twe.c revision 1.93 1 /* $NetBSD: twe.c,v 1.93 2010/11/14 05:31:59 uebayasi Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 2000 Michael Smith
34 * Copyright (c) 2000 BSDi
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
59 */
60
61 /*
62 * Driver for the 3ware Escalade family of RAID controllers.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.93 2010/11/14 05:31:59 uebayasi Exp $");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/device.h>
72 #include <sys/queue.h>
73 #include <sys/proc.h>
74 #include <sys/buf.h>
75 #include <sys/endian.h>
76 #include <sys/malloc.h>
77 #include <sys/conf.h>
78 #include <sys/disk.h>
79 #include <sys/sysctl.h>
80 #include <sys/syslog.h>
81 #include <sys/kauth.h>
82
83 #include <sys/bswap.h>
84 #include <sys/bus.h>
85
86 #include <dev/pci/pcireg.h>
87 #include <dev/pci/pcivar.h>
88 #include <dev/pci/pcidevs.h>
89 #include <dev/pci/twereg.h>
90 #include <dev/pci/twevar.h>
91 #include <dev/pci/tweio.h>
92
93 #include "locators.h"
94
95 #define PCI_CBIO 0x10
96
97 static int twe_aen_get(struct twe_softc *, uint16_t *);
98 static void twe_aen_handler(struct twe_ccb *, int);
99 static void twe_aen_enqueue(struct twe_softc *sc, uint16_t, int);
100 static uint16_t twe_aen_dequeue(struct twe_softc *);
101
102 static void twe_attach(device_t, device_t, void *);
103 static int twe_init_connection(struct twe_softc *);
104 static int twe_intr(void *);
105 static int twe_match(device_t, cfdata_t, void *);
106 static int twe_param_set(struct twe_softc *, int, int, size_t, void *);
107 static void twe_poll(struct twe_softc *);
108 static int twe_print(void *, const char *);
109 static int twe_reset(struct twe_softc *);
110 static int twe_status_check(struct twe_softc *, u_int);
111 static int twe_status_wait(struct twe_softc *, u_int, int);
112 static void twe_describe_controller(struct twe_softc *);
113 static void twe_clear_pci_abort(struct twe_softc *sc);
114 static void twe_clear_pci_parity_error(struct twe_softc *sc);
115
116 static int twe_add_unit(struct twe_softc *, int);
117 static int twe_del_unit(struct twe_softc *, int);
118 static int twe_init_connection(struct twe_softc *);
119
120 static inline u_int32_t twe_inl(struct twe_softc *, int);
121 static inline void twe_outl(struct twe_softc *, int, u_int32_t);
122
123 extern struct cfdriver twe_cd;
124
125 CFATTACH_DECL(twe, sizeof(struct twe_softc),
126 twe_match, twe_attach, NULL, NULL);
127
128 /* FreeBSD driver revision for sysctl expected by the 3ware cli */
129 const char twever[] = "1.50.01.002";
130
131 /*
132 * Tables to convert numeric codes to strings.
133 */
134 const struct twe_code_table twe_table_status[] = {
135 { 0x00, "successful completion" },
136
137 /* info */
138 { 0x42, "command in progress" },
139 { 0x6c, "retrying interface CRC error from UDMA command" },
140
141 /* warning */
142 { 0x81, "redundant/inconsequential request ignored" },
143 { 0x8e, "failed to write zeroes to LBA 0" },
144 { 0x8f, "failed to profile TwinStor zones" },
145
146 /* fatal */
147 { 0xc1, "aborted due to system command or reconfiguration" },
148 { 0xc4, "aborted" },
149 { 0xc5, "access error" },
150 { 0xc6, "access violation" },
151 { 0xc7, "device failure" }, /* high byte may be port # */
152 { 0xc8, "controller error" },
153 { 0xc9, "timed out" },
154 { 0xcb, "invalid unit number" },
155 { 0xcf, "unit not available" },
156 { 0xd2, "undefined opcode" },
157 { 0xdb, "request incompatible with unit" },
158 { 0xdc, "invalid request" },
159 { 0xff, "firmware error, reset requested" },
160
161 { 0, NULL }
162 };
163
164 const struct twe_code_table twe_table_unitstate[] = {
165 { TWE_PARAM_UNITSTATUS_Normal, "Normal" },
166 { TWE_PARAM_UNITSTATUS_Initialising, "Initializing" },
167 { TWE_PARAM_UNITSTATUS_Degraded, "Degraded" },
168 { TWE_PARAM_UNITSTATUS_Rebuilding, "Rebuilding" },
169 { TWE_PARAM_UNITSTATUS_Verifying, "Verifying" },
170 { TWE_PARAM_UNITSTATUS_Corrupt, "Corrupt" },
171 { TWE_PARAM_UNITSTATUS_Missing, "Missing" },
172
173 { 0, NULL }
174 };
175
176 const struct twe_code_table twe_table_unittype[] = {
177 /* array descriptor configuration */
178 { TWE_AD_CONFIG_RAID0, "RAID0" },
179 { TWE_AD_CONFIG_RAID1, "RAID1" },
180 { TWE_AD_CONFIG_TwinStor, "TwinStor" },
181 { TWE_AD_CONFIG_RAID5, "RAID5" },
182 { TWE_AD_CONFIG_RAID10, "RAID10" },
183 { TWE_UD_CONFIG_JBOD, "JBOD" },
184
185 { 0, NULL }
186 };
187
188 const struct twe_code_table twe_table_stripedepth[] = {
189 { TWE_AD_STRIPE_4k, "4K" },
190 { TWE_AD_STRIPE_8k, "8K" },
191 { TWE_AD_STRIPE_16k, "16K" },
192 { TWE_AD_STRIPE_32k, "32K" },
193 { TWE_AD_STRIPE_64k, "64K" },
194 { TWE_AD_STRIPE_128k, "128K" },
195 { TWE_AD_STRIPE_256k, "256K" },
196 { TWE_AD_STRIPE_512k, "512K" },
197 { TWE_AD_STRIPE_1024k, "1024K" },
198
199 { 0, NULL }
200 };
201
202 /*
203 * Asynchronous event notification messages are qualified:
204 * a - not unit/port specific
205 * u - unit specific
206 * p - port specific
207 *
208 * They are further qualified with a severity:
209 * E - LOG_EMERG
210 * a - LOG_ALERT
211 * c - LOG_CRIT
212 * e - LOG_ERR
213 * w - LOG_WARNING
214 * n - LOG_NOTICE
215 * i - LOG_INFO
216 * d - LOG_DEBUG
217 * blank - just use printf
218 */
219 const struct twe_code_table twe_table_aen[] = {
220 { 0x00, "a queue empty" },
221 { 0x01, "a soft reset" },
222 { 0x02, "uc degraded mode" },
223 { 0x03, "aa controller error" },
224 { 0x04, "uE rebuild fail" },
225 { 0x05, "un rebuild done" },
226 { 0x06, "ue incomplete unit" },
227 { 0x07, "un initialization done" },
228 { 0x08, "uw unclean shutdown detected" },
229 { 0x09, "pe drive timeout" },
230 { 0x0a, "pc drive error" },
231 { 0x0b, "un rebuild started" },
232 { 0x0c, "un initialization started" },
233 { 0x0d, "ui logical unit deleted" },
234 { 0x0f, "pc SMART threshold exceeded" },
235 { 0x15, "a table undefined" }, /* XXX: Not in FreeBSD's table */
236 { 0x21, "pe ATA UDMA downgrade" },
237 { 0x22, "pi ATA UDMA upgrade" },
238 { 0x23, "pw sector repair occurred" },
239 { 0x24, "aa SBUF integrity check failure" },
240 { 0x25, "pa lost cached write" },
241 { 0x26, "pa drive ECC error detected" },
242 { 0x27, "pe DCB checksum error" },
243 { 0x28, "pn DCB unsupported version" },
244 { 0x29, "ui verify started" },
245 { 0x2a, "ua verify failed" },
246 { 0x2b, "ui verify complete" },
247 { 0x2c, "pw overwrote bad sector during rebuild" },
248 { 0x2d, "pa encountered bad sector during rebuild" },
249 { 0x2e, "pe replacement drive too small" },
250 { 0x2f, "ue array not previously initialized" },
251 { 0x30, "p drive not supported" },
252 { 0xff, "a aen queue full" },
253
254 { 0, NULL },
255 };
256
257 const char *
258 twe_describe_code(const struct twe_code_table *table, uint32_t code)
259 {
260
261 for (; table->string != NULL; table++) {
262 if (table->code == code)
263 return (table->string);
264 }
265 return (NULL);
266 }
267
268 static inline u_int32_t
269 twe_inl(struct twe_softc *sc, int off)
270 {
271
272 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
273 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
274 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
275 }
276
277 static inline void
278 twe_outl(struct twe_softc *sc, int off, u_int32_t val)
279 {
280
281 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
282 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
283 BUS_SPACE_BARRIER_WRITE);
284 }
285
286 /*
287 * Match a supported board.
