twe.c revision 1.87 1 /* $NetBSD: twe.c,v 1.87 2008/06/08 12:43:52 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 2000 Michael Smith
34 * Copyright (c) 2000 BSDi
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
59 */
60
61 /*
62 * Driver for the 3ware Escalade family of RAID controllers.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.87 2008/06/08 12:43:52 tsutsui Exp $");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/device.h>
72 #include <sys/queue.h>
73 #include <sys/proc.h>
74 #include <sys/buf.h>
75 #include <sys/endian.h>
76 #include <sys/malloc.h>
77 #include <sys/conf.h>
78 #include <sys/disk.h>
79 #include <sys/sysctl.h>
80 #include <sys/syslog.h>
81 #include <sys/kauth.h>
82
83 #include <uvm/uvm_extern.h>
84
85 #include <sys/bswap.h>
86 #include <sys/bus.h>
87
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/pci/twereg.h>
92 #include <dev/pci/twevar.h>
93 #include <dev/pci/tweio.h>
94
95 #include "locators.h"
96
97 #define PCI_CBIO 0x10
98
99 static int twe_aen_get(struct twe_softc *, uint16_t *);
100 static void twe_aen_handler(struct twe_ccb *, int);
101 static void twe_aen_enqueue(struct twe_softc *sc, uint16_t, int);
102 static uint16_t twe_aen_dequeue(struct twe_softc *);
103
104 static void twe_attach(struct device *, struct device *, void *);
105 static int twe_init_connection(struct twe_softc *);
106 static int twe_intr(void *);
107 static int twe_match(struct device *, struct cfdata *, void *);
108 static int twe_param_set(struct twe_softc *, int, int, size_t, void *);
109 static void twe_poll(struct twe_softc *);
110 static int twe_print(void *, const char *);
111 static int twe_reset(struct twe_softc *);
112 static int twe_status_check(struct twe_softc *, u_int);
113 static int twe_status_wait(struct twe_softc *, u_int, int);
114 static void twe_describe_controller(struct twe_softc *);
115 static void twe_clear_pci_abort(struct twe_softc *sc);
116 static void twe_clear_pci_parity_error(struct twe_softc *sc);
117
118 static int twe_add_unit(struct twe_softc *, int);
119 static int twe_del_unit(struct twe_softc *, int);
120 static int twe_init_connection(struct twe_softc *);
121
122 static inline u_int32_t twe_inl(struct twe_softc *, int);
123 static inline void twe_outl(struct twe_softc *, int, u_int32_t);
124
125 extern struct cfdriver twe_cd;
126
127 CFATTACH_DECL(twe, sizeof(struct twe_softc),
128 twe_match, twe_attach, NULL, NULL);
129
130 /* FreeBSD driver revision for sysctl expected by the 3ware cli */
131 const char twever[] = "1.50.01.002";
132
133 /*
134 * Tables to convert numeric codes to strings.
135 */
136 const struct twe_code_table twe_table_status[] = {
137 { 0x00, "successful completion" },
138
139 /* info */
140 { 0x42, "command in progress" },
141 { 0x6c, "retrying interface CRC error from UDMA command" },
142
143 /* warning */
144 { 0x81, "redundant/inconsequential request ignored" },
145 { 0x8e, "failed to write zeroes to LBA 0" },
146 { 0x8f, "failed to profile TwinStor zones" },
147
148 /* fatal */
149 { 0xc1, "aborted due to system command or reconfiguration" },
150 { 0xc4, "aborted" },
151 { 0xc5, "access error" },
152 { 0xc6, "access violation" },
153 { 0xc7, "device failure" }, /* high byte may be port # */
154 { 0xc8, "controller error" },
155 { 0xc9, "timed out" },
156 { 0xcb, "invalid unit number" },
157 { 0xcf, "unit not available" },
158 { 0xd2, "undefined opcode" },
159 { 0xdb, "request incompatible with unit" },
160 { 0xdc, "invalid request" },
161 { 0xff, "firmware error, reset requested" },
162
163 { 0, NULL }
164 };
165
166 const struct twe_code_table twe_table_unitstate[] = {
167 { TWE_PARAM_UNITSTATUS_Normal, "Normal" },
168 { TWE_PARAM_UNITSTATUS_Initialising, "Initializing" },
169 { TWE_PARAM_UNITSTATUS_Degraded, "Degraded" },
170 { TWE_PARAM_UNITSTATUS_Rebuilding, "Rebuilding" },
171 { TWE_PARAM_UNITSTATUS_Verifying, "Verifying" },
172 { TWE_PARAM_UNITSTATUS_Corrupt, "Corrupt" },
173 { TWE_PARAM_UNITSTATUS_Missing, "Missing" },
174
175 { 0, NULL }
176 };
177
178 const struct twe_code_table twe_table_unittype[] = {
179 /* array descriptor configuration */
180 { TWE_AD_CONFIG_RAID0, "RAID0" },
181 { TWE_AD_CONFIG_RAID1, "RAID1" },
182 { TWE_AD_CONFIG_TwinStor, "TwinStor" },
183 { TWE_AD_CONFIG_RAID5, "RAID5" },
184 { TWE_AD_CONFIG_RAID10, "RAID10" },
185 { TWE_UD_CONFIG_JBOD, "JBOD" },
186
187 { 0, NULL }
188 };
189
190 const struct twe_code_table twe_table_stripedepth[] = {
191 { TWE_AD_STRIPE_4k, "4K" },
192 { TWE_AD_STRIPE_8k, "8K" },
193 { TWE_AD_STRIPE_16k, "16K" },
194 { TWE_AD_STRIPE_32k, "32K" },
195 { TWE_AD_STRIPE_64k, "64K" },
196 { TWE_AD_STRIPE_128k, "128K" },
197 { TWE_AD_STRIPE_256k, "256K" },
198 { TWE_AD_STRIPE_512k, "512K" },
199 { TWE_AD_STRIPE_1024k, "1024K" },
200
201 { 0, NULL }
202 };
203
204 /*
205 * Asynchronous event notification messages are qualified:
206 * a - not unit/port specific
207 * u - unit specific
208 * p - port specific
209 *
210 * They are further qualified with a severity:
211 * E - LOG_EMERG
212 * a - LOG_ALERT
213 * c - LOG_CRIT
214 * e - LOG_ERR
215 * w - LOG_WARNING
216 * n - LOG_NOTICE
217 * i - LOG_INFO
218 * d - LOG_DEBUG
219 * blank - just use printf
220 */
221 const struct twe_code_table twe_table_aen[] = {
222 { 0x00, "a queue empty" },
223 { 0x01, "a soft reset" },
224 { 0x02, "uc degraded mode" },
225 { 0x03, "aa controller error" },
226 { 0x04, "uE rebuild fail" },
227 { 0x05, "un rebuild done" },
228 { 0x06, "ue incomplete unit" },
229 { 0x07, "un initialization done" },
230 { 0x08, "uw unclean shutdown detected" },
231 { 0x09, "pe drive timeout" },
232 { 0x0a, "pc drive error" },
233 { 0x0b, "un rebuild started" },
234 { 0x0c, "un initialization started" },
235 { 0x0d, "ui logical unit deleted" },
236 { 0x0f, "pc SMART threshold exceeded" },
237 { 0x15, "a table undefined" }, /* XXX: Not in FreeBSD's table */
238 { 0x21, "pe ATA UDMA downgrade" },
239 { 0x22, "pi ATA UDMA upgrade" },
240 { 0x23, "pw sector repair occurred" },
241 { 0x24, "aa SBUF integrity check failure" },
242 { 0x25, "pa lost cached write" },
243 { 0x26, "pa drive ECC error detected" },
244 { 0x27, "pe DCB checksum error" },
245 { 0x28, "pn DCB unsupported version" },
246 { 0x29, "ui verify started" },
247 { 0x2a, "ua verify failed" },
248 { 0x2b, "ui verify complete" },
249 { 0x2c, "pw overwrote bad sector during rebuild" },
250 { 0x2d, "pa encountered bad sector during rebuild" },
251 { 0x2e, "pe replacement drive too small" },
252 { 0x2f, "ue array not previously initialized" },
253 { 0x30, "p drive not supported" },
254 { 0xff, "a aen queue full" },
255
256 { 0, NULL },
257 };
258
259 const char *
260 twe_describe_code(const struct twe_code_table *table, uint32_t code)
261 {
262
263 for (; table->string != NULL; table++) {
264 if (table->code == code)
265 return (table->string);
266 }
267 return (NULL);
268 }
269
270 static inline u_int32_t
271 twe_inl(struct twe_softc *sc, int off)
272 {
273
274 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
275 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
276 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
277 }
278
279 static inline void
280 twe_outl(struct twe_softc *sc, int off, u_int32_t val)
281 {
282
283 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
284 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
285 BUS_SPACE_BARRIER_WRITE);
286 }
287
288 /*
289 * Match a supported board.
