ubsec.c revision 1.1 1 /* $NetBSD: ubsec.c,v 1.1 2003/08/01 00:08:55 jonathan Exp $ */
2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
3 /* $OpenBSD: ubsec.c,v 1.127 2003/06/04 14:04:58 jason Exp $ */
4
5 /*
6 * Copyright (c) 2000 Jason L. Wright (jason (at) thought.net)
7 * Copyright (c) 2000 Theo de Raadt (deraadt (at) openbsd.org)
8 * Copyright (c) 2001 Patrik Lindergren (patrik (at) ipunplugged.com)
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Effort sponsored in part by the Defense Advanced Research Projects
32 * Agency (DARPA) and Air Force Research Laboratory, Air Force
33 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
34 *
35 */
36
37 #undef UBSEC_DEBUG
38
39 /*
40 * uBsec 5[56]01, bcm580xx, bcm582x hardware crypto accelerator
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/proc.h>
46 #include <sys/endian.h>
47 #ifdef __NetBSD__
48 #define letoh16 htole16
49 #define letoh32 htole32
50 #define UBSEC_NO_RNG /* until statistically tested */
51 #endif
52 #include <sys/errno.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/mbuf.h>
56 #include <sys/device.h>
57 #include <sys/queue.h>
58
59 #include <uvm/uvm_extern.h>
60
61 #include <opencrypto/cryptodev.h>
62 #include <opencrypto/cryptosoft.h>
63 #ifdef __OpenBSD__
64 #include <dev/rndvar.h>
65 #include <sys/md5k.h>
66 #else
67 #include <sys/rnd.h>
68 #include <sys/md5.h>
69 #endif
70 #include <sys/sha1.h>
71
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcidevs.h>
75
76 #include <dev/pci/ubsecreg.h>
77 #include <dev/pci/ubsecvar.h>
78
79 /*
80 * Prototypes and count for the pci_device structure
81 */
82 static int ubsec_probe(struct device *, struct cfdata *, void *);
83 static void ubsec_attach(struct device *, struct device *, void *);
84 static void ubsec_reset_board(struct ubsec_softc *);
85 static void ubsec_init_board(struct ubsec_softc *);
86 static void ubsec_init_pciregs(struct pci_attach_args *pa);
87 static void ubsec_cleanchip(struct ubsec_softc *);
88 static void ubsec_totalreset(struct ubsec_softc *);
89 static int ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
90
91 #ifdef __OpenBSD__
92 struct cfattach ubsec_ca = {
93 sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
94 };
95
96 struct cfdriver ubsec_cd = {
97 0, "ubsec", DV_DULL
98 };
99 #else
100 CFATTACH_DECL(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
101 NULL, NULL);
102 extern struct cfdriver ubsec_cd;
103 #endif
104
105 /* patchable */
106 #ifdef UBSEC_DEBUG
107 extern int ubsec_debug;
108 int ubsec_debug=1;
109 #endif
110
111 static int ubsec_intr(void *);
112 static int ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
113 static int ubsec_freesession(void*, u_int64_t);
114 static int ubsec_process(void*, struct cryptop *, int hint);
115 static void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
116 static void ubsec_feed(struct ubsec_softc *);
117 static void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
118 static void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
119 static void ubsec_feed2(struct ubsec_softc *);
120 #ifndef UBSEC_NO_RNG
121 static void ubsec_rng(void *);
122 #endif /* UBSEC_NO_RNG */
123 static int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
124 struct ubsec_dma_alloc *, int);
125 static void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
126 static int ubsec_dmamap_aligned(bus_dmamap_t);
127
128 #ifdef __OpenBSD__
129 struct ubsec_softc *ubsec_kfind(struct cryptkop *);
130 #endif
131
132 static int ubsec_kprocess(void*, struct cryptkop *, int);
133 static int ubsec_kprocess_modexp_sw(struct ubsec_softc *,
134 struct cryptkop *, int);
135 static int ubsec_kprocess_modexp_hw(struct ubsec_softc *,
136 struct cryptkop *, int);
137 static int ubsec_kprocess_rsapriv(struct ubsec_softc *,
138 struct cryptkop *, int);
139 static void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
140 static int ubsec_ksigbits(struct crparam *);
141 static void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
142 static void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
143
144 #ifdef UBSEC_DEBUG
145 static void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
146 static void ubsec_dump_mcr(struct ubsec_mcr *);
147 static void ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
148 #endif
149
150 #define READ_REG(sc,r) \
151 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
152
153 #define WRITE_REG(sc,reg,val) \
154 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
155
156 #define SWAP32(x) (x) = htole32(ntohl((x)))
157 #ifndef HTOLE32
158 #define HTOLE32(x) (x) = htole32(x)
159 #endif
160
161 struct ubsec_stats ubsecstats;
162
163 /*
164 * ubsec_maxbatch controls the number of crypto ops to voluntarily
165 * collect into one submission to the hardware. This batching happens
166 * when ops are dispatched from the crypto subsystem with a hint that
167 * more are to follow immediately. These ops must also not be marked
168 * with a ``no delay'' flag.
169 */
170 static int ubsec_maxbatch = 1;
171 #ifdef SYSCTL_INT
172 SYSCTL_INT(_kern, OID_AUTO, ubsec_maxbatch, CTLFLAG_RW, &ubsec_maxbatch,
173 0, "Broadcom driver: max ops to batch w/o interrupt");
174 #endif
175
176 /*
177 * ubsec_maxaggr controls the number of crypto ops to submit to the
178 * hardware as a unit. This aggregation reduces the number of interrupts
179 * to the host at the expense of increased latency (for all but the last
180 * operation). For network traffic setting this to one yields the highest
181 * performance but at the expense of more interrupt processing.
182 */
183 static int ubsec_maxaggr = 1;
184 #ifdef SYSCTL_INT
185 SYSCTL_INT(_kern, OID_AUTO, ubsec_maxaggr, CTLFLAG_RW, &ubsec_maxaggr,
186 0, "Broadcom driver: max ops to aggregate under one interrupt");
187 #endif
188
189 static int
190 ubsec_probe(parent, match, aux)
191 struct device *parent;
192 struct cfdata *match;
193 void *aux;
194 {
195 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
196
197 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BLUESTEEL &&
198 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BLUESTEEL_5501 ||
199 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BLUESTEEL_5601))
200 return (1);
201 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
202 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5801 ||
203 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5802 ||
204 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5805 ||
205 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5820 ||
206 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5821 ||
207 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5822 ||
208 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5823))
209 return (1);
210
211 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
212 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_SCA1K ||
213 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_5821))
214 return (1);
215
216 return (0);
217 }
218
219 void
220 ubsec_attach(parent, self, aux)
221 struct device *parent, *self;
222 void *aux;
223 {
224 struct ubsec_softc *sc = (struct ubsec_softc *)self;
225 struct pci_attach_args *pa = aux;
226 pci_chipset_tag_t pc = pa->pa_pc;
227 pci_intr_handle_t ih;
228 const char *intrstr = NULL;
229 struct ubsec_dma *dmap;
230 bus_size_t iosize;
231 int mapreg;
232 u_int32_t cmd, i;
233
234 SIMPLEQ_INIT(&sc->sc_queue);
235 SIMPLEQ_INIT(&sc->sc_qchip);
236 SIMPLEQ_INIT(&sc->sc_queue2);
237 SIMPLEQ_INIT(&sc->sc_qchip2);
238 SIMPLEQ_INIT(&sc->sc_q2free);
239
240 sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
241
242 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BLUESTEEL &&
243 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BLUESTEEL_5601)
244 sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
245
246 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
247 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5802 ||
248 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5805))
249 sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
250
251 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
252 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5820 ||
253 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5822))
254 sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
255 UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
256
257 if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
258 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5821 ||
259 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5822 ||
260 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5823)) ||
261 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
262 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_SCA1K ||
263 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_5821))) {
264 /* NB: the 5821/5822 defines some additional status bits */
265 sc->sc_statmask |= BS_STAT_MCR1_ALLEMPTY |
266 BS_STAT_MCR2_ALLEMPTY;
267 sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
268 UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
269 }
270
271 cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
272 cmd |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
273 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
274 cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
275
276 if (!(cmd & PCI_COMMAND_MEM_ENABLE)) {
277 printf(": failed to enable memory mapping\n");
278 return;
279 }
280
281 if (!(cmd & PCI_COMMAND_MASTER_ENABLE)) {
282 printf(": failed to enable bus mastering\n");
283 return;
284 }
285
286 #ifdef __OpenBSD__
287 mapreg= pci_mapreg_map(pa, BS_BAR, PCI_MAPREG_TYPE_MEM, 0,
288 &sc->sc_st, &sc->sc_sh, NULL, &iosize, 0);
289 #else
290 mapreg= pci_mapreg_map(pa, BS_BAR, PCI_MAPREG_TYPE_MEM, 0,
291 &sc->sc_st, &sc->sc_sh, &iosize, 0);
292 #endif
293
294 if (mapreg) {
295 printf(": can't find mem space\n");
296 return;
297 }
298 sc->sc_dmat = pa->pa_dmat;
299
300 if (pci_intr_map(pa, &ih)) {
301 printf(": couldn't map interrupt\n");
302 bus_space_unmap(sc->sc_st, sc->sc_sh, iosize);
303 return;
304 }
305 intrstr = pci_intr_string(pc, ih);
306 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc
307 /*, self->dv_xname*/);
308 if (sc->sc_ih == NULL) {
309 printf(": couldn't establish interrupt");
310 if (intrstr != NULL)
311 printf(" at %s", intrstr);
312 printf("\n");
313 bus_space_unmap(sc->sc_st, sc->sc_sh, iosize);
314 return;
315 }
316
317 sc->sc_cid = crypto_get_driverid(0);
318 if (sc->sc_cid < 0) {
319 pci_intr_disestablish(pc, sc->sc_ih);
320 bus_space_unmap(sc->sc_st, sc->sc_sh, iosize);
321 return;
322 }
323
324 SIMPLEQ_INIT(&sc->sc_freequeue);
325 dmap = sc->sc_dmaa;
326 for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
327 struct ubsec_q *q;
328
329 q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
330 M_DEVBUF, M_NOWAIT);
331 if (q == NULL) {
332 printf(": can't allocate queue buffers\n");
