1532 BUS_DMA_READ : BUS_DMA_WRITE));
1533 if (rv != 0) {
1534 if (ccb->ccb_abuf != (vaddr_t)0) {
1535 s = splvm();
1536 /* XXX */
1537 uvm_km_free(kmem_map, ccb->ccb_abuf,
1538 ccb->ccb_datasize, UVM_KMF_WIRED);
1539 splx(s);
1540 }
1541 return (rv);
1542 }
1543
1544 nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
1545 tc = ccb->ccb_cmd;
1546 tc->tc_size += 2 * nsegs;
1547
1548 /* The location of the S/G list is dependant upon command type. */
1549 switch (tc->tc_opcode >> 5) {
1550 case 2:
1551 for (i = 0; i < nsegs; i++) {
1552 tc->tc_args.param.sgl[i].tsg_address =
1553 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1554 tc->tc_args.param.sgl[i].tsg_length =
1555 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1556 }
1557 /* XXX Needed? */
1558 for (; i < TWE_SG_SIZE; i++) {
1559 tc->tc_args.param.sgl[i].tsg_address = 0;
1560 tc->tc_args.param.sgl[i].tsg_length = 0;
1561 }
1562 break;
1563 case 3:
1564 for (i = 0; i < nsegs; i++) {
1565 tc->tc_args.io.sgl[i].tsg_address =
1566 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1567 tc->tc_args.io.sgl[i].tsg_length =
1568 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1569 }
1570 /* XXX Needed? */
1571 for (; i < TWE_SG_SIZE; i++) {
1572 tc->tc_args.io.sgl[i].tsg_address = 0;
1573 tc->tc_args.io.sgl[i].tsg_length = 0;
1574 }
1575 break;
1576 default:
1577 /*
1578 * In all likelihood, this is a command passed from
1579 * management tools in userspace where no S/G list is
1580 * necessary because no data is being passed.
1581 */
1582 break;
1583 }
1584
1585 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1586 flags = BUS_DMASYNC_PREREAD;
1587 else
1588 flags = 0;
1589 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1590 flags |= BUS_DMASYNC_PREWRITE;
1591
1592 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1593 ccb->ccb_datasize, flags);
1594 return (0);
1595 }
1596
1597 /*
1598 * Unmap the specified CCB's command block and data buffer (if any) and
1599 * perform DMA synchronisation.
1600 */
1601 void
1602 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
1603 {
1604 int flags, s;
1605
1606 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1607 flags = BUS_DMASYNC_POSTREAD;
1608 else
1609 flags = 0;
1610 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1611 flags |= BUS_DMASYNC_POSTWRITE;
1612
1613 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1614 ccb->ccb_datasize, flags);
1615 bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
1616
1617 if (ccb->ccb_abuf != (vaddr_t)0) {
1618 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1619 memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
1620 ccb->ccb_datasize);
1621 s = splvm();
1622 /* XXX */
1623 uvm_km_free(kmem_map, ccb->ccb_abuf, ccb->ccb_datasize,
1624 UVM_KMF_WIRED);
1625 splx(s);
1626 }
1627 }
1628
1629 /*
1630 * Submit a command to the controller and poll on completion. Return
1631 * non-zero on timeout (but don't check status, as some command types don't
1632 * return status). Must be called with interrupts blocked.
1633 */
1634 int
1635 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
1636 {
1637 int rv;
1638
1639 if ((rv = twe_ccb_submit(sc, ccb)) != 0)
1640 return (rv);
1641
1642 for (timo *= 1000; timo != 0; timo--) {
1643 twe_poll(sc);
1644 if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
1645 break;
1646 DELAY(100);
1647 }
1648
1649 return (timo == 0);
1650 }
1651
1652 /*
1653 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1654 * the order that they were enqueued and try to submit their command blocks
1655 * to the controller for execution.
1656 */
1657 void
1658 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
1659 {
1660 int s;
1661
1662 s = splbio();
1663
1664 if (ccb != NULL)
1665 SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
1666
1667 while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
1668 if (twe_ccb_submit(sc, ccb))
1669 break;
1670 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
1671 }
1672
1673 splx(s);
1674 }
1675
1676 /*
1677 * Submit the command block associated with the specified CCB to the
1678 * controller for execution. Must be called with interrupts blocked.
1679 */
1680 int
1681 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
1682 {
1683 bus_addr_t pa;
1684 int rv;
1685 u_int status;
1686
1687 /* Check to see if we can post a command. */
1688 status = twe_inl(sc, TWE_REG_STS);
1689 twe_status_check(sc, status);
1690
1691 if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
1692 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1693 (caddr_t)ccb->ccb_cmd - sc->sc_cmds, sizeof(struct twe_cmd),
1694 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1695 #ifdef DIAGNOSTIC
1696 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0)
1697 panic("%s: CCB %ld not ALLOCED\n",
1698 sc->sc_dv.dv_xname, (long)(ccb - sc->sc_ccbs));
1699 #endif
1700 ccb->ccb_flags |= TWE_CCB_ACTIVE;
1701 pa = sc->sc_cmds_paddr +
1702 ccb->ccb_cmdid * sizeof(struct twe_cmd);
1703 twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
1704 rv = 0;
1705 } else
1706 rv = EBUSY;
1707
1708 return (rv);
1709 }
1710
1711
1712 /*
1713 * Accept an open operation on the control device.