288 */
289 static int
290 twe_match(device_t parent, cfdata_t cfdata, void *aux)
291 {
292 struct pci_attach_args *pa;
293
294 pa = aux;
295
296 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
297 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
298 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
299 }
300
301 /*
302 * Attach a supported board.
303 *
304 * XXX This doesn't fail gracefully.
305 */
306 static void
307 twe_attach(device_t parent, device_t self, void *aux)
308 {
309 struct pci_attach_args *pa;
310 struct twe_softc *sc;
311 pci_chipset_tag_t pc;
312 pci_intr_handle_t ih;
313 pcireg_t csr;
314 const char *intrstr;
315 int s, size, i, rv, rseg;
316 size_t max_segs, max_xfer;
317 bus_dma_segment_t seg;
318 const struct sysctlnode *node;
319 struct twe_cmd *tc;
320 struct twe_ccb *ccb;
321
322 sc = device_private(self);
323 pa = aux;
324 pc = pa->pa_pc;
325 sc->sc_dmat = pa->pa_dmat;
326 SIMPLEQ_INIT(&sc->sc_ccb_queue);
327 SLIST_INIT(&sc->sc_ccb_freelist);
328
329 aprint_naive(": RAID controller\n");
330 aprint_normal(": 3ware Escalade\n");
331
332
333 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
334 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
335 aprint_error_dev(&sc->sc_dv, "can't map i/o space\n");
336 return;
337 }
338
339 /* Enable the device. */
340 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
341 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
342 csr | PCI_COMMAND_MASTER_ENABLE);
343
344 /* Map and establish the interrupt. */
345 if (pci_intr_map(pa, &ih)) {
346 aprint_error_dev(&sc->sc_dv, "can't map interrupt\n");
347 return;
348 }
349
350 intrstr = pci_intr_string(pc, ih);
351 sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc);
352 if (sc->sc_ih == NULL) {
353 aprint_error_dev(&sc->sc_dv, "can't establish interrupt%s%s\n",
354 (intrstr) ? " at " : "",
355 (intrstr) ? intrstr : "");
356 return;
357 }
358
359 if (intrstr != NULL)
360 aprint_normal_dev(&sc->sc_dv, "interrupting at %s\n",
361 intrstr);
362
363 /*
364 * Allocate and initialise the command blocks and CCBs.
365 */
366 size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
367
368 if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
369 &rseg, BUS_DMA_NOWAIT)) != 0) {
370 aprint_error_dev(&sc->sc_dv, "unable to allocate commands, rv = %d\n", rv);
371 return;
372 }
373
374 if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
375 (void **)&sc->sc_cmds,
376 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
377 aprint_error_dev(&sc->sc_dv, "unable to map commands, rv = %d\n", rv);
378 return;
379 }
380
381 if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
382 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
383 aprint_error_dev(&sc->sc_dv, "unable to create command DMA map, rv = %d\n", rv);
384 return;
385 }
386
387 if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
388 size, NULL, BUS_DMA_NOWAIT)) != 0) {
389 aprint_error_dev(&sc->sc_dv, "unable to load command DMA map, rv = %d\n", rv);
390 return;
391 }
392
393 ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT);
394 if (ccb == NULL) {
395 aprint_error_dev(&sc->sc_dv, "unable to allocate memory for ccbs\n");
396 return;
397 }
398
399 sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
400 memset(sc->sc_cmds, 0, size);
401
402 sc->sc_ccbs = ccb;
403 tc = (struct twe_cmd *)sc->sc_cmds;
404 max_segs = twe_get_maxsegs();
405 max_xfer = twe_get_maxxfer(max_segs);
406
407 for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
408 ccb->ccb_cmd = tc;
409 ccb->ccb_cmdid = i;
410 ccb->ccb_flags = 0;
411 rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
412 max_segs, PAGE_SIZE, 0,
413 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
414 &ccb->ccb_dmamap_xfer);
415 if (rv != 0) {
416 aprint_error_dev(&sc->sc_dv, "can't create dmamap, rv = %d\n", rv);
417 return;
418 }
419
420 /* Save the first CCB for AEN retrieval. */
421 if (i != 0)
422 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
423 ccb_chain.slist);
424 }
425
426 /* Wait for the controller to become ready. */
427 if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
428 aprint_error_dev(&sc->sc_dv, "microcontroller not ready\n");
429 return;
430 }
431
432 twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
433
434 /* Reset the controller. */
435 s = splbio();
436 rv = twe_reset(sc);
437 splx(s);
438 if (rv) {
439 aprint_error_dev(&sc->sc_dv, "reset failed\n");
440 return;
441 }
442
443 /* Initialise connection with controller. */
444 twe_init_connection(sc);
445
446 twe_describe_controller(sc);
447
448 /* Find and attach RAID array units. */
449 sc->sc_nunits = 0;
450 for (i = 0; i < TWE_MAX_UNITS; i++)
451 (void) twe_add_unit(sc, i);
452
453 /* ...and finally, enable interrupts. */
454 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
455 TWE_CTL_UNMASK_RESP_INTR |
456 TWE_CTL_ENABLE_INTRS);
457
458 /* sysctl set-up for 3ware cli */
459 if (sysctl_createv(NULL, 0, NULL, NULL,
460 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw",
461 NULL, NULL, 0, NULL, 0,
462 CTL_HW, CTL_EOL) != 0) {
463 aprint_error_dev(&sc->sc_dv, "could not create %s sysctl node\n",
464 "hw");
465 return;
466 }
467 if (sysctl_createv(NULL, 0, NULL, &node,
468 0, CTLTYPE_NODE, device_xname(&sc->sc_dv),
469 SYSCTL_DESCR("twe driver information"),
470 NULL, 0, NULL, 0,
471 CTL_HW, CTL_CREATE, CTL_EOL) != 0) {
472 aprint_error_dev(&sc->sc_dv, "could not create %s.%s sysctl node\n",
473 "hw", device_xname(&sc->sc_dv));
474 return;
475 }
476 if ((i = sysctl_createv(NULL, 0, NULL, NULL,
477 0, CTLTYPE_STRING, "driver_version",
478 SYSCTL_DESCR("twe0 driver version"),
479 NULL, 0, &twever, 0,
480 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL))
481 != 0) {
482 aprint_error_dev(&sc->sc_dv, "could not create %s.%s.driver_version sysctl\n",
483 "hw", device_xname(&sc->sc_dv));
484 return;
485 }
486 }
487
488 void
489 twe_register_callbacks(struct twe_softc *sc, int unit,
490 const struct twe_callbacks *tcb)
491 {
492
493 sc->sc_units[unit].td_callbacks = tcb;
494 }
495
496 static void
497 twe_recompute_openings(struct twe_softc *sc)
498 {
499 struct twe_drive *td;
500 int unit, openings;
501
502 if (sc->sc_nunits != 0)
503 openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits;
504 else
505 openings = 0;
506 if (openings == sc->sc_openings)
507 return;
