twe.c revision 1.96.6.2 1 /* $NetBSD: twe.c,v 1.96.6.2 2013/02/25 00:29:29 tls Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 2000 Michael Smith
34 * Copyright (c) 2000 BSDi
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
59 */
60
61 /*
62 * Driver for the 3ware Escalade family of RAID controllers.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.96.6.2 2013/02/25 00:29:29 tls Exp $");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/device.h>
72 #include <sys/queue.h>
73 #include <sys/proc.h>
74 #include <sys/buf.h>
75 #include <sys/endian.h>
76 #include <sys/malloc.h>
77 #include <sys/conf.h>
78 #include <sys/disk.h>
79 #include <sys/sysctl.h>
80 #include <sys/syslog.h>
81 #include <sys/kauth.h>
82
83 #include <sys/bswap.h>
84 #include <sys/bus.h>
85
86 #include <dev/pci/pcireg.h>
87 #include <dev/pci/pcivar.h>
88 #include <dev/pci/pcidevs.h>
89 #include <dev/pci/twereg.h>
90 #include <dev/pci/twevar.h>
91 #include <dev/pci/tweio.h>
92
93 #include "locators.h"
94
95 #define PCI_CBIO 0x10
96
97 static int twe_aen_get(struct twe_softc *, uint16_t *);
98 static void twe_aen_handler(struct twe_ccb *, int);
99 static void twe_aen_enqueue(struct twe_softc *sc, uint16_t, int);
100 static uint16_t twe_aen_dequeue(struct twe_softc *);
101
102 static void twe_attach(device_t, device_t, void *);
103 static int twe_init_connection(struct twe_softc *);
104 static int twe_intr(void *);
105 static int twe_match(device_t, cfdata_t, void *);
106 static int twe_param_set(struct twe_softc *, int, int, size_t, void *);
107 static void twe_poll(struct twe_softc *);
108 static int twe_print(void *, const char *);
109 static int twe_reset(struct twe_softc *);
110 static int twe_status_check(struct twe_softc *, u_int);
111 static int twe_status_wait(struct twe_softc *, u_int, int);
112 static void twe_describe_controller(struct twe_softc *);
113 static void twe_clear_pci_abort(struct twe_softc *sc);
114 static void twe_clear_pci_parity_error(struct twe_softc *sc);
115
116 static int twe_add_unit(struct twe_softc *, int);
117 static int twe_del_unit(struct twe_softc *, int);
118 static int twe_init_connection(struct twe_softc *);
119
120 static inline u_int32_t twe_inl(struct twe_softc *, int);
121 static inline void twe_outl(struct twe_softc *, int, u_int32_t);
122
123 extern struct cfdriver twe_cd;
124
125 CFATTACH_DECL_NEW(twe, sizeof(struct twe_softc),
126 twe_match, twe_attach, NULL, NULL);
127
128 /* FreeBSD driver revision for sysctl expected by the 3ware cli */
129 const char twever[] = "1.50.01.002";
130
131 /*
132 * Tables to convert numeric codes to strings.
133 */
134 const struct twe_code_table twe_table_status[] = {
135 { 0x00, "successful completion" },
136
137 /* info */
138 { 0x42, "command in progress" },
139 { 0x6c, "retrying interface CRC error from UDMA command" },
140
141 /* warning */
142 { 0x81, "redundant/inconsequential request ignored" },
143 { 0x8e, "failed to write zeroes to LBA 0" },
144 { 0x8f, "failed to profile TwinStor zones" },
145
146 /* fatal */
147 { 0xc1, "aborted due to system command or reconfiguration" },
148 { 0xc4, "aborted" },
149 { 0xc5, "access error" },
150 { 0xc6, "access violation" },
151 { 0xc7, "device failure" }, /* high byte may be port # */
152 { 0xc8, "controller error" },
153 { 0xc9, "timed out" },
154 { 0xcb, "invalid unit number" },
155 { 0xcf, "unit not available" },
156 { 0xd2, "undefined opcode" },
157 { 0xdb, "request incompatible with unit" },
158 { 0xdc, "invalid request" },
159 { 0xff, "firmware error, reset requested" },
160
161 { 0, NULL }
162 };
163
164 const struct twe_code_table twe_table_unitstate[] = {
165 { TWE_PARAM_UNITSTATUS_Normal, "Normal" },
166 { TWE_PARAM_UNITSTATUS_Initialising, "Initializing" },
167 { TWE_PARAM_UNITSTATUS_Degraded, "Degraded" },
168 { TWE_PARAM_UNITSTATUS_Rebuilding, "Rebuilding" },
169 { TWE_PARAM_UNITSTATUS_Verifying, "Verifying" },
170 { TWE_PARAM_UNITSTATUS_Corrupt, "Corrupt" },
171 { TWE_PARAM_UNITSTATUS_Missing, "Missing" },
172
173 { 0, NULL }
174 };
175
176 const struct twe_code_table twe_table_unittype[] = {
177 /* array descriptor configuration */
178 { TWE_AD_CONFIG_RAID0, "RAID0" },
179 { TWE_AD_CONFIG_RAID1, "RAID1" },
180 { TWE_AD_CONFIG_TwinStor, "TwinStor" },
181 { TWE_AD_CONFIG_RAID5, "RAID5" },
182 { TWE_AD_CONFIG_RAID10, "RAID10" },
183 { TWE_UD_CONFIG_JBOD, "JBOD" },
184
185 { 0, NULL }
186 };
187
188 const struct twe_code_table twe_table_stripedepth[] = {
189 { TWE_AD_STRIPE_4k, "4K" },
190 { TWE_AD_STRIPE_8k, "8K" },
191 { TWE_AD_STRIPE_16k, "16K" },
192 { TWE_AD_STRIPE_32k, "32K" },
193 { TWE_AD_STRIPE_64k, "64K" },
194 { TWE_AD_STRIPE_128k, "128K" },
195 { TWE_AD_STRIPE_256k, "256K" },
196 { TWE_AD_STRIPE_512k, "512K" },
197 { TWE_AD_STRIPE_1024k, "1024K" },
198
199 { 0, NULL }
200 };
201
202 /*
203 * Asynchronous event notification messages are qualified:
204 * a - not unit/port specific
205 * u - unit specific
206 * p - port specific
207 *
208 * They are further qualified with a severity:
209 * E - LOG_EMERG
210 * a - LOG_ALERT
211 * c - LOG_CRIT
212 * e - LOG_ERR
213 * w - LOG_WARNING
214 * n - LOG_NOTICE
215 * i - LOG_INFO
216 * d - LOG_DEBUG
217 * blank - just use printf
218 */
219 const struct twe_code_table twe_table_aen[] = {
220 { 0x00, "a queue empty" },
221 { 0x01, "a soft reset" },
222 { 0x02, "uc degraded mode" },
223 { 0x03, "aa controller error" },
224 { 0x04, "uE rebuild fail" },
225 { 0x05, "un rebuild done" },
226 { 0x06, "ue incomplete unit" },
227 { 0x07, "un initialization done" },
228 { 0x08, "uw unclean shutdown detected" },
229 { 0x09, "pe drive timeout" },
230 { 0x0a, "pc drive error" },
231 { 0x0b, "un rebuild started" },
232 { 0x0c, "un initialization started" },
233 { 0x0d, "ui logical unit deleted" },
234 { 0x0f, "pc SMART threshold exceeded" },
235 { 0x15, "a table undefined" }, /* XXX: Not in FreeBSD's table */
236 { 0x21, "pe ATA UDMA downgrade" },
237 { 0x22, "pi ATA UDMA upgrade" },
238 { 0x23, "pw sector repair occurred" },
239 { 0x24, "aa SBUF integrity check failure" },
240 { 0x25, "pa lost cached write" },
241 { 0x26, "pa drive ECC error detected" },
242 { 0x27, "pe DCB checksum error" },
243 { 0x28, "pn DCB unsupported version" },
244 { 0x29, "ui verify started" },
245 { 0x2a, "ua verify failed" },
246 { 0x2b, "ui verify complete" },
247 { 0x2c, "pw overwrote bad sector during rebuild" },
248 { 0x2d, "pa encountered bad sector during rebuild" },
249 { 0x2e, "pe replacement drive too small" },
250 { 0x2f, "ue array not previously initialized" },
251 { 0x30, "p drive not supported" },
252 { 0xff, "a aen queue full" },
253
254 { 0, NULL },
255 };
256
257 const char *
258 twe_describe_code(const struct twe_code_table *table, uint32_t code)
259 {
260
261 for (; table->string != NULL; table++) {
262 if (table->code == code)
263 return (table->string);
264 }
265 return (NULL);
266 }
267
268 static inline u_int32_t
269 twe_inl(struct twe_softc *sc, int off)
270 {
271
272 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
273 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
274 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
275 }
276
277 static inline void
278 twe_outl(struct twe_softc *sc, int off, u_int32_t val)
279 {
280
281 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
282 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
283 BUS_SPACE_BARRIER_WRITE);
284 }
285
286 /*
287 * Match a supported board.