290 */
291 static int
292 twe_match(struct device *parent, struct cfdata *cfdata,
293 void *aux)
294 {
295 struct pci_attach_args *pa;
296
297 pa = aux;
298
299 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
300 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
301 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
302 }
303
304 /*
305 * Attach a supported board.
306 *
307 * XXX This doesn't fail gracefully.
308 */
309 static void
310 twe_attach(struct device *parent, struct device *self, void *aux)
311 {
312 struct pci_attach_args *pa;
313 struct twe_softc *sc;
314 pci_chipset_tag_t pc;
315 pci_intr_handle_t ih;
316 pcireg_t csr;
317 const char *intrstr;
318 int s, size, i, rv, rseg;
319 size_t max_segs, max_xfer;
320 bus_dma_segment_t seg;
321 struct ctlname ctlnames[] = CTL_NAMES;
322 const struct sysctlnode *node;
323 struct twe_cmd *tc;
324 struct twe_ccb *ccb;
325
326 sc = (struct twe_softc *)self;
327 pa = aux;
328 pc = pa->pa_pc;
329 sc->sc_dmat = pa->pa_dmat;
330 SIMPLEQ_INIT(&sc->sc_ccb_queue);
331 SLIST_INIT(&sc->sc_ccb_freelist);
332
333 aprint_naive(": RAID controller\n");
334 aprint_normal(": 3ware Escalade\n");
335
336
337 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
338 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
339 aprint_error_dev(&sc->sc_dv, "can't map i/o space\n");
340 return;
341 }
342
343 /* Enable the device. */
344 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
345 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
346 csr | PCI_COMMAND_MASTER_ENABLE);
347
348 /* Map and establish the interrupt. */
349 if (pci_intr_map(pa, &ih)) {
350 aprint_error_dev(&sc->sc_dv, "can't map interrupt\n");
351 return;
352 }
353
354 intrstr = pci_intr_string(pc, ih);
355 sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc);
356 if (sc->sc_ih == NULL) {
357 aprint_error_dev(&sc->sc_dv, "can't establish interrupt%s%s\n",
358 (intrstr) ? " at " : "",
359 (intrstr) ? intrstr : "");
360 return;
361 }
362
363 if (intrstr != NULL)
364 aprint_normal_dev(&sc->sc_dv, "interrupting at %s\n",
365 intrstr);
366
367 /*
368 * Allocate and initialise the command blocks and CCBs.
369 */
370 size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
371
372 if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
373 &rseg, BUS_DMA_NOWAIT)) != 0) {
374 aprint_error_dev(&sc->sc_dv, "unable to allocate commands, rv = %d\n", rv);
375 return;
376 }
377
378 if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
379 (void **)&sc->sc_cmds,
380 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
381 aprint_error_dev(&sc->sc_dv, "unable to map commands, rv = %d\n", rv);
382 return;
383 }
384
385 if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
386 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
387 aprint_error_dev(&sc->sc_dv, "unable to create command DMA map, rv = %d\n", rv);
388 return;
389 }
390
391 if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
392 size, NULL, BUS_DMA_NOWAIT)) != 0) {
393 aprint_error_dev(&sc->sc_dv, "unable to load command DMA map, rv = %d\n", rv);
394 return;
395 }
396
397 ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT);
398 if (ccb == NULL) {
399 aprint_error_dev(&sc->sc_dv, "unable to allocate memory for ccbs\n");
400 return;
401 }
402
403 sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
404 memset(sc->sc_cmds, 0, size);
405
406 sc->sc_ccbs = ccb;
407 tc = (struct twe_cmd *)sc->sc_cmds;
408 max_segs = twe_get_maxsegs();
409 max_xfer = twe_get_maxxfer(max_segs);
410
411 for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
412 ccb->ccb_cmd = tc;
413 ccb->ccb_cmdid = i;
414 ccb->ccb_flags = 0;
415 rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
416 max_segs, PAGE_SIZE, 0,
417 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
418 &ccb->ccb_dmamap_xfer);
419 if (rv != 0) {
420 aprint_error_dev(&sc->sc_dv, "can't create dmamap, rv = %d\n", rv);
421 return;
422 }
423
424 /* Save the first CCB for AEN retrieval. */
425 if (i != 0)
426 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
427 ccb_chain.slist);
428 }
429
430 /* Wait for the controller to become ready. */
431 if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
432 aprint_error_dev(&sc->sc_dv, "microcontroller not ready\n");
433 return;
434 }
435
436 twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
437
438 /* Reset the controller. */
439 s = splbio();
440 rv = twe_reset(sc);
441 splx(s);
442 if (rv) {
443 aprint_error_dev(&sc->sc_dv, "reset failed\n");
444 return;
445 }
446
447 /* Initialise connection with controller. */
448 twe_init_connection(sc);
449
450 twe_describe_controller(sc);
451
452 /* Find and attach RAID array units. */
453 sc->sc_nunits = 0;
454 for (i = 0; i < TWE_MAX_UNITS; i++)
455 (void) twe_add_unit(sc, i);
456
457 /* ...and finally, enable interrupts. */
458 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
459 TWE_CTL_UNMASK_RESP_INTR |
460 TWE_CTL_ENABLE_INTRS);
461
462 /* sysctl set-up for 3ware cli */
463 if (sysctl_createv(NULL, 0, NULL, NULL,
464 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw",
465 NULL, NULL, 0, NULL, 0,
466 CTL_HW, CTL_EOL) != 0) {
467 aprint_error_dev(&sc->sc_dv, "could not create %s sysctl node\n",
468 ctlnames[CTL_HW].ctl_name);
469 return;
470 }
471 if (sysctl_createv(NULL, 0, NULL, &node,
472 0, CTLTYPE_NODE, device_xname(&sc->sc_dv),
473 SYSCTL_DESCR("twe driver information"),
474 NULL, 0, NULL, 0,
475 CTL_HW, CTL_CREATE, CTL_EOL) != 0) {
476 aprint_error_dev(&sc->sc_dv, "could not create %s.%s sysctl node\n",
477 ctlnames[CTL_HW].ctl_name, device_xname(&sc->sc_dv));
478 return;
479 }
480 if ((i = sysctl_createv(NULL, 0, NULL, NULL,
481 0, CTLTYPE_STRING, "driver_version",
482 SYSCTL_DESCR("twe0 driver version"),
483 NULL, 0, &twever, 0,
484 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL))
485 != 0) {
486 aprint_error_dev(&sc->sc_dv, "could not create %s.%s.driver_version sysctl\n",
487 ctlnames[CTL_HW].ctl_name, device_xname(&sc->sc_dv));
488 return;
489 }
490 }
491
492 void
493 twe_register_callbacks(struct twe_softc *sc, int unit,
494 const struct twe_callbacks *tcb)
495 {
496
497 sc->sc_units[unit].td_callbacks = tcb;
498 }
499
500 static void
501 twe_recompute_openings(struct twe_softc *sc)
502 {
503 struct twe_drive *td;
504 int unit, openings;
505
506 if (sc->sc_nunits != 0)
507 openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits;
508 else