333 break;
334 }
335
336 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
337 &dmap->d_alloc, 0)) {
338 printf(": can't allocate dma buffers\n");
339 free(q, M_DEVBUF);
340 break;
341 }
342 dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
343
344 q->q_dma = dmap;
345 sc->sc_queuea[i] = q;
346
347 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
348 }
349
350 crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
351 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
352 crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
353 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
354 crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0,
355 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
356 crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0,
357 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
358
359 /*
360 * Reset Broadcom chip
361 */
362 ubsec_reset_board(sc);
363
364 /*
365 * Init Broadcom specific PCI settings
366 */
367 ubsec_init_pciregs(pa);
368
369 /*
370 * Init Broadcom chip
371 */
372 ubsec_init_board(sc);
373
374 printf(": %s", intrstr);
375
376 #ifndef UBSEC_NO_RNG
377 if (sc->sc_flags & UBS_FLAGS_RNG) {
378 sc->sc_statmask |= BS_STAT_MCR2_DONE;
379
380 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
381 &sc->sc_rng.rng_q.q_mcr, 0))
382 goto skip_rng;
383
384 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
385 &sc->sc_rng.rng_q.q_ctx, 0)) {
386 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
387 goto skip_rng;
388 }
389
390 if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
391 UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
392 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
393 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
394 goto skip_rng;
395 }
396
397 if (hz >= 100)
398 sc->sc_rnghz = hz / 100;
399 else
400 sc->sc_rnghz = 1;
401 #ifdef __OpenBSD__
402 timeout_set(&sc->sc_rngto, ubsec_rng, sc);
403 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
404 #else
405 callout_init(&sc->sc_rngto);
406 callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
407 #endif
408 printf(", rng");
409 skip_rng:
410 ;
411 }
412 #endif /* UBSEC_NO_RNG */
413
414 if (sc->sc_flags & UBS_FLAGS_KEY) {
415 sc->sc_statmask |= BS_STAT_MCR2_DONE;
416
417 crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
418 ubsec_kprocess, sc);
419 #if 0
420 crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
421 ubsec_kprocess, sc);
422 #endif
423 }
424
425 printf("\n");
426 }
427
428 /*
429 * UBSEC Interrupt routine
430 */
431 int
432 ubsec_intr(void *arg)
433 {
434 struct ubsec_softc *sc = arg;
435 volatile u_int32_t stat;
436 struct ubsec_q *q;
437 struct ubsec_dma *dmap;
438 int npkts = 0, i;
439
440 stat = READ_REG(sc, BS_STAT);
441 stat &= sc->sc_statmask;
442 if (stat == 0) {
443 return (0);
444 }
445
446 WRITE_REG(sc, BS_STAT, stat); /* IACK */
447
448 /*
449 * Check to see if we have any packets waiting for us
450 */
451 if ((stat & BS_STAT_MCR1_DONE)) {
452 while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
453 q = SIMPLEQ_FIRST(&sc->sc_qchip);
454 dmap = q->q_dma;
455
456 if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
457 break;
458
459 q = SIMPLEQ_FIRST(&sc->sc_qchip);
460 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
461
462 npkts = q->q_nstacked_mcrs;
463 sc->sc_nqchip -= 1+npkts;
464 /*
465 * search for further sc_qchip ubsec_q's that share
466 * the same MCR, and complete them too, they must be
467 * at the top.
468 */
469 for (i = 0; i < npkts; i++) {
470 if(q->q_stacked_mcr[i])
471 ubsec_callback(sc, q->q_stacked_mcr[i]);
472 else
473 break;
474 }
475 ubsec_callback(sc, q);
476 }
477
478 /*
479 * Don't send any more packet to chip if there has been
480 * a DMAERR.
481 */
482 if (!(stat & BS_STAT_DMAERR))
483 ubsec_feed(sc);
484 }
485
486 /*
487 * Check to see if we have any key setups/rng's waiting for us
488 */
489 if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
490 (stat & BS_STAT_MCR2_DONE)) {
491 struct ubsec_q2 *q2;
492 struct ubsec_mcr *mcr;
493
494 while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
495 q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
496
497 bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
498 0, q2->q_mcr.dma_map->dm_mapsize,
499 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
500
501 mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
502 if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
503 bus_dmamap_sync(sc->sc_dmat,
504 q2->q_mcr.dma_map, 0,
505 q2->q_mcr.dma_map->dm_mapsize,
506 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
507 break;
508 }
509 q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
510 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
511 ubsec_callback2(sc, q2);
512 /*
513 * Don't send any more packet to chip if there has been
514 * a DMAERR.
515 */
516 if (!(stat & BS_STAT_DMAERR))
517 ubsec_feed2(sc);
518 }
519 }
520
521 /*
522 * Check to see if we got any DMA Error
523 */
524 if (stat & BS_STAT_DMAERR) {
525 #ifdef UBSEC_DEBUG
526 if (ubsec_debug) {
527 volatile u_int32_t a = READ_REG(sc, BS_ERR);
528
529 printf("%s: dmaerr %s@%08x\n", sc->sc_dv.dv_xname,
530 (a & BS_ERR_READ) ? "read" : "write",
531 a & BS_ERR_ADDR);
532 }
533 #endif /* UBSEC_DEBUG */
534 ubsecstats.hst_dmaerr++;
535 ubsec_totalreset(sc);
536 ubsec_feed(sc);
537 }
538
539 if (sc->sc_needwakeup) { /* XXX check high watermark */
540 int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
541 #ifdef UBSEC_DEBUG
542 if (ubsec_debug)
543 printf("%s: wakeup crypto (%x)\n", sc->sc_dv.dv_xname,
544 sc->sc_needwakeup);
545 #endif /* UBSEC_DEBUG */
546 sc->sc_needwakeup &= ~wakeup;
547 crypto_unblock(sc->sc_cid, wakeup);
548 }
549 return (1);
550 }
551
552 /*
553 * ubsec_feed() - aggregate and post requests to chip
554 * OpenBSD comments:
555 * It is assumed that the caller set splnet()
556 */
557 static void
558 ubsec_feed(struct ubsec_softc *sc)
559 {
560 struct ubsec_q *q, *q2;
561 int npkts, i;
562 void *v;
563 u_int32_t stat;
564 #ifdef UBSEC_DEBUG
565 static int max;
566 #endif /* UBSEC_DEBUG */
567
568 npkts = sc->sc_nqueue;
569 if (npkts > ubsecstats.hst_maxqueue)
570 ubsecstats.hst_maxqueue = npkts;
571 if (npkts < 2)
572 goto feed1;
573
574 /*
575 * Decide how many ops to combine in a single MCR. We cannot
576 * aggregate more than UBS_MAX_AGGR because this is the number
577 * of slots defined in the data structure. Otherwise we clamp
578 * based on the tunable parameter ubsec_maxaggr. Note that
579 * aggregation can happen in two ways: either by batching ops
580 * from above or because the h/w backs up and throttles us.
581 * Aggregating ops reduces the number of interrupts to the host
582 * but also (potentially) increases the latency for processing
583 * completed ops as we only get an interrupt when all aggregated
584 * ops have completed.
585 */
586 if (npkts > UBS_MAX_AGGR)
587 npkts = UBS_MAX_AGGR;
588 if (npkts > ubsec_maxaggr)
589 npkts = ubsec_maxaggr;
590 if (npkts > ubsecstats.hst_maxbatch)
591 ubsecstats.hst_maxbatch = npkts;
592 if (npkts < 2)
593 goto feed1;
594 ubsecstats.hst_totbatch += npkts-1;
595
596 if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
597 if (stat & BS_STAT_DMAERR) {
598 ubsec_totalreset(sc);
599 ubsecstats.hst_dmaerr++;
600 } else {
601 ubsecstats.hst_mcr1full++;
602 }
603 return;
604 }
605
606 #ifdef UBSEC_DEBUG
607 if (ubsec_debug)
608 printf("merging %d records\n", npkts);
609 /* XXX temporary aggregation statistics reporting code */
610 if (max < npkts) {
611 max = npkts;
612 printf("%s: new max aggregate %d\n", sc->sc_dv.dv_xname, max);
613 }
614 #endif /* UBSEC_DEBUG */
615
616 q = SIMPLEQ_FIRST(&sc->sc_queue);
617 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
618 --sc->sc_nqueue;
619
620 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
621 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
622 if (q->q_dst_map != NULL)
623 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
624 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
625
626 q->q_nstacked_mcrs = npkts - 1; /* Number of packets stacked */
627
628 for (i = 0; i < q->q_nstacked_mcrs; i++) {
629 q2 = SIMPLEQ_FIRST(&sc->sc_queue);
630 bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
631 0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
632 if (q2->q_dst_map != NULL)
633 bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
634 0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
635 q2= SIMPLEQ_FIRST(&sc->sc_queue);
636 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
637 --sc->sc_nqueue;
638
639 v = ((void *)&q2->q_dma->d_dma->d_mcr);
640 v = (char*)v + (sizeof(struct ubsec_mcr) -
641 sizeof(struct ubsec_mcr_add));
642 bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
643 q->q_stacked_mcr[i] = q2;
644 }
645 q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
646 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
647 sc->sc_nqchip += npkts;
648 if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
649 ubsecstats.hst_maxqchip = sc->sc_nqchip;
650 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
651 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
652 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
653 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
654 offsetof(struct ubsec_dmachunk, d_mcr));
655 return;
656
657 feed1:
658 while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
659 if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
660 if (stat & BS_STAT_DMAERR) {
661 ubsec_totalreset(sc);
662 ubsecstats.hst_dmaerr++;
663 } else {
664 ubsecstats.hst_mcr1full++;
665 }
666 break;
667 }
668
669 q = SIMPLEQ_FIRST(&sc->sc_queue);
670
671 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
672 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
673 if (q->q_dst_map != NULL)
674 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
675 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
676 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
677 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
678 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
679
680 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
681 offsetof(struct ubsec_dmachunk, d_mcr));
682 #ifdef UBSEC_DEBUG
683 if (ubsec_debug)
684 printf("feed: q->chip %p %08x stat %08x\n",
685 q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
686 stat);
687 #endif /* UBSEC_DEBUG */
688 q = SIMPLEQ_FIRST(&sc->sc_queue);
689 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
690 --sc->sc_nqueue;
691 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
692 sc->sc_nqchip++;
693 }
694 if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
695 ubsecstats.hst_maxqchip = sc->sc_nqchip;
696 }
697
698 /*
699 * Allocate a new 'session' and return an encoded session id. 'sidp'
700 * contains our registration id, and should contain an encoded session
701 * id on successful allocation.