508 sc->sc_openings = openings;
509
510 #ifdef TWE_DEBUG
511 printf("%s: %d array%s, %d openings per array\n",
512 device_xname(&sc->sc_dv), sc->sc_nunits,
513 sc->sc_nunits == 1 ? "" : "s", sc->sc_openings);
514 #endif
515
516 for (unit = 0; unit < TWE_MAX_UNITS; unit++) {
517 td = &sc->sc_units[unit];
518 if (td->td_dev != NULL)
519 (*td->td_callbacks->tcb_openings)(td->td_dev,
520 sc->sc_openings);
521 }
522 }
523
524 static int
525 twe_add_unit(struct twe_softc *sc, int unit)
526 {
527 struct twe_param *dtp, *atp;
528 struct twe_array_descriptor *ad;
529 struct twe_drive *td;
530 struct twe_attach_args twea;
531 uint32_t newsize;
532 int rv;
533 uint16_t dsize;
534 uint8_t newtype, newstripe;
535 int locs[TWECF_NLOCS];
536
537 if (unit < 0 || unit >= TWE_MAX_UNITS)
538 return (EINVAL);
539
540 /* Find attached units. */
541 rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
542 TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
543 if (rv != 0) {
544 aprint_error_dev(&sc->sc_dv, "error %d fetching unit summary\n",
545 rv);
546 return (rv);
547 }
548
549 /* For each detected unit, collect size and store in an array. */
550 td = &sc->sc_units[unit];
551
552 /* Unit present? */
553 if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) {
554 /*
555 * XXX Should we check to see if a device has been
556 * XXX attached at this index and detach it if it
557 * XXX has? ("rescan" semantics)
558 */
559 rv = 0;
560 goto out;
561 }
562
563 rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit,
564 TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
565 if (rv != 0) {
566 aprint_error_dev(&sc->sc_dv, "error %d fetching descriptor size "
567 "for unit %d\n", rv, unit);
568 goto out;
569 }
570
571 rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit,
572 TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
573 if (rv != 0) {
574 aprint_error_dev(&sc->sc_dv, "error %d fetching array descriptor "
575 "for unit %d\n", rv, unit);
576 goto out;
577 }
578
579 ad = (struct twe_array_descriptor *)atp->tp_data;
580 newtype = ad->configuration;
581 newstripe = ad->stripe_size;
582 free(atp, M_DEVBUF);
583
584 rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit,
585 TWE_PARAM_UNITINFO_Capacity, &newsize);
586 if (rv != 0) {
587 aprint_error_dev(&sc->sc_dv,
588 "error %d fetching capacity for unit %d\n",
589 rv, unit);
590 goto out;
591 }
592
593 /*
594 * Have a device, so we need to attach it. If there is currently
595 * something sitting at the slot, and the parameters are different,
596 * then we detach the old device before attaching the new one.
597 */
598 if (td->td_dev != NULL &&
599 td->td_size == newsize &&
600 td->td_type == newtype &&
601 td->td_stripe == newstripe) {
602 /* Same as the old device; just keep using it. */
603 rv = 0;
604 goto out;
605 } else if (td->td_dev != NULL) {
606 /* Detach the old device first. */
607 (void) config_detach(td->td_dev, DETACH_FORCE);
608 td->td_dev = NULL;
609 } else if (td->td_size == 0)
610 sc->sc_nunits++;
611
612 /*
613 * Committed to the new array unit; assign its parameters and
614 * recompute the number of available command openings.
615 */
616 td->td_size = newsize;
617 td->td_type = newtype;
618 td->td_stripe = newstripe;
619 twe_recompute_openings(sc);
620
621 twea.twea_unit = unit;
622
623 locs[TWECF_UNIT] = unit;
624
625 td->td_dev = config_found_sm_loc(&sc->sc_dv, "twe", locs, &twea,
626 twe_print, config_stdsubmatch);
627
628 rv = 0;
629 out:
630 free(dtp, M_DEVBUF);
631 return (rv);
632 }
633
634 static int
635 twe_del_unit(struct twe_softc *sc, int unit)
636 {
637 struct twe_drive *td;
638
639 if (unit < 0 || unit >= TWE_MAX_UNITS)
640 return (EINVAL);
641
642 td = &sc->sc_units[unit];
643 if (td->td_size != 0)
644 sc->sc_nunits--;
645 td->td_size = 0;
646 td->td_type = 0;
647 td->td_stripe = 0;
648 if (td->td_dev != NULL) {
649 (void) config_detach(td->td_dev, DETACH_FORCE);
650 td->td_dev = NULL;
651 }
652 twe_recompute_openings(sc);
653 return (0);
654 }
655
656 /*
657 * Reset the controller.
658 * MUST BE CALLED AT splbio()!
659 */
660 static int
661 twe_reset(struct twe_softc *sc)
662 {
663 uint16_t aen;
664 u_int status;
665 volatile u_int32_t junk;
666 int got, rv;
667
668 /* Issue a soft reset. */
669 twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
670 TWE_CTL_CLEAR_HOST_INTR |
671 TWE_CTL_CLEAR_ATTN_INTR |
672 TWE_CTL_MASK_CMD_INTR |
673 TWE_CTL_MASK_RESP_INTR |
674 TWE_CTL_CLEAR_ERROR_STS |
675 TWE_CTL_DISABLE_INTRS);
676
677 /* Wait for attention... */
678 if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) {
679 aprint_error_dev(&sc->sc_dv, "timeout waiting for attention interrupt\n");
680 return (-1);
681 }
682
683 /* ...and ACK it. */
684 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
685
686 /*
687 * Pull AENs out of the controller; look for a soft reset AEN.
688 * Open code this, since we want to detect reset even if the
689 * queue for management tools is full.
690 *
691 * Note that since:
692 * - interrupts are blocked
693 * - we have reset the controller
694 * - acknowledged the pending ATTENTION
695 * that there is no way a pending asynchronous AEN fetch would
696 * finish, so clear the flag.
697 */
698 sc->sc_flags &= ~TWEF_AEN;
699 for (got = 0;;) {
700 rv = twe_aen_get(sc, &aen);
701 if (rv != 0)
702 printf("%s: error %d while draining event queue\n",
703 device_xname(&sc->sc_dv), rv);
704 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
705 break;
706 if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
707 got = 1;
708 twe_aen_enqueue(sc, aen, 1);
709 }
710
711 if (!got) {
712 printf("%s: reset not reported\n", device_xname(&sc->sc_dv));
713 return (-1);
714 }
715
716 /* Check controller status. */
717 status = twe_inl(sc, TWE_REG_STS);
718 if (twe_status_check(sc, status)) {
719 printf("%s: controller errors detected\n",
720 device_xname(&sc->sc_dv));
721 return (-1);
722 }
723
724 /* Drain the response queue. */
725 for (;;) {
726 status = twe_inl(sc, TWE_REG_STS);
727 if (twe_status_check(sc, status) != 0) {
728 aprint_error_dev(&sc->sc_dv, "can't drain response queue\n");
729 return (-1);
730 }
731 if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
732 break;
733 junk = twe_inl(sc, TWE_REG_RESP_QUEUE);
734 }
735
736 return (0);
737 }
738
739 /*
740 * Print autoconfiguration message for a sub-device.