509 openings = 0;
510 if (openings == sc->sc_openings)
511 return;
512 sc->sc_openings = openings;
513
514 #ifdef TWE_DEBUG
515 printf("%s: %d array%s, %d openings per array\n",
516 device_xname(&sc->sc_dv), sc->sc_nunits,
517 sc->sc_nunits == 1 ? "" : "s", sc->sc_openings);
518 #endif
519
520 for (unit = 0; unit < TWE_MAX_UNITS; unit++) {
521 td = &sc->sc_units[unit];
522 if (td->td_dev != NULL)
523 (*td->td_callbacks->tcb_openings)(td->td_dev,
524 sc->sc_openings);
525 }
526 }
527
528 static int
529 twe_add_unit(struct twe_softc *sc, int unit)
530 {
531 struct twe_param *dtp, *atp;
532 struct twe_array_descriptor *ad;
533 struct twe_drive *td;
534 struct twe_attach_args twea;
535 uint32_t newsize;
536 int rv;
537 uint16_t dsize;
538 uint8_t newtype, newstripe;
539 int locs[TWECF_NLOCS];
540
541 if (unit < 0 || unit >= TWE_MAX_UNITS)
542 return (EINVAL);
543
544 /* Find attached units. */
545 rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
546 TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
547 if (rv != 0) {
548 aprint_error_dev(&sc->sc_dv, "error %d fetching unit summary\n",
549 rv);
550 return (rv);
551 }
552
553 /* For each detected unit, collect size and store in an array. */
554 td = &sc->sc_units[unit];
555
556 /* Unit present? */
557 if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) {
558 /*
559 * XXX Should we check to see if a device has been
560 * XXX attached at this index and detach it if it
561 * XXX has? ("rescan" semantics)
562 */
563 rv = 0;
564 goto out;
565 }
566
567 rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit,
568 TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
569 if (rv != 0) {
570 aprint_error_dev(&sc->sc_dv, "error %d fetching descriptor size "
571 "for unit %d\n", rv, unit);
572 goto out;
573 }
574
575 rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit,
576 TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
577 if (rv != 0) {
578 aprint_error_dev(&sc->sc_dv, "error %d fetching array descriptor "
579 "for unit %d\n", rv, unit);
580 goto out;
581 }
582
583 ad = (struct twe_array_descriptor *)atp->tp_data;
584 newtype = ad->configuration;
585 newstripe = ad->stripe_size;
586 free(atp, M_DEVBUF);
587
588 rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit,
589 TWE_PARAM_UNITINFO_Capacity, &newsize);
590 if (rv != 0) {
591 aprint_error_dev(&sc->sc_dv,
592 "error %d fetching capacity for unit %d\n",
593 rv, unit);
594 goto out;
595 }
596
597 /*
598 * Have a device, so we need to attach it. If there is currently
599 * something sitting at the slot, and the parameters are different,
600 * then we detach the old device before attaching the new one.
601 */
602 if (td->td_dev != NULL &&
603 td->td_size == newsize &&
604 td->td_type == newtype &&
605 td->td_stripe == newstripe) {
606 /* Same as the old device; just keep using it. */
607 rv = 0;
608 goto out;
609 } else if (td->td_dev != NULL) {
610 /* Detach the old device first. */
611 (void) config_detach(td->td_dev, DETACH_FORCE);
612 td->td_dev = NULL;
613 } else if (td->td_size == 0)
614 sc->sc_nunits++;
615
616 /*
617 * Committed to the new array unit; assign its parameters and
618 * recompute the number of available command openings.
619 */
620 td->td_size = newsize;
621 td->td_type = newtype;
622 td->td_stripe = newstripe;
623 twe_recompute_openings(sc);
624
625 twea.twea_unit = unit;
626
627 locs[TWECF_UNIT] = unit;
628
629 td->td_dev = config_found_sm_loc(&sc->sc_dv, "twe", locs, &twea,
630 twe_print, config_stdsubmatch);
631
632 rv = 0;
633 out:
634 free(dtp, M_DEVBUF);
635 return (rv);
636 }
637
638 static int
639 twe_del_unit(struct twe_softc *sc, int unit)
640 {
641 struct twe_drive *td;
642
643 if (unit < 0 || unit >= TWE_MAX_UNITS)
644 return (EINVAL);
645
646 td = &sc->sc_units[unit];
647 if (td->td_size != 0)
648 sc->sc_nunits--;
649 td->td_size = 0;
650 td->td_type = 0;
651 td->td_stripe = 0;
652 if (td->td_dev != NULL) {
653 (void) config_detach(td->td_dev, DETACH_FORCE);
654 td->td_dev = NULL;
655 }
656 twe_recompute_openings(sc);
657 return (0);
658 }
659
660 /*
661 * Reset the controller.
662 * MUST BE CALLED AT splbio()!
663 */
664 static int
665 twe_reset(struct twe_softc *sc)
666 {
667 uint16_t aen;
668 u_int status;
669 volatile u_int32_t junk;
670 int got, rv;
671
672 /* Issue a soft reset. */
673 twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
674 TWE_CTL_CLEAR_HOST_INTR |
675 TWE_CTL_CLEAR_ATTN_INTR |
676 TWE_CTL_MASK_CMD_INTR |
677 TWE_CTL_MASK_RESP_INTR |
678 TWE_CTL_CLEAR_ERROR_STS |
679 TWE_CTL_DISABLE_INTRS);
680
681 /* Wait for attention... */
682 if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) {
683 aprint_error_dev(&sc->sc_dv, "timeout waiting for attention interrupt\n");
684 return (-1);
685 }
686
687 /* ...and ACK it. */
688 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
689
690 /*
691 * Pull AENs out of the controller; look for a soft reset AEN.
692 * Open code this, since we want to detect reset even if the
693 * queue for management tools is full.
694 *
695 * Note that since:
696 * - interrupts are blocked
697 * - we have reset the controller
698 * - acknowledged the pending ATTENTION
699 * that there is no way a pending asynchronous AEN fetch would
700 * finish, so clear the flag.
701 */
702 sc->sc_flags &= ~TWEF_AEN;
703 for (got = 0;;) {
704 rv = twe_aen_get(sc, &aen);
705 if (rv != 0)
706 printf("%s: error %d while draining event queue\n",
707 device_xname(&sc->sc_dv), rv);
708 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
709 break;
710 if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
711 got = 1;
712 twe_aen_enqueue(sc, aen, 1);
713 }
714
715 if (!got) {
716 printf("%s: reset not reported\n", device_xname(&sc->sc_dv));
717 return (-1);
718 }
719
720 /* Check controller status. */
721 status = twe_inl(sc, TWE_REG_STS);
722 if (twe_status_check(sc, status)) {
723 printf("%s: controller errors detected\n",
724 device_xname(&sc->sc_dv));
725 return (-1);
726 }
727
728 /* Drain the response queue. */
729 for (;;) {
730 status = twe_inl(sc, TWE_REG_STS);
731 if (twe_status_check(sc, status) != 0) {
732 aprint_error_dev(&sc->sc_dv, "can't drain response queue\n");
733 return (-1);
734 }
735 if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
736 break;
737 junk = twe_inl(sc, TWE_REG_RESP_QUEUE);
738 }
739
740 return (0);
741 }
742
743 /*
744 * Print autoconfiguration message for a sub-device.