702 */
703 static int
704 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
705 {
706 struct cryptoini *c, *encini = NULL, *macini = NULL;
707 struct ubsec_softc *sc;
708 struct ubsec_session *ses = NULL;
709 MD5_CTX md5ctx;
710 SHA1_CTX sha1ctx;
711 int i, sesn;
712
713 if (sidp == NULL || cri == NULL || sc == NULL)
714 return (EINVAL);
715
716 #ifdef __OpenBSD__
717 for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
718 sc = ubsec_cd.cd_devs[i];
719 if (sc == NULL || sc->sc_cid == (*sidp))
720 break;
721 }
722 if (sc == NULL)
723 return (EINVAL);
724 #else
725 sc = arg;
726 KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
727 #endif /* __OpenBSD__ */
728
729 for (c = cri; c != NULL; c = c->cri_next) {
730 if (c->cri_alg == CRYPTO_MD5_HMAC ||
731 c->cri_alg == CRYPTO_SHA1_HMAC) {
732 if (macini)
733 return (EINVAL);
734 macini = c;
735 } else if (c->cri_alg == CRYPTO_DES_CBC ||
736 c->cri_alg == CRYPTO_3DES_CBC) {
737 if (encini)
738 return (EINVAL);
739 encini = c;
740 } else
741 return (EINVAL);
742 }
743 if (encini == NULL && macini == NULL)
744 return (EINVAL);
745
746 if (sc->sc_sessions == NULL) {
747 ses = sc->sc_sessions = (struct ubsec_session *)malloc(
748 sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
749 if (ses == NULL)
750 return (ENOMEM);
751 sesn = 0;
752 sc->sc_nsessions = 1;
753 } else {
754 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
755 if (sc->sc_sessions[sesn].ses_used == 0) {
756 ses = &sc->sc_sessions[sesn];
757 break;
758 }
759 }
760
761 if (ses == NULL) {
762 sesn = sc->sc_nsessions;
763 ses = (struct ubsec_session *)malloc((sesn + 1) *
764 sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
765 if (ses == NULL)
766 return (ENOMEM);
767 bcopy(sc->sc_sessions, ses, sesn *
768 sizeof(struct ubsec_session));
769 bzero(sc->sc_sessions, sesn *
770 sizeof(struct ubsec_session));
771 free(sc->sc_sessions, M_DEVBUF);
772 sc->sc_sessions = ses;
773 ses = &sc->sc_sessions[sesn];
774 sc->sc_nsessions++;
775 }
776 }
777
778 bzero(ses, sizeof(struct ubsec_session));
779 ses->ses_used = 1;
780 if (encini) {
781 /* get an IV, network byte order */
782 #ifdef __NetBSD__
783 rnd_extract_data(ses->ses_iv,
784 sizeof(ses->ses_iv), RND_EXTRACT_ANY);
785 #else
786 get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv));
787 #endif
788
789 /* Go ahead and compute key in ubsec's byte order */
790 if (encini->cri_alg == CRYPTO_DES_CBC) {
791 bcopy(encini->cri_key, &ses->ses_deskey[0], 8);
792 bcopy(encini->cri_key, &ses->ses_deskey[2], 8);
793 bcopy(encini->cri_key, &ses->ses_deskey[4], 8);
794 } else
795 bcopy(encini->cri_key, ses->ses_deskey, 24);
796
797 SWAP32(ses->ses_deskey[0]);
798 SWAP32(ses->ses_deskey[1]);
799 SWAP32(ses->ses_deskey[2]);
800 SWAP32(ses->ses_deskey[3]);
801 SWAP32(ses->ses_deskey[4]);
802 SWAP32(ses->ses_deskey[5]);
803 }
804
805 if (macini) {
806 for (i = 0; i < macini->cri_klen / 8; i++)
807 macini->cri_key[i] ^= HMAC_IPAD_VAL;
808
809 if (macini->cri_alg == CRYPTO_MD5_HMAC) {
810 MD5Init(&md5ctx);
811 MD5Update(&md5ctx, macini->cri_key,
812 macini->cri_klen / 8);
813 MD5Update(&md5ctx, hmac_ipad_buffer,
814 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
815 bcopy(md5ctx.state, ses->ses_hminner,
816 sizeof(md5ctx.state));
817 } else {
818 SHA1Init(&sha1ctx);
819 SHA1Update(&sha1ctx, macini->cri_key,
820 macini->cri_klen / 8);
821 SHA1Update(&sha1ctx, hmac_ipad_buffer,
822 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
823 bcopy(sha1ctx.state, ses->ses_hminner,
824 sizeof(sha1ctx.state));
825 }
826
827 for (i = 0; i < macini->cri_klen / 8; i++)
828 macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
829
830 if (macini->cri_alg == CRYPTO_MD5_HMAC) {
831 MD5Init(&md5ctx);
832 MD5Update(&md5ctx, macini->cri_key,
833 macini->cri_klen / 8);
834 MD5Update(&md5ctx, hmac_opad_buffer,
835 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
836 bcopy(md5ctx.state, ses->ses_hmouter,
837 sizeof(md5ctx.state));
838 } else {
839 SHA1Init(&sha1ctx);
840 SHA1Update(&sha1ctx, macini->cri_key,
841 macini->cri_klen / 8);
842 SHA1Update(&sha1ctx, hmac_opad_buffer,
843 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
844 bcopy(sha1ctx.state, ses->ses_hmouter,
845 sizeof(sha1ctx.state));
846 }
847
848 for (i = 0; i < macini->cri_klen / 8; i++)
849 macini->cri_key[i] ^= HMAC_OPAD_VAL;
850 }
851
852 *sidp = UBSEC_SID(sc->sc_dv.dv_unit, sesn);
853 return (0);
854 }
855
856 /*
857 * Deallocate a session.
858 */
859 static int
860 ubsec_freesession(void *arg, u_int64_t tid)
861 {
862 struct ubsec_softc *sc;
863 int session;
864 u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
865
866 #ifdef __OpenBSD__
867 int card;
868
869 card = UBSEC_CARD(sid);
870 if (card >= ubsec_cd.cd_ndevs || ubsec_cd.cd_devs[card] == NULL)
871 return (EINVAL);
872 sc = ubsec_cd.cd_devs[card];
873 #else
874 sc = arg;
875 KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
876 #endif
877
878 session = UBSEC_SESSION(sid);
879 if (session >= sc->sc_nsessions)
880 return (EINVAL);
881
882 bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
883 return (0);
884 }
885
886 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
887 static void
888 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
889 {
890 struct ubsec_operand *op = arg;
891
892 KASSERT(nsegs <= UBS_MAX_SCATTER
893 /*, ("Too many DMA segments returned when mapping operand")*/);
894 #ifdef UBSEC_DEBUG
895 if (ubsec_debug)
896 printf("ubsec_op_cb: mapsize %u nsegs %d\n",
897 (u_int) mapsize, nsegs);
898 #endif
899 op->mapsize = mapsize;
900 op->nsegs = nsegs;
901 bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
902 }
903 #endif
904
905 static int
906 ubsec_process(void *arg, struct cryptop *crp, int hint)
907 {
908 struct ubsec_q *q = NULL;
909 #ifdef __OpenBSD__
910 int card;
911 #endif
912 int err = 0, i, j, s, nicealign;
913 struct ubsec_softc *sc;
914 struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
915 int encoffset = 0, macoffset = 0, cpskip, cpoffset;
916 int sskip, dskip, stheend, dtheend;
917 int16_t coffset;
918 struct ubsec_session *ses;
919 struct ubsec_pktctx ctx;
920 struct ubsec_dma *dmap = NULL;
921
922 if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
923 ubsecstats.hst_invalid++;
924 return (EINVAL);
925 }
926 if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
927 ubsecstats.hst_badsession++;
928 return (EINVAL);
929 }
930 #ifdef __OpenBSD__
931 card = UBSEC_CARD(crp->crp_sid);
932 if (card >= ubsec_cd.cd_ndevs || ubsec_cd.cd_devs[card] == NULL) {
933 ubsecstats.hst_invalid++;
934 return (EINVAL);
935 }
936 sc = ubsec_cd.cd_devs[card];
937 #else
938 sc = arg;
939 KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/);
940 #endif
941
942
943
944 s = splnet();
945
946 if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
947 ubsecstats.hst_queuefull++;
948 sc->sc_needwakeup |= CRYPTO_SYMQ;
949 splx(s);
950 return(ERESTART);
951 }
952
953 q = SIMPLEQ_FIRST(&sc->sc_freequeue);
954 SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
955 splx(s);
956
957 dmap = q->q_dma; /* Save dma pointer */
958 bzero(q, sizeof(struct ubsec_q));
959 bzero(&ctx, sizeof(ctx));
960
961 q->q_sesn = UBSEC_SESSION(crp->crp_sid);
962 q->q_dma = dmap;
963 ses = &sc->sc_sessions[q->q_sesn];
964
965 if (crp->crp_flags & CRYPTO_F_IMBUF) {
966 q->q_src_m = (struct mbuf *)crp->crp_buf;
967 q->q_dst_m = (struct mbuf *)crp->crp_buf;
968 } else if (crp->crp_flags & CRYPTO_F_IOV) {
969 q->q_src_io = (struct uio *)crp->crp_buf;
970 q->q_dst_io = (struct uio *)crp->crp_buf;
971 } else {
972 ubsecstats.hst_badflags++;
973 err = EINVAL;
974 goto errout; /* XXX we don't handle contiguous blocks! */
975 }
976
977 bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
978
979 dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
980 dmap->d_dma->d_mcr.mcr_flags = 0;
981 q->q_crp = crp;
982
983 crd1 = crp->crp_desc;
984 if (crd1 == NULL) {
985 ubsecstats.hst_nodesc++;
986 err = EINVAL;
987 goto errout;
988 }
989 crd2 = crd1->crd_next;
990
991 if (crd2 == NULL) {
992 if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
993 crd1->crd_alg == CRYPTO_SHA1_HMAC) {
994 maccrd = crd1;
995 enccrd = NULL;
996 } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
997 crd1->crd_alg == CRYPTO_3DES_CBC) {
998 maccrd = NULL;
999 enccrd = crd1;
1000 } else {
1001 ubsecstats.hst_badalg++;
1002 err = EINVAL;
1003 goto errout;
1004 }
1005 } else {
1006 if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1007 crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1008 (crd2->crd_alg == CRYPTO_DES_CBC ||
1009 crd2->crd_alg == CRYPTO_3DES_CBC) &&
1010 ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1011 maccrd = crd1;
1012 enccrd = crd2;
1013 } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1014 crd1->crd_alg == CRYPTO_3DES_CBC) &&
1015 (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1016 crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1017 (crd1->crd_flags & CRD_F_ENCRYPT)) {
1018 enccrd = crd1;
1019 maccrd = crd2;
1020 } else {
1021 /*
1022 * We cannot order the ubsec as requested
1023 */
1024 ubsecstats.hst_badalg++;
1025 err = EINVAL;
1026 goto errout;
1027 }
1028 }
1029
1030 if (enccrd) {
1031 encoffset = enccrd->crd_skip;
1032 ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1033
1034 if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1035 q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1036
1037 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1038 bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1039 else {
1040 ctx.pc_iv[0] = ses->ses_iv[0];
1041 ctx.pc_iv[1] = ses->ses_iv[1];
1042 }
1043
1044 if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1045 if (crp->crp_flags & CRYPTO_F_IMBUF)
1046 m_copyback(q->q_src_m,
1047 enccrd->crd_inject,
1048 8, (caddr_t)ctx.pc_iv);
1049 else if (crp->crp_flags & CRYPTO_F_IOV)
1050 cuio_copyback(q->q_src_io,
1051 enccrd->crd_inject,
1052 8, (caddr_t)ctx.pc_iv);
1053 }
1054 } else {
1055 ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1056
1057 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1058 bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1059 else if (crp->crp_flags & CRYPTO_F_IMBUF)
1060 m_copydata(q->q_src_m, enccrd->crd_inject,
1061 8, (caddr_t)ctx.pc_iv);
1062 else if (crp->crp_flags & CRYPTO_F_IOV)
1063 cuio_copydata(q->q_src_io,
1064 enccrd->crd_inject, 8,
1065 (caddr_t)ctx.pc_iv);
1066 }
1067
1068 ctx.pc_deskey[0] = ses->ses_deskey[0];
1069 ctx.pc_deskey[1] = ses->ses_deskey[1];
1070 ctx.pc_deskey[2] = ses->ses_deskey[2];