741 */
742 static int
743 twe_print(void *aux, const char *pnp)
744 {
745 struct twe_attach_args *twea;
746
747 twea = aux;
748
749 if (pnp != NULL)
750 aprint_normal("block device at %s", pnp);
751 aprint_normal(" unit %d", twea->twea_unit);
752 return (UNCONF);
753 }
754
755 /*
756 * Interrupt service routine.
757 */
758 static int
759 twe_intr(void *arg)
760 {
761 struct twe_softc *sc;
762 u_int status;
763 int caught, rv;
764
765 sc = arg;
766 caught = 0;
767 status = twe_inl(sc, TWE_REG_STS);
768 twe_status_check(sc, status);
769
770 /* Host interrupts - purpose unknown. */
771 if ((status & TWE_STS_HOST_INTR) != 0) {
772 #ifdef DEBUG
773 printf("%s: host interrupt\n", device_xname(&sc->sc_dv));
774 #endif
775 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
776 caught = 1;
777 }
778
779 /*
780 * Attention interrupts, signalled when a controller or child device
781 * state change has occurred.
782 */
783 if ((status & TWE_STS_ATTN_INTR) != 0) {
784 rv = twe_aen_get(sc, NULL);
785 if (rv != 0)
786 aprint_error_dev(&sc->sc_dv, "unable to retrieve AEN (%d)\n", rv);
787 else
788 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
789 caught = 1;
790 }
791
792 /*
793 * Command interrupts, signalled when the controller can accept more
794 * commands. We don't use this; instead, we try to submit commands
795 * when we receive them, and when other commands have completed.
796 * Mask it so we don't get another one.
797 */
798 if ((status & TWE_STS_CMD_INTR) != 0) {
799 #ifdef DEBUG
800 printf("%s: command interrupt\n", device_xname(&sc->sc_dv));
801 #endif
802 twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
803 caught = 1;
804 }
805
806 if ((status & TWE_STS_RESP_INTR) != 0) {
807 twe_poll(sc);
808 caught = 1;
809 }
810
811 return (caught);
812 }
813
814 /*
815 * Fetch an AEN. Even though this is really like parameter
816 * retrieval, we handle this specially, because we issue this
817 * AEN retrieval command from interrupt context, and thus
818 * reserve a CCB for it to avoid resource shortage.
819 *
820 * XXX There are still potential resource shortages we could
821 * XXX encounter. Consider pre-allocating all AEN-related
822 * XXX resources.
823 *
824 * MUST BE CALLED AT splbio()!
825 */
826 static int
827 twe_aen_get(struct twe_softc *sc, uint16_t *aenp)
828 {
829 struct twe_ccb *ccb;
830 struct twe_cmd *tc;
831 struct twe_param *tp;
832 int rv;
833
834 /*
835 * If we're already retrieving an AEN, just wait; another
836 * retrieval will be chained after the current one completes.
837 */
838 if (sc->sc_flags & TWEF_AEN) {
839 /*
840 * It is a fatal software programming error to attempt
841 * to fetch an AEN synchronously when an AEN fetch is
842 * already pending.
843 */
844 KASSERT(aenp == NULL);
845 return (0);
846 }
847
848 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
849 if (tp == NULL)
850 return (ENOMEM);
851
852 ccb = twe_ccb_alloc(sc,
853 TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
854 KASSERT(ccb != NULL);
855
856 ccb->ccb_data = tp;
857 ccb->ccb_datasize = TWE_SECTOR_SIZE;
858 ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL;
859 ccb->ccb_tx.tx_context = tp;
860 ccb->ccb_tx.tx_dv = &sc->sc_dv;
861
862 tc = ccb->ccb_cmd;
863 tc->tc_size = 2;
864 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
865 tc->tc_unit = 0;
866 tc->tc_count = htole16(1);
867
868 /* Fill in the outbound parameter data. */
869 tp->tp_table_id = htole16(TWE_PARAM_AEN);
870 tp->tp_param_id = TWE_PARAM_AEN_UnitCode;
871 tp->tp_param_size = 2;
872
873 /* Map the transfer. */
874 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
875 twe_ccb_free(sc, ccb);
876 goto done;
877 }
878
879 /* Enqueue the command and wait. */
880 if (aenp != NULL) {
881 rv = twe_ccb_poll(sc, ccb, 5);
882 twe_ccb_unmap(sc, ccb);
883 twe_ccb_free(sc, ccb);
884 if (rv == 0)
885 *aenp = le16toh(*(uint16_t *)tp->tp_data);
886 free(tp, M_DEVBUF);
887 } else {
888 sc->sc_flags |= TWEF_AEN;
889 twe_ccb_enqueue(sc, ccb);
890 rv = 0;
891 }
892
893 done:
894 return (rv);
895 }
896
897 /*
898 * Handle an AEN returned by the controller.
899 * MUST BE CALLED AT splbio()!
900 */
901 static void
902 twe_aen_handler(struct twe_ccb *ccb, int error)
903 {
904 struct twe_softc *sc;
905 struct twe_param *tp;
906 uint16_t aen;
907 int rv;
908
909 sc = device_private(ccb->ccb_tx.tx_dv);
910 tp = ccb->ccb_tx.tx_context;
911 twe_ccb_unmap(sc, ccb);
912
913 sc->sc_flags &= ~TWEF_AEN;
914
915 if (error) {
916 aprint_error_dev(&sc->sc_dv, "error retrieving AEN\n");
917 aen = TWE_AEN_QUEUE_EMPTY;
918 } else
919 aen = le16toh(*(u_int16_t *)tp->tp_data);
920 free(tp, M_DEVBUF);
921 twe_ccb_free(sc, ccb);
922
923 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
924 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
925 return;
926 }
927
928 twe_aen_enqueue(sc, aen, 0);
929
930 /*
931 * Chain another retrieval in case interrupts have been
932 * coalesced.
933 */
934 rv = twe_aen_get(sc, NULL);
935 if (rv != 0)
936 aprint_error_dev(&sc->sc_dv, "unable to retrieve AEN (%d)\n", rv);
937 }
938
939 static void
940 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet)
941 {
942 const char *str, *msg;
943 int s, next, nextnext, level;
944
945 /*
946 * First report the AEN on the console. Maybe.
947 */
948 if (! quiet) {
949 str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen));
950 if (str == NULL) {
951 aprint_error_dev(&sc->sc_dv, "unknown AEN 0x%04x\n", aen);
952 } else {
953 msg = str + 3;
954 switch (str[1]) {
955 case 'E': level = LOG_EMERG; break;
956 case 'a': level = LOG_ALERT; break;
957 case 'c': level = LOG_CRIT; break;
958 case 'e': level = LOG_ERR; break;
959 case 'w': level = LOG_WARNING; break;
960 case 'n': level = LOG_NOTICE; break;
961 case 'i': level = LOG_INFO; break;
962 case 'd': level = LOG_DEBUG; break;
963 default:
964 /* Don't use syslog. */
965 level = -1;
966 }
967
968 if (level < 0) {
969 switch (str[0]) {
970 case 'u':
971 case 'p':
972 printf("%s: %s %d: %s\n",
973 device_xname(&sc->sc_dv),
974 str[0] == 'u' ? "unit" : "port",
975 TWE_AEN_UNIT(aen), msg);
976 break;
977
978 default:
979 printf("%s: %s\n",
980 device_xname(&sc->sc_dv), msg);
981 }
982 } else {
983 switch (str[0]) {
984 case 'u':
985 case 'p':
986 log(level, "%s: %s %d: %s\n",
987 device_xname(&sc->sc_dv),
988 str[0] == 'u' ? "unit" : "port",
989 TWE_AEN_UNIT(aen), msg);
990 break;
991
992 default:
993 log(level, "%s: %s\n",
994 device_xname(&sc->sc_dv), msg);
995 }
996 }
997 }
998 }
999
1000 /* Now enqueue the AEN for mangement tools. */
1001 s = splbio();
1002
1003 next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH;
1004 nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH;
1005
1006 /*
1007 * If this is the last free slot, then queue up a "queue
1008 * full" message.