745 */
746 static int
747 twe_print(void *aux, const char *pnp)
748 {
749 struct twe_attach_args *twea;
750
751 twea = aux;
752
753 if (pnp != NULL)
754 aprint_normal("block device at %s", pnp);
755 aprint_normal(" unit %d", twea->twea_unit);
756 return (UNCONF);
757 }
758
759 /*
760 * Interrupt service routine.
761 */
762 static int
763 twe_intr(void *arg)
764 {
765 struct twe_softc *sc;
766 u_int status;
767 int caught, rv;
768
769 sc = arg;
770 caught = 0;
771 status = twe_inl(sc, TWE_REG_STS);
772 twe_status_check(sc, status);
773
774 /* Host interrupts - purpose unknown. */
775 if ((status & TWE_STS_HOST_INTR) != 0) {
776 #ifdef DEBUG
777 printf("%s: host interrupt\n", device_xname(&sc->sc_dv));
778 #endif
779 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
780 caught = 1;
781 }
782
783 /*
784 * Attention interrupts, signalled when a controller or child device
785 * state change has occurred.
786 */
787 if ((status & TWE_STS_ATTN_INTR) != 0) {
788 rv = twe_aen_get(sc, NULL);
789 if (rv != 0)
790 aprint_error_dev(&sc->sc_dv, "unable to retrieve AEN (%d)\n", rv);
791 else
792 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
793 caught = 1;
794 }
795
796 /*
797 * Command interrupts, signalled when the controller can accept more
798 * commands. We don't use this; instead, we try to submit commands
799 * when we receive them, and when other commands have completed.
800 * Mask it so we don't get another one.
801 */
802 if ((status & TWE_STS_CMD_INTR) != 0) {
803 #ifdef DEBUG
804 printf("%s: command interrupt\n", device_xname(&sc->sc_dv));
805 #endif
806 twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
807 caught = 1;
808 }
809
810 if ((status & TWE_STS_RESP_INTR) != 0) {
811 twe_poll(sc);
812 caught = 1;
813 }
814
815 return (caught);
816 }
817
818 /*
819 * Fetch an AEN. Even though this is really like parameter
820 * retrieval, we handle this specially, because we issue this
821 * AEN retrieval command from interrupt context, and thus
822 * reserve a CCB for it to avoid resource shortage.
823 *
824 * XXX There are still potential resource shortages we could
825 * XXX encounter. Consider pre-allocating all AEN-related
826 * XXX resources.
827 *
828 * MUST BE CALLED AT splbio()!
829 */
830 static int
831 twe_aen_get(struct twe_softc *sc, uint16_t *aenp)
832 {
833 struct twe_ccb *ccb;
834 struct twe_cmd *tc;
835 struct twe_param *tp;
836 int rv;
837
838 /*
839 * If we're already retrieving an AEN, just wait; another
840 * retrieval will be chained after the current one completes.
841 */
842 if (sc->sc_flags & TWEF_AEN) {
843 /*
844 * It is a fatal software programming error to attempt
845 * to fetch an AEN synchronously when an AEN fetch is
846 * already pending.
847 */
848 KASSERT(aenp == NULL);
849 return (0);
850 }
851
852 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
853 if (tp == NULL)
854 return (ENOMEM);
855
856 ccb = twe_ccb_alloc(sc,
857 TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
858 KASSERT(ccb != NULL);
859
860 ccb->ccb_data = tp;
861 ccb->ccb_datasize = TWE_SECTOR_SIZE;
862 ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL;
863 ccb->ccb_tx.tx_context = tp;
864 ccb->ccb_tx.tx_dv = &sc->sc_dv;
865
866 tc = ccb->ccb_cmd;
867 tc->tc_size = 2;
868 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
869 tc->tc_unit = 0;
870 tc->tc_count = htole16(1);
871
872 /* Fill in the outbound parameter data. */
873 tp->tp_table_id = htole16(TWE_PARAM_AEN);
874 tp->tp_param_id = TWE_PARAM_AEN_UnitCode;
875 tp->tp_param_size = 2;
876
877 /* Map the transfer. */
878 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
879 twe_ccb_free(sc, ccb);
880 goto done;
881 }
882
883 /* Enqueue the command and wait. */
884 if (aenp != NULL) {
885 rv = twe_ccb_poll(sc, ccb, 5);
886 twe_ccb_unmap(sc, ccb);
887 twe_ccb_free(sc, ccb);
888 if (rv == 0)
889 *aenp = le16toh(*(uint16_t *)tp->tp_data);
890 free(tp, M_DEVBUF);
891 } else {
892 sc->sc_flags |= TWEF_AEN;
893 twe_ccb_enqueue(sc, ccb);
894 rv = 0;
895 }
896
897 done:
898 return (rv);
899 }
900
901 /*
902 * Handle an AEN returned by the controller.
903 * MUST BE CALLED AT splbio()!
904 */
905 static void
906 twe_aen_handler(struct twe_ccb *ccb, int error)
907 {
908 struct twe_softc *sc;
909 struct twe_param *tp;
910 uint16_t aen;
911 int rv;
912
913 sc = (struct twe_softc *)ccb->ccb_tx.tx_dv;
914 tp = ccb->ccb_tx.tx_context;
915 twe_ccb_unmap(sc, ccb);
916
917 sc->sc_flags &= ~TWEF_AEN;
918
919 if (error) {
920 aprint_error_dev(&sc->sc_dv, "error retrieving AEN\n");
921 aen = TWE_AEN_QUEUE_EMPTY;
922 } else
923 aen = le16toh(*(u_int16_t *)tp->tp_data);
924 free(tp, M_DEVBUF);
925 twe_ccb_free(sc, ccb);
926
927 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
928 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
929 return;
930 }
931
932 twe_aen_enqueue(sc, aen, 0);
933
934 /*
935 * Chain another retrieval in case interrupts have been
936 * coalesced.
937 */
938 rv = twe_aen_get(sc, NULL);
939 if (rv != 0)
940 aprint_error_dev(&sc->sc_dv, "unable to retrieve AEN (%d)\n", rv);
941 }
942
943 static void
944 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet)
945 {
946 const char *str, *msg;
947 int s, next, nextnext, level;
948
949 /*
950 * First report the AEN on the console. Maybe.
951 */
952 if (! quiet) {
953 str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen));
954 if (str == NULL) {
955 aprint_error_dev(&sc->sc_dv, "unknown AEN 0x%04x\n", aen);
956 } else {
957 msg = str + 3;
958 switch (str[1]) {
959 case 'E': level = LOG_EMERG; break;
960 case 'a': level = LOG_ALERT; break;
961 case 'c': level = LOG_CRIT; break;
962 case 'e': level = LOG_ERR; break;
963 case 'w': level = LOG_WARNING; break;
964 case 'n': level = LOG_NOTICE; break;
965 case 'i': level = LOG_INFO; break;
966 case 'd': level = LOG_DEBUG; break;
967 default:
968 /* Don't use syslog. */
969 level = -1;
970 }
971
972 if (level < 0) {
973 switch (str[0]) {
974 case 'u':
975 case 'p':
976 printf("%s: %s %d: %s\n",
977 device_xname(&sc->sc_dv),
978 str[0] == 'u' ? "unit" : "port",
979 TWE_AEN_UNIT(aen), msg);
980 break;
981
982 default:
983 printf("%s: %s\n",
984 device_xname(&sc->sc_dv), msg);
985 }
986 } else {
987 switch (str[0]) {
988 case 'u':
989 case 'p':
990 log(level, "%s: %s %d: %s\n",
991 device_xname(&sc->sc_dv),
992 str[0] == 'u' ? "unit" : "port",
993 TWE_AEN_UNIT(aen), msg);
994 break;
995
996 default:
997 log(level, "%s: %s\n",
998 device_xname(&sc->sc_dv), msg);
999 }
1000 }
1001 }
1002 }
1003
1004 /* Now enqueue the AEN for mangement tools. */
1005 s = splbio();
1006
1007 next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH;
1008 nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH;
1009
1010 /*
1011 * If this is the last free slot, then queue up a "queue
1012 * full" message.
