ubsec.c revision 1.26.2.1 1 /* $NetBSD: ubsec.c,v 1.26.2.1 2012/02/18 07:34:53 mrg Exp $ */
2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
3 /* $OpenBSD: ubsec.c,v 1.127 2003/06/04 14:04:58 jason Exp $ */
4
5 /*
6 * Copyright (c) 2000 Jason L. Wright (jason (at) thought.net)
7 * Copyright (c) 2000 Theo de Raadt (deraadt (at) openbsd.org)
8 * Copyright (c) 2001 Patrik Lindergren (patrik (at) ipunplugged.com)
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Effort sponsored in part by the Defense Advanced Research Projects
32 * Agency (DARPA) and Air Force Research Laboratory, Air Force
33 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
34 *
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: ubsec.c,v 1.26.2.1 2012/02/18 07:34:53 mrg Exp $");
39
40 #undef UBSEC_DEBUG
41
42 /*
43 * uBsec 5[56]01, bcm580xx, bcm582x hardware crypto accelerator
44 */
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/endian.h>
50 #ifdef __NetBSD__
51 #define letoh16 htole16
52 #define letoh32 htole32
53 #define UBSEC_NO_RNG /* until statistically tested */
54 #endif
55 #include <sys/errno.h>
56 #include <sys/malloc.h>
57 #include <sys/kernel.h>
58 #include <sys/mbuf.h>
59 #include <sys/device.h>
60 #include <sys/queue.h>
61
62 #include <opencrypto/cryptodev.h>
63 #include <opencrypto/xform.h>
64 #ifdef __OpenBSD__
65 #include <dev/rndvar.h>
66 #include <sys/md5k.h>
67 #else
68 #include <sys/cprng.h>
69 #include <sys/md5.h>
70 #endif
71 #include <sys/sha1.h>
72
73 #include <dev/pci/pcireg.h>
74 #include <dev/pci/pcivar.h>
75 #include <dev/pci/pcidevs.h>
76
77 #include <dev/pci/ubsecreg.h>
78 #include <dev/pci/ubsecvar.h>
79
80 /*
81 * Prototypes and count for the pci_device structure
82 */
83 static int ubsec_probe(device_t, cfdata_t, void *);
84 static void ubsec_attach(device_t, device_t, void *);
85 static void ubsec_reset_board(struct ubsec_softc *);
86 static void ubsec_init_board(struct ubsec_softc *);
87 static void ubsec_init_pciregs(struct pci_attach_args *pa);
88 static void ubsec_cleanchip(struct ubsec_softc *);
89 static void ubsec_totalreset(struct ubsec_softc *);
90 static int ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
91
92 #ifdef __OpenBSD__
93 struct cfattach ubsec_ca = {
94 sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
95 };
96
97 struct cfdriver ubsec_cd = {
98 0, "ubsec", DV_DULL
99 };
100 #else
101 CFATTACH_DECL(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
102 NULL, NULL);
103 extern struct cfdriver ubsec_cd;
104 #endif
105
106 /* patchable */
107 #ifdef UBSEC_DEBUG
108 extern int ubsec_debug;
109 int ubsec_debug=1;
110 #endif
111
112 static int ubsec_intr(void *);
113 static int ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
114 static int ubsec_freesession(void*, u_int64_t);
115 static int ubsec_process(void*, struct cryptop *, int hint);
116 static void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
117 static void ubsec_feed(struct ubsec_softc *);
118 static void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
119 static void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
120 static void ubsec_feed2(struct ubsec_softc *);
121 #ifndef UBSEC_NO_RNG
122 static void ubsec_rng(void *);
123 #endif /* UBSEC_NO_RNG */
124 static int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
125 struct ubsec_dma_alloc *, int);
126 static void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
127 static int ubsec_dmamap_aligned(bus_dmamap_t);
128
129 static int ubsec_kprocess(void*, struct cryptkop *, int);
130 static int ubsec_kprocess_modexp_sw(struct ubsec_softc *,
131 struct cryptkop *, int);
132 static int ubsec_kprocess_modexp_hw(struct ubsec_softc *,
133 struct cryptkop *, int);
134 static int ubsec_kprocess_rsapriv(struct ubsec_softc *,
135 struct cryptkop *, int);
136 static void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
137 static int ubsec_ksigbits(struct crparam *);
138 static void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
139 static void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
140
141 #ifdef UBSEC_DEBUG
142 static void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
143 static void ubsec_dump_mcr(struct ubsec_mcr *);
144 static void ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
145 #endif
146
147 #define READ_REG(sc,r) \
148 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
149
150 #define WRITE_REG(sc,reg,val) \
151 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
152
153 #define SWAP32(x) (x) = htole32(ntohl((x)))
154 #ifndef HTOLE32
155 #define HTOLE32(x) (x) = htole32(x)
156 #endif
157
158 struct ubsec_stats ubsecstats;
159
160 /*
161 * ubsec_maxbatch controls the number of crypto ops to voluntarily
162 * collect into one submission to the hardware. This batching happens
163 * when ops are dispatched from the crypto subsystem with a hint that
164 * more are to follow immediately. These ops must also not be marked
165 * with a ``no delay'' flag.
166 */
167 static int ubsec_maxbatch = 1;
168 #ifdef SYSCTL_INT
169 SYSCTL_INT(_kern, OID_AUTO, ubsec_maxbatch, CTLFLAG_RW, &ubsec_maxbatch,
170 0, "Broadcom driver: max ops to batch w/o interrupt");
171 #endif
172
173 /*
174 * ubsec_maxaggr controls the number of crypto ops to submit to the
175 * hardware as a unit. This aggregation reduces the number of interrupts
176 * to the host at the expense of increased latency (for all but the last
177 * operation). For network traffic setting this to one yields the highest
178 * performance but at the expense of more interrupt processing.
179 */
180 static int ubsec_maxaggr = 1;
181 #ifdef SYSCTL_INT
182 SYSCTL_INT(_kern, OID_AUTO, ubsec_maxaggr, CTLFLAG_RW, &ubsec_maxaggr,
183 0, "Broadcom driver: max ops to aggregate under one interrupt");
184 #endif
185
186 static const struct ubsec_product {
187 pci_vendor_id_t ubsec_vendor;
188 pci_product_id_t ubsec_product;
189 int ubsec_flags;
190 int ubsec_statmask;
191 const char *ubsec_name;
192 } ubsec_products[] = {
193 { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5501,
194 0,
195 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
196 "Bluesteel 5501"
197 },
198 { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5601,
199 UBS_FLAGS_KEY | UBS_FLAGS_RNG,
200 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
201 "Bluesteel 5601"
202 },
203
204 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5801,
205 0,
206 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
207 "Broadcom BCM5801"
208 },
209
210 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5802,
211 UBS_FLAGS_KEY | UBS_FLAGS_RNG,
212 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
213 "Broadcom BCM5802"
214 },
215
216 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5805,
217 UBS_FLAGS_KEY | UBS_FLAGS_RNG,
218 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
219 "Broadcom BCM5805"
220 },
221
222 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5820,
223 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
224 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
225 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
226 "Broadcom BCM5820"
227 },
228
229 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5821,
230 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
231 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
232 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
233 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
234 "Broadcom BCM5821"
235 },
236 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_SCA1K,
237 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
238 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
239 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
240 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
241 "Sun Crypto Accelerator 1000"
242 },
243 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_5821,
244 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
245 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
246 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
247 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
248 "Broadcom BCM5821 (Sun)"
249 },
250
251 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5822,
252 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
253 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
254 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
255 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
256 "Broadcom BCM5822"
257 },
258
259 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5823,
260 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
261 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
262 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
263 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
264 "Broadcom BCM5823"
265 },
266
267 { 0, 0,
268 0,
269 0,
270 NULL
271 }
272 };
273
274 static const struct ubsec_product *
275 ubsec_lookup(const struct pci_attach_args *pa)
276 {
277 const struct ubsec_product *up;
278
279 for (up = ubsec_products; up->ubsec_name != NULL; up++) {
280 if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
281 PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
282 return (up);
283 }
284 return (NULL);
285 }
286
287 static int
288 ubsec_probe(device_t parent, cfdata_t match, void *aux)
289 {
290 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
291
292 if (ubsec_lookup(pa) != NULL)
293 return (1);
294
295 return (0);
296 }
297
298 static void
299 ubsec_attach(device_t parent, device_t self, void *aux)
300 {
301 struct ubsec_softc *sc = device_private(self);
302 struct pci_attach_args *pa = aux;
303 const struct ubsec_product *up;
304 pci_chipset_tag_t pc = pa->pa_pc;
305 pci_intr_handle_t ih;
306 const char *intrstr = NULL;
307 struct ubsec_dma *dmap;
308 u_int32_t cmd, i;
309
310 up = ubsec_lookup(pa);
311 if (up == NULL) {
312 printf("\n");
313 panic("ubsec_attach: impossible");
314 }
315
316 pci_aprint_devinfo_fancy(pa, "Crypto processor", up->ubsec_name, 1);
317
318 SIMPLEQ_INIT(&sc->sc_queue);
319 SIMPLEQ_INIT(&sc->sc_qchip);
320 SIMPLEQ_INIT(&sc->sc_queue2);
321 SIMPLEQ_INIT(&sc->sc_qchip2);
322 SIMPLEQ_INIT(&sc->sc_q2free);
323
324 sc->sc_flags = up->ubsec_flags;
325 sc->sc_statmask = up->ubsec_statmask;
326
327 cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
328 cmd |= PCI_COMMAND_MASTER_ENABLE;
329 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
330
331 if (pci_mapreg_map(pa, BS_BAR, PCI_MAPREG_TYPE_MEM, 0,
332 &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
333 aprint_error_dev(&sc->sc_dv, "can't find mem space");
334 return;
335 }
336
337 sc->sc_dmat = pa->pa_dmat;
338
339 if (pci_intr_map(pa, &ih)) {
340 aprint_error_dev(&sc->sc_dv, "couldn't map interrupt\n");
341 return;
342 }
343 intrstr = pci_intr_string(pc, ih);
344 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc);
345 if (sc->sc_ih == NULL) {
346 aprint_error_dev(&sc->sc_dv, "couldn't establish interrupt");
347 if (intrstr != NULL)
348 aprint_error(" at %s", intrstr);
349 aprint_error("\n");
350 return;
351 }
352 aprint_normal_dev(&sc->sc_dv, "interrupting at %s\n", intrstr);
353
354 sc->sc_cid = crypto_get_driverid(0);
355 if (sc->sc_cid < 0) {
356 aprint_error_dev(&sc->sc_dv, "couldn't get crypto driver id\n");
357 pci_intr_disestablish(pc, sc->sc_ih);
358 return;
359 }
360
361 SIMPLEQ_INIT(&sc->sc_freequeue);