1071 ctx.pc_deskey[3] = ses->ses_deskey[3];
1072 ctx.pc_deskey[4] = ses->ses_deskey[4];
1073 ctx.pc_deskey[5] = ses->ses_deskey[5];
1074 SWAP32(ctx.pc_iv[0]);
1075 SWAP32(ctx.pc_iv[1]);
1076 }
1077
1078 if (maccrd) {
1079 macoffset = maccrd->crd_skip;
1080
1081 if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1082 ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1083 else
1084 ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1085
1086 for (i = 0; i < 5; i++) {
1087 ctx.pc_hminner[i] = ses->ses_hminner[i];
1088 ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1089
1090 HTOLE32(ctx.pc_hminner[i]);
1091 HTOLE32(ctx.pc_hmouter[i]);
1092 }
1093 }
1094
1095 if (enccrd && maccrd) {
1096 /*
1097 * ubsec cannot handle packets where the end of encryption
1098 * and authentication are not the same, or where the
1099 * encrypted part begins before the authenticated part.
1100 */
1101 if ((encoffset + enccrd->crd_len) !=
1102 (macoffset + maccrd->crd_len)) {
1103 ubsecstats.hst_lenmismatch++;
1104 err = EINVAL;
1105 goto errout;
1106 }
1107 if (enccrd->crd_skip < maccrd->crd_skip) {
1108 ubsecstats.hst_skipmismatch++;
1109 err = EINVAL;
1110 goto errout;
1111 }
1112 sskip = maccrd->crd_skip;
1113 cpskip = dskip = enccrd->crd_skip;
1114 stheend = maccrd->crd_len;
1115 dtheend = enccrd->crd_len;
1116 coffset = enccrd->crd_skip - maccrd->crd_skip;
1117 cpoffset = cpskip + dtheend;
1118 #ifdef UBSEC_DEBUG
1119 if (ubsec_debug) {
1120 printf("mac: skip %d, len %d, inject %d\n",
1121 maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1122 printf("enc: skip %d, len %d, inject %d\n",
1123 enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1124 printf("src: skip %d, len %d\n", sskip, stheend);
1125 printf("dst: skip %d, len %d\n", dskip, dtheend);
1126 printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1127 coffset, stheend, cpskip, cpoffset);
1128 }
1129 #endif
1130 } else {
1131 cpskip = dskip = sskip = macoffset + encoffset;
1132 dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1133 cpoffset = cpskip + dtheend;
1134 coffset = 0;
1135 }
1136 ctx.pc_offset = htole16(coffset >> 2);
1137
1138 /* XXX FIXME: jonathan asks, what the heck's that 0xfff0? */
1139 if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
1140 0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
1141 err = ENOMEM;
1142 goto errout;
1143 }
1144 if (crp->crp_flags & CRYPTO_F_IMBUF) {
1145 if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1146 q->q_src_m, BUS_DMA_NOWAIT) != 0) {
1147 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1148 q->q_src_map = NULL;
1149 ubsecstats.hst_noload++;
1150 err = ENOMEM;
1151 goto errout;
1152 }
1153 } else if (crp->crp_flags & CRYPTO_F_IOV) {
1154 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1155 q->q_src_io, BUS_DMA_NOWAIT) != 0) {
1156 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1157 q->q_src_map = NULL;
1158 ubsecstats.hst_noload++;
1159 err = ENOMEM;
1160 goto errout;
1161 }
1162 }
1163 nicealign = ubsec_dmamap_aligned(q->q_src_map);
1164
1165 dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1166
1167 #ifdef UBSEC_DEBUG
1168 if (ubsec_debug)
1169 printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1170 #endif
1171 for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
1172 struct ubsec_pktbuf *pb;
1173 bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
1174 bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
1175
1176 if (sskip >= packl) {
1177 sskip -= packl;
1178 continue;
1179 }
1180
1181 packl -= sskip;
1182 packp += sskip;
1183 sskip = 0;
1184
1185 if (packl > 0xfffc) {
1186 err = EIO;
1187 goto errout;
1188 }
1189
1190 if (j == 0)
1191 pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1192 else
1193 pb = &dmap->d_dma->d_sbuf[j - 1];
1194
1195 pb->pb_addr = htole32(packp);
1196
1197 if (stheend) {
1198 if (packl > stheend) {
1199 pb->pb_len = htole32(stheend);
1200 stheend = 0;
1201 } else {
1202 pb->pb_len = htole32(packl);
1203 stheend -= packl;
1204 }
1205 } else
1206 pb->pb_len = htole32(packl);
1207
1208 if ((i + 1) == q->q_src_map->dm_nsegs)
1209 pb->pb_next = 0;
1210 else
1211 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1212 offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1213 j++;
1214 }
1215
1216 if (enccrd == NULL && maccrd != NULL) {
1217 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1218 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1219 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1220 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1221 #ifdef UBSEC_DEBUG
1222 if (ubsec_debug)
1223 printf("opkt: %x %x %x\n",
1224 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1225 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1226 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1227
1228 #endif
1229 } else {
1230 if (crp->crp_flags & CRYPTO_F_IOV) {
1231 if (!nicealign) {
1232 ubsecstats.hst_iovmisaligned++;
1233 err = EINVAL;
1234 goto errout;
1235 }
1236 /* XXX: ``what the heck's that'' 0xfff0? */
1237 if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1238 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1239 &q->q_dst_map) != 0) {
1240 ubsecstats.hst_nomap++;
1241 err = ENOMEM;
1242 goto errout;
1243 }
1244 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1245 q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
1246 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1247 q->q_dst_map = NULL;
1248 ubsecstats.hst_noload++;
1249 err = ENOMEM;
1250 goto errout;
1251 }
1252 } else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1253 if (nicealign) {
1254 q->q_dst_m = q->q_src_m;
1255 q->q_dst_map = q->q_src_map;
1256 } else {
1257 int totlen, len;
1258 struct mbuf *m, *top, **mp;
1259
1260 ubsecstats.hst_unaligned++;
1261 totlen = q->q_src_map->dm_mapsize;
1262 if (q->q_src_m->m_flags & M_PKTHDR) {
1263 len = MHLEN;
1264 MGETHDR(m, M_DONTWAIT, MT_DATA);
1265 /*XXX FIXME: m_dup_pkthdr */
1266 if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
1267 m_free(m);
1268 m = NULL;
1269 }
1270 } else {
1271 len = MLEN;
1272 MGET(m, M_DONTWAIT, MT_DATA);
1273 }
1274 if (m == NULL) {
1275 ubsecstats.hst_nombuf++;
1276 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1277 goto errout;
1278 }
1279 if (len == MHLEN)
1280 /*XXX was M_DUP_PKTHDR*/
1281 M_COPY_PKTHDR(m, q->q_src_m);
1282 if (totlen >= MINCLSIZE) {
1283 MCLGET(m, M_DONTWAIT);
1284 if ((m->m_flags & M_EXT) == 0) {
1285 m_free(m);
1286 ubsecstats.hst_nomcl++;
1287 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1288 goto errout;
1289 }
1290 len = MCLBYTES;
1291 }
1292 m->m_len = len;
1293 top = NULL;
1294 mp = ⊤
1295
1296 while (totlen > 0) {
1297 if (top) {
1298 MGET(m, M_DONTWAIT, MT_DATA);
1299 if (m == NULL) {
1300 m_freem(top);
1301 ubsecstats.hst_nombuf++;
1302 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1303 goto errout;
1304 }
1305 len = MLEN;
1306 }
1307 if (top && totlen >= MINCLSIZE) {
1308 MCLGET(m, M_DONTWAIT);
1309 if ((m->m_flags & M_EXT) == 0) {
1310 *mp = m;
1311 m_freem(top);
1312 ubsecstats.hst_nomcl++;
1313 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1314 goto errout;
1315 }
1316 len = MCLBYTES;
1317 }
1318 m->m_len = len = min(totlen, len);
1319 totlen -= len;
1320 *mp = m;
1321 mp = &m->m_next;
1322 }
1323 q->q_dst_m = top;
1324 ubsec_mcopy(q->q_src_m, q->q_dst_m,
1325 cpskip, cpoffset);
1326 /* XXX again, what the heck is that 0xfff0? */
1327 if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1328 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1329 &q->q_dst_map) != 0) {
1330 ubsecstats.hst_nomap++;
1331 err = ENOMEM;
1332 goto errout;
1333 }
1334 if (bus_dmamap_load_mbuf(sc->sc_dmat,
1335 q->q_dst_map, q->q_dst_m,
1336 BUS_DMA_NOWAIT) != 0) {
1337 bus_dmamap_destroy(sc->sc_dmat,
1338 q->q_dst_map);
1339 q->q_dst_map = NULL;
1340 ubsecstats.hst_noload++;
1341 err = ENOMEM;
1342 goto errout;
1343 }
1344 }
1345 } else {
1346 ubsecstats.hst_badflags++;
1347 err = EINVAL;
1348 goto errout;
1349 }
1350
1351 #ifdef UBSEC_DEBUG
1352 if (ubsec_debug)
1353 printf("dst skip: %d\n", dskip);
1354 #endif
1355 for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
1356 struct ubsec_pktbuf *pb;
1357 bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
1358 bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
1359
1360 if (dskip >= packl) {
1361 dskip -= packl;
1362 continue;
1363 }
1364
1365 packl -= dskip;
1366 packp += dskip;
1367 dskip = 0;
1368
1369 if (packl > 0xfffc) {
1370 err = EIO;
1371 goto errout;
1372 }
1373
1374 if (j == 0)
1375 pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1376 else
1377 pb = &dmap->d_dma->d_dbuf[j - 1];
1378
1379 pb->pb_addr = htole32(packp);
1380
1381 if (dtheend) {
1382 if (packl > dtheend) {
1383 pb->pb_len = htole32(dtheend);
1384 dtheend = 0;
1385 } else {
1386 pb->pb_len = htole32(packl);
1387 dtheend -= packl;
1388 }
1389 } else
1390 pb->pb_len = htole32(packl);
1391
1392 if ((i + 1) == q->q_dst_map->dm_nsegs) {
1393 if (maccrd)
1394 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1395 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1396 else
1397 pb->pb_next = 0;
1398 } else
1399 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1400 offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1401 j++;
1402 }
1403 }
1404
1405 dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1406 offsetof(struct ubsec_dmachunk, d_ctx));
1407
1408 if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1409 struct ubsec_pktctx_long *ctxl;
1410
1411 ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr +
1412 offsetof(struct ubsec_dmachunk, d_ctx));
1413
1414 /* transform small context into long context */
1415 ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1416 ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1417 ctxl->pc_flags = ctx.pc_flags;
1418 ctxl->pc_offset = ctx.pc_offset;
1419 for (i = 0; i < 6; i++)
1420 ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1421 for (i = 0; i < 5; i++)
1422 ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1423 for (i = 0; i < 5; i++)
1424 ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1425 ctxl->pc_iv[0] = ctx.pc_iv[0];
1426 ctxl->pc_iv[1] = ctx.pc_iv[1];
1427 } else
1428 bcopy(&ctx, dmap->d_alloc.dma_vaddr +
1429 offsetof(struct ubsec_dmachunk, d_ctx),
1430 sizeof(struct ubsec_pktctx));
1431
1432 s = splnet();
1433 SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1434 sc->sc_nqueue++;
1435 ubsecstats.hst_ipackets++;
1436 ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