1013 */
1014 if (nextnext == sc->sc_aen_tail)
1015 aen = TWE_AEN_QUEUE_FULL;
1016
1017 if (next != sc->sc_aen_tail) {
1018 sc->sc_aen_queue[sc->sc_aen_head] = aen;
1019 sc->sc_aen_head = next;
1020 }
1021
1022 if (sc->sc_flags & TWEF_AENQ_WAIT) {
1023 sc->sc_flags &= ~TWEF_AENQ_WAIT;
1024 wakeup(&sc->sc_aen_queue);
1025 }
1026
1027 splx(s);
1028 }
1029
1030 /* NOTE: Must be called at splbio(). */
1031 static uint16_t
1032 twe_aen_dequeue(struct twe_softc *sc)
1033 {
1034 uint16_t aen;
1035
1036 if (sc->sc_aen_tail == sc->sc_aen_head)
1037 aen = TWE_AEN_QUEUE_EMPTY;
1038 else {
1039 aen = sc->sc_aen_queue[sc->sc_aen_tail];
1040 sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH;
1041 }
1042
1043 return (aen);
1044 }
1045
1046 /*
1047 * These are short-hand functions that execute TWE_OP_GET_PARAM to
1048 * fetch 1, 2, and 4 byte parameter values, respectively.
1049 */
1050 int
1051 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
1052 uint8_t *valp)
1053 {
1054 struct twe_param *tp;
1055 int rv;
1056
1057 rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
1058 if (rv != 0)
1059 return (rv);
1060 *valp = *(uint8_t *)tp->tp_data;
1061 free(tp, M_DEVBUF);
1062 return (0);
1063 }
1064
1065 int
1066 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
1067 uint16_t *valp)
1068 {
1069 struct twe_param *tp;
1070 int rv;
1071
1072 rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
1073 if (rv != 0)
1074 return (rv);
1075 *valp = le16toh(*(uint16_t *)tp->tp_data);
1076 free(tp, M_DEVBUF);
1077 return (0);
1078 }
1079
1080 int
1081 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
1082 uint32_t *valp)
1083 {
1084 struct twe_param *tp;
1085 int rv;
1086
1087 rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
1088 if (rv != 0)
1089 return (rv);
1090 *valp = le32toh(*(uint32_t *)tp->tp_data);
1091 free(tp, M_DEVBUF);
1092 return (0);
1093 }
1094
1095 /*
1096 * Execute a TWE_OP_GET_PARAM command. If a callback function is provided,
1097 * it will be called with generated context when the command has completed.
1098 * If no callback is provided, the command will be executed synchronously
1099 * and a pointer to a buffer containing the data returned.
1100 *
1101 * The caller or callback is responsible for freeing the buffer.
1102 *
1103 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1104 */
1105 int
1106 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
1107 void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
1108 {
1109 struct twe_ccb *ccb;
1110 struct twe_cmd *tc;
1111 struct twe_param *tp;
1112 int rv, s;
1113
1114 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1115 if (tp == NULL)
1116 return ENOMEM;
1117
1118 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1119 KASSERT(ccb != NULL);
1120
1121 ccb->ccb_data = tp;
1122 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1123 ccb->ccb_tx.tx_handler = func;
1124 ccb->ccb_tx.tx_context = tp;
1125 ccb->ccb_tx.tx_dv = &sc->sc_dv;
1126
1127 tc = ccb->ccb_cmd;
1128 tc->tc_size = 2;
1129 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
1130 tc->tc_unit = 0;
1131 tc->tc_count = htole16(1);
1132
1133 /* Fill in the outbound parameter data. */
1134 tp->tp_table_id = htole16(table_id);
1135 tp->tp_param_id = param_id;
1136 tp->tp_param_size = size;
1137
1138 /* Map the transfer. */
1139 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1140 twe_ccb_free(sc, ccb);
1141 goto done;
1142 }
1143
1144 /* Submit the command and either wait or let the callback handle it. */
1145 if (func == NULL) {
1146 s = splbio();
1147 rv = twe_ccb_poll(sc, ccb, 5);
1148 twe_ccb_unmap(sc, ccb);
1149 twe_ccb_free(sc, ccb);
1150 splx(s);
1151 } else {
1152 #ifdef DEBUG
1153 if (pbuf != NULL)
1154 panic("both func and pbuf defined");
1155 #endif
1156 twe_ccb_enqueue(sc, ccb);
1157 return 0;
1158 }
1159
1160 done:
1161 if (pbuf == NULL || rv != 0)
1162 free(tp, M_DEVBUF);
1163 else if (pbuf != NULL && rv == 0)
1164 *pbuf = tp;
1165 return rv;
1166 }
1167
1168 /*
1169 * Execute a TWE_OP_SET_PARAM command.
1170 *
1171 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1172 */
1173 static int
1174 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
1175 void *sbuf)
1176 {
1177 struct twe_ccb *ccb;
1178 struct twe_cmd *tc;
1179 struct twe_param *tp;
1180 int rv, s;
1181
1182 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1183 if (tp == NULL)
1184 return ENOMEM;
1185
1186 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1187 KASSERT(ccb != NULL);
1188
1189 ccb->ccb_data = tp;
1190 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1191 ccb->ccb_tx.tx_handler = 0;
1192 ccb->ccb_tx.tx_context = tp;
1193 ccb->ccb_tx.tx_dv = &sc->sc_dv;
1194
1195 tc = ccb->ccb_cmd;
1196 tc->tc_size = 2;
1197 tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
1198 tc->tc_unit = 0;
1199 tc->tc_count = htole16(1);
1200
1201 /* Fill in the outbound parameter data. */
1202 tp->tp_table_id = htole16(table_id);
1203 tp->tp_param_id = param_id;
1204 tp->tp_param_size = size;
1205 memcpy(tp->tp_data, sbuf, size);
1206
1207 /* Map the transfer. */
1208 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1209 twe_ccb_free(sc, ccb);
1210 goto done;
1211 }
1212
1213 /* Submit the command and wait. */
1214 s = splbio();
1215 rv = twe_ccb_poll(sc, ccb, 5);
1216 twe_ccb_unmap(sc, ccb);
1217 twe_ccb_free(sc, ccb);
1218 splx(s);
1219 done:
1220 free(tp, M_DEVBUF);
1221 return (rv);
1222 }
1223
1224 /*
1225 * Execute a TWE_OP_INIT_CONNECTION command. Return non-zero on error.
1226 * Must be called with interrupts blocked.