1714 */
1715 static int
1716 tweopen(dev_t dev, int flag __unused, int mode __unused, struct lwp *l __unused)
1717 {
1718 struct twe_softc *twe;
1719
1720 if ((twe = device_lookup(&twe_cd, minor(dev))) == NULL)
1721 return (ENXIO);
1722 if ((twe->sc_flags & TWEF_OPEN) != 0)
1723 return (EBUSY);
1724
1725 twe->sc_flags |= TWEF_OPEN;
1726 return (0);
1727 }
1728
1729 /*
1730 * Accept the last close on the control device.
1731 */
1732 static int
1733 tweclose(dev_t dev, int flag __unused, int mode __unused,
1734 struct lwp *l __unused)
1735 {
1736 struct twe_softc *twe;
1737
1738 twe = device_lookup(&twe_cd, minor(dev));
1739 twe->sc_flags &= ~TWEF_OPEN;
1740 return (0);
1741 }
1742
1743 void
1744 twe_ccb_wait_handler(struct twe_ccb *ccb, int error __unused)
1745 {
1746
1747 /* Just wake up the sleeper. */
1748 wakeup(ccb);
1749 }
1750
1751 /*
1752 * Handle control operations.
1753 */
1754 static int
1755 tweioctl(dev_t dev, u_long cmd, caddr_t data, int flag __unused,
1756 struct lwp *l)
1757 {
1758 struct twe_softc *twe;
1759 struct twe_ccb *ccb;
1760 struct twe_param *param;
1761 struct twe_usercommand *tu;
1762 struct twe_paramcommand *tp;
1763 struct twe_drivecommand *td;
1764 void *pdata = NULL;
1765 int s, error = 0;
1766 u_int8_t cmdid;
1767
1768 twe = device_lookup(&twe_cd, minor(dev));
1769 tu = (struct twe_usercommand *)data;
1770 tp = (struct twe_paramcommand *)data;
1771 td = (struct twe_drivecommand *)data;
1772
1773 /* This is intended to be compatible with the FreeBSD interface. */
1774 switch (cmd) {
1775 case TWEIO_COMMAND:
1776 error = kauth_authorize_device_passthru(l->l_cred, dev, data);
1777 if (error)
1778 return (error);
1779
1780 /* XXX mutex */
1781 if (tu->tu_size > 0) {
1782 /*
1783 * XXX Handle > TWE_SECTOR_SIZE? Let's see if
1784 * it's really necessary, first.
1785 */
1786 if (tu->tu_size > TWE_SECTOR_SIZE) {
1787 #ifdef TWE_DEBUG
1788 printf("%s: TWEIO_COMMAND: tu_size = %d\n",
1789 twe->sc_dv.dv_xname, tu->tu_size);
1790 #endif
1791 return EINVAL;
1792 }
1793 pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
1794 error = copyin(tu->tu_data, pdata, tu->tu_size);
1795 if (error != 0)
1796 goto done;
1797 ccb = twe_ccb_alloc_wait(twe,
1798 TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1799 KASSERT(ccb != NULL);
1800 ccb->ccb_data = pdata;
1801 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1802 } else {
1803 ccb = twe_ccb_alloc_wait(twe, 0);
1804 KASSERT(ccb != NULL);
1805 }
1806
1807 ccb->ccb_tx.tx_handler = twe_ccb_wait_handler;
1808 ccb->ccb_tx.tx_context = NULL;
1809 ccb->ccb_tx.tx_dv = &twe->sc_dv;
1810
1811 cmdid = ccb->ccb_cmdid;
1812 memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
1813 ccb->ccb_cmd->tc_cmdid = cmdid;
1814
1815 /* Map the transfer. */
1816 if ((error = twe_ccb_map(twe, ccb)) != 0) {
1817 twe_ccb_free(twe, ccb);
1818 goto done;
1819 }
1820
1821 /* Submit the command and wait up to 1 minute. */
1822 error = 0;
1823 twe_ccb_enqueue(twe, ccb);
1824 s = splbio();
1825 while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0)
1826 if ((error = tsleep(ccb, PRIBIO, "tweioctl",
1827 60 * hz)) != 0)
1828 break;
1829 splx(s);
1830
1831 /* Copy the command back to the ioctl argument. */
1832 memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd));
1833 #ifdef TWE_DEBUG
1834 printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, "
1835 "tc_status = 0x%02x\n", twe->sc_dv.dv_xname,
1836 tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status);
1837 #endif
1838
1839 s = splbio();
1840 twe_ccb_free(twe, ccb);
1841 splx(s);
1842
1843 if (tu->tu_size > 0)
1844 error = copyout(pdata, tu->tu_data, tu->tu_size);
1845 goto done;
1846
1847 case TWEIO_STATS:
1848 return (ENOENT);
1849
1850 case TWEIO_AEN_POLL:
1851 s = splbio();
1852 *(u_int *)data = twe_aen_dequeue(twe);
1853 splx(s);
1854 return (0);
1855
1856 case TWEIO_AEN_WAIT:
1857 s = splbio();
1858 while ((*(u_int *)data =
1859 twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) {
1860 twe->sc_flags |= TWEF_AENQ_WAIT;