1437 if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
1438 ubsec_feed(sc);
1439 splx(s);
1440 return (0);
1441
1442 errout:
1443 if (q != NULL) {
1444 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1445 m_freem(q->q_dst_m);
1446
1447 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1448 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1449 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1450 }
1451 if (q->q_src_map != NULL) {
1452 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1453 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1454 }
1455
1456 s = splnet();
1457 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1458 splx(s);
1459 }
1460 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
1461 if (err == EINVAL)
1462 ubsecstats.hst_invalid++;
1463 else
1464 ubsecstats.hst_nomem++;
1465 #endif
1466 if (err != ERESTART) {
1467 crp->crp_etype = err;
1468 crypto_done(crp);
1469 } else {
1470 sc->sc_needwakeup |= CRYPTO_SYMQ;
1471 }
1472 return (err);
1473 }
1474
1475 void
1476 ubsec_callback(sc, q)
1477 struct ubsec_softc *sc;
1478 struct ubsec_q *q;
1479 {
1480 struct cryptop *crp = (struct cryptop *)q->q_crp;
1481 struct cryptodesc *crd;
1482 struct ubsec_dma *dmap = q->q_dma;
1483
1484 ubsecstats.hst_opackets++;
1485 ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1486
1487 bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
1488 dmap->d_alloc.dma_map->dm_mapsize,
1489 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1490 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1491 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1492 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1493 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1494 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1495 }
1496 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
1497 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1498 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1499 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1500
1501 if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1502 m_freem(q->q_src_m);
1503 crp->crp_buf = (caddr_t)q->q_dst_m;
1504 }
1505
1506 /* copy out IV for future use */
1507 if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1508 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1509 if (crd->crd_alg != CRYPTO_DES_CBC &&
1510 crd->crd_alg != CRYPTO_3DES_CBC)
1511 continue;
1512 if (crp->crp_flags & CRYPTO_F_IMBUF)
1513 m_copydata((struct mbuf *)crp->crp_buf,
1514 crd->crd_skip + crd->crd_len - 8, 8,
1515 (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1516 else if (crp->crp_flags & CRYPTO_F_IOV) {
1517 cuio_copydata((struct uio *)crp->crp_buf,
1518 crd->crd_skip + crd->crd_len - 8, 8,
1519 (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1520 }
1521 break;
1522 }
1523 }
1524
1525 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1526 if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1527 crd->crd_alg != CRYPTO_SHA1_HMAC)
1528 continue;
1529 if (crp->crp_flags & CRYPTO_F_IMBUF)
1530 m_copyback((struct mbuf *)crp->crp_buf,
1531 crd->crd_inject, 12,
1532 (caddr_t)dmap->d_dma->d_macbuf);
1533 else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1534 bcopy((caddr_t)dmap->d_dma->d_macbuf,
1535 crp->crp_mac, 12);
1536 break;
1537 }
1538 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1539 crypto_done(crp);
1540 }
1541
1542 static void
1543 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1544 {
1545 int i, j, dlen, slen;
1546 caddr_t dptr, sptr;
1547
1548 j = 0;
1549 sptr = srcm->m_data;
1550 slen = srcm->m_len;
1551 dptr = dstm->m_data;
1552 dlen = dstm->m_len;
1553
1554 while (1) {
1555 for (i = 0; i < min(slen, dlen); i++) {
1556 if (j < hoffset || j >= toffset)
1557 *dptr++ = *sptr++;
1558 slen--;
1559 dlen--;
1560 j++;
1561 }
1562 if (slen == 0) {
1563 srcm = srcm->m_next;
1564 if (srcm == NULL)
1565 return;
1566 sptr = srcm->m_data;
1567 slen = srcm->m_len;
1568 }
1569 if (dlen == 0) {
1570 dstm = dstm->m_next;
1571 if (dstm == NULL)
1572 return;
1573 dptr = dstm->m_data;
1574 dlen = dstm->m_len;
1575 }
1576 }
1577 }
1578
1579 /*
1580 * feed the key generator, must be called at splnet() or higher.
1581 */
1582 static void
1583 ubsec_feed2(struct ubsec_softc *sc)
1584 {
1585 struct ubsec_q2 *q;
1586
1587 while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1588 if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1589 break;
1590 q = SIMPLEQ_FIRST(&sc->sc_queue2);
1591
1592 bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1593 q->q_mcr.dma_map->dm_mapsize,
1594 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1595 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1596 q->q_ctx.dma_map->dm_mapsize,
1597 BUS_DMASYNC_PREWRITE);
1598
1599 WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1600 q = SIMPLEQ_FIRST(&sc->sc_queue2);
1601 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
1602 --sc->sc_nqueue2;
1603 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1604 }
1605 }
1606
1607 /*
1608 * Callback for handling random numbers
1609 */
1610 static void
1611 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1612 {
1613 struct cryptkop *krp;
1614 struct ubsec_ctx_keyop *ctx;
1615
1616 ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1617 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1618 q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1619
1620 switch (q->q_type) {
1621 #ifndef UBSEC_NO_RNG
1622 case UBS_CTXOP_RNGSHA1:
1623 case UBS_CTXOP_RNGBYPASS: {
1624 struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1625 u_int32_t *p;
1626 int i;
1627
1628 bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
1629 rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1630 p = (u_int32_t *)rng->rng_buf.dma_vaddr;
1631 #ifndef __NetBSD__
1632 for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++)
1633 add_true_randomness(letoh32(*p));
1634 rng->rng_used = 0;
1635 #else
1636 /* XXX NetBSD rnd subsystem too weak */
1637 i = 0; (void)i; /* shut off gcc warnings */
1638 #endif
1639 #ifdef __OpenBSD__
1640 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
1641 #else
1642 callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1643 #endif
1644 break;
1645 }
1646 #endif
1647 case UBS_CTXOP_MODEXP: {
1648 struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1649 u_int rlen, clen;
1650
1651 krp = me->me_krp;
1652 rlen = (me->me_modbits + 7) / 8;
1653 clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1654
1655 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
1656 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1657 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
1658 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1659 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
1660 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1661 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
1662 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1663
1664 if (clen < rlen)
1665 krp->krp_status = E2BIG;
1666 else {
1667 if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1668 bzero(krp->krp_param[krp->krp_iparams].crp_p,
1669 (krp->krp_param[krp->krp_iparams].crp_nbits
1670 + 7) / 8);
1671 bcopy(me->me_C.dma_vaddr,
1672 krp->krp_param[krp->krp_iparams].crp_p,
1673 (me->me_modbits + 7) / 8);
1674 } else
1675 ubsec_kshift_l(me->me_shiftbits,
1676 me->me_C.dma_vaddr, me->me_normbits,
1677 krp->krp_param[krp->krp_iparams].crp_p,
1678 krp->krp_param[krp->krp_iparams].crp_nbits);
1679 }
1680
1681 crypto_kdone(krp);
1682
1683 /* bzero all potentially sensitive data */
1684 bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
1685 bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
1686 bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1687 bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
1688
1689 /* Can't free here, so put us on the free list. */
1690 SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1691 break;
1692 }
1693 case UBS_CTXOP_RSAPRIV: {
1694 struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1695 u_int len;
1696
1697 krp = rp->rpr_krp;
1698 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
1699 rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1700 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
1701 rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1702
1703 len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1704 bcopy(rp->rpr_msgout.dma_vaddr,
1705 krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1706
1707 crypto_kdone(krp);
1708
1709 bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
1710 bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
1711 bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size);
1712
1713 /* Can't free here, so put us on the free list. */
1714 SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1715 break;
1716 }
1717 default:
1718 printf("%s: unknown ctx op: %x\n", sc->sc_dv.dv_xname,
1719 letoh16(ctx->ctx_op));
1720 break;
1721 }
1722 }
1723
1724 #ifndef UBSEC_NO_RNG
1725 static void
1726 ubsec_rng(void *vsc)
1727 {
1728 struct ubsec_softc *sc = vsc;
1729 struct ubsec_q2_rng *rng = &sc->sc_rng;
1730 struct ubsec_mcr *mcr;
1731 struct ubsec_ctx_rngbypass *ctx;
1732 int s;
1733
1734 s = splnet();
1735 if (rng->rng_used) {
1736 splx(s);
1737 return;
1738 }
1739 sc->sc_nqueue2++;
1740 if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1741 goto out;
1742
1743 mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1744 ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1745
1746 mcr->mcr_pkts = htole16(1);
1747 mcr->mcr_flags = 0;
1748 mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1749 mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1750 mcr->mcr_ipktbuf.pb_len = 0;
1751 mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1752 mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1753 mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1754 UBS_PKTBUF_LEN);
1755 mcr->mcr_opktbuf.pb_next = 0;
1756
1757 ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1758 ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
1759 rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
1760
1761 bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
1762 rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1763
1764 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1765 rng->rng_used = 1;
1766 ubsec_feed2(sc);
1767 ubsecstats.hst_rng++;
1768 splx(s);
1769
1770 return;
1771
1772 out:
1773 /*
1774 * Something weird happened, generate our own call back.