288 */
289 static int
290 twe_match(device_t parent, cfdata_t cfdata, void *aux)
291 {
292 struct pci_attach_args *pa;
293
294 pa = aux;
295
296 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
297 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
298 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
299 }
300
301 /*
302 * Attach a supported board.
303 *
304 * XXX This doesn't fail gracefully.
305 */
306 static void
307 twe_attach(device_t parent, device_t self, void *aux)
308 {
309 struct pci_attach_args *pa;
310 struct twe_softc *sc;
311 pci_chipset_tag_t pc;
312 pci_intr_handle_t ih;
313 pcireg_t csr;
314 const char *intrstr;
315 int s, size, i, rv, rseg;
316 size_t max_segs, max_xfer;
317 bus_dma_segment_t seg;
318 const struct sysctlnode *node;
319 struct twe_cmd *tc;
320 struct twe_ccb *ccb;
321
322 sc = device_private(self);
323 sc->sc_dev = self;
324 pa = aux;
325 pc = pa->pa_pc;
326 sc->sc_dmat = pa->pa_dmat;
327 SIMPLEQ_INIT(&sc->sc_ccb_queue);
328 SLIST_INIT(&sc->sc_ccb_freelist);
329
330 aprint_naive(": RAID controller\n");
331 aprint_normal(": 3ware Escalade\n");
332
333
334 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
335 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
336 aprint_error_dev(self, "can't map i/o space\n");
337 return;
338 }
339
340 /* Enable the device. */
341 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
342 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
343 csr | PCI_COMMAND_MASTER_ENABLE);
344
345 /* Map and establish the interrupt. */
346 if (pci_intr_map(pa, &ih)) {
347 aprint_error_dev(self, "can't map interrupt\n");
348 return;
349 }
350
351 intrstr = pci_intr_string(pc, ih);
352 sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc);
353 if (sc->sc_ih == NULL) {
354 aprint_error_dev(self, "can't establish interrupt%s%s\n",
355 (intrstr) ? " at " : "",
356 (intrstr) ? intrstr : "");
357 return;
358 }
359
360 if (intrstr != NULL)
361 aprint_normal_dev(self, "interrupting at %s\n",
362 intrstr);
363
364 /*
365 * Allocate and initialise the command blocks and CCBs.
366 */
367 size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
368
369 if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
370 &rseg, BUS_DMA_NOWAIT)) != 0) {
371 aprint_error_dev(self, "unable to allocate commands, rv = %d\n", rv);
372 return;
373 }
374
375 if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
376 (void **)&sc->sc_cmds,
377 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
378 aprint_error_dev(self, "unable to map commands, rv = %d\n", rv);
379 return;
380 }
381
382 if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
383 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
384 aprint_error_dev(self, "unable to create command DMA map, rv = %d\n", rv);
385 return;
386 }
387
388 if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
389 size, NULL, BUS_DMA_NOWAIT)) != 0) {
390 aprint_error_dev(self, "unable to load command DMA map, rv = %d\n", rv);
391 return;
392 }
393
394 ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT);
395 if (ccb == NULL) {
396 aprint_error_dev(self, "unable to allocate memory for ccbs\n");
397 return;
398 }
399
400 sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
401 memset(sc->sc_cmds, 0, size);
402
403 sc->sc_ccbs = ccb;
404 tc = (struct twe_cmd *)sc->sc_cmds;
405 max_segs = twe_get_maxsegs();
406 max_xfer = twe_get_maxxfer(max_segs);
407
408 for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
409 ccb->ccb_cmd = tc;
410 ccb->ccb_cmdid = i;
411 ccb->ccb_flags = 0;
412 rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
413 max_segs, PAGE_SIZE, 0,
414 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
415 &ccb->ccb_dmamap_xfer);
416 if (rv != 0) {
417 aprint_error_dev(self, "can't create dmamap, rv = %d\n", rv);
418 return;
419 }
420
421 /* Save the first CCB for AEN retrieval. */
422 if (i != 0)
423 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
424 ccb_chain.slist);
425 }
426
427 /* Wait for the controller to become ready. */
428 if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
429 aprint_error_dev(self, "microcontroller not ready\n");
430 return;
431 }
432
433 twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
434
435 /* Reset the controller. */
436 s = splbio();
437 rv = twe_reset(sc);
438 splx(s);
439 if (rv) {
440 aprint_error_dev(self, "reset failed\n");
441 return;
442 }
443
444 /* Initialise connection with controller. */
445 twe_init_connection(sc);
446
447 twe_describe_controller(sc);
448
449 /* Find and attach RAID array units. */
450 sc->sc_nunits = 0;
451 for (i = 0; i < TWE_MAX_UNITS; i++)
452 (void) twe_add_unit(sc, i);
453
454 /* ...and finally, enable interrupts. */
455 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
456 TWE_CTL_UNMASK_RESP_INTR |
457 TWE_CTL_ENABLE_INTRS);
458
459 /* sysctl set-up for 3ware cli */
460 if (sysctl_createv(NULL, 0, NULL, NULL,
461 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw",
462 NULL, NULL, 0, NULL, 0,
463 CTL_HW, CTL_EOL) != 0) {
464 aprint_error_dev(self, "could not create %s sysctl node\n",
465 "hw");
466 return;
467 }
468 if (sysctl_createv(NULL, 0, NULL, &node,
469 0, CTLTYPE_NODE, device_xname(self),
470 SYSCTL_DESCR("twe driver information"),
471 NULL, 0, NULL, 0,
472 CTL_HW, CTL_CREATE, CTL_EOL) != 0) {
473 aprint_error_dev(self, "could not create %s.%s sysctl node\n",
474 "hw", device_xname(self));
475 return;
476 }
477 if ((i = sysctl_createv(NULL, 0, NULL, NULL,
478 0, CTLTYPE_STRING, "driver_version",
479 SYSCTL_DESCR("twe0 driver version"),
480 NULL, 0, __UNCONST(&twever), 0,
481 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL))
482 != 0) {
483 aprint_error_dev(self, "could not create %s.%s.driver_version sysctl\n",
484 "hw", device_xname(self));
485 return;
486 }
487 }
488
489 void
490 twe_register_callbacks(struct twe_softc *sc, int unit,
491 const struct twe_callbacks *tcb)
492 {
493
494 sc->sc_units[unit].td_callbacks = tcb;
495 }
496
497 static void
498 twe_recompute_openings(struct twe_softc *sc)
499 {
500 struct twe_drive *td;
501 int unit, openings;
502
503 if (sc->sc_nunits != 0)
504 openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits;
505 else
506 openings = 0;
507 if (openings == sc->sc_openings)
508 return;
509 sc->sc_openings = openings;
510