1861 error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH,
1862 "tweaen", 0);
1863 if (error == EINTR) {
1864 splx(s);
1865 return (error);
1866 }
1867 }
1868 splx(s);
1869 return (0);
1870
1871 case TWEIO_GET_PARAM:
1872 error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
1873 tp->tp_size, 0, ¶m);
1874 if (error != 0)
1875 return (error);
1876 if (param->tp_param_size > tp->tp_size) {
1877 error = EFAULT;
1878 goto done;
1879 }
1880 error = copyout(param->tp_data, tp->tp_data,
1881 param->tp_param_size);
1882 free(param, M_DEVBUF);
1883 goto done;
1884
1885 case TWEIO_SET_PARAM:
1886 pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
1887 if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
1888 goto done;
1889 error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
1890 tp->tp_size, pdata);
1891 goto done;
1892
1893 case TWEIO_RESET:
1894 s = splbio();
1895 twe_reset(twe);
1896 splx(s);
1897 return (0);
1898
1899 case TWEIO_ADD_UNIT:
1900 /* XXX mutex */
1901 return (twe_add_unit(twe, td->td_unit));
1902
1903 case TWEIO_DEL_UNIT:
1904 /* XXX mutex */
1905 return (twe_del_unit(twe, td->td_unit));
1906
1907 default:
1908 return EINVAL;
1909 }
1910 done:
1911 if (pdata)
1912 free(pdata, M_DEVBUF);
1913 return error;
1914 }
1915
1916 const struct cdevsw twe_cdevsw = {
1917 tweopen, tweclose, noread, nowrite, tweioctl,
1918 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1919 };
1920
1921 /*
1922 * Print some information about the controller
1923 */
1924 static void
1925 twe_describe_controller(struct twe_softc *sc)
1926 {
1927 struct twe_param *p[6];
1928 int i, rv = 0;
1929 uint32_t dsize;
1930 uint8_t ports;
1931
1932 ports = 0;
1933
1934 /* get the port count */
1935 rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
1936 TWE_PARAM_CONTROLLER_PortCount, &ports);
1937
1938 /* get version strings */
1939 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
1940 16, NULL, &p[0]);
1941 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
1942 16, NULL, &p[1]);
1943 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
1944 16, NULL, &p[2]);
1945 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
1946 8, NULL, &p[3]);
1947 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
1948 8, NULL, &p[4]);
1949 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
1950 8, NULL, &p[5]);
1951
1952 if (rv) {
1953 /* some error occurred */
1954 aprint_error("%s: failed to fetch version information\n",
1955 sc->sc_dv.dv_xname);
1956 return;
1957 }
1958
1959 aprint_normal("%s: %d ports, Firmware %.16s, BIOS %.16s\n",
1960 sc->sc_dv.dv_xname, ports,
1961 p[1]->tp_data, p[2]->tp_data);
1962
1963 aprint_verbose("%s: Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
1964 sc->sc_dv.dv_xname,
1965 p[0]->tp_data, p[3]->tp_data,
1966 p[4]->tp_data, p[5]->tp_data);
1967
1968 free(p[0], M_DEVBUF);
1969 free(p[1], M_DEVBUF);
1970 free(p[2], M_DEVBUF);
1971 free(p[3], M_DEVBUF);
1972 free(p[4], M_DEVBUF);
1973 free(p[5], M_DEVBUF);
1974
1975 rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY,
1976 TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]);
1977 if (rv) {
1978 aprint_error("%s: failed to get drive status summary\n",
1979 sc->sc_dv.dv_xname);
1980 return;
1981 }
1982 for (i = 0; i < ports; i++) {
1983 if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present)
1984 continue;
1985 rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i,
1986 TWE_PARAM_DRIVEINFO_Size, &dsize);
1987 if (rv) {
1988 aprint_error(
1989 "%s: unable to get drive size for port %d\n",
1990 sc->sc_dv.dv_xname, i);
1991 continue;
1992 }
1993 rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i,
1994 TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]);
1995 if (rv) {
1996 aprint_error(
1997 "%s: unable to get drive model for port %d\n",
1998 sc->sc_dv.dv_xname, i);
1999 continue;
2000 }
2001 aprint_verbose("%s: port %d: %.40s %d MB\n", sc->sc_dv.dv_xname,
2002 i, p[1]->tp_data, dsize / 2048);
2003 free(p[1], M_DEVBUF);
2004 }
2005 free(p[0], M_DEVBUF);
2006 }
2007