1009 */
1010 if (nextnext == sc->sc_aen_tail)
1011 aen = TWE_AEN_QUEUE_FULL;
1012
1013 if (next != sc->sc_aen_tail) {
1014 sc->sc_aen_queue[sc->sc_aen_head] = aen;
1015 sc->sc_aen_head = next;
1016 }
1017
1018 if (sc->sc_flags & TWEF_AENQ_WAIT) {
1019 sc->sc_flags &= ~TWEF_AENQ_WAIT;
1020 wakeup(&sc->sc_aen_queue);
1021 }
1022
1023 splx(s);
1024 }
1025
1026 /* NOTE: Must be called at splbio(). */
1027 static uint16_t
1028 twe_aen_dequeue(struct twe_softc *sc)
1029 {
1030 uint16_t aen;
1031
1032 if (sc->sc_aen_tail == sc->sc_aen_head)
1033 aen = TWE_AEN_QUEUE_EMPTY;
1034 else {
1035 aen = sc->sc_aen_queue[sc->sc_aen_tail];
1036 sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH;
1037 }
1038
1039 return (aen);
1040 }
1041
1042 /*
1043 * These are short-hand functions that execute TWE_OP_GET_PARAM to
1044 * fetch 1, 2, and 4 byte parameter values, respectively.
1045 */
1046 int
1047 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
1048 uint8_t *valp)
1049 {
1050 struct twe_param *tp;
1051 int rv;
1052
1053 rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
1054 if (rv != 0)
1055 return (rv);
1056 *valp = *(uint8_t *)tp->tp_data;
1057 free(tp, M_DEVBUF);
1058 return (0);
1059 }
1060
1061 int
1062 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
1063 uint16_t *valp)
1064 {
1065 struct twe_param *tp;
1066 int rv;
1067
1068 rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
1069 if (rv != 0)
1070 return (rv);
1071 *valp = le16toh(*(uint16_t *)tp->tp_data);
1072 free(tp, M_DEVBUF);
1073 return (0);
1074 }
1075
1076 int
1077 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
1078 uint32_t *valp)
1079 {
1080 struct twe_param *tp;
1081 int rv;
1082
1083 rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
1084 if (rv != 0)
1085 return (rv);
1086 *valp = le32toh(*(uint32_t *)tp->tp_data);
1087 free(tp, M_DEVBUF);
1088 return (0);
1089 }
1090
1091 /*
1092 * Execute a TWE_OP_GET_PARAM command. If a callback function is provided,
1093 * it will be called with generated context when the command has completed.
1094 * If no callback is provided, the command will be executed synchronously
1095 * and a pointer to a buffer containing the data returned.
1096 *
1097 * The caller or callback is responsible for freeing the buffer.
1098 *
1099 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1100 */
1101 int
1102 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
1103 void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
1104 {
1105 struct twe_ccb *ccb;
1106 struct twe_cmd *tc;
1107 struct twe_param *tp;
1108 int rv, s;
1109
1110 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1111 if (tp == NULL)
1112 return ENOMEM;
1113
1114 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1115 KASSERT(ccb != NULL);
1116
1117 ccb->ccb_data = tp;
1118 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1119 ccb->ccb_tx.tx_handler = func;
1120 ccb->ccb_tx.tx_context = tp;
1121 ccb->ccb_tx.tx_dv = &sc->sc_dv;
1122
1123 tc = ccb->ccb_cmd;
1124 tc->tc_size = 2;
1125 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
1126 tc->tc_unit = 0;
1127 tc->tc_count = htole16(1);
1128
1129 /* Fill in the outbound parameter data. */
1130 tp->tp_table_id = htole16(table_id);
1131 tp->tp_param_id = param_id;
1132 tp->tp_param_size = size;
1133
1134 /* Map the transfer. */
1135 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1136 twe_ccb_free(sc, ccb);
1137 goto done;
1138 }
1139
1140 /* Submit the command and either wait or let the callback handle it. */
1141 if (func == NULL) {
1142 s = splbio();
1143 rv = twe_ccb_poll(sc, ccb, 5);
1144 twe_ccb_unmap(sc, ccb);
1145 twe_ccb_free(sc, ccb);
1146 splx(s);
1147 } else {
1148 #ifdef DEBUG
1149 if (pbuf != NULL)
1150 panic("both func and pbuf defined");
1151 #endif
1152 twe_ccb_enqueue(sc, ccb);
1153 return 0;
1154 }
1155
1156 done:
1157 if (pbuf == NULL || rv != 0)
1158 free(tp, M_DEVBUF);
1159 else if (pbuf != NULL && rv == 0)
1160 *pbuf = tp;
1161 return rv;
1162 }
1163
1164 /*
1165 * Execute a TWE_OP_SET_PARAM command.
1166 *
1167 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1168 */
1169 static int
1170 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
1171 void *sbuf)
1172 {
1173 struct twe_ccb *ccb;
1174 struct twe_cmd *tc;
1175 struct twe_param *tp;
1176 int rv, s;
1177
1178 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1179 if (tp == NULL)
1180 return ENOMEM;
1181
1182 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1183 KASSERT(ccb != NULL);
1184
1185 ccb->ccb_data = tp;
1186 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1187 ccb->ccb_tx.tx_handler = 0;
1188 ccb->ccb_tx.tx_context = tp;
1189 ccb->ccb_tx.tx_dv = &sc->sc_dv;
1190
1191 tc = ccb->ccb_cmd;
1192 tc->tc_size = 2;
1193 tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
1194 tc->tc_unit = 0;
1195 tc->tc_count = htole16(1);
1196
1197 /* Fill in the outbound parameter data. */
1198 tp->tp_table_id = htole16(table_id);
1199 tp->tp_param_id = param_id;
1200 tp->tp_param_size = size;
1201 memcpy(tp->tp_data, sbuf, size);
1202
1203 /* Map the transfer. */
1204 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1205 twe_ccb_free(sc, ccb);
1206 goto done;
1207 }
1208
1209 /* Submit the command and wait. */
1210 s = splbio();
1211 rv = twe_ccb_poll(sc, ccb, 5);
1212 twe_ccb_unmap(sc, ccb);
1213 twe_ccb_free(sc, ccb);
1214 splx(s);
1215 done:
1216 free(tp, M_DEVBUF);
1217 return (rv);
1218 }
1219
1220 /*
1221 * Execute a TWE_OP_INIT_CONNECTION command. Return non-zero on error.
1222 * Must be called with interrupts blocked.