511 #ifdef TWE_DEBUG
512 printf("%s: %d array%s, %d openings per array\n",
513 device_xname(sc->sc_dev), sc->sc_nunits,
514 sc->sc_nunits == 1 ? "" : "s", sc->sc_openings);
515 #endif
516
517 for (unit = 0; unit < TWE_MAX_UNITS; unit++) {
518 td = &sc->sc_units[unit];
519 if (td->td_dev != NULL)
520 (*td->td_callbacks->tcb_openings)(td->td_dev,
521 sc->sc_openings);
522 }
523 }
524
525 static int
526 twe_add_unit(struct twe_softc *sc, int unit)
527 {
528 struct twe_param *dtp, *atp;
529 struct twe_array_descriptor *ad;
530 struct twe_drive *td;
531 struct twe_attach_args twea;
532 uint32_t newsize;
533 int rv;
534 uint16_t dsize;
535 uint8_t newtype, newstripe;
536 int locs[TWECF_NLOCS];
537
538 if (unit < 0 || unit >= TWE_MAX_UNITS)
539 return (EINVAL);
540
541 /* Find attached units. */
542 rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
543 TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
544 if (rv != 0) {
545 aprint_error_dev(sc->sc_dev, "error %d fetching unit summary\n",
546 rv);
547 return (rv);
548 }
549
550 /* For each detected unit, collect size and store in an array. */
551 td = &sc->sc_units[unit];
552
553 /* Unit present? */
554 if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) {
555 /*
556 * XXX Should we check to see if a device has been
557 * XXX attached at this index and detach it if it
558 * XXX has? ("rescan" semantics)
559 */
560 rv = 0;
561 goto out;
562 }
563
564 rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit,
565 TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
566 if (rv != 0) {
567 aprint_error_dev(sc->sc_dev, "error %d fetching descriptor size "
568 "for unit %d\n", rv, unit);
569 goto out;
570 }
571
572 rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit,
573 TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
574 if (rv != 0) {
575 aprint_error_dev(sc->sc_dev, "error %d fetching array descriptor "
576 "for unit %d\n", rv, unit);
577 goto out;
578 }
579
580 ad = (struct twe_array_descriptor *)atp->tp_data;
581 newtype = ad->configuration;
582 newstripe = ad->stripe_size;
583 free(atp, M_DEVBUF);
584
585 rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit,
586 TWE_PARAM_UNITINFO_Capacity, &newsize);
587 if (rv != 0) {
588 aprint_error_dev(sc->sc_dev,
589 "error %d fetching capacity for unit %d\n",
590 rv, unit);
591 goto out;
592 }
593
594 /*
595 * Have a device, so we need to attach it. If there is currently
596 * something sitting at the slot, and the parameters are different,
597 * then we detach the old device before attaching the new one.
598 */
599 if (td->td_dev != NULL &&
600 td->td_size == newsize &&
601 td->td_type == newtype &&
602 td->td_stripe == newstripe) {
603 /* Same as the old device; just keep using it. */
604 rv = 0;
605 goto out;
606 } else if (td->td_dev != NULL) {
607 /* Detach the old device first. */
608 (void) config_detach(td->td_dev, DETACH_FORCE);
609 td->td_dev = NULL;
610 } else if (td->td_size == 0)
611 sc->sc_nunits++;
612
613 /*
614 * Committed to the new array unit; assign its parameters and
615 * recompute the number of available command openings.
616 */
617 td->td_size = newsize;
618 td->td_type = newtype;
619 td->td_stripe = newstripe;
620 twe_recompute_openings(sc);
621
622 twea.twea_unit = unit;
623
624 locs[TWECF_UNIT] = unit;
625
626 td->td_dev = config_found_sm_loc(sc->sc_dev, "twe", locs, &twea,
627 twe_print, config_stdsubmatch);
628
629 rv = 0;
630 out:
631 free(dtp, M_DEVBUF);
632 return (rv);
633 }
634
635 static int
636 twe_del_unit(struct twe_softc *sc, int unit)
637 {
638 struct twe_drive *td;
639
640 if (unit < 0 || unit >= TWE_MAX_UNITS)
641 return (EINVAL);
642
643 td = &sc->sc_units[unit];
644 if (td->td_size != 0)
645 sc->sc_nunits--;
646 td->td_size = 0;
647 td->td_type = 0;
648 td->td_stripe = 0;
649 if (td->td_dev != NULL) {
650 (void) config_detach(td->td_dev, DETACH_FORCE);
651 td->td_dev = NULL;
652 }
653 twe_recompute_openings(sc);
654 return (0);
655 }
656
657 /*
658 * Reset the controller.
659 * MUST BE CALLED AT splbio()!
660 */
661 static int
662 twe_reset(struct twe_softc *sc)
663 {
664 uint16_t aen;
665 u_int status;
666 volatile u_int32_t junk;
667 int got, rv;
668
669 /* Issue a soft reset. */
670 twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
671 TWE_CTL_CLEAR_HOST_INTR |
672 TWE_CTL_CLEAR_ATTN_INTR |
673 TWE_CTL_MASK_CMD_INTR |
674 TWE_CTL_MASK_RESP_INTR |
675 TWE_CTL_CLEAR_ERROR_STS |
676 TWE_CTL_DISABLE_INTRS);
677
678 /* Wait for attention... */
679 if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) {
680 aprint_error_dev(sc->sc_dev, "timeout waiting for attention interrupt\n");
681 return (-1);
682 }
683
684 /* ...and ACK it. */
685 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
686
687 /*
688 * Pull AENs out of the controller; look for a soft reset AEN.
689 * Open code this, since we want to detect reset even if the
690 * queue for management tools is full.
691 *
692 * Note that since:
693 * - interrupts are blocked
694 * - we have reset the controller
695 * - acknowledged the pending ATTENTION
696 * that there is no way a pending asynchronous AEN fetch would
697 * finish, so clear the flag.
698 */
699 sc->sc_flags &= ~TWEF_AEN;
700 for (got = 0;;) {
701 rv = twe_aen_get(sc, &aen);
702 if (rv != 0)
703 printf("%s: error %d while draining event queue\n",
704 device_xname(sc->sc_dev), rv);
705 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
706 break;
707 if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
708 got = 1;
709 twe_aen_enqueue(sc, aen, 1);
710 }
711
712 if (!got) {
713 printf("%s: reset not reported\n", device_xname(sc->sc_dev));
714 return (-1);
715 }
716
717 /* Check controller status. */
718 status = twe_inl(sc, TWE_REG_STS);
719 if (twe_status_check(sc, status)) {
720 printf("%s: controller errors detected\n",
721 device_xname(sc->sc_dev));
722 return (-1);
723 }
724
725 /* Drain the response queue. */
726 for (;;) {
727 status = twe_inl(sc, TWE_REG_STS);
728 if (twe_status_check(sc, status) != 0) {
729 aprint_error_dev(sc->sc_dev, "can't drain response queue\n");
730 return (-1);
731 }
732 if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
733 break;
734 junk = twe_inl(sc, TWE_REG_RESP_QUEUE);
735 }
736
737 return (0);
738 }
739
740 /*
741 * Print autoconfiguration message for a sub-device.