362 dmap = sc->sc_dmaa;
363 for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
364 struct ubsec_q *q;
365
366 q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
367 M_DEVBUF, M_NOWAIT);
368 if (q == NULL) {
369 aprint_error_dev(&sc->sc_dv, "can't allocate queue buffers\n");
370 break;
371 }
372
373 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
374 &dmap->d_alloc, 0)) {
375 aprint_error_dev(&sc->sc_dv, "can't allocate dma buffers\n");
376 free(q, M_DEVBUF);
377 break;
378 }
379 dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
380
381 q->q_dma = dmap;
382 sc->sc_queuea[i] = q;
383
384 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
385 }
386
387 crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
388 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
389 crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
390 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
391 crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0,
392 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
393 crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0,
394 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
395
396 /*
397 * Reset Broadcom chip
398 */
399 ubsec_reset_board(sc);
400
401 /*
402 * Init Broadcom specific PCI settings
403 */
404 ubsec_init_pciregs(pa);
405
406 /*
407 * Init Broadcom chip
408 */
409 ubsec_init_board(sc);
410
411 #ifndef UBSEC_NO_RNG
412 if (sc->sc_flags & UBS_FLAGS_RNG) {
413 sc->sc_statmask |= BS_STAT_MCR2_DONE;
414
415 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
416 &sc->sc_rng.rng_q.q_mcr, 0))
417 goto skip_rng;
418
419 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
420 &sc->sc_rng.rng_q.q_ctx, 0)) {
421 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
422 goto skip_rng;
423 }
424
425 if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
426 UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
427 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
428 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
429 goto skip_rng;
430 }
431
432 if (hz >= 100)
433 sc->sc_rnghz = hz / 100;
434 else
435 sc->sc_rnghz = 1;
436 #ifdef __OpenBSD__
437 timeout_set(&sc->sc_rngto, ubsec_rng, sc);
438 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
439 #else
440 callout_init(&sc->sc_rngto, 0);
441 callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
442 #endif
443 skip_rng:
444 if (sc->sc_rnghz)
445 aprint_normal_dev(&sc->sc_dv, "random number generator enabled\n");
446 else
447 aprint_error_dev(&sc->sc_dv, "WARNING: random number generator "
448 "disabled\n");
449 }
450 #endif /* UBSEC_NO_RNG */
451
452 if (sc->sc_flags & UBS_FLAGS_KEY) {
453 sc->sc_statmask |= BS_STAT_MCR2_DONE;
454
455 crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
456 ubsec_kprocess, sc);
457 #if 0
458 crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
459 ubsec_kprocess, sc);
460 #endif
461 }
462 }
463
464 /*
465 * UBSEC Interrupt routine
466 */
467 static int
468 ubsec_intr(void *arg)
469 {
470 struct ubsec_softc *sc = arg;
471 volatile u_int32_t stat;
472 struct ubsec_q *q;
473 struct ubsec_dma *dmap;
474 int npkts = 0, i;
475
476 stat = READ_REG(sc, BS_STAT);
477 stat &= sc->sc_statmask;
478 if (stat == 0) {
479 return (0);
480 }
481
482 WRITE_REG(sc, BS_STAT, stat); /* IACK */
483
484 /*
485 * Check to see if we have any packets waiting for us
486 */
487 if ((stat & BS_STAT_MCR1_DONE)) {
488 while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
489 q = SIMPLEQ_FIRST(&sc->sc_qchip);
490 dmap = q->q_dma;
491
492 if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
493 break;
494
495 q = SIMPLEQ_FIRST(&sc->sc_qchip);
496 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
497
498 npkts = q->q_nstacked_mcrs;
499 sc->sc_nqchip -= 1+npkts;
500 /*
501 * search for further sc_qchip ubsec_q's that share
502 * the same MCR, and complete them too, they must be
503 * at the top.
504 */
505 for (i = 0; i < npkts; i++) {
506 if(q->q_stacked_mcr[i])
507 ubsec_callback(sc, q->q_stacked_mcr[i]);
508 else
509 break;
510 }
511 ubsec_callback(sc, q);
512 }
513
514 /*
515 * Don't send any more packet to chip if there has been
516 * a DMAERR.
517 */
518 if (!(stat & BS_STAT_DMAERR))
519 ubsec_feed(sc);
520 }
521
522 /*
523 * Check to see if we have any key setups/rng's waiting for us
524 */
525 if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
526 (stat & BS_STAT_MCR2_DONE)) {
527 struct ubsec_q2 *q2;
528 struct ubsec_mcr *mcr;
529
530 while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
531 q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
532
533 bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
534 0, q2->q_mcr.dma_map->dm_mapsize,
535 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
536
537 mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
538 if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
539 bus_dmamap_sync(sc->sc_dmat,
540 q2->q_mcr.dma_map, 0,
541 q2->q_mcr.dma_map->dm_mapsize,
542 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
543 break;
544 }
545 q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
546 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
547 ubsec_callback2(sc, q2);
548 /*
549 * Don't send any more packet to chip if there has been
550 * a DMAERR.
551 */
552 if (!(stat & BS_STAT_DMAERR))
553 ubsec_feed2(sc);
554 }
555 }
556
557 /*
558 * Check to see if we got any DMA Error
559 */
560 if (stat & BS_STAT_DMAERR) {
561 #ifdef UBSEC_DEBUG
562 if (ubsec_debug) {
563 volatile u_int32_t a = READ_REG(sc, BS_ERR);
564
565 printf("%s: dmaerr %s@%08x\n", device_xname(&sc->sc_dv),
566 (a & BS_ERR_READ) ? "read" : "write",
567 a & BS_ERR_ADDR);
568 }
569 #endif /* UBSEC_DEBUG */
570 ubsecstats.hst_dmaerr++;
571 ubsec_totalreset(sc);
572 ubsec_feed(sc);
573 }
574
575 if (sc->sc_needwakeup) { /* XXX check high watermark */
576 int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
577 #ifdef UBSEC_DEBUG
578 if (ubsec_debug)
579 printf("%s: wakeup crypto (%x)\n", device_xname(&sc->sc_dv),
580 sc->sc_needwakeup);
581 #endif /* UBSEC_DEBUG */
582 sc->sc_needwakeup &= ~wkeup;
583 crypto_unblock(sc->sc_cid, wkeup);
584 }
585 return (1);
586 }
587
588 /*
589 * ubsec_feed() - aggregate and post requests to chip
590 * OpenBSD comments:
591 * It is assumed that the caller set splnet()
592 */
593 static void
594 ubsec_feed(struct ubsec_softc *sc)
595 {
596 struct ubsec_q *q, *q2;
597 int npkts, i;
598 void *v;
599 u_int32_t stat;
600 #ifdef UBSEC_DEBUG
601 static int max;
602 #endif /* UBSEC_DEBUG */
603
604 npkts = sc->sc_nqueue;
605 if (npkts > ubsecstats.hst_maxqueue)
606 ubsecstats.hst_maxqueue = npkts;
607 if (npkts < 2)
608 goto feed1;
609
610 /*
611 * Decide how many ops to combine in a single MCR. We cannot
612 * aggregate more than UBS_MAX_AGGR because this is the number
613 * of slots defined in the data structure. Otherwise we clamp
614 * based on the tunable parameter ubsec_maxaggr. Note that
615 * aggregation can happen in two ways: either by batching ops
616 * from above or because the h/w backs up and throttles us.
617 * Aggregating ops reduces the number of interrupts to the host
618 * but also (potentially) increases the latency for processing
619 * completed ops as we only get an interrupt when all aggregated
620 * ops have completed.
621 */
622 if (npkts > UBS_MAX_AGGR)
623 npkts = UBS_MAX_AGGR;
624 if (npkts > ubsec_maxaggr)
625 npkts = ubsec_maxaggr;
626 if (npkts > ubsecstats.hst_maxbatch)
627 ubsecstats.hst_maxbatch = npkts;
628 if (npkts < 2)
629 goto feed1;
630 ubsecstats.hst_totbatch += npkts-1;
631
632 if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
633 if (stat & BS_STAT_DMAERR) {
634 ubsec_totalreset(sc);
635 ubsecstats.hst_dmaerr++;
636 } else {
637 ubsecstats.hst_mcr1full++;
638 }
639 return;
640 }
641
642 #ifdef UBSEC_DEBUG
643 if (ubsec_debug)
644 printf("merging %d records\n", npkts);
645 /* XXX temporary aggregation statistics reporting code */
646 if (max < npkts) {
647 max = npkts;
648 printf("%s: new max aggregate %d\n", device_xname(&sc->sc_dv), max);
649 }
650 #endif /* UBSEC_DEBUG */
651
652 q = SIMPLEQ_FIRST(&sc->sc_queue);
653 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
654 --sc->sc_nqueue;
655
656 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
657 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
658 if (q->q_dst_map != NULL)
659 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
660 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
661
662 q->q_nstacked_mcrs = npkts - 1; /* Number of packets stacked */
663
664 for (i = 0; i < q->q_nstacked_mcrs; i++) {
665 q2 = SIMPLEQ_FIRST(&sc->sc_queue);
666 bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
667 0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
668 if (q2->q_dst_map != NULL)
669 bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
670 0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
671 q2= SIMPLEQ_FIRST(&sc->sc_queue);
672 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
673 --sc->sc_nqueue;
674
675 v = ((void *)&q2->q_dma->d_dma->d_mcr);
676 v = (char*)v + (sizeof(struct ubsec_mcr) -
677 sizeof(struct ubsec_mcr_add));
678 memcpy(&q->q_dma->d_dma->d_mcradd[i], v, sizeof(struct ubsec_mcr_add));
679 q->q_stacked_mcr[i] = q2;
680 }
681 q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
682 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
683 sc->sc_nqchip += npkts;
684 if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
685 ubsecstats.hst_maxqchip = sc->sc_nqchip;
686 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
687 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
688 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
689 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
690 offsetof(struct ubsec_dmachunk, d_mcr));
691 return;
692
693 feed1:
694 while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
695 if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
696 if (stat & BS_STAT_DMAERR) {
697 ubsec_totalreset(sc);
698 ubsecstats.hst_dmaerr++;
699 } else {
700 ubsecstats.hst_mcr1full++;
701 }
702 break;
703 }
704
705 q = SIMPLEQ_FIRST(&sc->sc_queue);
706
707 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
708 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
709 if (q->q_dst_map != NULL)
710 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
711 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
712 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
713 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
714 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
715
716 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
717 offsetof(struct ubsec_dmachunk, d_mcr));
718 #ifdef UBSEC_DEBUG
719 if (ubsec_debug)
720 printf("feed: q->chip %p %08x stat %08x\n",
721 q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
722 stat);
723 #endif /* UBSEC_DEBUG */
724 q = SIMPLEQ_FIRST(&sc->sc_queue);
725 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
726 --sc->sc_nqueue;
727 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
728 sc->sc_nqchip++;
729 }
730 if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
731 ubsecstats.hst_maxqchip = sc->sc_nqchip;
732 }
733
734 /*
735 * Allocate a new 'session' and return an encoded session id. 'sidp'
736 * contains our registration id, and should contain an encoded session
737 * id on successful allocation.