1775 */
1776 sc->sc_nqueue2--;
1777 splx(s);
1778 #ifdef __OpenBSD__
1779 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
1780 #else
1781 callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1782 #endif
1783 }
1784 #endif /* UBSEC_NO_RNG */
1785
1786 static int
1787 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
1788 struct ubsec_dma_alloc *dma,int mapflags)
1789 {
1790 int r;
1791
1792 if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
1793 &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
1794 goto fail_0;
1795
1796 if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
1797 size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
1798 goto fail_1;
1799
1800 if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1801 BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
1802 goto fail_2;
1803
1804 if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
1805 size, NULL, BUS_DMA_NOWAIT)) != 0)
1806 goto fail_3;
1807
1808 dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
1809 dma->dma_size = size;
1810 return (0);
1811
1812 fail_3:
1813 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
1814 fail_2:
1815 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
1816 fail_1:
1817 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
1818 fail_0:
1819 dma->dma_map = NULL;
1820 return (r);
1821 }
1822
1823 static void
1824 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1825 {
1826 bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
1827 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
1828 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
1829 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
1830 }
1831
1832 /*
1833 * Resets the board. Values in the regesters are left as is
1834 * from the reset (i.e. initial values are assigned elsewhere).
1835 */
1836 static void
1837 ubsec_reset_board(struct ubsec_softc *sc)
1838 {
1839 volatile u_int32_t ctrl;
1840
1841 ctrl = READ_REG(sc, BS_CTRL);
1842 ctrl |= BS_CTRL_RESET;
1843 WRITE_REG(sc, BS_CTRL, ctrl);
1844
1845 /*
1846 * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
1847 */
1848 DELAY(10);
1849 }
1850
1851 /*
1852 * Init Broadcom registers
1853 */
1854 static void
1855 ubsec_init_board(struct ubsec_softc *sc)
1856 {
1857 u_int32_t ctrl;
1858
1859 ctrl = READ_REG(sc, BS_CTRL);
1860 ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
1861 ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
1862
1863 /*
1864 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
1865 * anyone got hw docs?
1866 */
1867 if (sc->sc_flags & UBS_FLAGS_KEY)
1868 ctrl |= BS_CTRL_MCR2INT;
1869 else
1870 ctrl &= ~BS_CTRL_MCR2INT;
1871
1872 if (sc->sc_flags & UBS_FLAGS_HWNORM)
1873 ctrl &= ~BS_CTRL_SWNORM;
1874
1875 WRITE_REG(sc, BS_CTRL, ctrl);
1876 }
1877
1878 /*
1879 * Init Broadcom PCI registers
1880 */
1881 static void
1882 ubsec_init_pciregs(pa)
1883 struct pci_attach_args *pa;
1884 {
1885 pci_chipset_tag_t pc = pa->pa_pc;
1886 u_int32_t misc;
1887
1888 /*
1889 * This will set the cache line size to 1, this will
1890 * force the BCM58xx chip just to do burst read/writes.
1891 * Cache line read/writes are to slow
1892 */
1893 misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
1894 misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
1895 | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
1896 pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
1897 }
1898
1899 /*
1900 * Clean up after a chip crash.
1901 * It is assumed that the caller in splnet()
1902 */
1903 static void
1904 ubsec_cleanchip(struct ubsec_softc *sc)
1905 {
1906 struct ubsec_q *q;
1907
1908 while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
1909 q = SIMPLEQ_FIRST(&sc->sc_qchip);
1910 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
1911 ubsec_free_q(sc, q);
1912 }
1913 sc->sc_nqchip = 0;
1914 }
1915
1916 /*
1917 * free a ubsec_q
1918 * It is assumed that the caller is within splnet()
1919 */
1920 static int
1921 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
1922 {
1923 struct ubsec_q *q2;
1924 struct cryptop *crp;
1925 int npkts;
1926 int i;
1927
1928 npkts = q->q_nstacked_mcrs;
1929
1930 for (i = 0; i < npkts; i++) {
1931 if(q->q_stacked_mcr[i]) {
1932 q2 = q->q_stacked_mcr[i];
1933
1934 if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
1935 m_freem(q2->q_dst_m);
1936
1937 crp = (struct cryptop *)q2->q_crp;
1938
1939 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
1940
1941 crp->crp_etype = EFAULT;
1942 crypto_done(crp);
1943 } else {
1944 break;
1945 }
1946 }
1947
1948 /*
1949 * Free header MCR
1950 */
1951 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1952 m_freem(q->q_dst_m);
1953
1954 crp = (struct cryptop *)q->q_crp;
1955
1956 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1957
1958 crp->crp_etype = EFAULT;
1959 crypto_done(crp);
1960 return(0);
1961 }
1962
1963 /*
1964 * Routine to reset the chip and clean up.
1965 * It is assumed that the caller is in splnet()
1966 */
1967 static void
1968 ubsec_totalreset(struct ubsec_softc *sc)
1969 {
1970 ubsec_reset_board(sc);
1971 ubsec_init_board(sc);
1972 ubsec_cleanchip(sc);
1973 }
1974
1975 static int
1976 ubsec_dmamap_aligned(bus_dmamap_t map)
1977 {
1978 int i;
1979
1980 for (i = 0; i < map->dm_nsegs; i++) {
1981 if (map->dm_segs[i].ds_addr & 3)
1982 return (0);
1983 if ((i != (map->dm_nsegs - 1)) &&
1984 (map->dm_segs[i].ds_len & 3))
1985 return (0);
1986 }
1987 return (1);
1988 }
1989
1990 #ifdef __OpenBSD__
1991 struct ubsec_softc *
1992 ubsec_kfind(krp)
1993 struct cryptkop *krp;
1994 {
1995 struct ubsec_softc *sc;
1996 int i;
1997
1998 for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
1999 sc = ubsec_cd.cd_devs[i];
2000 if (sc == NULL)
2001 continue;
2002 if (sc->sc_cid == krp->krp_hid)
2003 return (sc);
2004 }
2005 return (NULL);
2006 }
2007 #endif
2008
2009 static void
2010 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2011 {
2012 switch (q->q_type) {
2013 case UBS_CTXOP_MODEXP: {
2014 struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2015
2016 ubsec_dma_free(sc, &me->me_q.q_mcr);
2017 ubsec_dma_free(sc, &me->me_q.q_ctx);
2018 ubsec_dma_free(sc, &me->me_M);
2019 ubsec_dma_free(sc, &me->me_E);
2020 ubsec_dma_free(sc, &me->me_C);
2021 ubsec_dma_free(sc, &me->me_epb);
2022 free(me, M_DEVBUF);
2023 break;
2024 }
2025 case UBS_CTXOP_RSAPRIV: {
2026 struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2027
2028 ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2029 ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2030 ubsec_dma_free(sc, &rp->rpr_msgin);
2031 ubsec_dma_free(sc, &rp->rpr_msgout);
2032 free(rp, M_DEVBUF);
2033 break;
2034 }
2035 default:
2036 printf("%s: invalid kfree 0x%x\n", sc->sc_dv.dv_xname,
2037 q->q_type);
2038 break;
2039 }
2040 }
2041
2042 static int
2043 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2044 {
2045 struct ubsec_softc *sc;
2046 int r;
2047
2048 if (krp == NULL || krp->krp_callback == NULL)
2049 return (EINVAL);
2050 #ifdef __OpenBSD__
2051 if ((sc = ubsec_kfind(krp)) == NULL)
2052 return (EINVAL);
2053 #else
2054 sc = arg;
2055 KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/);
2056 #endif
2057
2058 while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2059 struct ubsec_q2 *q;
2060
2061 q = SIMPLEQ_FIRST(&sc->sc_q2free);
2062 SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
2063 ubsec_kfree(sc, q);
2064 }
2065
2066 switch (krp->krp_op) {
2067 case CRK_MOD_EXP:
2068 if (sc->sc_flags & UBS_FLAGS_HWNORM)
2069 r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2070 else
2071 r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2072 break;
2073 case CRK_MOD_EXP_CRT:
2074 r = ubsec_kprocess_rsapriv(sc, krp, hint);
2075 break;
2076 default:
2077 printf("%s: kprocess: invalid op 0x%x\n",
2078 sc->sc_dv.dv_xname, krp->krp_op);
2079 krp->krp_status = EOPNOTSUPP;
2080 crypto_kdone(krp);
2081 r = 0;
2082 }
2083 return (r);
2084 }
2085
2086 /*
2087 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2088 */
2089 static int
2090 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
2091 int hint)
2092 {
2093 struct ubsec_q2_modexp *me;
2094 struct ubsec_mcr *mcr;
2095 struct ubsec_ctx_modexp *ctx;
2096 struct ubsec_pktbuf *epb;
2097 int s, err = 0;
2098 u_int nbits, normbits, mbits, shiftbits, ebits;
2099
2100 me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2101 if (me == NULL) {
2102 err = ENOMEM;
2103 goto errout;
2104 }
2105 bzero(me, sizeof *me);
2106 me->me_krp = krp;
2107 me->me_q.q_type = UBS_CTXOP_MODEXP;
2108
2109 nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2110 if (nbits <= 512)
2111 normbits = 512;
2112 else if (nbits <= 768)
2113 normbits = 768;
2114 else if (nbits <= 1024)
2115 normbits = 1024;
2116 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2117 normbits = 1536;
2118 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2119 normbits = 2048;
2120 else {
2121 err = E2BIG;
2122 goto errout;
2123 }
2124
2125 shiftbits = normbits - nbits;
2126
2127 me->me_modbits = nbits;
2128 me->me_shiftbits = shiftbits;
2129 me->me_normbits = normbits;
2130
2131 /* Sanity check: result bits must be >= true modulus bits. */
2132 if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2133 err = ERANGE;
2134 goto errout;
2135 }
2136
2137 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2138 &me->me_q.q_mcr, 0)) {