742 */
743 static int
744 twe_print(void *aux, const char *pnp)
745 {
746 struct twe_attach_args *twea;
747
748 twea = aux;
749
750 if (pnp != NULL)
751 aprint_normal("block device at %s", pnp);
752 aprint_normal(" unit %d", twea->twea_unit);
753 return (UNCONF);
754 }
755
756 /*
757 * Interrupt service routine.
758 */
759 static int
760 twe_intr(void *arg)
761 {
762 struct twe_softc *sc;
763 u_int status;
764 int caught, rv;
765
766 sc = arg;
767 caught = 0;
768 status = twe_inl(sc, TWE_REG_STS);
769 twe_status_check(sc, status);
770
771 /* Host interrupts - purpose unknown. */
772 if ((status & TWE_STS_HOST_INTR) != 0) {
773 #ifdef DEBUG
774 printf("%s: host interrupt\n", device_xname(sc->sc_dev));
775 #endif
776 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
777 caught = 1;
778 }
779
780 /*
781 * Attention interrupts, signalled when a controller or child device
782 * state change has occurred.
783 */
784 if ((status & TWE_STS_ATTN_INTR) != 0) {
785 rv = twe_aen_get(sc, NULL);
786 if (rv != 0)
787 aprint_error_dev(sc->sc_dev, "unable to retrieve AEN (%d)\n", rv);
788 else
789 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
790 caught = 1;
791 }
792
793 /*
794 * Command interrupts, signalled when the controller can accept more
795 * commands. We don't use this; instead, we try to submit commands
796 * when we receive them, and when other commands have completed.
797 * Mask it so we don't get another one.
798 */
799 if ((status & TWE_STS_CMD_INTR) != 0) {
800 #ifdef DEBUG
801 printf("%s: command interrupt\n", device_xname(sc->sc_dev));
802 #endif
803 twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
804 caught = 1;
805 }
806
807 if ((status & TWE_STS_RESP_INTR) != 0) {
808 twe_poll(sc);
809 caught = 1;
810 }
811
812 return (caught);
813 }
814
815 /*
816 * Fetch an AEN. Even though this is really like parameter
817 * retrieval, we handle this specially, because we issue this
818 * AEN retrieval command from interrupt context, and thus
819 * reserve a CCB for it to avoid resource shortage.
820 *
821 * XXX There are still potential resource shortages we could
822 * XXX encounter. Consider pre-allocating all AEN-related
823 * XXX resources.
824 *
825 * MUST BE CALLED AT splbio()!
826 */
827 static int
828 twe_aen_get(struct twe_softc *sc, uint16_t *aenp)
829 {
830 struct twe_ccb *ccb;
831 struct twe_cmd *tc;
832 struct twe_param *tp;
833 int rv;
834
835 /*
836 * If we're already retrieving an AEN, just wait; another
837 * retrieval will be chained after the current one completes.
838 */
839 if (sc->sc_flags & TWEF_AEN) {
840 /*
841 * It is a fatal software programming error to attempt
842 * to fetch an AEN synchronously when an AEN fetch is
843 * already pending.
844 */
845 KASSERT(aenp == NULL);
846 return (0);
847 }
848
849 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
850 if (tp == NULL)
851 return (ENOMEM);
852
853 ccb = twe_ccb_alloc(sc,
854 TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
855 KASSERT(ccb != NULL);
856
857 ccb->ccb_data = tp;
858 ccb->ccb_datasize = TWE_SECTOR_SIZE;
859 ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL;
860 ccb->ccb_tx.tx_context = tp;
861 ccb->ccb_tx.tx_dv = sc->sc_dev;
862
863 tc = ccb->ccb_cmd;
864 tc->tc_size = 2;
865 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
866 tc->tc_unit = 0;
867 tc->tc_count = htole16(1);
868
869 /* Fill in the outbound parameter data. */
870 tp->tp_table_id = htole16(TWE_PARAM_AEN);
871 tp->tp_param_id = TWE_PARAM_AEN_UnitCode;
872 tp->tp_param_size = 2;
873
874 /* Map the transfer. */
875 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
876 twe_ccb_free(sc, ccb);
877 goto done;
878 }
879
880 /* Enqueue the command and wait. */
881 if (aenp != NULL) {
882 rv = twe_ccb_poll(sc, ccb, 5);
883 twe_ccb_unmap(sc, ccb);
884 twe_ccb_free(sc, ccb);
885 if (rv == 0)
886 *aenp = le16toh(*(uint16_t *)tp->tp_data);
887 free(tp, M_DEVBUF);
888 } else {
889 sc->sc_flags |= TWEF_AEN;
890 twe_ccb_enqueue(sc, ccb);
891 rv = 0;
892 }
893
894 done:
895 return (rv);
896 }
897
898 /*
899 * Handle an AEN returned by the controller.
900 * MUST BE CALLED AT splbio()!
901 */
902 static void
903 twe_aen_handler(struct twe_ccb *ccb, int error)
904 {
905 struct twe_softc *sc;
906 struct twe_param *tp;
907 uint16_t aen;
908 int rv;
909
910 sc = device_private(ccb->ccb_tx.tx_dv);
911 tp = ccb->ccb_tx.tx_context;
912 twe_ccb_unmap(sc, ccb);
913
914 sc->sc_flags &= ~TWEF_AEN;
915
916 if (error) {
917 aprint_error_dev(sc->sc_dev, "error retrieving AEN\n");
918 aen = TWE_AEN_QUEUE_EMPTY;
919 } else
920 aen = le16toh(*(u_int16_t *)tp->tp_data);
921 free(tp, M_DEVBUF);
922 twe_ccb_free(sc, ccb);
923
924 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
925 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
926 return;
927 }
928
929 twe_aen_enqueue(sc, aen, 0);
930
931 /*
932 * Chain another retrieval in case interrupts have been
933 * coalesced.
934 */
935 rv = twe_aen_get(sc, NULL);
936 if (rv != 0)
937 aprint_error_dev(sc->sc_dev, "unable to retrieve AEN (%d)\n", rv);
938 }
939
940 static void
941 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet)
942 {
943 const char *str, *msg;
944 int s, next, nextnext, level;
945
946 /*
947 * First report the AEN on the console. Maybe.
948 */
949 if (! quiet) {
950 str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen));
951 if (str == NULL) {
952 aprint_error_dev(sc->sc_dev, "unknown AEN 0x%04x\n", aen);
953 } else {
954 msg = str + 3;
955 switch (str[1]) {
956 case 'E': level = LOG_EMERG; break;
957 case 'a': level = LOG_ALERT; break;
958 case 'c': level = LOG_CRIT; break;
959 case 'e': level = LOG_ERR; break;
960 case 'w': level = LOG_WARNING; break;
961 case 'n': level = LOG_NOTICE; break;
962 case 'i': level = LOG_INFO; break;
963 case 'd': level = LOG_DEBUG; break;
964 default:
965 /* Don't use syslog. */
966 level = -1;
967 }
968
969 if (level < 0) {
970 switch (str[0]) {
971 case 'u':
972 case 'p':
973 printf("%s: %s %d: %s\n",
974 device_xname(sc->sc_dev),
975 str[0] == 'u' ? "unit" : "port",
976 TWE_AEN_UNIT(aen), msg);
977 break;
978
979 default:
980 printf("%s: %s\n",
981 device_xname(sc->sc_dev), msg);
982 }
983 } else {
984 switch (str[0]) {
985 case 'u':
986 case 'p':
987 log(level, "%s: %s %d: %s\n",
988 device_xname(sc->sc_dev),
989 str[0] == 'u' ? "unit" : "port",
990 TWE_AEN_UNIT(aen), msg);
991 break;
992
993 default:
994 log(level, "%s: %s\n",
995 device_xname(sc->sc_dev), msg);
996 }
997 }
998 }
999 }
1000
1001 /* Now enqueue the AEN for mangement tools. */
1002 s = splbio();
1003
1004 next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH;
1005 nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH;
1006
1007 /*
1008 * If this is the last free slot, then queue up a "queue
1009 * full" message.
