ubsec.c revision 1.27.6.2 1 /* $NetBSD: ubsec.c,v 1.27.6.2 2013/06/23 06:20:21 tls Exp $ */
2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
3 /* $OpenBSD: ubsec.c,v 1.127 2003/06/04 14:04:58 jason Exp $ */
4
5 /*
6 * Copyright (c) 2000 Jason L. Wright (jason (at) thought.net)
7 * Copyright (c) 2000 Theo de Raadt (deraadt (at) openbsd.org)
8 * Copyright (c) 2001 Patrik Lindergren (patrik (at) ipunplugged.com)
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Effort sponsored in part by the Defense Advanced Research Projects
32 * Agency (DARPA) and Air Force Research Laboratory, Air Force
33 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
34 *
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: ubsec.c,v 1.27.6.2 2013/06/23 06:20:21 tls Exp $");
39
40 #undef UBSEC_DEBUG
41
42 /*
43 * uBsec 5[56]01, bcm580xx, bcm582x hardware crypto accelerator
44 */
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/endian.h>
50 #ifdef __NetBSD__
51 #define UBSEC_NO_RNG /* hangs on attach */
52 #define letoh16 htole16
53 #define letoh32 htole32
54 #endif
55 #include <sys/errno.h>
56 #include <sys/malloc.h>
57 #include <sys/kernel.h>
58 #include <sys/mbuf.h>
59 #include <sys/device.h>
60 #include <sys/queue.h>
61
62 #include <opencrypto/cryptodev.h>
63 #include <opencrypto/xform.h>
64 #ifdef __OpenBSD__
65 #include <dev/rndvar.h>
66 #include <sys/md5k.h>
67 #else
68 #include <sys/cprng.h>
69 #include <sys/md5.h>
70 #endif
71 #include <sys/sha1.h>
72
73 #include <dev/pci/pcireg.h>
74 #include <dev/pci/pcivar.h>
75 #include <dev/pci/pcidevs.h>
76
77 #include <dev/pci/ubsecreg.h>
78 #include <dev/pci/ubsecvar.h>
79
80 /*
81 * Prototypes and count for the pci_device structure
82 */
83 static int ubsec_probe(device_t, cfdata_t, void *);
84 static void ubsec_attach(device_t, device_t, void *);
85 static void ubsec_reset_board(struct ubsec_softc *);
86 static void ubsec_init_board(struct ubsec_softc *);
87 static void ubsec_init_pciregs(struct pci_attach_args *pa);
88 static void ubsec_cleanchip(struct ubsec_softc *);
89 static void ubsec_totalreset(struct ubsec_softc *);
90 static int ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
91
92 #ifdef __OpenBSD__
93 struct cfattach ubsec_ca = {
94 sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
95 };
96
97 struct cfdriver ubsec_cd = {
98 0, "ubsec", DV_DULL
99 };
100 #else
101 CFATTACH_DECL_NEW(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
102 NULL, NULL);
103 extern struct cfdriver ubsec_cd;
104 #endif
105
106 /* patchable */
107 #ifdef UBSEC_DEBUG
108 extern int ubsec_debug;
109 int ubsec_debug=1;
110 #endif
111
112 static int ubsec_intr(void *);
113 static int ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
114 static int ubsec_freesession(void*, u_int64_t);
115 static int ubsec_process(void*, struct cryptop *, int hint);
116 static void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
117 static void ubsec_feed(struct ubsec_softc *);
118 static void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
119 static void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
120 static void ubsec_feed2(struct ubsec_softc *);
121 #ifndef UBSEC_NO_RNG
122 static void ubsec_rng(void *);
123 static void ubsec_rng_locked(void *);
124 static void ubsec_rng_get(size_t, void *);
125 #endif /* UBSEC_NO_RNG */
126 static int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
127 struct ubsec_dma_alloc *, int);
128 static void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
129 static int ubsec_dmamap_aligned(bus_dmamap_t);
130
131 static int ubsec_kprocess(void*, struct cryptkop *, int);
132 static int ubsec_kprocess_modexp_sw(struct ubsec_softc *,
133 struct cryptkop *, int);
134 static int ubsec_kprocess_modexp_hw(struct ubsec_softc *,
135 struct cryptkop *, int);
136 static int ubsec_kprocess_rsapriv(struct ubsec_softc *,
137 struct cryptkop *, int);
138 static void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
139 static int ubsec_ksigbits(struct crparam *);
140 static void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
141 static void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
142
143 #ifdef UBSEC_DEBUG
144 static void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
145 static void ubsec_dump_mcr(struct ubsec_mcr *);
146 static void ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
147 #endif
148
149 #define READ_REG(sc,r) \
150 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