1227 */
1228 static int
1229 twe_init_connection(struct twe_softc *sc)
1230 {
1231 struct twe_ccb *ccb;
1232 struct twe_cmd *tc;
1233 int rv;
1234
1235 if ((ccb = twe_ccb_alloc(sc, 0)) == NULL)
1236 return (EAGAIN);
1237
1238 /* Build the command. */
1239 tc = ccb->ccb_cmd;
1240 tc->tc_size = 3;
1241 tc->tc_opcode = TWE_OP_INIT_CONNECTION;
1242 tc->tc_unit = 0;
1243 tc->tc_count = htole16(TWE_MAX_CMDS);
1244 tc->tc_args.init_connection.response_queue_pointer = 0;
1245
1246 /* Submit the command for immediate execution. */
1247 rv = twe_ccb_poll(sc, ccb, 5);
1248 twe_ccb_free(sc, ccb);
1249 return (rv);
1250 }
1251
1252 /*
1253 * Poll the controller for completed commands. Must be called with
1254 * interrupts blocked.
1255 */
1256 static void
1257 twe_poll(struct twe_softc *sc)
1258 {
1259 struct twe_ccb *ccb;
1260 int found;
1261 u_int status, cmdid;
1262
1263 found = 0;
1264
1265 for (;;) {
1266 status = twe_inl(sc, TWE_REG_STS);
1267 twe_status_check(sc, status);
1268
1269 if ((status & TWE_STS_RESP_QUEUE_EMPTY))
1270 break;
1271
1272 found = 1;
1273 cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
1274 cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
1275 if (cmdid >= TWE_MAX_QUEUECNT) {
1276 aprint_error_dev(&sc->sc_dv, "bad cmdid %d\n", cmdid);
1277 continue;
1278 }
1279
1280 ccb = sc->sc_ccbs + cmdid;
1281 if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
1282 printf("%s: CCB for cmdid %d not active\n",
1283 device_xname(&sc->sc_dv), cmdid);
1284 continue;
1285 }
1286 ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
1287
1288 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1289 (char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
1290 sizeof(struct twe_cmd),
1291 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1292
1293 /* Pass notification to upper layers. */
1294 if (ccb->ccb_tx.tx_handler != NULL)
1295 (*ccb->ccb_tx.tx_handler)(ccb,
1296 ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
1297 }
1298
1299 /* If any commands have completed, run the software queue. */
1300 if (found)
1301 twe_ccb_enqueue(sc, NULL);
1302 }
1303
1304 /*
1305 * Wait for `status' to be set in the controller status register. Return
1306 * zero if found, non-zero if the operation timed out.
1307 */
1308 static int
1309 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
1310 {
1311
1312 for (timo *= 10; timo != 0; timo--) {
1313 if ((twe_inl(sc, TWE_REG_STS) & status) == status)
1314 break;
1315 delay(100000);
1316 }
1317
1318 return (timo == 0);
1319 }
1320
1321 /*
1322 * Clear a PCI parity error.
1323 */
1324 static void
1325 twe_clear_pci_parity_error(struct twe_softc *sc)
1326 {
1327 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PARITY_ERROR);
1328
1329 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
1330 }
1331
1332
1333 /*
1334 * Clear a PCI abort.
1335 */
1336 static void
1337 twe_clear_pci_abort(struct twe_softc *sc)
1338 {
1339 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT);
1340
1341 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
1342 }
1343
1344 /*
1345 * Complain if the status bits aren't what we expect.
1346 */
1347 static int
1348 twe_status_check(struct twe_softc *sc, u_int status)
1349 {
1350 int rv;
1351
1352 rv = 0;
1353
1354 if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
1355 aprint_error_dev(&sc->sc_dv, "missing status bits: 0x%08x\n",
1356 status & ~TWE_STS_EXPECTED_BITS);
1357 rv = -1;
1358 }
1359
1360 if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
1361 aprint_error_dev(&sc->sc_dv, "unexpected status bits: 0x%08x\n",
1362 status & TWE_STS_UNEXPECTED_BITS);
1363 rv = -1;
1364 if (status & TWE_STS_PCI_PARITY_ERROR) {
1365 aprint_error_dev(&sc->sc_dv, "PCI parity error: Reseat card, move card "
1366 "or buggy device present.\n");
1367 twe_clear_pci_parity_error(sc);
1368 }
1369 if (status & TWE_STS_PCI_ABORT) {
1370 aprint_error_dev(&sc->sc_dv, "PCI abort, clearing.\n");
1371 twe_clear_pci_abort(sc);
1372 }
1373 }
1374
1375 return (rv);
1376 }
1377
1378 /*
1379 * Allocate and initialise a CCB.
1380 */
1381 static inline void
1382 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags)
1383 {
1384 struct twe_cmd *tc;
1385
1386 ccb->ccb_tx.tx_handler = NULL;
1387 ccb->ccb_flags = flags;
1388 tc = ccb->ccb_cmd;
1389 tc->tc_status = 0;
1390 tc->tc_flags = 0;
1391 tc->tc_cmdid = ccb->ccb_cmdid;
1392 }
1393
1394 struct twe_ccb *
1395 twe_ccb_alloc(struct twe_softc *sc, int flags)
1396 {
1397 struct twe_ccb *ccb;
1398 int s;
1399
1400 s = splbio();
1401 if (__predict_false((flags & TWE_CCB_AEN) != 0)) {
1402 /* Use the reserved CCB. */
1403 ccb = sc->sc_ccbs;
1404 } else {
1405 /* Allocate a CCB and command block. */
1406 if (__predict_false((ccb =
1407 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1408 splx(s);
1409 return (NULL);
1410 }
1411 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1412 }
1413 #ifdef DIAGNOSTIC
1414 if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0)
1415 panic("twe_ccb_alloc: got reserved CCB for non-AEN");
1416 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1417 panic("twe_ccb_alloc: CCB %ld already allocated",
1418 (long)(ccb - sc->sc_ccbs));
1419 flags |= TWE_CCB_ALLOCED;
1420 #endif
1421 splx(s);
1422
1423 twe_ccb_init(sc, ccb, flags);
1424 return (ccb);
1425 }
1426
1427 struct twe_ccb *
1428 twe_ccb_alloc_wait(struct twe_softc *sc, int flags)
1429 {
1430 struct twe_ccb *ccb;
1431 int s;
1432
1433 KASSERT((flags & TWE_CCB_AEN) == 0);
1434
1435 s = splbio();
1436 while (__predict_false((ccb =
1437 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1438 sc->sc_flags |= TWEF_WAIT_CCB;
1439 (void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0);
1440 }
1441 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1442 #ifdef DIAGNOSTIC
1443 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1444 panic("twe_ccb_alloc_wait: CCB %ld already allocated",
1445 (long)(ccb - sc->sc_ccbs));
1446 flags |= TWE_CCB_ALLOCED;
1447 #endif
1448 splx(s);
1449
1450 twe_ccb_init(sc, ccb, flags);
1451 return (ccb);
1452 }
1453
1454 /*
1455 * Free a CCB.
1456 */
1457 void
1458 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
1459 {
1460 int s;
1461
1462 s = splbio();
1463 if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) {
1464 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
1465 if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) {
1466 sc->sc_flags &= ~TWEF_WAIT_CCB;
1467 wakeup(&sc->sc_ccb_freelist);
1468 }
1469 }
1470 ccb->ccb_flags = 0;
1471 splx(s);
1472 }
1473
1474 /*
1475 * Map the specified CCB's command block and data buffer (if any) into
1476 * controller visible space. Perform DMA synchronisation.
1477 */
1478 int
1479 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
1480 {
1481 struct twe_cmd *tc;
1482 int flags, nsegs, i, s, rv;
1483 void *data;
1484
1485 /*
1486 * The data as a whole must be 512-byte aligned.