1010 */
1011 if (nextnext == sc->sc_aen_tail)
1012 aen = TWE_AEN_QUEUE_FULL;
1013
1014 if (next != sc->sc_aen_tail) {
1015 sc->sc_aen_queue[sc->sc_aen_head] = aen;
1016 sc->sc_aen_head = next;
1017 }
1018
1019 if (sc->sc_flags & TWEF_AENQ_WAIT) {
1020 sc->sc_flags &= ~TWEF_AENQ_WAIT;
1021 wakeup(&sc->sc_aen_queue);
1022 }
1023
1024 splx(s);
1025 }
1026
1027 /* NOTE: Must be called at splbio(). */
1028 static uint16_t
1029 twe_aen_dequeue(struct twe_softc *sc)
1030 {
1031 uint16_t aen;
1032
1033 if (sc->sc_aen_tail == sc->sc_aen_head)
1034 aen = TWE_AEN_QUEUE_EMPTY;
1035 else {
1036 aen = sc->sc_aen_queue[sc->sc_aen_tail];
1037 sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH;
1038 }
1039
1040 return (aen);
1041 }
1042
1043 /*
1044 * These are short-hand functions that execute TWE_OP_GET_PARAM to
1045 * fetch 1, 2, and 4 byte parameter values, respectively.
1046 */
1047 int
1048 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
1049 uint8_t *valp)
1050 {
1051 struct twe_param *tp;
1052 int rv;
1053
1054 rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
1055 if (rv != 0)
1056 return (rv);
1057 *valp = *(uint8_t *)tp->tp_data;
1058 free(tp, M_DEVBUF);
1059 return (0);
1060 }
1061
1062 int
1063 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
1064 uint16_t *valp)
1065 {
1066 struct twe_param *tp;
1067 int rv;
1068
1069 rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
1070 if (rv != 0)
1071 return (rv);
1072 *valp = le16toh(*(uint16_t *)tp->tp_data);
1073 free(tp, M_DEVBUF);
1074 return (0);
1075 }
1076
1077 int
1078 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
1079 uint32_t *valp)
1080 {
1081 struct twe_param *tp;
1082 int rv;
1083
1084 rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
1085 if (rv != 0)
1086 return (rv);
1087 *valp = le32toh(*(uint32_t *)tp->tp_data);
1088 free(tp, M_DEVBUF);
1089 return (0);
1090 }
1091
1092 /*
1093 * Execute a TWE_OP_GET_PARAM command. If a callback function is provided,
1094 * it will be called with generated context when the command has completed.
1095 * If no callback is provided, the command will be executed synchronously
1096 * and a pointer to a buffer containing the data returned.
1097 *
1098 * The caller or callback is responsible for freeing the buffer.
1099 *
1100 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1101 */
1102 int
1103 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
1104 void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
1105 {
1106 struct twe_ccb *ccb;
1107 struct twe_cmd *tc;
1108 struct twe_param *tp;
1109 int rv, s;
1110
1111 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1112 if (tp == NULL)
1113 return ENOMEM;
1114
1115 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1116 KASSERT(ccb != NULL);
1117
1118 ccb->ccb_data = tp;
1119 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1120 ccb->ccb_tx.tx_handler = func;
1121 ccb->ccb_tx.tx_context = tp;
1122 ccb->ccb_tx.tx_dv = sc->sc_dev;
1123
1124 tc = ccb->ccb_cmd;
1125 tc->tc_size = 2;
1126 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
1127 tc->tc_unit = 0;
1128 tc->tc_count = htole16(1);
1129
1130 /* Fill in the outbound parameter data. */
1131 tp->tp_table_id = htole16(table_id);
1132 tp->tp_param_id = param_id;
1133 tp->tp_param_size = size;
1134
1135 /* Map the transfer. */
1136 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1137 twe_ccb_free(sc, ccb);
1138 goto done;
1139 }
1140
1141 /* Submit the command and either wait or let the callback handle it. */
1142 if (func == NULL) {
1143 s = splbio();
1144 rv = twe_ccb_poll(sc, ccb, 5);
1145 twe_ccb_unmap(sc, ccb);
1146 twe_ccb_free(sc, ccb);
1147 splx(s);
1148 } else {
1149 #ifdef DEBUG
1150 if (pbuf != NULL)
1151 panic("both func and pbuf defined");
1152 #endif
1153 twe_ccb_enqueue(sc, ccb);
1154 return 0;
1155 }
1156
1157 done:
1158 if (pbuf == NULL || rv != 0)
1159 free(tp, M_DEVBUF);
1160 else if (pbuf != NULL && rv == 0)
1161 *pbuf = tp;
1162 return rv;
1163 }
1164
1165 /*
1166 * Execute a TWE_OP_SET_PARAM command.
1167 *
1168 * NOTE: We assume we can sleep here to wait for a CCB to become available.
1169 */
1170 static int
1171 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
1172 void *sbuf)
1173 {
1174 struct twe_ccb *ccb;
1175 struct twe_cmd *tc;
1176 struct twe_param *tp;
1177 int rv, s;
1178
1179 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1180 if (tp == NULL)
1181 return ENOMEM;
1182
1183 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1184 KASSERT(ccb != NULL);
1185
1186 ccb->ccb_data = tp;
1187 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1188 ccb->ccb_tx.tx_handler = 0;
1189 ccb->ccb_tx.tx_context = tp;
1190 ccb->ccb_tx.tx_dv = sc->sc_dev;
1191
1192 tc = ccb->ccb_cmd;
1193 tc->tc_size = 2;
1194 tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
1195 tc->tc_unit = 0;
1196 tc->tc_count = htole16(1);
1197
1198 /* Fill in the outbound parameter data. */
1199 tp->tp_table_id = htole16(table_id);
1200 tp->tp_param_id = param_id;
1201 tp->tp_param_size = size;
1202 memcpy(tp->tp_data, sbuf, size);
1203
1204 /* Map the transfer. */
1205 if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1206 twe_ccb_free(sc, ccb);
1207 goto done;
1208 }
1209
1210 /* Submit the command and wait. */
1211 s = splbio();
1212 rv = twe_ccb_poll(sc, ccb, 5);
1213 twe_ccb_unmap(sc, ccb);
1214 twe_ccb_free(sc, ccb);
1215 splx(s);
1216 done:
1217 free(tp, M_DEVBUF);
1218 return (rv);
1219 }
1220
1221 /*
1222 * Execute a TWE_OP_INIT_CONNECTION command. Return non-zero on error.
1223 * Must be called with interrupts blocked.