738 */
739 static int
740 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
741 {
742 struct cryptoini *c, *encini = NULL, *macini = NULL;
743 struct ubsec_softc *sc;
744 struct ubsec_session *ses = NULL;
745 MD5_CTX md5ctx;
746 SHA1_CTX sha1ctx;
747 int i, sesn;
748
749 sc = arg;
750 KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
751
752 if (sidp == NULL || cri == NULL || sc == NULL)
753 return (EINVAL);
754
755 for (c = cri; c != NULL; c = c->cri_next) {
756 if (c->cri_alg == CRYPTO_MD5_HMAC_96 ||
757 c->cri_alg == CRYPTO_SHA1_HMAC_96) {
758 if (macini)
759 return (EINVAL);
760 macini = c;
761 } else if (c->cri_alg == CRYPTO_DES_CBC ||
762 c->cri_alg == CRYPTO_3DES_CBC) {
763 if (encini)
764 return (EINVAL);
765 encini = c;
766 } else
767 return (EINVAL);
768 }
769 if (encini == NULL && macini == NULL)
770 return (EINVAL);
771
772 if (sc->sc_sessions == NULL) {
773 ses = sc->sc_sessions = (struct ubsec_session *)malloc(
774 sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
775 if (ses == NULL)
776 return (ENOMEM);
777 sesn = 0;
778 sc->sc_nsessions = 1;
779 } else {
780 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
781 if (sc->sc_sessions[sesn].ses_used == 0) {
782 ses = &sc->sc_sessions[sesn];
783 break;
784 }
785 }
786
787 if (ses == NULL) {
788 sesn = sc->sc_nsessions;
789 ses = (struct ubsec_session *)malloc((sesn + 1) *
790 sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
791 if (ses == NULL)
792 return (ENOMEM);
793 memcpy(ses, sc->sc_sessions, sesn *
794 sizeof(struct ubsec_session));
795 memset(sc->sc_sessions, 0, sesn *
796 sizeof(struct ubsec_session));
797 free(sc->sc_sessions, M_DEVBUF);
798 sc->sc_sessions = ses;
799 ses = &sc->sc_sessions[sesn];
800 sc->sc_nsessions++;
801 }
802 }
803
804 memset(ses, 0, sizeof(struct ubsec_session));
805 ses->ses_used = 1;
806 if (encini) {
807 /* get an IV, network byte order */
808 #ifdef __NetBSD__
809 cprng_fast(ses->ses_iv, sizeof(ses->ses_iv));
810 #else
811 get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv));
812 #endif
813
814 /* Go ahead and compute key in ubsec's byte order */
815 if (encini->cri_alg == CRYPTO_DES_CBC) {
816 memcpy(&ses->ses_deskey[0], encini->cri_key, 8);
817 memcpy(&ses->ses_deskey[2], encini->cri_key, 8);
818 memcpy(&ses->ses_deskey[4], encini->cri_key, 8);
819 } else
820 memcpy(ses->ses_deskey, encini->cri_key, 24);
821
822 SWAP32(ses->ses_deskey[0]);
823 SWAP32(ses->ses_deskey[1]);
824 SWAP32(ses->ses_deskey[2]);
825 SWAP32(ses->ses_deskey[3]);
826 SWAP32(ses->ses_deskey[4]);
827 SWAP32(ses->ses_deskey[5]);
828 }
829
830 if (macini) {
831 for (i = 0; i < macini->cri_klen / 8; i++)
832 macini->cri_key[i] ^= HMAC_IPAD_VAL;
833
834 if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
835 MD5Init(&md5ctx);
836 MD5Update(&md5ctx, macini->cri_key,
837 macini->cri_klen / 8);
838 MD5Update(&md5ctx, hmac_ipad_buffer,
839 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
840 memcpy(ses->ses_hminner, md5ctx.state,
841 sizeof(md5ctx.state));
842 } else {
843 SHA1Init(&sha1ctx);
844 SHA1Update(&sha1ctx, macini->cri_key,
845 macini->cri_klen / 8);
846 SHA1Update(&sha1ctx, hmac_ipad_buffer,
847 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
848 memcpy(ses->ses_hminner, sha1ctx.state,
849 sizeof(sha1ctx.state));
850 }
851
852 for (i = 0; i < macini->cri_klen / 8; i++)
853 macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
854
855 if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
856 MD5Init(&md5ctx);
857 MD5Update(&md5ctx, macini->cri_key,
858 macini->cri_klen / 8);
859 MD5Update(&md5ctx, hmac_opad_buffer,
860 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
861 memcpy(ses->ses_hmouter, md5ctx.state,
862 sizeof(md5ctx.state));
863 } else {
864 SHA1Init(&sha1ctx);
865 SHA1Update(&sha1ctx, macini->cri_key,
866 macini->cri_klen / 8);
867 SHA1Update(&sha1ctx, hmac_opad_buffer,
868 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
869 memcpy(ses->ses_hmouter, sha1ctx.state,
870 sizeof(sha1ctx.state));
871 }
872
873 for (i = 0; i < macini->cri_klen / 8; i++)
874 macini->cri_key[i] ^= HMAC_OPAD_VAL;
875 }
876
877 *sidp = UBSEC_SID(device_unit(&sc->sc_dv), sesn);
878 return (0);
879 }
880
881 /*
882 * Deallocate a session.
883 */
884 static int
885 ubsec_freesession(void *arg, u_int64_t tid)
886 {
887 struct ubsec_softc *sc;
888 int session;
889 u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
890
891 sc = arg;
892 KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
893
894 session = UBSEC_SESSION(sid);
895 if (session >= sc->sc_nsessions)
896 return (EINVAL);
897
898 memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session]));
899 return (0);
900 }
901
902 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
903 static void
904 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
905 {
906 struct ubsec_operand *op = arg;
907
908 KASSERT(nsegs <= UBS_MAX_SCATTER
909 /*, ("Too many DMA segments returned when mapping operand")*/);
910 #ifdef UBSEC_DEBUG
911 if (ubsec_debug)
912 printf("ubsec_op_cb: mapsize %u nsegs %d\n",
913 (u_int) mapsize, nsegs);
914 #endif
915 op->mapsize = mapsize;
916 op->nsegs = nsegs;
917 memcpy(op->segs, seg, nsegs * sizeof (seg[0]));
918 }
919 #endif
920
921 static int
922 ubsec_process(void *arg, struct cryptop *crp, int hint)
923 {
924 struct ubsec_q *q = NULL;
925 #ifdef __OpenBSD__
926 int card;
927 #endif
928 int err = 0, i, j, s, nicealign;
929 struct ubsec_softc *sc;
930 struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
931 int encoffset = 0, macoffset = 0, cpskip, cpoffset;
932 int sskip, dskip, stheend, dtheend;
933 int16_t coffset;
934 struct ubsec_session *ses;
935 struct ubsec_pktctx ctx;
936 struct ubsec_dma *dmap = NULL;
937
938 sc = arg;
939 KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/);
940
941 if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
942 ubsecstats.hst_invalid++;
943 return (EINVAL);
944 }
945 if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
946 ubsecstats.hst_badsession++;
947 return (EINVAL);
948 }
949
950 s = splnet();
951
952 if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
953 ubsecstats.hst_queuefull++;
954 sc->sc_needwakeup |= CRYPTO_SYMQ;
955 splx(s);
956 return(ERESTART);
957 }
958
959 q = SIMPLEQ_FIRST(&sc->sc_freequeue);
960 SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
961 splx(s);
962
963 dmap = q->q_dma; /* Save dma pointer */
964 memset(q, 0, sizeof(struct ubsec_q));
965 memset(&ctx, 0, sizeof(ctx));
966
967 q->q_sesn = UBSEC_SESSION(crp->crp_sid);
968 q->q_dma = dmap;
969 ses = &sc->sc_sessions[q->q_sesn];
970
971 if (crp->crp_flags & CRYPTO_F_IMBUF) {
972 q->q_src_m = (struct mbuf *)crp->crp_buf;
973 q->q_dst_m = (struct mbuf *)crp->crp_buf;
974 } else if (crp->crp_flags & CRYPTO_F_IOV) {
975 q->q_src_io = (struct uio *)crp->crp_buf;
976 q->q_dst_io = (struct uio *)crp->crp_buf;
977 } else {
978 ubsecstats.hst_badflags++;
979 err = EINVAL;
980 goto errout; /* XXX we don't handle contiguous blocks! */
981 }
982
983 memset(&dmap->d_dma->d_mcr, 0, sizeof(struct ubsec_mcr));
984
985 dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
986 dmap->d_dma->d_mcr.mcr_flags = 0;
987 q->q_crp = crp;
988
989 crd1 = crp->crp_desc;
990 if (crd1 == NULL) {
991 ubsecstats.hst_nodesc++;
992 err = EINVAL;
993 goto errout;
994 }
995 crd2 = crd1->crd_next;
996
997 if (crd2 == NULL) {
998 if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
999 crd1->crd_alg == CRYPTO_SHA1_HMAC_96) {
1000 maccrd = crd1;
1001 enccrd = NULL;
1002 } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1003 crd1->crd_alg == CRYPTO_3DES_CBC) {
1004 maccrd = NULL;
1005 enccrd = crd1;
1006 } else {
1007 ubsecstats.hst_badalg++;
1008 err = EINVAL;
1009 goto errout;
1010 }
1011 } else {
1012 if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1013 crd1->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1014 (crd2->crd_alg == CRYPTO_DES_CBC ||
1015 crd2->crd_alg == CRYPTO_3DES_CBC) &&
1016 ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1017 maccrd = crd1;
1018 enccrd = crd2;
1019 } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1020 crd1->crd_alg == CRYPTO_3DES_CBC) &&
1021 (crd2->crd_alg == CRYPTO_MD5_HMAC_96 ||
1022 crd2->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1023 (crd1->crd_flags & CRD_F_ENCRYPT)) {
1024 enccrd = crd1;
1025 maccrd = crd2;
1026 } else {
1027 /*
1028 * We cannot order the ubsec as requested
1029 */
1030 ubsecstats.hst_badalg++;
1031 err = EINVAL;
1032 goto errout;
1033 }
1034 }
1035
1036 if (enccrd) {
1037 encoffset = enccrd->crd_skip;
1038 ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1039
1040 if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1041 q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1042
1043 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1044 memcpy(ctx.pc_iv, enccrd->crd_iv, 8);
1045 else {
1046 ctx.pc_iv[0] = ses->ses_iv[0];
1047 ctx.pc_iv[1] = ses->ses_iv[1];
1048 }
1049
1050 if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1051 if (crp->crp_flags & CRYPTO_F_IMBUF)
1052 m_copyback(q->q_src_m,
1053 enccrd->crd_inject,
1054 8, (void *)ctx.pc_iv);
1055 else if (crp->crp_flags & CRYPTO_F_IOV)
1056 cuio_copyback(q->q_src_io,
1057 enccrd->crd_inject,
1058 8, (void *)ctx.pc_iv);
1059 }
1060 } else {
1061 ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1062
1063 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1064 memcpy(ctx.pc_iv, enccrd->crd_iv, 8);
1065 else if (crp->crp_flags & CRYPTO_F_IMBUF)
1066 m_copydata(q->q_src_m, enccrd->crd_inject,
1067 8, (void *)ctx.pc_iv);
1068 else if (crp->crp_flags & CRYPTO_F_IOV)
1069 cuio_copydata(q->q_src_io,
1070 enccrd->crd_inject, 8,
1071 (void *)ctx.pc_iv);
1072 }
1073
1074 ctx.pc_deskey[0] = ses->ses_deskey[0];
1075 ctx.pc_deskey[1] = ses->ses_deskey[1];
1076 ctx.pc_deskey[2] = ses->ses_deskey[2];
1077 ctx.pc_deskey[3] = ses->ses_deskey[3];
1078 ctx.pc_deskey[4] = ses->ses_deskey[4];
1079 ctx.pc_deskey[5] = ses->ses_deskey[5];
1080 SWAP32(ctx.pc_iv[0]);
1081 SWAP32(ctx.pc_iv[1]);
1082 }
1083
1084 if (maccrd) {
1085 macoffset = maccrd->crd_skip;
1086
1087 if (maccrd->crd_alg == CRYPTO_MD5_HMAC_96)
1088 ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1089 else
1090 ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1091
1092 for (i = 0; i < 5; i++) {