1487 */
1488 if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
1489 s = splvm();
1490 /* XXX */
1491 ccb->ccb_abuf = uvm_km_alloc(kmem_map,
1492 ccb->ccb_datasize, 0, UVM_KMF_NOWAIT|UVM_KMF_WIRED);
1493 splx(s);
1494 data = (void *)ccb->ccb_abuf;
1495 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1496 memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
1497 } else {
1498 ccb->ccb_abuf = (vaddr_t)0;
1499 data = ccb->ccb_data;
1500 }
1501
1502 /*
1503 * Map the data buffer into bus space and build the S/G list.
1504 */
1505 rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
1506 ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1507 ((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
1508 BUS_DMA_READ : BUS_DMA_WRITE));
1509 if (rv != 0) {
1510 if (ccb->ccb_abuf != (vaddr_t)0) {
1511 s = splvm();
1512 /* XXX */
1513 uvm_km_free(kmem_map, ccb->ccb_abuf,
1514 ccb->ccb_datasize, UVM_KMF_WIRED);
1515 splx(s);
1516 }
1517 return (rv);
1518 }
1519
1520 nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
1521 tc = ccb->ccb_cmd;
1522 tc->tc_size += 2 * nsegs;
1523
1524 /* The location of the S/G list is dependant upon command type. */
1525 switch (tc->tc_opcode >> 5) {
1526 case 2:
1527 for (i = 0; i < nsegs; i++) {
1528 tc->tc_args.param.sgl[i].tsg_address =
1529 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1530 tc->tc_args.param.sgl[i].tsg_length =
1531 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1532 }
1533 /* XXX Needed? */
1534 for (; i < TWE_SG_SIZE; i++) {
1535 tc->tc_args.param.sgl[i].tsg_address = 0;
1536 tc->tc_args.param.sgl[i].tsg_length = 0;
1537 }
1538 break;
1539 case 3:
1540 for (i = 0; i < nsegs; i++) {
1541 tc->tc_args.io.sgl[i].tsg_address =
1542 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1543 tc->tc_args.io.sgl[i].tsg_length =
1544 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1545 }
1546 /* XXX Needed? */
1547 for (; i < TWE_SG_SIZE; i++) {
1548 tc->tc_args.io.sgl[i].tsg_address = 0;
1549 tc->tc_args.io.sgl[i].tsg_length = 0;
1550 }
1551 break;
1552 default:
1553 /*
1554 * In all likelihood, this is a command passed from
1555 * management tools in userspace where no S/G list is
1556 * necessary because no data is being passed.
1557 */
1558 break;
1559 }
1560
1561 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1562 flags = BUS_DMASYNC_PREREAD;
1563 else
1564 flags = 0;
1565 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1566 flags |= BUS_DMASYNC_PREWRITE;
1567
1568 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1569 ccb->ccb_datasize, flags);
1570 return (0);
1571 }
1572
1573 /*
1574 * Unmap the specified CCB's command block and data buffer (if any) and
1575 * perform DMA synchronisation.
1576 */
1577 void
1578 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
1579 {
1580 int flags, s;
1581
1582 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1583 flags = BUS_DMASYNC_POSTREAD;
1584 else
1585 flags = 0;
1586 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1587 flags |= BUS_DMASYNC_POSTWRITE;
1588
1589 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1590 ccb->ccb_datasize, flags);
1591 bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
1592
1593 if (ccb->ccb_abuf != (vaddr_t)0) {
1594 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1595 memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
1596 ccb->ccb_datasize);
1597 s = splvm();
1598 /* XXX */
1599 uvm_km_free(kmem_map, ccb->ccb_abuf, ccb->ccb_datasize,
1600 UVM_KMF_WIRED);
1601 splx(s);
1602 }
1603 }
1604
1605 /*
1606 * Submit a command to the controller and poll on completion. Return
1607 * non-zero on timeout (but don't check status, as some command types don't
1608 * return status). Must be called with interrupts blocked.
1609 */
1610 int
1611 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
1612 {
1613 int rv;
1614
1615 if ((rv = twe_ccb_submit(sc, ccb)) != 0)
1616 return (rv);
1617
1618 for (timo *= 1000; timo != 0; timo--) {
1619 twe_poll(sc);
1620 if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
1621 break;
1622 DELAY(100);
1623 }
1624
1625 return (timo == 0);
1626 }
1627
1628 /*
1629 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1630 * the order that they were enqueued and try to submit their command blocks
1631 * to the controller for execution.
1632 */
1633 void
1634 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
1635 {
1636 int s;
1637
1638 s = splbio();
1639
1640 if (ccb != NULL)
1641 SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
1642
1643 while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
1644 if (twe_ccb_submit(sc, ccb))
1645 break;
1646 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
1647 }
1648
1649 splx(s);
1650 }
1651
1652 /*
1653 * Submit the command block associated with the specified CCB to the
1654 * controller for execution. Must be called with interrupts blocked.
1655 */
1656 int
1657 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
1658 {
1659 bus_addr_t pa;
1660 int rv;
1661 u_int status;
1662
1663 /* Check to see if we can post a command. */
1664 status = twe_inl(sc, TWE_REG_STS);
1665 twe_status_check(sc, status);
1666
1667 if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
1668 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1669 (char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
1670 sizeof(struct twe_cmd),
1671 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1672 #ifdef DIAGNOSTIC
1673 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0)
1674 panic("%s: CCB %ld not ALLOCED\n",
1675 device_xname(&sc->sc_dv), (long)(ccb - sc->sc_ccbs));
1676 #endif
1677 ccb->ccb_flags |= TWE_CCB_ACTIVE;
1678 pa = sc->sc_cmds_paddr +
1679 ccb->ccb_cmdid * sizeof(struct twe_cmd);
1680 twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
1681 rv = 0;
1682 } else
1683 rv = EBUSY;
1684
1685 return (rv);
1686 }
1687
1688
1689 /*
1690 * Accept an open operation on the control device.
1691 */
1692 static int
1693 tweopen(dev_t dev, int flag, int mode, struct lwp *l)
1694 {
1695 struct twe_softc *twe;
1696
1697 if ((twe = device_lookup_private(&twe_cd, minor(dev))) == NULL)
1698 return (ENXIO);
1699 if ((twe->sc_flags & TWEF_OPEN) != 0)
1700 return (EBUSY);
1701
1702 twe->sc_flags |= TWEF_OPEN;
1703 return (0);
1704 }
1705
1706 /*
1707 * Accept the last close on the control device.
1708 */
1709 static int
1710 tweclose(dev_t dev, int flag, int mode,
1711 struct lwp *l)
1712 {
1713 struct twe_softc *twe;
1714
1715 twe = device_lookup_private(&twe_cd, minor(dev));
1716 twe->sc_flags &= ~TWEF_OPEN;
1717 return (0);
1718 }
1719
1720 void
1721 twe_ccb_wait_handler(struct twe_ccb *ccb, int error)
1722 {
1723
1724 /* Just wake up the sleeper. */
1725 wakeup(ccb);
1726 }
1727
1728 /*
1729 * Handle control operations.