1224 */
1225 static int
1226 twe_init_connection(struct twe_softc *sc)
1227 {
1228 struct twe_ccb *ccb;
1229 struct twe_cmd *tc;
1230 int rv;
1231
1232 if ((ccb = twe_ccb_alloc(sc, 0)) == NULL)
1233 return (EAGAIN);
1234
1235 /* Build the command. */
1236 tc = ccb->ccb_cmd;
1237 tc->tc_size = 3;
1238 tc->tc_opcode = TWE_OP_INIT_CONNECTION;
1239 tc->tc_unit = 0;
1240 tc->tc_count = htole16(TWE_MAX_CMDS);
1241 tc->tc_args.init_connection.response_queue_pointer = 0;
1242
1243 /* Submit the command for immediate execution. */
1244 rv = twe_ccb_poll(sc, ccb, 5);
1245 twe_ccb_free(sc, ccb);
1246 return (rv);
1247 }
1248
1249 /*
1250 * Poll the controller for completed commands. Must be called with
1251 * interrupts blocked.
1252 */
1253 static void
1254 twe_poll(struct twe_softc *sc)
1255 {
1256 struct twe_ccb *ccb;
1257 int found;
1258 u_int status, cmdid;
1259
1260 found = 0;
1261
1262 for (;;) {
1263 status = twe_inl(sc, TWE_REG_STS);
1264 twe_status_check(sc, status);
1265
1266 if ((status & TWE_STS_RESP_QUEUE_EMPTY))
1267 break;
1268
1269 found = 1;
1270 cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
1271 cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
1272 if (cmdid >= TWE_MAX_QUEUECNT) {
1273 aprint_error_dev(sc->sc_dev, "bad cmdid %d\n", cmdid);
1274 continue;
1275 }
1276
1277 ccb = sc->sc_ccbs + cmdid;
1278 if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
1279 printf("%s: CCB for cmdid %d not active\n",
1280 device_xname(sc->sc_dev), cmdid);
1281 continue;
1282 }
1283 ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
1284
1285 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1286 (char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
1287 sizeof(struct twe_cmd),
1288 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1289
1290 /* Pass notification to upper layers. */
1291 if (ccb->ccb_tx.tx_handler != NULL)
1292 (*ccb->ccb_tx.tx_handler)(ccb,
1293 ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
1294 }
1295
1296 /* If any commands have completed, run the software queue. */
1297 if (found)
1298 twe_ccb_enqueue(sc, NULL);
1299 }
1300
1301 /*
1302 * Wait for `status' to be set in the controller status register. Return
1303 * zero if found, non-zero if the operation timed out.
1304 */
1305 static int
1306 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
1307 {
1308
1309 for (timo *= 10; timo != 0; timo--) {
1310 if ((twe_inl(sc, TWE_REG_STS) & status) == status)
1311 break;
1312 delay(100000);
1313 }
1314
1315 return (timo == 0);
1316 }
1317
1318 /*
1319 * Clear a PCI parity error.
1320 */
1321 static void
1322 twe_clear_pci_parity_error(struct twe_softc *sc)
1323 {
1324 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PARITY_ERROR);
1325
1326 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
1327 }
1328
1329
1330 /*
1331 * Clear a PCI abort.
1332 */
1333 static void
1334 twe_clear_pci_abort(struct twe_softc *sc)
1335 {
1336 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT);
1337
1338 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
1339 }
1340
1341 /*
1342 * Complain if the status bits aren't what we expect.
1343 */
1344 static int
1345 twe_status_check(struct twe_softc *sc, u_int status)
1346 {
1347 int rv;
1348
1349 rv = 0;
1350
1351 if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
1352 aprint_error_dev(sc->sc_dev, "missing status bits: 0x%08x\n",
1353 status & ~TWE_STS_EXPECTED_BITS);
1354 rv = -1;
1355 }
1356
1357 if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
1358 aprint_error_dev(sc->sc_dev, "unexpected status bits: 0x%08x\n",
1359 status & TWE_STS_UNEXPECTED_BITS);
1360 rv = -1;
1361 if (status & TWE_STS_PCI_PARITY_ERROR) {
1362 aprint_error_dev(sc->sc_dev, "PCI parity error: Reseat card, move card "
1363 "or buggy device present.\n");
1364 twe_clear_pci_parity_error(sc);
1365 }
1366 if (status & TWE_STS_PCI_ABORT) {
1367 aprint_error_dev(sc->sc_dev, "PCI abort, clearing.\n");
1368 twe_clear_pci_abort(sc);
1369 }
1370 }
1371
1372 return (rv);
1373 }
1374
1375 /*
1376 * Allocate and initialise a CCB.
1377 */
1378 static inline void
1379 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags)
1380 {
1381 struct twe_cmd *tc;
1382
1383 ccb->ccb_tx.tx_handler = NULL;
1384 ccb->ccb_flags = flags;
1385 tc = ccb->ccb_cmd;
1386 tc->tc_status = 0;
1387 tc->tc_flags = 0;
1388 tc->tc_cmdid = ccb->ccb_cmdid;
1389 }
1390
1391 struct twe_ccb *
1392 twe_ccb_alloc(struct twe_softc *sc, int flags)
1393 {
1394 struct twe_ccb *ccb;
1395 int s;
1396
1397 s = splbio();
1398 if (__predict_false((flags & TWE_CCB_AEN) != 0)) {
1399 /* Use the reserved CCB. */
1400 ccb = sc->sc_ccbs;
1401 } else {
1402 /* Allocate a CCB and command block. */
1403 if (__predict_false((ccb =
1404 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1405 splx(s);
1406 return (NULL);
1407 }
1408 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1409 }
1410 #ifdef DIAGNOSTIC
1411 if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0)
1412 panic("twe_ccb_alloc: got reserved CCB for non-AEN");
1413 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1414 panic("twe_ccb_alloc: CCB %ld already allocated",
1415 (long)(ccb - sc->sc_ccbs));
1416 flags |= TWE_CCB_ALLOCED;
1417 #endif
1418 splx(s);
1419
1420 twe_ccb_init(sc, ccb, flags);
1421 return (ccb);
1422 }
1423
1424 struct twe_ccb *
1425 twe_ccb_alloc_wait(struct twe_softc *sc, int flags)
1426 {
1427 struct twe_ccb *ccb;
1428 int s;
1429
1430 KASSERT((flags & TWE_CCB_AEN) == 0);
1431
1432 s = splbio();
1433 while (__predict_false((ccb =
1434 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1435 sc->sc_flags |= TWEF_WAIT_CCB;
1436 (void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0);
1437 }
1438 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1439 #ifdef DIAGNOSTIC
1440 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1441 panic("twe_ccb_alloc_wait: CCB %ld already allocated",
1442 (long)(ccb - sc->sc_ccbs));
1443 flags |= TWE_CCB_ALLOCED;
1444 #endif
1445 splx(s);
1446
1447 twe_ccb_init(sc, ccb, flags);
1448 return (ccb);
1449 }
1450
1451 /*
1452 * Free a CCB.
1453 */
1454 void
1455 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
1456 {
1457 int s;
1458
1459 s = splbio();
1460 if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) {
1461 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
1462 if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) {
1463 sc->sc_flags &= ~TWEF_WAIT_CCB;
1464 wakeup(&sc->sc_ccb_freelist);
1465 }
1466 }
1467 ccb->ccb_flags = 0;
1468 splx(s);
1469 }
1470
1471 /*
1472 * Map the specified CCB's command block and data buffer (if any) into
1473 * controller visible space. Perform DMA synchronisation.
1474 */
1475 int
1476 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
1477 {
1478 struct twe_cmd *tc;
1479 int flags, nsegs, i, s, rv, rc;
1480 void *data;
1481
1482 /*
1483 * The data as a whole must be 512-byte aligned.