1093 ctx.pc_hminner[i] = ses->ses_hminner[i];
1094 ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1095
1096 HTOLE32(ctx.pc_hminner[i]);
1097 HTOLE32(ctx.pc_hmouter[i]);
1098 }
1099 }
1100
1101 if (enccrd && maccrd) {
1102 /*
1103 * ubsec cannot handle packets where the end of encryption
1104 * and authentication are not the same, or where the
1105 * encrypted part begins before the authenticated part.
1106 */
1107 if ((encoffset + enccrd->crd_len) !=
1108 (macoffset + maccrd->crd_len)) {
1109 ubsecstats.hst_lenmismatch++;
1110 err = EINVAL;
1111 goto errout;
1112 }
1113 if (enccrd->crd_skip < maccrd->crd_skip) {
1114 ubsecstats.hst_skipmismatch++;
1115 err = EINVAL;
1116 goto errout;
1117 }
1118 sskip = maccrd->crd_skip;
1119 cpskip = dskip = enccrd->crd_skip;
1120 stheend = maccrd->crd_len;
1121 dtheend = enccrd->crd_len;
1122 coffset = enccrd->crd_skip - maccrd->crd_skip;
1123 cpoffset = cpskip + dtheend;
1124 #ifdef UBSEC_DEBUG
1125 if (ubsec_debug) {
1126 printf("mac: skip %d, len %d, inject %d\n",
1127 maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1128 printf("enc: skip %d, len %d, inject %d\n",
1129 enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1130 printf("src: skip %d, len %d\n", sskip, stheend);
1131 printf("dst: skip %d, len %d\n", dskip, dtheend);
1132 printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1133 coffset, stheend, cpskip, cpoffset);
1134 }
1135 #endif
1136 } else {
1137 cpskip = dskip = sskip = macoffset + encoffset;
1138 dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1139 cpoffset = cpskip + dtheend;
1140 coffset = 0;
1141 }
1142 ctx.pc_offset = htole16(coffset >> 2);
1143
1144 /* XXX FIXME: jonathan asks, what the heck's that 0xfff0? */
1145 if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
1146 0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
1147 err = ENOMEM;
1148 goto errout;
1149 }
1150 if (crp->crp_flags & CRYPTO_F_IMBUF) {
1151 if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1152 q->q_src_m, BUS_DMA_NOWAIT) != 0) {
1153 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1154 q->q_src_map = NULL;
1155 ubsecstats.hst_noload++;
1156 err = ENOMEM;
1157 goto errout;
1158 }
1159 } else if (crp->crp_flags & CRYPTO_F_IOV) {
1160 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1161 q->q_src_io, BUS_DMA_NOWAIT) != 0) {
1162 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1163 q->q_src_map = NULL;
1164 ubsecstats.hst_noload++;
1165 err = ENOMEM;
1166 goto errout;
1167 }
1168 }
1169 nicealign = ubsec_dmamap_aligned(q->q_src_map);
1170
1171 dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1172
1173 #ifdef UBSEC_DEBUG
1174 if (ubsec_debug)
1175 printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1176 #endif
1177 for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
1178 struct ubsec_pktbuf *pb;
1179 bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
1180 bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
1181
1182 if (sskip >= packl) {
1183 sskip -= packl;
1184 continue;
1185 }
1186
1187 packl -= sskip;
1188 packp += sskip;
1189 sskip = 0;
1190
1191 if (packl > 0xfffc) {
1192 err = EIO;
1193 goto errout;
1194 }
1195
1196 if (j == 0)
1197 pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1198 else
1199 pb = &dmap->d_dma->d_sbuf[j - 1];
1200
1201 pb->pb_addr = htole32(packp);
1202
1203 if (stheend) {
1204 if (packl > stheend) {
1205 pb->pb_len = htole32(stheend);
1206 stheend = 0;
1207 } else {
1208 pb->pb_len = htole32(packl);
1209 stheend -= packl;
1210 }
1211 } else
1212 pb->pb_len = htole32(packl);
1213
1214 if ((i + 1) == q->q_src_map->dm_nsegs)
1215 pb->pb_next = 0;
1216 else
1217 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1218 offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1219 j++;
1220 }
1221
1222 if (enccrd == NULL && maccrd != NULL) {
1223 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1224 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1225 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1226 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1227 #ifdef UBSEC_DEBUG
1228 if (ubsec_debug)
1229 printf("opkt: %x %x %x\n",
1230 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1231 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1232 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1233
1234 #endif
1235 } else {
1236 if (crp->crp_flags & CRYPTO_F_IOV) {
1237 if (!nicealign) {
1238 ubsecstats.hst_iovmisaligned++;
1239 err = EINVAL;
1240 goto errout;
1241 }
1242 /* XXX: ``what the heck's that'' 0xfff0? */
1243 if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1244 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1245 &q->q_dst_map) != 0) {
1246 ubsecstats.hst_nomap++;
1247 err = ENOMEM;
1248 goto errout;
1249 }
1250 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1251 q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
1252 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1253 q->q_dst_map = NULL;
1254 ubsecstats.hst_noload++;
1255 err = ENOMEM;
1256 goto errout;
1257 }
1258 } else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1259 if (nicealign) {
1260 q->q_dst_m = q->q_src_m;
1261 q->q_dst_map = q->q_src_map;
1262 } else {
1263 int totlen, len;
1264 struct mbuf *m, *top, **mp;
1265
1266 ubsecstats.hst_unaligned++;
1267 totlen = q->q_src_map->dm_mapsize;
1268 if (q->q_src_m->m_flags & M_PKTHDR) {
1269 len = MHLEN;
1270 MGETHDR(m, M_DONTWAIT, MT_DATA);
1271 /*XXX FIXME: m_dup_pkthdr */
1272 if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
1273 m_free(m);
1274 m = NULL;
1275 }
1276 } else {
1277 len = MLEN;
1278 MGET(m, M_DONTWAIT, MT_DATA);
1279 }
1280 if (m == NULL) {
1281 ubsecstats.hst_nombuf++;
1282 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1283 goto errout;
1284 }
1285 if (len == MHLEN)
1286 /*XXX was M_DUP_PKTHDR*/
1287 M_COPY_PKTHDR(m, q->q_src_m);
1288 if (totlen >= MINCLSIZE) {
1289 MCLGET(m, M_DONTWAIT);
1290 if ((m->m_flags & M_EXT) == 0) {
1291 m_free(m);
1292 ubsecstats.hst_nomcl++;
1293 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1294 goto errout;
1295 }
1296 len = MCLBYTES;
1297 }
1298 m->m_len = len;
1299 top = NULL;
1300 mp = ⊤
1301
1302 while (totlen > 0) {
1303 if (top) {
1304 MGET(m, M_DONTWAIT, MT_DATA);
1305 if (m == NULL) {
1306 m_freem(top);
1307 ubsecstats.hst_nombuf++;
1308 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1309 goto errout;
1310 }
1311 len = MLEN;
1312 }
1313 if (top && totlen >= MINCLSIZE) {
1314 MCLGET(m, M_DONTWAIT);
1315 if ((m->m_flags & M_EXT) == 0) {
1316 *mp = m;
1317 m_freem(top);
1318 ubsecstats.hst_nomcl++;
1319 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1320 goto errout;
1321 }
1322 len = MCLBYTES;
1323 }
1324 m->m_len = len = min(totlen, len);
1325 totlen -= len;
1326 *mp = m;
1327 mp = &m->m_next;
1328 }
1329 q->q_dst_m = top;
1330 ubsec_mcopy(q->q_src_m, q->q_dst_m,
1331 cpskip, cpoffset);
1332 /* XXX again, what the heck is that 0xfff0? */
1333 if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1334 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1335 &q->q_dst_map) != 0) {
1336 ubsecstats.hst_nomap++;
1337 err = ENOMEM;
1338 goto errout;
1339 }
1340 if (bus_dmamap_load_mbuf(sc->sc_dmat,
1341 q->q_dst_map, q->q_dst_m,
1342 BUS_DMA_NOWAIT) != 0) {
1343 bus_dmamap_destroy(sc->sc_dmat,
1344 q->q_dst_map);
1345 q->q_dst_map = NULL;
1346 ubsecstats.hst_noload++;
1347 err = ENOMEM;
1348 goto errout;
1349 }
1350 }
1351 } else {
1352 ubsecstats.hst_badflags++;
1353 err = EINVAL;
1354 goto errout;
1355 }
1356
1357 #ifdef UBSEC_DEBUG
1358 if (ubsec_debug)
1359 printf("dst skip: %d\n", dskip);
1360 #endif
1361 for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
1362 struct ubsec_pktbuf *pb;
1363 bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
1364 bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
1365
1366 if (dskip >= packl) {
1367 dskip -= packl;
1368 continue;
1369 }
1370
1371 packl -= dskip;
1372 packp += dskip;
1373 dskip = 0;
1374
1375 if (packl > 0xfffc) {
1376 err = EIO;
1377 goto errout;
1378 }
1379
1380 if (j == 0)
1381 pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1382 else
1383 pb = &dmap->d_dma->d_dbuf[j - 1];
1384
1385 pb->pb_addr = htole32(packp);
1386
1387 if (dtheend) {
1388 if (packl > dtheend) {
1389 pb->pb_len = htole32(dtheend);
1390 dtheend = 0;
1391 } else {
1392 pb->pb_len = htole32(packl);
1393 dtheend -= packl;
1394 }
1395 } else
1396 pb->pb_len = htole32(packl);
1397
1398 if ((i + 1) == q->q_dst_map->dm_nsegs) {
1399 if (maccrd)
1400 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1401 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1402 else
1403 pb->pb_next = 0;
1404 } else
1405 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1406 offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1407 j++;
1408 }
1409 }
1410
1411 dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1412 offsetof(struct ubsec_dmachunk, d_ctx));
1413
1414 if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1415 struct ubsec_pktctx_long *ctxl;
1416
1417 ctxl = (struct ubsec_pktctx_long *)((char *)dmap->d_alloc.dma_vaddr +
1418 offsetof(struct ubsec_dmachunk, d_ctx));
1419
1420 /* transform small context into long context */
1421 ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1422 ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1423 ctxl->pc_flags = ctx.pc_flags;
1424 ctxl->pc_offset = ctx.pc_offset;
1425 for (i = 0; i < 6; i++)
1426 ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1427 for (i = 0; i < 5; i++)
1428 ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1429 for (i = 0; i < 5; i++)
1430 ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1431 ctxl->pc_iv[0] = ctx.pc_iv[0];
1432 ctxl->pc_iv[1] = ctx.pc_iv[1];
1433 } else
1434 memcpy((char *)dmap->d_alloc.dma_vaddr +
1435 offsetof(struct ubsec_dmachunk, d_ctx), &ctx,
1436 sizeof(struct ubsec_pktctx));
1437
1438 s = splnet();
1439 SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1440 sc->sc_nqueue++;
1441 ubsecstats.hst_ipackets++;
1442 ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
1443 if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
1444 ubsec_feed(sc);
1445 splx(s);
1446 return (0);
1447
1448 errout:
1449 if (q != NULL) {
1450 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1451 m_freem(q->q_dst_m);