1730 */
1731 static int
1732 tweioctl(dev_t dev, u_long cmd, void *data, int flag,
1733 struct lwp *l)
1734 {
1735 struct twe_softc *twe;
1736 struct twe_ccb *ccb;
1737 struct twe_param *param;
1738 struct twe_usercommand *tu;
1739 struct twe_paramcommand *tp;
1740 struct twe_drivecommand *td;
1741 void *pdata = NULL;
1742 int s, error = 0;
1743 u_int8_t cmdid;
1744
1745 twe = device_lookup_private(&twe_cd, minor(dev));
1746 tu = (struct twe_usercommand *)data;
1747 tp = (struct twe_paramcommand *)data;
1748 td = (struct twe_drivecommand *)data;
1749
1750 /* This is intended to be compatible with the FreeBSD interface. */
1751 switch (cmd) {
1752 case TWEIO_COMMAND:
1753 error = kauth_authorize_device_passthru(l->l_cred, dev,
1754 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1755 if (error)
1756 return (error);
1757
1758 /* XXX mutex */
1759 if (tu->tu_size > 0) {
1760 /*
1761 * XXX Handle > TWE_SECTOR_SIZE? Let's see if
1762 * it's really necessary, first.
1763 */
1764 if (tu->tu_size > TWE_SECTOR_SIZE) {
1765 #ifdef TWE_DEBUG
1766 printf("%s: TWEIO_COMMAND: tu_size = %d\n",
1767 device_xname(&twe->sc_dv), tu->tu_size);
1768 #endif
1769 return EINVAL;
1770 }
1771 pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
1772 error = copyin(tu->tu_data, pdata, tu->tu_size);
1773 if (error != 0)
1774 goto done;
1775 ccb = twe_ccb_alloc_wait(twe,
1776 TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1777 KASSERT(ccb != NULL);
1778 ccb->ccb_data = pdata;
1779 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1780 } else {
1781 ccb = twe_ccb_alloc_wait(twe, 0);
1782 KASSERT(ccb != NULL);
1783 }
1784
1785 ccb->ccb_tx.tx_handler = twe_ccb_wait_handler;
1786 ccb->ccb_tx.tx_context = NULL;
1787 ccb->ccb_tx.tx_dv = &twe->sc_dv;
1788
1789 cmdid = ccb->ccb_cmdid;
1790 memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
1791 ccb->ccb_cmd->tc_cmdid = cmdid;
1792
1793 /* Map the transfer. */
1794 if ((error = twe_ccb_map(twe, ccb)) != 0) {
1795 twe_ccb_free(twe, ccb);
1796 goto done;
1797 }
1798
1799 /* Submit the command and wait up to 1 minute. */
1800 error = 0;
1801 twe_ccb_enqueue(twe, ccb);
1802 s = splbio();
1803 while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0)
1804 if ((error = tsleep(ccb, PRIBIO, "tweioctl",
1805 60 * hz)) != 0)
1806 break;
1807 splx(s);
1808
1809 /* Copy the command back to the ioctl argument. */
1810 memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd));
1811 #ifdef TWE_DEBUG
1812 printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, "
1813 "tc_status = 0x%02x\n", device_xname(&twe->sc_dv),
1814 tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status);
1815 #endif
1816
1817 s = splbio();
1818 twe_ccb_free(twe, ccb);
1819 splx(s);
1820
1821 if (tu->tu_size > 0)
1822 error = copyout(pdata, tu->tu_data, tu->tu_size);
1823 goto done;
1824
1825 case TWEIO_STATS:
1826 return (ENOENT);
1827
1828 case TWEIO_AEN_POLL:
1829 s = splbio();
1830 *(u_int *)data = twe_aen_dequeue(twe);
1831 splx(s);
1832 return (0);
1833
1834 case TWEIO_AEN_WAIT:
1835 s = splbio();
1836 while ((*(u_int *)data =
1837 twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) {
1838 twe->sc_flags |= TWEF_AENQ_WAIT;
1839 error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH,
1840 "tweaen", 0);
1841 if (error == EINTR) {
1842 splx(s);
1843 return (error);
1844 }
1845 }
1846 splx(s);
1847 return (0);
1848
1849 case TWEIO_GET_PARAM:
1850 error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
1851 tp->tp_size, 0, ¶m);
1852 if (error != 0)
1853 return (error);
1854 if (param->tp_param_size > tp->tp_size) {
1855 error = EFAULT;
1856 goto done;
1857 }
1858 error = copyout(param->tp_data, tp->tp_data,
1859 param->tp_param_size);
1860 free(param, M_DEVBUF);
1861 goto done;
1862
1863 case TWEIO_SET_PARAM:
1864 pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
1865 if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
1866 goto done;
1867 error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
1868 tp->tp_size, pdata);
1869 goto done;
1870
1871 case TWEIO_RESET:
1872 s = splbio();
1873 twe_reset(twe);
1874 splx(s);
1875 return (0);
1876
1877 case TWEIO_ADD_UNIT:
1878 /* XXX mutex */
1879 return (twe_add_unit(twe, td->td_unit));
1880
1881 case TWEIO_DEL_UNIT:
1882 /* XXX mutex */
1883 return (twe_del_unit(twe, td->td_unit));
1884
1885 default:
1886 return EINVAL;
1887 }
1888 done:
1889 if (pdata)
1890 free(pdata, M_DEVBUF);
1891 return error;
1892 }
1893
1894 const struct cdevsw twe_cdevsw = {
1895 tweopen, tweclose, noread, nowrite, tweioctl,
1896 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1897 };
1898
1899 /*
1900 * Print some information about the controller
1901 */
1902 static void
1903 twe_describe_controller(struct twe_softc *sc)
1904 {
1905 struct twe_param *p[6];
1906 int i, rv = 0;
1907 uint32_t dsize;
1908 uint8_t ports;
1909
1910 ports = 0;
1911
1912 /* get the port count */
1913 rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
1914 TWE_PARAM_CONTROLLER_PortCount, &ports);
1915
1916 /* get version strings */
1917 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
1918 16, NULL, &p[0]);
1919 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
1920 16, NULL, &p[1]);
1921 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
1922 16, NULL, &p[2]);
1923 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
1924 8, NULL, &p[3]);
1925 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
1926 8, NULL, &p[4]);
1927 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
1928 8, NULL, &p[5]);
1929
1930 if (rv) {
1931 /* some error occurred */
1932 aprint_error_dev(&sc->sc_dv, "failed to fetch version information\n");
1933 return;
1934 }
1935
1936 aprint_normal_dev(&sc->sc_dv, "%d ports, Firmware %.16s, BIOS %.16s\n",
1937 ports, p[1]->tp_data, p[2]->tp_data);
1938
1939 aprint_verbose_dev(&sc->sc_dv, "Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
1940 p[0]->tp_data, p[3]->tp_data,
1941 p[4]->tp_data, p[5]->tp_data);
1942
1943 free(p[0], M_DEVBUF);
1944 free(p[1], M_DEVBUF);
1945 free(p[2], M_DEVBUF);
1946 free(p[3], M_DEVBUF);
1947 free(p[4], M_DEVBUF);
1948 free(p[5], M_DEVBUF);
1949
1950 rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY,
1951 TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]);
1952 if (rv) {
1953 aprint_error_dev(&sc->sc_dv, "failed to get drive status summary\n");
1954 return;
1955 }
1956 for (i = 0; i < ports; i++) {
1957 if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present)
1958 continue;
1959 rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i,
1960 TWE_PARAM_DRIVEINFO_Size, &dsize);
1961 if (rv) {
1962 aprint_error_dev(&sc->sc_dv,
1963 "unable to get drive size for port %d\n", i);
1964 continue;
1965 }
1966 rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i,
1967 TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]);
1968 if (rv) {
1969 aprint_error_dev(&sc->sc_dv,
1970 "unable to get drive model for port %d\n", i);
1971 continue;
1972 }
1973 aprint_verbose_dev(&sc->sc_dv, "port %d: %.40s %d MB\n",
1974 i, p[1]->tp_data, dsize / 2048);
1975 free(p[1], M_DEVBUF);
1976 }
1977 free(p[0], M_DEVBUF);
1978 }
1979