1223 */
1224 static int
1225 twe_init_connection(struct twe_softc *sc)
1226 {
1227 struct twe_ccb *ccb;
1228 struct twe_cmd *tc;
1229 int rv;
1230
1231 if ((ccb = twe_ccb_alloc(sc, 0)) == NULL)
1232 return (EAGAIN);
1233
1234 /* Build the command. */
1235 tc = ccb->ccb_cmd;
1236 tc->tc_size = 3;
1237 tc->tc_opcode = TWE_OP_INIT_CONNECTION;
1238 tc->tc_unit = 0;
1239 tc->tc_count = htole16(TWE_MAX_CMDS);
1240 tc->tc_args.init_connection.response_queue_pointer = 0;
1241
1242 /* Submit the command for immediate execution. */
1243 rv = twe_ccb_poll(sc, ccb, 5);
1244 twe_ccb_free(sc, ccb);
1245 return (rv);
1246 }
1247
1248 /*
1249 * Poll the controller for completed commands. Must be called with
1250 * interrupts blocked.
1251 */
1252 static void
1253 twe_poll(struct twe_softc *sc)
1254 {
1255 struct twe_ccb *ccb;
1256 int found;
1257 u_int status, cmdid;
1258
1259 found = 0;
1260
1261 for (;;) {
1262 status = twe_inl(sc, TWE_REG_STS);
1263 twe_status_check(sc, status);
1264
1265 if ((status & TWE_STS_RESP_QUEUE_EMPTY))
1266 break;
1267
1268 found = 1;
1269 cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
1270 cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
1271 if (cmdid >= TWE_MAX_QUEUECNT) {
1272 aprint_error_dev(&sc->sc_dv, "bad cmdid %d\n", cmdid);
1273 continue;
1274 }
1275
1276 ccb = sc->sc_ccbs + cmdid;
1277 if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
1278 printf("%s: CCB for cmdid %d not active\n",
1279 device_xname(&sc->sc_dv), cmdid);
1280 continue;
1281 }
1282 ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
1283
1284 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1285 (char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
1286 sizeof(struct twe_cmd),
1287 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1288
1289 /* Pass notification to upper layers. */
1290 if (ccb->ccb_tx.tx_handler != NULL)
1291 (*ccb->ccb_tx.tx_handler)(ccb,
1292 ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
1293 }
1294
1295 /* If any commands have completed, run the software queue. */
1296 if (found)
1297 twe_ccb_enqueue(sc, NULL);
1298 }
1299
1300 /*
1301 * Wait for `status' to be set in the controller status register. Return
1302 * zero if found, non-zero if the operation timed out.
1303 */
1304 static int
1305 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
1306 {
1307
1308 for (timo *= 10; timo != 0; timo--) {
1309 if ((twe_inl(sc, TWE_REG_STS) & status) == status)
1310 break;
1311 delay(100000);
1312 }
1313
1314 return (timo == 0);
1315 }
1316
1317 /*
1318 * Clear a PCI parity error.
1319 */
1320 static void
1321 twe_clear_pci_parity_error(struct twe_softc *sc)
1322 {
1323 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PARITY_ERROR);
1324
1325 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
1326 }
1327
1328
1329 /*
1330 * Clear a PCI abort.
1331 */
1332 static void
1333 twe_clear_pci_abort(struct twe_softc *sc)
1334 {
1335 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT);
1336
1337 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
1338 }
1339
1340 /*
1341 * Complain if the status bits aren't what we expect.
1342 */
1343 static int
1344 twe_status_check(struct twe_softc *sc, u_int status)
1345 {
1346 int rv;
1347
1348 rv = 0;
1349
1350 if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
1351 aprint_error_dev(&sc->sc_dv, "missing status bits: 0x%08x\n",
1352 status & ~TWE_STS_EXPECTED_BITS);
1353 rv = -1;
1354 }
1355
1356 if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
1357 aprint_error_dev(&sc->sc_dv, "unexpected status bits: 0x%08x\n",
1358 status & TWE_STS_UNEXPECTED_BITS);
1359 rv = -1;
1360 if (status & TWE_STS_PCI_PARITY_ERROR) {
1361 aprint_error_dev(&sc->sc_dv, "PCI parity error: Reseat card, move card "
1362 "or buggy device present.\n");
1363 twe_clear_pci_parity_error(sc);
1364 }
1365 if (status & TWE_STS_PCI_ABORT) {
1366 aprint_error_dev(&sc->sc_dv, "PCI abort, clearing.\n");
1367 twe_clear_pci_abort(sc);
1368 }
1369 }
1370
1371 return (rv);
1372 }
1373
1374 /*
1375 * Allocate and initialise a CCB.
1376 */
1377 static inline void
1378 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags)
1379 {
1380 struct twe_cmd *tc;
1381
1382 ccb->ccb_tx.tx_handler = NULL;
1383 ccb->ccb_flags = flags;
1384 tc = ccb->ccb_cmd;
1385 tc->tc_status = 0;
1386 tc->tc_flags = 0;
1387 tc->tc_cmdid = ccb->ccb_cmdid;
1388 }
1389
1390 struct twe_ccb *
1391 twe_ccb_alloc(struct twe_softc *sc, int flags)
1392 {
1393 struct twe_ccb *ccb;
1394 int s;
1395
1396 s = splbio();
1397 if (__predict_false((flags & TWE_CCB_AEN) != 0)) {
1398 /* Use the reserved CCB. */
1399 ccb = sc->sc_ccbs;
1400 } else {
1401 /* Allocate a CCB and command block. */
1402 if (__predict_false((ccb =
1403 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1404 splx(s);
1405 return (NULL);
1406 }
1407 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1408 }
1409 #ifdef DIAGNOSTIC
1410 if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0)
1411 panic("twe_ccb_alloc: got reserved CCB for non-AEN");
1412 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1413 panic("twe_ccb_alloc: CCB %ld already allocated",
1414 (long)(ccb - sc->sc_ccbs));
1415 flags |= TWE_CCB_ALLOCED;
1416 #endif
1417 splx(s);
1418
1419 twe_ccb_init(sc, ccb, flags);
1420 return (ccb);
1421 }
1422
1423 struct twe_ccb *
1424 twe_ccb_alloc_wait(struct twe_softc *sc, int flags)
1425 {
1426 struct twe_ccb *ccb;
1427 int s;
1428
1429 KASSERT((flags & TWE_CCB_AEN) == 0);
1430
1431 s = splbio();
1432 while (__predict_false((ccb =
1433 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1434 sc->sc_flags |= TWEF_WAIT_CCB;
1435 (void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0);
1436 }
1437 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1438 #ifdef DIAGNOSTIC
1439 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1440 panic("twe_ccb_alloc_wait: CCB %ld already allocated",
1441 (long)(ccb - sc->sc_ccbs));
1442 flags |= TWE_CCB_ALLOCED;
1443 #endif
1444 splx(s);
1445
1446 twe_ccb_init(sc, ccb, flags);
1447 return (ccb);
1448 }
1449
1450 /*
1451 * Free a CCB.
1452 */
1453 void
1454 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
1455 {
1456 int s;
1457
1458 s = splbio();
1459 if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) {
1460 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
1461 if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) {
1462 sc->sc_flags &= ~TWEF_WAIT_CCB;
1463 wakeup(&sc->sc_ccb_freelist);
1464 }
1465 }
1466 ccb->ccb_flags = 0;
1467 splx(s);
1468 }
1469
1470 /*
1471 * Map the specified CCB's command block and data buffer (if any) into
1472 * controller visible space. Perform DMA synchronisation.
1473 */
1474 int
1475 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
1476 {
1477 struct twe_cmd *tc;
1478 int flags, nsegs, i, s, rv;
1479 void *data;
1480
1481 /*
1482 * The data as a whole must be 512-byte aligned.