1484 */
1485 if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
1486 s = splvm();
1487 /* XXX */
1488 rc = uvm_km_kmem_alloc(kmem_va_arena,
1489 ccb->ccb_datasize, (VM_NOSLEEP | VM_INSTANTFIT),
1490 (vmem_addr_t *)&ccb->ccb_abuf);
1491 splx(s);
1492 data = (void *)ccb->ccb_abuf;
1493 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1494 memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
1495 } else {
1496 ccb->ccb_abuf = (vaddr_t)0;
1497 data = ccb->ccb_data;
1498 }
1499
1500 /*
1501 * Map the data buffer into bus space and build the S/G list.
1502 */
1503 rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
1504 ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1505 ((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
1506 BUS_DMA_READ : BUS_DMA_WRITE));
1507 if (rv != 0) {
1508 if (ccb->ccb_abuf != (vaddr_t)0) {
1509 s = splvm();
1510 /* XXX */
1511 uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf,
1512 ccb->ccb_datasize);
1513 splx(s);
1514 }
1515 return (rv);
1516 }
1517
1518 nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
1519 tc = ccb->ccb_cmd;
1520 tc->tc_size += 2 * nsegs;
1521
1522 /* The location of the S/G list is dependent upon command type. */
1523 switch (tc->tc_opcode >> 5) {
1524 case 2:
1525 for (i = 0; i < nsegs; i++) {
1526 tc->tc_args.param.sgl[i].tsg_address =
1527 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1528 tc->tc_args.param.sgl[i].tsg_length =
1529 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1530 }
1531 /* XXX Needed? */
1532 for (; i < TWE_SG_SIZE; i++) {
1533 tc->tc_args.param.sgl[i].tsg_address = 0;
1534 tc->tc_args.param.sgl[i].tsg_length = 0;
1535 }
1536 break;
1537 case 3:
1538 for (i = 0; i < nsegs; i++) {
1539 tc->tc_args.io.sgl[i].tsg_address =
1540 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1541 tc->tc_args.io.sgl[i].tsg_length =
1542 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1543 }
1544 /* XXX Needed? */
1545 for (; i < TWE_SG_SIZE; i++) {
1546 tc->tc_args.io.sgl[i].tsg_address = 0;
1547 tc->tc_args.io.sgl[i].tsg_length = 0;
1548 }
1549 break;
1550 default:
1551 /*
1552 * In all likelihood, this is a command passed from
1553 * management tools in userspace where no S/G list is
1554 * necessary because no data is being passed.
1555 */
1556 break;
1557 }
1558
1559 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1560 flags = BUS_DMASYNC_PREREAD;
1561 else
1562 flags = 0;
1563 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1564 flags |= BUS_DMASYNC_PREWRITE;
1565
1566 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1567 ccb->ccb_datasize, flags);
1568 return (0);
1569 }
1570
1571 /*
1572 * Unmap the specified CCB's command block and data buffer (if any) and
1573 * perform DMA synchronisation.
1574 */
1575 void
1576 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
1577 {
1578 int flags, s;
1579
1580 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1581 flags = BUS_DMASYNC_POSTREAD;
1582 else
1583 flags = 0;
1584 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1585 flags |= BUS_DMASYNC_POSTWRITE;
1586
1587 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1588 ccb->ccb_datasize, flags);
1589 bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
1590
1591 if (ccb->ccb_abuf != (vaddr_t)0) {
1592 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1593 memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
1594 ccb->ccb_datasize);
1595 s = splvm();
1596 /* XXX */
1597 uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf,
1598 ccb->ccb_datasize);
1599 splx(s);
1600 }
1601 }
1602
1603 /*
1604 * Submit a command to the controller and poll on completion. Return
1605 * non-zero on timeout (but don't check status, as some command types don't
1606 * return status). Must be called with interrupts blocked.
1607 */
1608 int
1609 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
1610 {
1611 int rv;
1612
1613 if ((rv = twe_ccb_submit(sc, ccb)) != 0)
1614 return (rv);
1615
1616 for (timo *= 1000; timo != 0; timo--) {
1617 twe_poll(sc);
1618 if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
1619 break;
1620 DELAY(100);
1621 }
1622
1623 return (timo == 0);
1624 }
1625
1626 /*
1627 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1628 * the order that they were enqueued and try to submit their command blocks
1629 * to the controller for execution.
1630 */
1631 void
1632 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
1633 {
1634 int s;
1635
1636 s = splbio();
1637
1638 if (ccb != NULL)
1639 SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
1640
1641 while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
1642 if (twe_ccb_submit(sc, ccb))
1643 break;
1644 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
1645 }
1646
1647 splx(s);
1648 }
1649
1650 /*
1651 * Submit the command block associated with the specified CCB to the
1652 * controller for execution. Must be called with interrupts blocked.
1653 */
1654 int
1655 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
1656 {
1657 bus_addr_t pa;
1658 int rv;
1659 u_int status;
1660
1661 /* Check to see if we can post a command. */
1662 status = twe_inl(sc, TWE_REG_STS);
1663 twe_status_check(sc, status);
1664
1665 if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
1666 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1667 (char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
1668 sizeof(struct twe_cmd),
1669 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1670 #ifdef DIAGNOSTIC
1671 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0)
1672 panic("%s: CCB %ld not ALLOCED\n",
1673 device_xname(sc->sc_dev), (long)(ccb - sc->sc_ccbs));
1674 #endif
1675 ccb->ccb_flags |= TWE_CCB_ACTIVE;
1676 pa = sc->sc_cmds_paddr +
1677 ccb->ccb_cmdid * sizeof(struct twe_cmd);
1678 twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
1679 rv = 0;
1680 } else
1681 rv = EBUSY;
1682
1683 return (rv);
1684 }
1685
1686
1687 /*
1688 * Accept an open operation on the control device.
1689 */
1690 static int
1691 tweopen(dev_t dev, int flag, int mode, struct lwp *l)
1692 {
1693 struct twe_softc *twe;
1694
1695 if ((twe = device_lookup_private(&twe_cd, minor(dev))) == NULL)
1696 return (ENXIO);
1697 if ((twe->sc_flags & TWEF_OPEN) != 0)
1698 return (EBUSY);
1699
1700 twe->sc_flags |= TWEF_OPEN;
1701 return (0);
1702 }
1703
1704 /*
1705 * Accept the last close on the control device.
1706 */
1707 static int
1708 tweclose(dev_t dev, int flag, int mode,
1709 struct lwp *l)
1710 {
1711 struct twe_softc *twe;
1712
1713 twe = device_lookup_private(&twe_cd, minor(dev));
1714 twe->sc_flags &= ~TWEF_OPEN;
1715 return (0);
1716 }
1717
1718 void
1719 twe_ccb_wait_handler(struct twe_ccb *ccb, int error)
1720 {
1721
1722 /* Just wake up the sleeper. */
1723 wakeup(ccb);
1724 }
1725
1726 /*
1727 * Handle control operations.
1728 */
1729 static int
1730 tweioctl(dev_t dev, u_long cmd, void *data, int flag,
1731 struct lwp *l)
1732 {
1733 struct twe_softc *twe;
1734 struct twe_ccb *ccb;
1735 struct twe_param *param;
1736 struct twe_usercommand *tu;
1737 struct twe_paramcommand *tp;
1738 struct twe_drivecommand *td;
1739 void *pdata = NULL;
1740 int s, error = 0;
1741 u_int8_t cmdid;
1742
1743 twe = device_lookup_private(&twe_cd, minor(dev));
1744 tu = (struct twe_usercommand *)data;
1745 tp = (struct twe_paramcommand *)data;
1746 td = (struct twe_drivecommand *)data;
1747
1748 /* This is intended to be compatible with the FreeBSD interface. */
1749 switch (cmd) {
1750 case TWEIO_COMMAND:
1751 error = kauth_authorize_device_passthru(l->l_cred, dev,
1752 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1753 if (error)
1754 return (error);
1755
1756 /* XXX mutex */
1757 if (tu->tu_size > 0) {
1758 /*
1759 * XXX Handle > TWE_SECTOR_SIZE? Let's see if
1760 * it's really necessary, first.