1452
1453 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1454 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1455 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1456 }
1457 if (q->q_src_map != NULL) {
1458 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1459 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1460 }
1461
1462 s = splnet();
1463 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1464 splx(s);
1465 }
1466 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
1467 if (err == EINVAL)
1468 ubsecstats.hst_invalid++;
1469 else
1470 ubsecstats.hst_nomem++;
1471 #endif
1472 if (err != ERESTART) {
1473 crp->crp_etype = err;
1474 crypto_done(crp);
1475 } else {
1476 sc->sc_needwakeup |= CRYPTO_SYMQ;
1477 }
1478 return (err);
1479 }
1480
1481 static void
1482 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1483 {
1484 struct cryptop *crp = (struct cryptop *)q->q_crp;
1485 struct cryptodesc *crd;
1486 struct ubsec_dma *dmap = q->q_dma;
1487
1488 ubsecstats.hst_opackets++;
1489 ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1490
1491 bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
1492 dmap->d_alloc.dma_map->dm_mapsize,
1493 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1494 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1495 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1496 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1497 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1498 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1499 }
1500 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
1501 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1502 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1503 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1504
1505 if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1506 m_freem(q->q_src_m);
1507 crp->crp_buf = (void *)q->q_dst_m;
1508 }
1509
1510 /* copy out IV for future use */
1511 if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1512 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1513 if (crd->crd_alg != CRYPTO_DES_CBC &&
1514 crd->crd_alg != CRYPTO_3DES_CBC)
1515 continue;
1516 if (crp->crp_flags & CRYPTO_F_IMBUF)
1517 m_copydata((struct mbuf *)crp->crp_buf,
1518 crd->crd_skip + crd->crd_len - 8, 8,
1519 (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1520 else if (crp->crp_flags & CRYPTO_F_IOV) {
1521 cuio_copydata((struct uio *)crp->crp_buf,
1522 crd->crd_skip + crd->crd_len - 8, 8,
1523 (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1524 }
1525 break;
1526 }
1527 }
1528
1529 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1530 if (crd->crd_alg != CRYPTO_MD5_HMAC_96 &&
1531 crd->crd_alg != CRYPTO_SHA1_HMAC_96)
1532 continue;
1533 if (crp->crp_flags & CRYPTO_F_IMBUF)
1534 m_copyback((struct mbuf *)crp->crp_buf,
1535 crd->crd_inject, 12,
1536 (void *)dmap->d_dma->d_macbuf);
1537 else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1538 bcopy((void *)dmap->d_dma->d_macbuf,
1539 crp->crp_mac, 12);
1540 break;
1541 }
1542 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1543 crypto_done(crp);
1544 }
1545
1546 static void
1547 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1548 {
1549 int i, j, dlen, slen;
1550 char *dptr, *sptr;
1551
1552 j = 0;
1553 sptr = srcm->m_data;
1554 slen = srcm->m_len;
1555 dptr = dstm->m_data;
1556 dlen = dstm->m_len;
1557
1558 while (1) {
1559 for (i = 0; i < min(slen, dlen); i++) {
1560 if (j < hoffset || j >= toffset)
1561 *dptr++ = *sptr++;
1562 slen--;
1563 dlen--;
1564 j++;
1565 }
1566 if (slen == 0) {
1567 srcm = srcm->m_next;
1568 if (srcm == NULL)
1569 return;
1570 sptr = srcm->m_data;
1571 slen = srcm->m_len;
1572 }
1573 if (dlen == 0) {
1574 dstm = dstm->m_next;
1575 if (dstm == NULL)
1576 return;
1577 dptr = dstm->m_data;
1578 dlen = dstm->m_len;
1579 }
1580 }
1581 }
1582
1583 /*
1584 * feed the key generator, must be called at splnet() or higher.
1585 */
1586 static void
1587 ubsec_feed2(struct ubsec_softc *sc)
1588 {
1589 struct ubsec_q2 *q;
1590
1591 while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1592 if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1593 break;
1594 q = SIMPLEQ_FIRST(&sc->sc_queue2);
1595
1596 bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1597 q->q_mcr.dma_map->dm_mapsize,
1598 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1599 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1600 q->q_ctx.dma_map->dm_mapsize,
1601 BUS_DMASYNC_PREWRITE);
1602
1603 WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1604 q = SIMPLEQ_FIRST(&sc->sc_queue2);
1605 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
1606 --sc->sc_nqueue2;
1607 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1608 }
1609 }
1610
1611 /*
1612 * Callback for handling random numbers
1613 */
1614 static void
1615 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1616 {
1617 struct cryptkop *krp;
1618 struct ubsec_ctx_keyop *ctx;
1619
1620 ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1621 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1622 q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1623
1624 switch (q->q_type) {
1625 #ifndef UBSEC_NO_RNG
1626 case UBS_CTXOP_RNGSHA1:
1627 case UBS_CTXOP_RNGBYPASS: {
1628 struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1629 u_int32_t *p;
1630 int i;
1631
1632 bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
1633 rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1634 p = (u_int32_t *)rng->rng_buf.dma_vaddr;
1635 #ifndef __NetBSD__
1636 for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++)
1637 add_true_randomness(letoh32(*p));
1638 rng->rng_used = 0;
1639 #else
1640 /* XXX NetBSD rnd subsystem too weak */
1641 i = 0; (void)i; /* shut off gcc warnings */
1642 #endif
1643 #ifdef __OpenBSD__
1644 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
1645 #else
1646 callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1647 #endif
1648 break;
1649 }
1650 #endif
1651 case UBS_CTXOP_MODEXP: {
1652 struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1653 u_int rlen, clen;
1654
1655 krp = me->me_krp;
1656 rlen = (me->me_modbits + 7) / 8;
1657 clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1658
1659 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
1660 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1661 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
1662 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1663 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
1664 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1665 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
1666 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1667
1668 if (clen < rlen)
1669 krp->krp_status = E2BIG;
1670 else {
1671 if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1672 memset(krp->krp_param[krp->krp_iparams].crp_p, 0,
1673 (krp->krp_param[krp->krp_iparams].crp_nbits
1674 + 7) / 8);
1675 bcopy(me->me_C.dma_vaddr,
1676 krp->krp_param[krp->krp_iparams].crp_p,
1677 (me->me_modbits + 7) / 8);
1678 } else
1679 ubsec_kshift_l(me->me_shiftbits,
1680 me->me_C.dma_vaddr, me->me_normbits,
1681 krp->krp_param[krp->krp_iparams].crp_p,
1682 krp->krp_param[krp->krp_iparams].crp_nbits);
1683 }
1684
1685 crypto_kdone(krp);
1686
1687 /* bzero all potentially sensitive data */
1688 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
1689 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
1690 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
1691 memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
1692
1693 /* Can't free here, so put us on the free list. */
1694 SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1695 break;
1696 }
1697 case UBS_CTXOP_RSAPRIV: {
1698 struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1699 u_int len;
1700
1701 krp = rp->rpr_krp;
1702 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
1703 rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1704 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
1705 rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1706
1707 len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1708 bcopy(rp->rpr_msgout.dma_vaddr,
1709 krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1710
1711 crypto_kdone(krp);
1712
1713 memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
1714 memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
1715 memset(rp->rpr_q.q_ctx.dma_vaddr, 0, rp->rpr_q.q_ctx.dma_size);
1716
1717 /* Can't free here, so put us on the free list. */
1718 SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1719 break;
1720 }
1721 default:
1722 printf("%s: unknown ctx op: %x\n", device_xname(&sc->sc_dv),
1723 letoh16(ctx->ctx_op));
1724 break;
1725 }
1726 }
1727
1728 #ifndef UBSEC_NO_RNG
1729 static void
1730 ubsec_rng(void *vsc)
1731 {
1732 struct ubsec_softc *sc = vsc;
1733 struct ubsec_q2_rng *rng = &sc->sc_rng;
1734 struct ubsec_mcr *mcr;
1735 struct ubsec_ctx_rngbypass *ctx;
1736 int s;
1737
1738 s = splnet();
1739 if (rng->rng_used) {
1740 splx(s);
1741 return;
1742 }
1743 sc->sc_nqueue2++;
1744 if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1745 goto out;
1746
1747 mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1748 ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1749
1750 mcr->mcr_pkts = htole16(1);
1751 mcr->mcr_flags = 0;
1752 mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1753 mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1754 mcr->mcr_ipktbuf.pb_len = 0;
1755 mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1756 mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1757 mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1758 UBS_PKTBUF_LEN);
1759 mcr->mcr_opktbuf.pb_next = 0;
1760
1761 ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1762 ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
1763 rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
1764
1765 bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
1766 rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1767
1768 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1769 rng->rng_used = 1;
1770 ubsec_feed2(sc);
1771 ubsecstats.hst_rng++;
1772 splx(s);
1773
1774 return;
1775
1776 out:
1777 /*
1778 * Something weird happened, generate our own call back.