1483 */
1484 if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
1485 s = splvm();
1486 /* XXX */
1487 ccb->ccb_abuf = uvm_km_alloc(kmem_map,
1488 ccb->ccb_datasize, 0, UVM_KMF_NOWAIT|UVM_KMF_WIRED);
1489 splx(s);
1490 data = (void *)ccb->ccb_abuf;
1491 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1492 memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
1493 } else {
1494 ccb->ccb_abuf = (vaddr_t)0;
1495 data = ccb->ccb_data;
1496 }
1497
1498 /*
1499 * Map the data buffer into bus space and build the S/G list.
1500 */
1501 rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
1502 ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1503 ((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
1504 BUS_DMA_READ : BUS_DMA_WRITE));
1505 if (rv != 0) {
1506 if (ccb->ccb_abuf != (vaddr_t)0) {
1507 s = splvm();
1508 /* XXX */
1509 uvm_km_free(kmem_map, ccb->ccb_abuf,
1510 ccb->ccb_datasize, UVM_KMF_WIRED);
1511 splx(s);
1512 }
1513 return (rv);
1514 }
1515
1516 nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
1517 tc = ccb->ccb_cmd;
1518 tc->tc_size += 2 * nsegs;
1519
1520 /* The location of the S/G list is dependant upon command type. */
1521 switch (tc->tc_opcode >> 5) {
1522 case 2:
1523 for (i = 0; i < nsegs; i++) {
1524 tc->tc_args.param.sgl[i].tsg_address =
1525 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1526 tc->tc_args.param.sgl[i].tsg_length =
1527 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1528 }
1529 /* XXX Needed? */
1530 for (; i < TWE_SG_SIZE; i++) {
1531 tc->tc_args.param.sgl[i].tsg_address = 0;
1532 tc->tc_args.param.sgl[i].tsg_length = 0;
1533 }
1534 break;
1535 case 3:
1536 for (i = 0; i < nsegs; i++) {
1537 tc->tc_args.io.sgl[i].tsg_address =
1538 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1539 tc->tc_args.io.sgl[i].tsg_length =
1540 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1541 }
1542 /* XXX Needed? */
1543 for (; i < TWE_SG_SIZE; i++) {
1544 tc->tc_args.io.sgl[i].tsg_address = 0;
1545 tc->tc_args.io.sgl[i].tsg_length = 0;
1546 }
1547 break;
1548 default:
1549 /*
1550 * In all likelihood, this is a command passed from
1551 * management tools in userspace where no S/G list is
1552 * necessary because no data is being passed.
1553 */
1554 break;
1555 }
1556
1557 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1558 flags = BUS_DMASYNC_PREREAD;
1559 else
1560 flags = 0;
1561 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1562 flags |= BUS_DMASYNC_PREWRITE;
1563
1564 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1565 ccb->ccb_datasize, flags);
1566 return (0);
1567 }
1568
1569 /*
1570 * Unmap the specified CCB's command block and data buffer (if any) and
1571 * perform DMA synchronisation.
1572 */
1573 void
1574 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
1575 {
1576 int flags, s;
1577
1578 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1579 flags = BUS_DMASYNC_POSTREAD;
1580 else
1581 flags = 0;
1582 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1583 flags |= BUS_DMASYNC_POSTWRITE;
1584
1585 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1586 ccb->ccb_datasize, flags);
1587 bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
1588
1589 if (ccb->ccb_abuf != (vaddr_t)0) {
1590 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1591 memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
1592 ccb->ccb_datasize);
1593 s = splvm();
1594 /* XXX */
1595 uvm_km_free(kmem_map, ccb->ccb_abuf, ccb->ccb_datasize,
1596 UVM_KMF_WIRED);
1597 splx(s);
1598 }
1599 }
1600
1601 /*
1602 * Submit a command to the controller and poll on completion. Return
1603 * non-zero on timeout (but don't check status, as some command types don't
1604 * return status). Must be called with interrupts blocked.
1605 */
1606 int
1607 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
1608 {
1609 int rv;
1610
1611 if ((rv = twe_ccb_submit(sc, ccb)) != 0)
1612 return (rv);
1613
1614 for (timo *= 1000; timo != 0; timo--) {
1615 twe_poll(sc);
1616 if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
1617 break;
1618 DELAY(100);
1619 }
1620
1621 return (timo == 0);
1622 }
1623
1624 /*
1625 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1626 * the order that they were enqueued and try to submit their command blocks
1627 * to the controller for execution.
1628 */
1629 void
1630 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
1631 {
1632 int s;
1633
1634 s = splbio();
1635
1636 if (ccb != NULL)
1637 SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
1638
1639 while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
1640 if (twe_ccb_submit(sc, ccb))
1641 break;
1642 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
1643 }
1644
1645 splx(s);
1646 }
1647
1648 /*
1649 * Submit the command block associated with the specified CCB to the
1650 * controller for execution. Must be called with interrupts blocked.
1651 */
1652 int
1653 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
1654 {
1655 bus_addr_t pa;
1656 int rv;
1657 u_int status;
1658
1659 /* Check to see if we can post a command. */
1660 status = twe_inl(sc, TWE_REG_STS);
1661 twe_status_check(sc, status);
1662
1663 if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
1664 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1665 (char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
1666 sizeof(struct twe_cmd),
1667 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1668 #ifdef DIAGNOSTIC
1669 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0)
1670 panic("%s: CCB %ld not ALLOCED\n",
1671 device_xname(&sc->sc_dv), (long)(ccb - sc->sc_ccbs));
1672 #endif
1673 ccb->ccb_flags |= TWE_CCB_ACTIVE;
1674 pa = sc->sc_cmds_paddr +
1675 ccb->ccb_cmdid * sizeof(struct twe_cmd);
1676 twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
1677 rv = 0;
1678 } else
1679 rv = EBUSY;
1680
1681 return (rv);
1682 }
1683
1684
1685 /*
1686 * Accept an open operation on the control device.
1687 */
1688 static int
1689 tweopen(dev_t dev, int flag, int mode, struct lwp *l)
1690 {
1691 struct twe_softc *twe;
1692
1693 if ((twe = device_lookup_private(&twe_cd, minor(dev))) == NULL)
1694 return (ENXIO);
1695 if ((twe->sc_flags & TWEF_OPEN) != 0)
1696 return (EBUSY);
1697
1698 twe->sc_flags |= TWEF_OPEN;
1699 return (0);
1700 }
1701
1702 /*
1703 * Accept the last close on the control device.
1704 */
1705 static int
1706 tweclose(dev_t dev, int flag, int mode,
1707 struct lwp *l)
1708 {
1709 struct twe_softc *twe;
1710
1711 twe = device_lookup_private(&twe_cd, minor(dev));
1712 twe->sc_flags &= ~TWEF_OPEN;
1713 return (0);
1714 }
1715
1716 void
1717 twe_ccb_wait_handler(struct twe_ccb *ccb, int error)
1718 {
1719
1720 /* Just wake up the sleeper. */
1721 wakeup(ccb);
1722 }
1723
1724 /*
1725 * Handle control operations.