2139 err = ENOMEM;
2140 goto errout;
2141 }
2142 mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2143
2144 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2145 &me->me_q.q_ctx, 0)) {
2146 err = ENOMEM;
2147 goto errout;
2148 }
2149
2150 mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2151 if (mbits > nbits) {
2152 err = E2BIG;
2153 goto errout;
2154 }
2155 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2156 err = ENOMEM;
2157 goto errout;
2158 }
2159 ubsec_kshift_r(shiftbits,
2160 krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2161 me->me_M.dma_vaddr, normbits);
2162
2163 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2164 err = ENOMEM;
2165 goto errout;
2166 }
2167 bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2168
2169 ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2170 if (ebits > nbits) {
2171 err = E2BIG;
2172 goto errout;
2173 }
2174 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2175 err = ENOMEM;
2176 goto errout;
2177 }
2178 ubsec_kshift_r(shiftbits,
2179 krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2180 me->me_E.dma_vaddr, normbits);
2181
2182 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2183 &me->me_epb, 0)) {
2184 err = ENOMEM;
2185 goto errout;
2186 }
2187 epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2188 epb->pb_addr = htole32(me->me_E.dma_paddr);
2189 epb->pb_next = 0;
2190 epb->pb_len = htole32(normbits / 8);
2191
2192 #ifdef UBSEC_DEBUG
2193 if (ubsec_debug) {
2194 printf("Epb ");
2195 ubsec_dump_pb(epb);
2196 }
2197 #endif
2198
2199 mcr->mcr_pkts = htole16(1);
2200 mcr->mcr_flags = 0;
2201 mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2202 mcr->mcr_reserved = 0;
2203 mcr->mcr_pktlen = 0;
2204
2205 mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2206 mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2207 mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2208
2209 mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2210 mcr->mcr_opktbuf.pb_next = 0;
2211 mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2212
2213 #ifdef DIAGNOSTIC
2214 /* Misaligned output buffer will hang the chip. */
2215 if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2216 panic("%s: modexp invalid addr 0x%x",
2217 sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_addr));
2218 if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2219 panic("%s: modexp invalid len 0x%x",
2220 sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_len));
2221 #endif
2222
2223 ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2224 bzero(ctx, sizeof(*ctx));
2225 ubsec_kshift_r(shiftbits,
2226 krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2227 ctx->me_N, normbits);
2228 ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2229 ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2230 ctx->me_E_len = htole16(nbits);
2231 ctx->me_N_len = htole16(nbits);
2232
2233 #ifdef UBSEC_DEBUG
2234 if (ubsec_debug) {
2235 ubsec_dump_mcr(mcr);
2236 ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2237 }
2238 #endif
2239
2240 /*
2241 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2242 * everything else.
2243 */
2244 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2245 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2246 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2247 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2248 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2249 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2250 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2251 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2252
2253 /* Enqueue and we're done... */
2254 s = splnet();
2255 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2256 ubsec_feed2(sc);
2257 ubsecstats.hst_modexp++;
2258 splx(s);
2259
2260 return (0);
2261
2262 errout:
2263 if (me != NULL) {
2264 if (me->me_q.q_mcr.dma_map != NULL)
2265 ubsec_dma_free(sc, &me->me_q.q_mcr);
2266 if (me->me_q.q_ctx.dma_map != NULL) {
2267 bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2268 ubsec_dma_free(sc, &me->me_q.q_ctx);
2269 }
2270 if (me->me_M.dma_map != NULL) {
2271 bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2272 ubsec_dma_free(sc, &me->me_M);
2273 }
2274 if (me->me_E.dma_map != NULL) {
2275 bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2276 ubsec_dma_free(sc, &me->me_E);
2277 }
2278 if (me->me_C.dma_map != NULL) {
2279 bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2280 ubsec_dma_free(sc, &me->me_C);
2281 }
2282 if (me->me_epb.dma_map != NULL)
2283 ubsec_dma_free(sc, &me->me_epb);
2284 free(me, M_DEVBUF);
2285 }
2286 krp->krp_status = err;
2287 crypto_kdone(krp);
2288 return (0);
2289 }
2290
2291 /*
2292 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2293 */
2294 static int
2295 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
2296 int hint)
2297 {
2298 struct ubsec_q2_modexp *me;
2299 struct ubsec_mcr *mcr;
2300 struct ubsec_ctx_modexp *ctx;
2301 struct ubsec_pktbuf *epb;
2302 int s, err = 0;
2303 u_int nbits, normbits, mbits, shiftbits, ebits;
2304
2305 me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2306 if (me == NULL) {
2307 err = ENOMEM;
2308 goto errout;
2309 }
2310 bzero(me, sizeof *me);
2311 me->me_krp = krp;
2312 me->me_q.q_type = UBS_CTXOP_MODEXP;
2313
2314 nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2315 if (nbits <= 512)
2316 normbits = 512;
2317 else if (nbits <= 768)
2318 normbits = 768;
2319 else if (nbits <= 1024)
2320 normbits = 1024;
2321 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2322 normbits = 1536;
2323 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2324 normbits = 2048;
2325 else {
2326 err = E2BIG;
2327 goto errout;
2328 }
2329
2330 shiftbits = normbits - nbits;
2331
2332 /* XXX ??? */
2333 me->me_modbits = nbits;
2334 me->me_shiftbits = shiftbits;
2335 me->me_normbits = normbits;
2336
2337 /* Sanity check: result bits must be >= true modulus bits. */
2338 if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2339 err = ERANGE;
2340 goto errout;
2341 }
2342
2343 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2344 &me->me_q.q_mcr, 0)) {
2345 err = ENOMEM;
2346 goto errout;
2347 }
2348 mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2349
2350 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2351 &me->me_q.q_ctx, 0)) {
2352 err = ENOMEM;
2353 goto errout;
2354 }
2355
2356 mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2357 if (mbits > nbits) {
2358 err = E2BIG;
2359 goto errout;
2360 }
2361 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2362 err = ENOMEM;
2363 goto errout;
2364 }
2365 bzero(me->me_M.dma_vaddr, normbits / 8);
2366 bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2367 me->me_M.dma_vaddr, (mbits + 7) / 8);
2368
2369 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2370 err = ENOMEM;
2371 goto errout;
2372 }
2373 bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2374
2375 ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2376 if (ebits > nbits) {
2377 err = E2BIG;
2378 goto errout;
2379 }
2380 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2381 err = ENOMEM;
2382 goto errout;
2383 }
2384 bzero(me->me_E.dma_vaddr, normbits / 8);
2385 bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2386 me->me_E.dma_vaddr, (ebits + 7) / 8);
2387
2388 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2389 &me->me_epb, 0)) {
2390 err = ENOMEM;
2391 goto errout;
2392 }
2393 epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2394 epb->pb_addr = htole32(me->me_E.dma_paddr);
2395 epb->pb_next = 0;
2396 epb->pb_len = htole32((ebits + 7) / 8);
2397
2398 #ifdef UBSEC_DEBUG
2399 if (ubsec_debug) {
2400 printf("Epb ");
2401 ubsec_dump_pb(epb);
2402 }
2403 #endif
2404
2405 mcr->mcr_pkts = htole16(1);
2406 mcr->mcr_flags = 0;
2407 mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2408 mcr->mcr_reserved = 0;
2409 mcr->mcr_pktlen = 0;
2410
2411 mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2412 mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2413 mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2414
2415 mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2416 mcr->mcr_opktbuf.pb_next = 0;
2417 mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2418
2419 #ifdef DIAGNOSTIC
2420 /* Misaligned output buffer will hang the chip. */
2421 if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2422 panic("%s: modexp invalid addr 0x%x",
2423 sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_addr));
2424 if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2425 panic("%s: modexp invalid len 0x%x",
2426 sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_len));
2427 #endif
2428
2429 ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2430 bzero(ctx, sizeof(*ctx));
2431 bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N,
2432 (nbits + 7) / 8);
2433 ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2434 ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2435 ctx->me_E_len = htole16(ebits);
2436 ctx->me_N_len = htole16(nbits);
2437
2438 #ifdef UBSEC_DEBUG
2439 if (ubsec_debug) {
2440 ubsec_dump_mcr(mcr);
2441 ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2442 }
2443 #endif
2444
2445 /*
2446 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2447 * everything else.