1779 */
1780 sc->sc_nqueue2--;
1781 splx(s);
1782 #ifdef __OpenBSD__
1783 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
1784 #else
1785 callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1786 #endif
1787 }
1788 #endif /* UBSEC_NO_RNG */
1789
1790 static int
1791 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
1792 struct ubsec_dma_alloc *dma,int mapflags)
1793 {
1794 int r;
1795
1796 if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
1797 &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
1798 goto fail_0;
1799
1800 if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
1801 size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
1802 goto fail_1;
1803
1804 if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1805 BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
1806 goto fail_2;
1807
1808 if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
1809 size, NULL, BUS_DMA_NOWAIT)) != 0)
1810 goto fail_3;
1811
1812 dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
1813 dma->dma_size = size;
1814 return (0);
1815
1816 fail_3:
1817 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
1818 fail_2:
1819 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
1820 fail_1:
1821 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
1822 fail_0:
1823 dma->dma_map = NULL;
1824 return (r);
1825 }
1826
1827 static void
1828 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1829 {
1830 bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
1831 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
1832 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
1833 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
1834 }
1835
1836 /*
1837 * Resets the board. Values in the regesters are left as is
1838 * from the reset (i.e. initial values are assigned elsewhere).
1839 */
1840 static void
1841 ubsec_reset_board(struct ubsec_softc *sc)
1842 {
1843 volatile u_int32_t ctrl;
1844
1845 ctrl = READ_REG(sc, BS_CTRL);
1846 ctrl |= BS_CTRL_RESET;
1847 WRITE_REG(sc, BS_CTRL, ctrl);
1848
1849 /*
1850 * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
1851 */
1852 DELAY(10);
1853 }
1854
1855 /*
1856 * Init Broadcom registers
1857 */
1858 static void
1859 ubsec_init_board(struct ubsec_softc *sc)
1860 {
1861 u_int32_t ctrl;
1862
1863 ctrl = READ_REG(sc, BS_CTRL);
1864 ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
1865 ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
1866
1867 /*
1868 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
1869 * anyone got hw docs?
1870 */
1871 if (sc->sc_flags & UBS_FLAGS_KEY)
1872 ctrl |= BS_CTRL_MCR2INT;
1873 else
1874 ctrl &= ~BS_CTRL_MCR2INT;
1875
1876 if (sc->sc_flags & UBS_FLAGS_HWNORM)
1877 ctrl &= ~BS_CTRL_SWNORM;
1878
1879 WRITE_REG(sc, BS_CTRL, ctrl);
1880 }
1881
1882 /*
1883 * Init Broadcom PCI registers
1884 */
1885 static void
1886 ubsec_init_pciregs(struct pci_attach_args *pa)
1887 {
1888 pci_chipset_tag_t pc = pa->pa_pc;
1889 u_int32_t misc;
1890
1891 /*
1892 * This will set the cache line size to 1, this will
1893 * force the BCM58xx chip just to do burst read/writes.
1894 * Cache line read/writes are to slow
1895 */
1896 misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
1897 misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
1898 | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
1899 pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
1900 }
1901
1902 /*
1903 * Clean up after a chip crash.
1904 * It is assumed that the caller in splnet()
1905 */
1906 static void
1907 ubsec_cleanchip(struct ubsec_softc *sc)
1908 {
1909 struct ubsec_q *q;
1910
1911 while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
1912 q = SIMPLEQ_FIRST(&sc->sc_qchip);
1913 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
1914 ubsec_free_q(sc, q);
1915 }
1916 sc->sc_nqchip = 0;
1917 }
1918
1919 /*
1920 * free a ubsec_q
1921 * It is assumed that the caller is within splnet()
1922 */
1923 static int
1924 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
1925 {
1926 struct ubsec_q *q2;
1927 struct cryptop *crp;
1928 int npkts;
1929 int i;
1930
1931 npkts = q->q_nstacked_mcrs;
1932
1933 for (i = 0; i < npkts; i++) {
1934 if(q->q_stacked_mcr[i]) {
1935 q2 = q->q_stacked_mcr[i];
1936
1937 if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
1938 m_freem(q2->q_dst_m);
1939
1940 crp = (struct cryptop *)q2->q_crp;
1941
1942 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
1943
1944 crp->crp_etype = EFAULT;
1945 crypto_done(crp);
1946 } else {
1947 break;
1948 }
1949 }
1950
1951 /*
1952 * Free header MCR
1953 */
1954 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1955 m_freem(q->q_dst_m);
1956
1957 crp = (struct cryptop *)q->q_crp;
1958
1959 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1960
1961 crp->crp_etype = EFAULT;
1962 crypto_done(crp);
1963 return(0);
1964 }
1965
1966 /*
1967 * Routine to reset the chip and clean up.
1968 * It is assumed that the caller is in splnet()
1969 */
1970 static void
1971 ubsec_totalreset(struct ubsec_softc *sc)
1972 {
1973 ubsec_reset_board(sc);
1974 ubsec_init_board(sc);
1975 ubsec_cleanchip(sc);
1976 }
1977
1978 static int
1979 ubsec_dmamap_aligned(bus_dmamap_t map)
1980 {
1981 int i;
1982
1983 for (i = 0; i < map->dm_nsegs; i++) {
1984 if (map->dm_segs[i].ds_addr & 3)
1985 return (0);
1986 if ((i != (map->dm_nsegs - 1)) &&
1987 (map->dm_segs[i].ds_len & 3))
1988 return (0);
1989 }
1990 return (1);
1991 }
1992
1993 #ifdef __OpenBSD__
1994 struct ubsec_softc *
1995 ubsec_kfind(struct cryptkop *krp)
1996 {
1997 struct ubsec_softc *sc;
1998 int i;
1999
2000 for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
2001 sc = ubsec_cd.cd_devs[i];
2002 if (sc == NULL)
2003 continue;
2004 if (sc->sc_cid == krp->krp_hid)
2005 return (sc);
2006 }
2007 return (NULL);
2008 }
2009 #endif
2010
2011 static void
2012 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2013 {
2014 switch (q->q_type) {
2015 case UBS_CTXOP_MODEXP: {
2016 struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2017
2018 ubsec_dma_free(sc, &me->me_q.q_mcr);
2019 ubsec_dma_free(sc, &me->me_q.q_ctx);
2020 ubsec_dma_free(sc, &me->me_M);
2021 ubsec_dma_free(sc, &me->me_E);
2022 ubsec_dma_free(sc, &me->me_C);
2023 ubsec_dma_free(sc, &me->me_epb);
2024 free(me, M_DEVBUF);
2025 break;
2026 }
2027 case UBS_CTXOP_RSAPRIV: {
2028 struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2029
2030 ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2031 ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2032 ubsec_dma_free(sc, &rp->rpr_msgin);
2033 ubsec_dma_free(sc, &rp->rpr_msgout);
2034 free(rp, M_DEVBUF);
2035 break;
2036 }
2037 default:
2038 printf("%s: invalid kfree 0x%x\n", device_xname(&sc->sc_dv),
2039 q->q_type);
2040 break;
2041 }
2042 }
2043
2044 static int
2045 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2046 {
2047 struct ubsec_softc *sc;
2048 int r;
2049
2050 if (krp == NULL || krp->krp_callback == NULL)
2051 return (EINVAL);
2052 #ifdef __OpenBSD__
2053 if ((sc = ubsec_kfind(krp)) == NULL)
2054 return (EINVAL);
2055 #else
2056 sc = arg;
2057 KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/);
2058 #endif
2059
2060 while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2061 struct ubsec_q2 *q;
2062
2063 q = SIMPLEQ_FIRST(&sc->sc_q2free);
2064 SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
2065 ubsec_kfree(sc, q);
2066 }
2067
2068 switch (krp->krp_op) {
2069 case CRK_MOD_EXP:
2070 if (sc->sc_flags & UBS_FLAGS_HWNORM)
2071 r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2072 else
2073 r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2074 break;
2075 case CRK_MOD_EXP_CRT:
2076 r = ubsec_kprocess_rsapriv(sc, krp, hint);
2077 break;
2078 default:
2079 printf("%s: kprocess: invalid op 0x%x\n",
2080 device_xname(&sc->sc_dv), krp->krp_op);
2081 krp->krp_status = EOPNOTSUPP;
2082 crypto_kdone(krp);
2083 r = 0;
2084 }
2085 return (r);
2086 }
2087
2088 /*
2089 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2090 */
2091 static int
2092 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
2093 int hint)
2094 {
2095 struct ubsec_q2_modexp *me;
2096 struct ubsec_mcr *mcr;
2097 struct ubsec_ctx_modexp *ctx;
2098 struct ubsec_pktbuf *epb;
2099 int s, err = 0;
2100 u_int nbits, normbits, mbits, shiftbits, ebits;
2101
2102 me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2103 if (me == NULL) {
2104 err = ENOMEM;
2105 goto errout;
2106 }
2107 memset(me, 0, sizeof *me);
2108 me->me_krp = krp;
2109 me->me_q.q_type = UBS_CTXOP_MODEXP;
2110
2111 nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2112 if (nbits <= 512)
2113 normbits = 512;
2114 else if (nbits <= 768)
2115 normbits = 768;
2116 else if (nbits <= 1024)
2117 normbits = 1024;
2118 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2119 normbits = 1536;
2120 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2121 normbits = 2048;
2122 else {
2123 err = E2BIG;
2124 goto errout;
2125 }
2126
2127 shiftbits = normbits - nbits;
2128
2129 me->me_modbits = nbits;
2130 me->me_shiftbits = shiftbits;
2131 me->me_normbits = normbits;
2132
2133 /* Sanity check: result bits must be >= true modulus bits. */
2134 if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2135 err = ERANGE;
2136 goto errout;
2137 }
2138
2139 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2140 &me->me_q.q_mcr, 0)) {