1726 */
1727 static int
1728 tweioctl(dev_t dev, u_long cmd, void *data, int flag,
1729 struct lwp *l)
1730 {
1731 struct twe_softc *twe;
1732 struct twe_ccb *ccb;
1733 struct twe_param *param;
1734 struct twe_usercommand *tu;
1735 struct twe_paramcommand *tp;
1736 struct twe_drivecommand *td;
1737 void *pdata = NULL;
1738 int s, error = 0;
1739 u_int8_t cmdid;
1740
1741 twe = device_lookup_private(&twe_cd, minor(dev));
1742 tu = (struct twe_usercommand *)data;
1743 tp = (struct twe_paramcommand *)data;
1744 td = (struct twe_drivecommand *)data;
1745
1746 /* This is intended to be compatible with the FreeBSD interface. */
1747 switch (cmd) {
1748 case TWEIO_COMMAND:
1749 error = kauth_authorize_device_passthru(l->l_cred, dev,
1750 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1751 if (error)
1752 return (error);
1753
1754 /* XXX mutex */
1755 if (tu->tu_size > 0) {
1756 /*
1757 * XXX Handle > TWE_SECTOR_SIZE? Let's see if
1758 * it's really necessary, first.
1759 */
1760 if (tu->tu_size > TWE_SECTOR_SIZE) {
1761 #ifdef TWE_DEBUG
1762 printf("%s: TWEIO_COMMAND: tu_size = %zu\n",
1763 device_xname(&twe->sc_dv), tu->tu_size);
1764 #endif
1765 return EINVAL;
1766 }
1767 pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
1768 error = copyin(tu->tu_data, pdata, tu->tu_size);
1769 if (error != 0)
1770 goto done;
1771 ccb = twe_ccb_alloc_wait(twe,
1772 TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1773 KASSERT(ccb != NULL);
1774 ccb->ccb_data = pdata;
1775 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1776 } else {
1777 ccb = twe_ccb_alloc_wait(twe, 0);
1778 KASSERT(ccb != NULL);
1779 }
1780
1781 ccb->ccb_tx.tx_handler = twe_ccb_wait_handler;
1782 ccb->ccb_tx.tx_context = NULL;
1783 ccb->ccb_tx.tx_dv = &twe->sc_dv;
1784
1785 cmdid = ccb->ccb_cmdid;
1786 memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
1787 ccb->ccb_cmd->tc_cmdid = cmdid;
1788
1789 /* Map the transfer. */
1790 if ((error = twe_ccb_map(twe, ccb)) != 0) {
1791 twe_ccb_free(twe, ccb);
1792 goto done;
1793 }
1794
1795 /* Submit the command and wait up to 1 minute. */
1796 error = 0;
1797 twe_ccb_enqueue(twe, ccb);
1798 s = splbio();
1799 while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0)
1800 if ((error = tsleep(ccb, PRIBIO, "tweioctl",
1801 60 * hz)) != 0)
1802 break;
1803 splx(s);
1804
1805 /* Copy the command back to the ioctl argument. */
1806 memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd));
1807 #ifdef TWE_DEBUG
1808 printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, "
1809 "tc_status = 0x%02x\n", device_xname(&twe->sc_dv),
1810 tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status);
1811 #endif
1812
1813 s = splbio();
1814 twe_ccb_free(twe, ccb);
1815 splx(s);
1816
1817 if (tu->tu_size > 0)
1818 error = copyout(pdata, tu->tu_data, tu->tu_size);
1819 goto done;
1820
1821 case TWEIO_STATS:
1822 return (ENOENT);
1823
1824 case TWEIO_AEN_POLL:
1825 s = splbio();
1826 *(u_int *)data = twe_aen_dequeue(twe);
1827 splx(s);
1828 return (0);
1829
1830 case TWEIO_AEN_WAIT:
1831 s = splbio();
1832 while ((*(u_int *)data =
1833 twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) {
1834 twe->sc_flags |= TWEF_AENQ_WAIT;
1835 error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH,
1836 "tweaen", 0);
1837 if (error == EINTR) {
1838 splx(s);
1839 return (error);
1840 }
1841 }
1842 splx(s);
1843 return (0);
1844
1845 case TWEIO_GET_PARAM:
1846 error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
1847 tp->tp_size, 0, ¶m);
1848 if (error != 0)
1849 return (error);
1850 if (param->tp_param_size > tp->tp_size) {
1851 error = EFAULT;
1852 goto done;
1853 }
1854 error = copyout(param->tp_data, tp->tp_data,
1855 param->tp_param_size);
1856 free(param, M_DEVBUF);
1857 goto done;
1858
1859 case TWEIO_SET_PARAM:
1860 pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
1861 if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
1862 goto done;
1863 error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
1864 tp->tp_size, pdata);
1865 goto done;
1866
1867 case TWEIO_RESET:
1868 s = splbio();
1869 twe_reset(twe);
1870 splx(s);
1871 return (0);
1872
1873 case TWEIO_ADD_UNIT:
1874 /* XXX mutex */
1875 return (twe_add_unit(twe, td->td_unit));
1876
1877 case TWEIO_DEL_UNIT:
1878 /* XXX mutex */
1879 return (twe_del_unit(twe, td->td_unit));
1880
1881 default:
1882 return EINVAL;
1883 }
1884 done:
1885 if (pdata)
1886 free(pdata, M_DEVBUF);
1887 return error;
1888 }
1889
1890 const struct cdevsw twe_cdevsw = {
1891 tweopen, tweclose, noread, nowrite, tweioctl,
1892 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1893 };
1894
1895 /*
1896 * Print some information about the controller
1897 */
1898 static void
1899 twe_describe_controller(struct twe_softc *sc)
1900 {
1901 struct twe_param *p[6];
1902 int i, rv = 0;
1903 uint32_t dsize;
1904 uint8_t ports;
1905
1906 ports = 0;
1907
1908 /* get the port count */
1909 rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
1910 TWE_PARAM_CONTROLLER_PortCount, &ports);
1911
1912 /* get version strings */
1913 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
1914 16, NULL, &p[0]);
1915 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
1916 16, NULL, &p[1]);
1917 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
1918 16, NULL, &p[2]);
1919 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
1920 8, NULL, &p[3]);
1921 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
1922 8, NULL, &p[4]);
1923 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
1924 8, NULL, &p[5]);
1925
1926 if (rv) {
1927 /* some error occurred */
1928 aprint_error_dev(&sc->sc_dv, "failed to fetch version information\n");
1929 return;
1930 }
1931
1932 aprint_normal_dev(&sc->sc_dv, "%d ports, Firmware %.16s, BIOS %.16s\n",
1933 ports, p[1]->tp_data, p[2]->tp_data);
1934
1935 aprint_verbose_dev(&sc->sc_dv, "Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
1936 p[0]->tp_data, p[3]->tp_data,
1937 p[4]->tp_data, p[5]->tp_data);
1938
1939 free(p[0], M_DEVBUF);
1940 free(p[1], M_DEVBUF);
1941 free(p[2], M_DEVBUF);
1942 free(p[3], M_DEVBUF);
1943 free(p[4], M_DEVBUF);
1944 free(p[5], M_DEVBUF);
1945
1946 rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY,
1947 TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]);
1948 if (rv) {
1949 aprint_error_dev(&sc->sc_dv, "failed to get drive status summary\n");
1950 return;
1951 }
1952 for (i = 0; i < ports; i++) {
1953 if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present)
1954 continue;
1955 rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i,
1956 TWE_PARAM_DRIVEINFO_Size, &dsize);
1957 if (rv) {
1958 aprint_error_dev(&sc->sc_dv,
1959 "unable to get drive size for port %d\n", i);
1960 continue;
1961 }
1962 rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i,
1963 TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]);
1964 if (rv) {
1965 aprint_error_dev(&sc->sc_dv,
1966 "unable to get drive model for port %d\n", i);
1967 continue;
1968 }
1969 aprint_verbose_dev(&sc->sc_dv, "port %d: %.40s %d MB\n",
1970 i, p[1]->tp_data, dsize / 2048);
1971 free(p[1], M_DEVBUF);
1972 }
1973 free(p[0], M_DEVBUF);
1974 }
1975