1761 */
1762 if (tu->tu_size > TWE_SECTOR_SIZE) {
1763 #ifdef TWE_DEBUG
1764 printf("%s: TWEIO_COMMAND: tu_size = %zu\n",
1765 device_xname(twe->sc_dev), tu->tu_size);
1766 #endif
1767 return EINVAL;
1768 }
1769 pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
1770 error = copyin(tu->tu_data, pdata, tu->tu_size);
1771 if (error != 0)
1772 goto done;
1773 ccb = twe_ccb_alloc_wait(twe,
1774 TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1775 KASSERT(ccb != NULL);
1776 ccb->ccb_data = pdata;
1777 ccb->ccb_datasize = TWE_SECTOR_SIZE;
1778 } else {
1779 ccb = twe_ccb_alloc_wait(twe, 0);
1780 KASSERT(ccb != NULL);
1781 }
1782
1783 ccb->ccb_tx.tx_handler = twe_ccb_wait_handler;
1784 ccb->ccb_tx.tx_context = NULL;
1785 ccb->ccb_tx.tx_dv = twe->sc_dev;
1786
1787 cmdid = ccb->ccb_cmdid;
1788 memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
1789 ccb->ccb_cmd->tc_cmdid = cmdid;
1790
1791 /* Map the transfer. */
1792 if ((error = twe_ccb_map(twe, ccb)) != 0) {
1793 twe_ccb_free(twe, ccb);
1794 goto done;
1795 }
1796
1797 /* Submit the command and wait up to 1 minute. */
1798 error = 0;
1799 twe_ccb_enqueue(twe, ccb);
1800 s = splbio();
1801 while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0)
1802 if ((error = tsleep(ccb, PRIBIO, "tweioctl",
1803 60 * hz)) != 0)
1804 break;
1805 splx(s);
1806
1807 /* Copy the command back to the ioctl argument. */
1808 memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd));
1809 #ifdef TWE_DEBUG
1810 printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, "
1811 "tc_status = 0x%02x\n", device_xname(twe->sc_dev),
1812 tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status);
1813 #endif
1814
1815 s = splbio();
1816 twe_ccb_free(twe, ccb);
1817 splx(s);
1818
1819 if (tu->tu_size > 0)
1820 error = copyout(pdata, tu->tu_data, tu->tu_size);
1821 goto done;
1822
1823 case TWEIO_STATS:
1824 return (ENOENT);
1825
1826 case TWEIO_AEN_POLL:
1827 s = splbio();
1828 *(u_int *)data = twe_aen_dequeue(twe);
1829 splx(s);
1830 return (0);
1831
1832 case TWEIO_AEN_WAIT:
1833 s = splbio();
1834 while ((*(u_int *)data =
1835 twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) {
1836 twe->sc_flags |= TWEF_AENQ_WAIT;
1837 error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH,
1838 "tweaen", 0);
1839 if (error == EINTR) {
1840 splx(s);
1841 return (error);
1842 }
1843 }
1844 splx(s);
1845 return (0);
1846
1847 case TWEIO_GET_PARAM:
1848 error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
1849 tp->tp_size, 0, ¶m);
1850 if (error != 0)
1851 return (error);
1852 if (param->tp_param_size > tp->tp_size) {
1853 error = EFAULT;
1854 goto done;
1855 }
1856 error = copyout(param->tp_data, tp->tp_data,
1857 param->tp_param_size);
1858 free(param, M_DEVBUF);
1859 goto done;
1860
1861 case TWEIO_SET_PARAM:
1862 pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
1863 if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
1864 goto done;
1865 error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
1866 tp->tp_size, pdata);
1867 goto done;
1868
1869 case TWEIO_RESET:
1870 s = splbio();
1871 twe_reset(twe);
1872 splx(s);
1873 return (0);
1874
1875 case TWEIO_ADD_UNIT:
1876 /* XXX mutex */
1877 return (twe_add_unit(twe, td->td_unit));
1878
1879 case TWEIO_DEL_UNIT:
1880 /* XXX mutex */
1881 return (twe_del_unit(twe, td->td_unit));
1882
1883 default:
1884 return EINVAL;
1885 }
1886 done:
1887 if (pdata)
1888 free(pdata, M_DEVBUF);
1889 return error;
1890 }
1891
1892 const struct cdevsw twe_cdevsw = {
1893 tweopen, tweclose, noread, nowrite, tweioctl,
1894 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1895 };
1896
1897 /*
1898 * Print some information about the controller
1899 */
1900 static void
1901 twe_describe_controller(struct twe_softc *sc)
1902 {
1903 struct twe_param *p[6];
1904 int i, rv = 0;
1905 uint32_t dsize;
1906 uint8_t ports;
1907
1908 ports = 0;
1909
1910 /* get the port count */
1911 rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
1912 TWE_PARAM_CONTROLLER_PortCount, &ports);
1913
1914 /* get version strings */
1915 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
1916 16, NULL, &p[0]);
1917 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
1918 16, NULL, &p[1]);
1919 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
1920 16, NULL, &p[2]);
1921 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
1922 8, NULL, &p[3]);
1923 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
1924 8, NULL, &p[4]);
1925 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
1926 8, NULL, &p[5]);
1927
1928 if (rv) {
1929 /* some error occurred */
1930 aprint_error_dev(sc->sc_dev, "failed to fetch version information\n");
1931 return;
1932 }
1933
1934 aprint_normal_dev(sc->sc_dev, "%d ports, Firmware %.16s, BIOS %.16s\n",
1935 ports, p[1]->tp_data, p[2]->tp_data);
1936
1937 aprint_verbose_dev(sc->sc_dev, "Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
1938 p[0]->tp_data, p[3]->tp_data,
1939 p[4]->tp_data, p[5]->tp_data);
1940
1941 free(p[0], M_DEVBUF);
1942 free(p[1], M_DEVBUF);
1943 free(p[2], M_DEVBUF);
1944 free(p[3], M_DEVBUF);
1945 free(p[4], M_DEVBUF);
1946 free(p[5], M_DEVBUF);
1947
1948 rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY,
1949 TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]);
1950 if (rv) {
1951 aprint_error_dev(sc->sc_dev, "failed to get drive status summary\n");
1952 return;
1953 }
1954 for (i = 0; i < ports; i++) {
1955 if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present)
1956 continue;
1957 rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i,
1958 TWE_PARAM_DRIVEINFO_Size, &dsize);
1959 if (rv) {
1960 aprint_error_dev(sc->sc_dev,
1961 "unable to get drive size for port %d\n", i);
1962 continue;
1963 }
1964 rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i,
1965 TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]);
1966 if (rv) {
1967 aprint_error_dev(sc->sc_dev,
1968 "unable to get drive model for port %d\n", i);
1969 continue;
1970 }
1971 aprint_verbose_dev(sc->sc_dev, "port %d: %.40s %d MB\n",
1972 i, p[1]->tp_data, dsize / 2048);
1973 free(p[1], M_DEVBUF);
1974 }
1975 free(p[0], M_DEVBUF);
1976 }
1977