2141 err = ENOMEM;
2142 goto errout;
2143 }
2144 mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2145
2146 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2147 &me->me_q.q_ctx, 0)) {
2148 err = ENOMEM;
2149 goto errout;
2150 }
2151
2152 mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2153 if (mbits > nbits) {
2154 err = E2BIG;
2155 goto errout;
2156 }
2157 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2158 err = ENOMEM;
2159 goto errout;
2160 }
2161 ubsec_kshift_r(shiftbits,
2162 krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2163 me->me_M.dma_vaddr, normbits);
2164
2165 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2166 err = ENOMEM;
2167 goto errout;
2168 }
2169 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2170
2171 ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2172 if (ebits > nbits) {
2173 err = E2BIG;
2174 goto errout;
2175 }
2176 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2177 err = ENOMEM;
2178 goto errout;
2179 }
2180 ubsec_kshift_r(shiftbits,
2181 krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2182 me->me_E.dma_vaddr, normbits);
2183
2184 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2185 &me->me_epb, 0)) {
2186 err = ENOMEM;
2187 goto errout;
2188 }
2189 epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2190 epb->pb_addr = htole32(me->me_E.dma_paddr);
2191 epb->pb_next = 0;
2192 epb->pb_len = htole32(normbits / 8);
2193
2194 #ifdef UBSEC_DEBUG
2195 if (ubsec_debug) {
2196 printf("Epb ");
2197 ubsec_dump_pb(epb);
2198 }
2199 #endif
2200
2201 mcr->mcr_pkts = htole16(1);
2202 mcr->mcr_flags = 0;
2203 mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2204 mcr->mcr_reserved = 0;
2205 mcr->mcr_pktlen = 0;
2206
2207 mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2208 mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2209 mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2210
2211 mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2212 mcr->mcr_opktbuf.pb_next = 0;
2213 mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2214
2215 #ifdef DIAGNOSTIC
2216 /* Misaligned output buffer will hang the chip. */
2217 if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2218 panic("%s: modexp invalid addr 0x%x",
2219 device_xname(&sc->sc_dv), letoh32(mcr->mcr_opktbuf.pb_addr));
2220 if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2221 panic("%s: modexp invalid len 0x%x",
2222 device_xname(&sc->sc_dv), letoh32(mcr->mcr_opktbuf.pb_len));
2223 #endif
2224
2225 ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2226 memset(ctx, 0, sizeof(*ctx));
2227 ubsec_kshift_r(shiftbits,
2228 krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2229 ctx->me_N, normbits);
2230 ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2231 ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2232 ctx->me_E_len = htole16(nbits);
2233 ctx->me_N_len = htole16(nbits);
2234
2235 #ifdef UBSEC_DEBUG
2236 if (ubsec_debug) {
2237 ubsec_dump_mcr(mcr);
2238 ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2239 }
2240 #endif
2241
2242 /*
2243 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2244 * everything else.
2245 */
2246 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2247 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2248 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2249 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2250 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2251 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2252 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2253 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2254
2255 /* Enqueue and we're done... */
2256 s = splnet();
2257 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2258 ubsec_feed2(sc);
2259 ubsecstats.hst_modexp++;
2260 splx(s);
2261
2262 return (0);
2263
2264 errout:
2265 if (me != NULL) {
2266 if (me->me_q.q_mcr.dma_map != NULL)
2267 ubsec_dma_free(sc, &me->me_q.q_mcr);
2268 if (me->me_q.q_ctx.dma_map != NULL) {
2269 memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
2270 ubsec_dma_free(sc, &me->me_q.q_ctx);
2271 }
2272 if (me->me_M.dma_map != NULL) {
2273 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2274 ubsec_dma_free(sc, &me->me_M);
2275 }
2276 if (me->me_E.dma_map != NULL) {
2277 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2278 ubsec_dma_free(sc, &me->me_E);
2279 }
2280 if (me->me_C.dma_map != NULL) {
2281 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2282 ubsec_dma_free(sc, &me->me_C);
2283 }
2284 if (me->me_epb.dma_map != NULL)
2285 ubsec_dma_free(sc, &me->me_epb);
2286 free(me, M_DEVBUF);
2287 }
2288 krp->krp_status = err;
2289 crypto_kdone(krp);
2290 return (0);
2291 }
2292
2293 /*
2294 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2295 */
2296 static int
2297 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
2298 int hint)
2299 {
2300 struct ubsec_q2_modexp *me;
2301 struct ubsec_mcr *mcr;
2302 struct ubsec_ctx_modexp *ctx;
2303 struct ubsec_pktbuf *epb;
2304 int s, err = 0;
2305 u_int nbits, normbits, mbits, shiftbits, ebits;
2306
2307 me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2308 if (me == NULL) {
2309 err = ENOMEM;
2310 goto errout;
2311 }
2312 memset(me, 0, sizeof *me);
2313 me->me_krp = krp;
2314 me->me_q.q_type = UBS_CTXOP_MODEXP;
2315
2316 nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2317 if (nbits <= 512)
2318 normbits = 512;
2319 else if (nbits <= 768)
2320 normbits = 768;
2321 else if (nbits <= 1024)
2322 normbits = 1024;
2323 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2324 normbits = 1536;
2325 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2326 normbits = 2048;
2327 else {
2328 err = E2BIG;
2329 goto errout;
2330 }
2331
2332 shiftbits = normbits - nbits;
2333
2334 /* XXX ??? */
2335 me->me_modbits = nbits;
2336 me->me_shiftbits = shiftbits;
2337 me->me_normbits = normbits;
2338
2339 /* Sanity check: result bits must be >= true modulus bits. */
2340 if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2341 err = ERANGE;
2342 goto errout;
2343 }
2344
2345 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2346 &me->me_q.q_mcr, 0)) {
2347 err = ENOMEM;
2348 goto errout;
2349 }
2350 mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2351
2352 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2353 &me->me_q.q_ctx, 0)) {
2354 err = ENOMEM;
2355 goto errout;
2356 }
2357
2358 mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2359 if (mbits > nbits) {
2360 err = E2BIG;
2361 goto errout;
2362 }
2363 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2364 err = ENOMEM;
2365 goto errout;
2366 }
2367 memset(me->me_M.dma_vaddr, 0, normbits / 8);
2368 bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2369 me->me_M.dma_vaddr, (mbits + 7) / 8);
2370
2371 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2372 err = ENOMEM;
2373 goto errout;
2374 }
2375 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2376
2377 ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2378 if (ebits > nbits) {
2379 err = E2BIG;
2380 goto errout;
2381 }
2382 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2383 err = ENOMEM;
2384 goto errout;
2385 }
2386 memset(me->me_E.dma_vaddr, 0, normbits / 8);
2387 bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2388 me->me_E.dma_vaddr, (ebits + 7) / 8);
2389
2390 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2391 &me->me_epb, 0)) {
2392 err = ENOMEM;
2393 goto errout;
2394 }
2395 epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2396 epb->pb_addr = htole32(me->me_E.dma_paddr);
2397 epb->pb_next = 0;
2398 epb->pb_len = htole32((ebits + 7) / 8);
2399
2400 #ifdef UBSEC_DEBUG
2401 if (ubsec_debug) {
2402 printf("Epb ");
2403 ubsec_dump_pb(epb);
2404 }
2405 #endif
2406
2407 mcr->mcr_pkts = htole16(1);
2408 mcr->mcr_flags = 0;
2409 mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2410 mcr->mcr_reserved = 0;
2411 mcr->mcr_pktlen = 0;
2412
2413 mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2414 mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2415 mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2416
2417 mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2418 mcr->mcr_opktbuf.pb_next = 0;
2419 mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2420
2421 #ifdef DIAGNOSTIC
2422 /* Misaligned output buffer will hang the chip. */
2423 if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2424 panic("%s: modexp invalid addr 0x%x",
2425 device_xname(&sc->sc_dv), letoh32(mcr->mcr_opktbuf.pb_addr));
2426 if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2427 panic("%s: modexp invalid len 0x%x",
2428 device_xname(&sc->sc_dv), letoh32(mcr->mcr_opktbuf.pb_len));
2429 #endif
2430
2431 ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2432 memset(ctx, 0, sizeof(*ctx));
2433 memcpy(ctx->me_N, krp->krp_param[UBS_MODEXP_PAR_N].crp_p,
2434 (nbits + 7) / 8);
2435 ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2436 ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2437 ctx->me_E_len = htole16(ebits);
2438 ctx->me_N_len = htole16(nbits);
2439
2440 #ifdef UBSEC_DEBUG
2441 if (ubsec_debug) {
2442 ubsec_dump_mcr(mcr);
2443 ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2444 }
2445 #endif
2446
2447 /*
2448 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2449 * everything else.