2448 */
2449 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2450 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2451 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2452 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2453 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2454 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2455 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2456 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2457
2458 /* Enqueue and we're done... */
2459 s = splnet();
2460 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2461 ubsec_feed2(sc);
2462 splx(s);
2463
2464 return (0);
2465
2466 errout:
2467 if (me != NULL) {
2468 if (me->me_q.q_mcr.dma_map != NULL)
2469 ubsec_dma_free(sc, &me->me_q.q_mcr);
2470 if (me->me_q.q_ctx.dma_map != NULL) {
2471 bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2472 ubsec_dma_free(sc, &me->me_q.q_ctx);
2473 }
2474 if (me->me_M.dma_map != NULL) {
2475 bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2476 ubsec_dma_free(sc, &me->me_M);
2477 }
2478 if (me->me_E.dma_map != NULL) {
2479 bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2480 ubsec_dma_free(sc, &me->me_E);
2481 }
2482 if (me->me_C.dma_map != NULL) {
2483 bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2484 ubsec_dma_free(sc, &me->me_C);
2485 }
2486 if (me->me_epb.dma_map != NULL)
2487 ubsec_dma_free(sc, &me->me_epb);
2488 free(me, M_DEVBUF);
2489 }
2490 krp->krp_status = err;
2491 crypto_kdone(krp);
2492 return (0);
2493 }
2494
2495 static int
2496 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
2497 int hint)
2498 {
2499 struct ubsec_q2_rsapriv *rp = NULL;
2500 struct ubsec_mcr *mcr;
2501 struct ubsec_ctx_rsapriv *ctx;
2502 int s, err = 0;
2503 u_int padlen, msglen;
2504
2505 msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2506 padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2507 if (msglen > padlen)
2508 padlen = msglen;
2509
2510 if (padlen <= 256)
2511 padlen = 256;
2512 else if (padlen <= 384)
2513 padlen = 384;
2514 else if (padlen <= 512)
2515 padlen = 512;
2516 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2517 padlen = 768;
2518 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2519 padlen = 1024;
2520 else {
2521 err = E2BIG;
2522 goto errout;
2523 }
2524
2525 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2526 err = E2BIG;
2527 goto errout;
2528 }
2529
2530 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2531 err = E2BIG;
2532 goto errout;
2533 }
2534
2535 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2536 err = E2BIG;
2537 goto errout;
2538 }
2539
2540 rp = (struct ubsec_q2_rsapriv *)malloc(sizeof *rp, M_DEVBUF, M_NOWAIT);
2541 if (rp == NULL)
2542 return (ENOMEM);
2543 bzero(rp, sizeof *rp);
2544 rp->rpr_krp = krp;
2545 rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2546
2547 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2548 &rp->rpr_q.q_mcr, 0)) {
2549 err = ENOMEM;
2550 goto errout;
2551 }
2552 mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2553
2554 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2555 &rp->rpr_q.q_ctx, 0)) {
2556 err = ENOMEM;
2557 goto errout;
2558 }
2559 ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2560 bzero(ctx, sizeof *ctx);
2561
2562 /* Copy in p */
2563 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2564 &ctx->rpr_buf[0 * (padlen / 8)],
2565 (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2566
2567 /* Copy in q */
2568 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2569 &ctx->rpr_buf[1 * (padlen / 8)],
2570 (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2571
2572 /* Copy in dp */
2573 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2574 &ctx->rpr_buf[2 * (padlen / 8)],
2575 (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2576
2577 /* Copy in dq */
2578 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2579 &ctx->rpr_buf[3 * (padlen / 8)],
2580 (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2581
2582 /* Copy in pinv */
2583 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2584 &ctx->rpr_buf[4 * (padlen / 8)],
2585 (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2586
2587 msglen = padlen * 2;
2588
2589 /* Copy in input message (aligned buffer/length). */
2590 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2591 /* Is this likely? */
2592 err = E2BIG;
2593 goto errout;
2594 }
2595 if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2596 err = ENOMEM;
2597 goto errout;
2598 }
2599 bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8);
2600 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2601 rp->rpr_msgin.dma_vaddr,
2602 (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2603
2604 /* Prepare space for output message (aligned buffer/length). */
2605 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2606 /* Is this likely? */
2607 err = E2BIG;
2608 goto errout;
2609 }
2610 if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2611 err = ENOMEM;
2612 goto errout;
2613 }
2614 bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8);
2615
2616 mcr->mcr_pkts = htole16(1);
2617 mcr->mcr_flags = 0;
2618 mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2619 mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2620 mcr->mcr_ipktbuf.pb_next = 0;
2621 mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2622 mcr->mcr_reserved = 0;
2623 mcr->mcr_pktlen = htole16(msglen);
2624 mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2625 mcr->mcr_opktbuf.pb_next = 0;
2626 mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2627
2628 #ifdef DIAGNOSTIC
2629 if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2630 panic("%s: rsapriv: invalid msgin %p(0x%x)",
2631 sc->sc_dv.dv_xname, rp->rpr_msgin.dma_paddr,
2632 rp->rpr_msgin.dma_size);
2633 }
2634 if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2635 panic("%s: rsapriv: invalid msgout %p(0x%x)",
2636 sc->sc_dv.dv_xname, rp->rpr_msgout.dma_paddr,
2637 rp->rpr_msgout.dma_size);
2638 }
2639 #endif
2640
2641 ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2642 ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2643 ctx->rpr_q_len = htole16(padlen);
2644 ctx->rpr_p_len = htole16(padlen);
2645
2646 /*
2647 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2648 * everything else.
2649 */
2650 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
2651 0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2652 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
2653 0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2654
2655 /* Enqueue and we're done... */
2656 s = splnet();
2657 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2658 ubsec_feed2(sc);
2659 ubsecstats.hst_modexpcrt++;
2660 splx(s);
2661 return (0);
2662
2663 errout:
2664 if (rp != NULL) {
2665 if (rp->rpr_q.q_mcr.dma_map != NULL)
2666 ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2667 if (rp->rpr_msgin.dma_map != NULL) {
2668 bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
2669 ubsec_dma_free(sc, &rp->rpr_msgin);
2670 }
2671 if (rp->rpr_msgout.dma_map != NULL) {
2672 bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
2673 ubsec_dma_free(sc, &rp->rpr_msgout);
2674 }
2675 free(rp, M_DEVBUF);
2676 }
2677 krp->krp_status = err;
2678 crypto_kdone(krp);
2679 return (0);
2680 }
2681
2682 #ifdef UBSEC_DEBUG
2683 static void
2684 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
2685 {
2686 printf("addr 0x%x (0x%x) next 0x%x\n",
2687 pb->pb_addr, pb->pb_len, pb->pb_next);
2688 }
2689
2690 static void
2691 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
2692 {
2693 printf("CTX (0x%x):\n", c->ctx_len);
2694 switch (letoh16(c->ctx_op)) {
2695 case UBS_CTXOP_RNGBYPASS:
2696 case UBS_CTXOP_RNGSHA1:
2697 break;
2698 case UBS_CTXOP_MODEXP:
2699 {
2700 struct ubsec_ctx_modexp *cx = (void *)c;
2701 int i, len;
2702
2703 printf(" Elen %u, Nlen %u\n",
2704 letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2705 len = (cx->me_N_len + 7)/8;
2706 for (i = 0; i < len; i++)
2707 printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2708 printf("\n");
2709 break;
2710 }
2711 default:
2712 printf("unknown context: %x\n", c->ctx_op);
2713 }
2714 printf("END CTX\n");
2715 }
2716
2717 static void
2718 ubsec_dump_mcr(struct ubsec_mcr *mcr)
2719 {
2720 volatile struct ubsec_mcr_add *ma;
2721 int i;
2722
2723 printf("MCR:\n");
2724 printf(" pkts: %u, flags 0x%x\n",
2725 letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2726 ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2727 for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2728 printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2729 letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2730 letoh16(ma->mcr_reserved));
2731 printf(" %d: ipkt ", i);
2732 ubsec_dump_pb(&ma->mcr_ipktbuf);
2733 printf(" %d: opkt ", i);
2734 ubsec_dump_pb(&ma->mcr_opktbuf);
2735 ma++;
2736 }
2737 printf("END MCR\n");
2738 }
2739 #endif /* UBSEC_DEBUG */
2740
2741 /*
2742 * Return the number of significant bits of a big number.
2743 */
2744 static int
2745 ubsec_ksigbits(struct crparam *cr)
2746 {
2747 u_int plen = (cr->crp_nbits + 7) / 8;
2748 int i, sig = plen * 8;
2749 u_int8_t c, *p = cr->crp_p;
2750
2751 for (i = plen - 1; i >= 0; i--) {
2752 c = p[i];
2753 if (c != 0) {
2754 while ((c & 0x80) == 0) {
2755 sig--;
2756 c <<= 1;
2757 }
2758 break;
2759 }
2760 sig -= 8;
2761 }
2762 return (sig);
2763 }
2764
2765 static void
2766 ubsec_kshift_r(shiftbits, src, srcbits, dst, dstbits)
2767 u_int shiftbits, srcbits, dstbits;
2768 u_int8_t *src, *dst;
2769 {
2770 u_int slen, dlen;
2771 int i, si, di, n;
2772
2773 slen = (srcbits + 7) / 8;
2774 dlen = (dstbits + 7) / 8;
2775
2776 for (i = 0; i < slen; i++)
2777 dst[i] = src[i];
2778 for (i = 0; i < dlen - slen; i++)
2779 dst[slen + i] = 0;
2780
2781 n = shiftbits / 8;
2782 if (n != 0) {
2783 si = dlen - n - 1;
2784 di = dlen - 1;
2785 while (si >= 0)
2786 dst[di--] = dst[si--];
2787 while (di >= 0)
2788 dst[di--] = 0;
2789 }
2790
2791 n = shiftbits % 8;
2792 if (n != 0) {
2793 for (i = dlen - 1; i > 0; i--)
2794 dst[i] = (dst[i] << n) |
2795 (dst[i - 1] >> (8 - n));
2796 dst[0] = dst[0] << n;
2797 }
2798 }
2799
2800 static void
2801 ubsec_kshift_l(shiftbits, src, srcbits, dst, dstbits)
2802 u_int shiftbits, srcbits, dstbits;
2803 u_int8_t *src, *dst;
2804 {
2805 int slen, dlen, i, n;
2806
2807 slen = (srcbits + 7) / 8;
2808 dlen = (dstbits + 7) / 8;
2809
2810 n = shiftbits / 8;
2811 for (i = 0; i < slen; i++)
2812 dst[i] = src[i + n];
2813 for (i = 0; i < dlen - slen; i++)
2814 dst[slen + i] = 0;
2815
2816 n = shiftbits % 8;
2817 if (n != 0) {
2818 for (i = 0; i < (dlen - 1); i++)
2819 dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2820 dst[dlen - 1] = dst[dlen - 1] >> n;
2821 }
2822 }
2823