2450 */
2451 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2452 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2453 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2454 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2455 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2456 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2457 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2458 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2459
2460 /* Enqueue and we're done... */
2461 s = splnet();
2462 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2463 ubsec_feed2(sc);
2464 splx(s);
2465
2466 return (0);
2467
2468 errout:
2469 if (me != NULL) {
2470 if (me->me_q.q_mcr.dma_map != NULL)
2471 ubsec_dma_free(sc, &me->me_q.q_mcr);
2472 if (me->me_q.q_ctx.dma_map != NULL) {
2473 memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
2474 ubsec_dma_free(sc, &me->me_q.q_ctx);
2475 }
2476 if (me->me_M.dma_map != NULL) {
2477 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2478 ubsec_dma_free(sc, &me->me_M);
2479 }
2480 if (me->me_E.dma_map != NULL) {
2481 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2482 ubsec_dma_free(sc, &me->me_E);
2483 }
2484 if (me->me_C.dma_map != NULL) {
2485 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2486 ubsec_dma_free(sc, &me->me_C);
2487 }
2488 if (me->me_epb.dma_map != NULL)
2489 ubsec_dma_free(sc, &me->me_epb);
2490 free(me, M_DEVBUF);
2491 }
2492 krp->krp_status = err;
2493 crypto_kdone(krp);
2494 return (0);
2495 }
2496
2497 static int
2498 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
2499 int hint)
2500 {
2501 struct ubsec_q2_rsapriv *rp = NULL;
2502 struct ubsec_mcr *mcr;
2503 struct ubsec_ctx_rsapriv *ctx;
2504 int s, err = 0;
2505 u_int padlen, msglen;
2506
2507 msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2508 padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2509 if (msglen > padlen)
2510 padlen = msglen;
2511
2512 if (padlen <= 256)
2513 padlen = 256;
2514 else if (padlen <= 384)
2515 padlen = 384;
2516 else if (padlen <= 512)
2517 padlen = 512;
2518 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2519 padlen = 768;
2520 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2521 padlen = 1024;
2522 else {
2523 err = E2BIG;
2524 goto errout;
2525 }
2526
2527 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2528 err = E2BIG;
2529 goto errout;
2530 }
2531
2532 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2533 err = E2BIG;
2534 goto errout;
2535 }
2536
2537 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2538 err = E2BIG;
2539 goto errout;
2540 }
2541
2542 rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT|M_ZERO);
2543 if (rp == NULL)
2544 return (ENOMEM);
2545 rp->rpr_krp = krp;
2546 rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2547
2548 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2549 &rp->rpr_q.q_mcr, 0)) {
2550 err = ENOMEM;
2551 goto errout;
2552 }
2553 mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2554
2555 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2556 &rp->rpr_q.q_ctx, 0)) {
2557 err = ENOMEM;
2558 goto errout;
2559 }
2560 ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2561 memset(ctx, 0, sizeof *ctx);
2562
2563 /* Copy in p */
2564 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2565 &ctx->rpr_buf[0 * (padlen / 8)],
2566 (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2567
2568 /* Copy in q */
2569 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2570 &ctx->rpr_buf[1 * (padlen / 8)],
2571 (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2572
2573 /* Copy in dp */
2574 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2575 &ctx->rpr_buf[2 * (padlen / 8)],
2576 (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2577
2578 /* Copy in dq */
2579 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2580 &ctx->rpr_buf[3 * (padlen / 8)],
2581 (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2582
2583 /* Copy in pinv */
2584 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2585 &ctx->rpr_buf[4 * (padlen / 8)],
2586 (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2587
2588 msglen = padlen * 2;
2589
2590 /* Copy in input message (aligned buffer/length). */
2591 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2592 /* Is this likely? */
2593 err = E2BIG;
2594 goto errout;
2595 }
2596 if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2597 err = ENOMEM;
2598 goto errout;
2599 }
2600 memset(rp->rpr_msgin.dma_vaddr, 0, (msglen + 7) / 8);
2601 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2602 rp->rpr_msgin.dma_vaddr,
2603 (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2604
2605 /* Prepare space for output message (aligned buffer/length). */
2606 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2607 /* Is this likely? */
2608 err = E2BIG;
2609 goto errout;
2610 }
2611 if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2612 err = ENOMEM;
2613 goto errout;
2614 }
2615 memset(rp->rpr_msgout.dma_vaddr, 0, (msglen + 7) / 8);
2616
2617 mcr->mcr_pkts = htole16(1);
2618 mcr->mcr_flags = 0;
2619 mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2620 mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2621 mcr->mcr_ipktbuf.pb_next = 0;
2622 mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2623 mcr->mcr_reserved = 0;
2624 mcr->mcr_pktlen = htole16(msglen);
2625 mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2626 mcr->mcr_opktbuf.pb_next = 0;
2627 mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2628
2629 #ifdef DIAGNOSTIC
2630 if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2631 panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
2632 device_xname(&sc->sc_dv), (u_long) rp->rpr_msgin.dma_paddr,
2633 (u_long) rp->rpr_msgin.dma_size);
2634 }
2635 if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2636 panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
2637 device_xname(&sc->sc_dv), (u_long) rp->rpr_msgout.dma_paddr,
2638 (u_long) rp->rpr_msgout.dma_size);
2639 }
2640 #endif
2641
2642 ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2643 ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2644 ctx->rpr_q_len = htole16(padlen);
2645 ctx->rpr_p_len = htole16(padlen);
2646
2647 /*
2648 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2649 * everything else.
2650 */
2651 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
2652 0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2653 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
2654 0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2655
2656 /* Enqueue and we're done... */
2657 s = splnet();
2658 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2659 ubsec_feed2(sc);
2660 ubsecstats.hst_modexpcrt++;
2661 splx(s);
2662 return (0);
2663
2664 errout:
2665 if (rp != NULL) {
2666 if (rp->rpr_q.q_mcr.dma_map != NULL)
2667 ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2668 if (rp->rpr_msgin.dma_map != NULL) {
2669 memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
2670 ubsec_dma_free(sc, &rp->rpr_msgin);
2671 }
2672 if (rp->rpr_msgout.dma_map != NULL) {
2673 memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
2674 ubsec_dma_free(sc, &rp->rpr_msgout);
2675 }
2676 free(rp, M_DEVBUF);
2677 }
2678 krp->krp_status = err;
2679 crypto_kdone(krp);
2680 return (0);
2681 }
2682
2683 #ifdef UBSEC_DEBUG
2684 static void
2685 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
2686 {
2687 printf("addr 0x%x (0x%x) next 0x%x\n",
2688 pb->pb_addr, pb->pb_len, pb->pb_next);
2689 }
2690
2691 static void
2692 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
2693 {
2694 printf("CTX (0x%x):\n", c->ctx_len);
2695 switch (letoh16(c->ctx_op)) {
2696 case UBS_CTXOP_RNGBYPASS:
2697 case UBS_CTXOP_RNGSHA1:
2698 break;
2699 case UBS_CTXOP_MODEXP:
2700 {
2701 struct ubsec_ctx_modexp *cx = (void *)c;
2702 int i, len;
2703
2704 printf(" Elen %u, Nlen %u\n",
2705 letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2706 len = (cx->me_N_len + 7)/8;
2707 for (i = 0; i < len; i++)
2708 printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2709 printf("\n");
2710 break;
2711 }
2712 default:
2713 printf("unknown context: %x\n", c->ctx_op);
2714 }
2715 printf("END CTX\n");
2716 }
2717
2718 static void
2719 ubsec_dump_mcr(struct ubsec_mcr *mcr)
2720 {
2721 volatile struct ubsec_mcr_add *ma;
2722 int i;
2723
2724 printf("MCR:\n");
2725 printf(" pkts: %u, flags 0x%x\n",
2726 letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2727 ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2728 for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2729 printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2730 letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2731 letoh16(ma->mcr_reserved));
2732 printf(" %d: ipkt ", i);
2733 ubsec_dump_pb(&ma->mcr_ipktbuf);
2734 printf(" %d: opkt ", i);
2735 ubsec_dump_pb(&ma->mcr_opktbuf);
2736 ma++;
2737 }
2738 printf("END MCR\n");
2739 }
2740 #endif /* UBSEC_DEBUG */
2741
2742 /*
2743 * Return the number of significant bits of a big number.
2744 */
2745 static int
2746 ubsec_ksigbits(struct crparam *cr)
2747 {
2748 u_int plen = (cr->crp_nbits + 7) / 8;
2749 int i, sig = plen * 8;
2750 u_int8_t c, *p = cr->crp_p;
2751
2752 for (i = plen - 1; i >= 0; i--) {
2753 c = p[i];
2754 if (c != 0) {
2755 while ((c & 0x80) == 0) {
2756 sig--;
2757 c <<= 1;
2758 }
2759 break;
2760 }
2761 sig -= 8;
2762 }
2763 return (sig);
2764 }
2765
2766 static void
2767 ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits,
2768 u_int8_t *dst, u_int dstbits)
2769 {
2770 u_int slen, dlen;
2771 int i, si, di, n;
2772
2773 slen = (srcbits + 7) / 8;
2774 dlen = (dstbits + 7) / 8;
2775
2776 for (i = 0; i < slen; i++)
2777 dst[i] = src[i];
2778 for (i = 0; i < dlen - slen; i++)
2779 dst[slen + i] = 0;
2780
2781 n = shiftbits / 8;
2782 if (n != 0) {
2783 si = dlen - n - 1;
2784 di = dlen - 1;
2785 while (si >= 0)
2786 dst[di--] = dst[si--];
2787 while (di >= 0)
2788 dst[di--] = 0;
2789 }
2790
2791 n = shiftbits % 8;
2792 if (n != 0) {
2793 for (i = dlen - 1; i > 0; i--)
2794 dst[i] = (dst[i] << n) |
2795 (dst[i - 1] >> (8 - n));
2796 dst[0] = dst[0] << n;
2797 }
2798 }
2799
2800 static void
2801 ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits,
2802 u_int8_t *dst, u_int dstbits)
2803 {
2804 int slen, dlen, i, n;
2805
2806 slen = (srcbits + 7) / 8;
2807 dlen = (dstbits + 7) / 8;
2808
2809 n = shiftbits / 8;
2810 for (i = 0; i < slen; i++)
2811 dst[i] = src[i + n];
2812 for (i = 0; i < dlen - slen; i++)
2813 dst[slen + i] = 0;
2814
2815 n = shiftbits % 8;
2816 if (n != 0) {
2817 for (i = 0; i < (dlen - 1); i++)
2818 dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2819 dst[dlen - 1] = dst[dlen - 1] >> n;
2820 }
2821 }
2822