151
152 #define WRITE_REG(sc,reg,val) \
153 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
154
155 #define SWAP32(x) (x) = htole32(ntohl((x)))
156 #ifndef HTOLE32
157 #define HTOLE32(x) (x) = htole32(x)
158 #endif
159
160 struct ubsec_stats ubsecstats;
161
162 /*
163 * ubsec_maxbatch controls the number of crypto ops to voluntarily
164 * collect into one submission to the hardware. This batching happens
165 * when ops are dispatched from the crypto subsystem with a hint that
166 * more are to follow immediately. These ops must also not be marked
167 * with a ``no delay'' flag.
168 */
169 static int ubsec_maxbatch = 1;
170 #ifdef SYSCTL_INT
171 SYSCTL_INT(_kern, OID_AUTO, ubsec_maxbatch, CTLFLAG_RW, &ubsec_maxbatch,
172 0, "Broadcom driver: max ops to batch w/o interrupt");
173 #endif
174
175 /*
176 * ubsec_maxaggr controls the number of crypto ops to submit to the
177 * hardware as a unit. This aggregation reduces the number of interrupts
178 * to the host at the expense of increased latency (for all but the last
179 * operation). For network traffic setting this to one yields the highest
180 * performance but at the expense of more interrupt processing.
181 */
182 static int ubsec_maxaggr = 1;
183 #ifdef SYSCTL_INT
184 SYSCTL_INT(_kern, OID_AUTO, ubsec_maxaggr, CTLFLAG_RW, &ubsec_maxaggr,
185 0, "Broadcom driver: max ops to aggregate under one interrupt");
186 #endif
187
188 static const struct ubsec_product {
189 pci_vendor_id_t ubsec_vendor;
190 pci_product_id_t ubsec_product;
191 int ubsec_flags;
192 int ubsec_statmask;
193 const char *ubsec_name;
194 } ubsec_products[] = {
195 { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5501,
196 0,
197 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
198 "Bluesteel 5501"
199 },
200 { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5601,
201 UBS_FLAGS_KEY | UBS_FLAGS_RNG,
202 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
203 "Bluesteel 5601"
204 },
205
206 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5801,
207 0,
208 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
209 "Broadcom BCM5801"
210 },
211
212 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5802,
213 UBS_FLAGS_KEY | UBS_FLAGS_RNG,
214 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
215 "Broadcom BCM5802"
216 },
217
218 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5805,
219 UBS_FLAGS_KEY | UBS_FLAGS_RNG,
220 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
221 "Broadcom BCM5805"
222 },
223
224 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5820,
225 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
226 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
227 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
228 "Broadcom BCM5820"
229 },
230
231 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5821,
232 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
233 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
234 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
235 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
236 "Broadcom BCM5821"
237 },
238 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_SCA1K,
239 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
240 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
241 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
242 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
243 "Sun Crypto Accelerator 1000"
244 },
245 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_5821,
246 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
247 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
248 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
249 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
250 "Broadcom BCM5821 (Sun)"
251 },
252
253 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5822,
254 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
255 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
256 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
257 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
258 "Broadcom BCM5822"
259 },
260
261 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5823,
262 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
263 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
264 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
265 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
266 "Broadcom BCM5823"
267 },
268
269 { 0, 0,
270 0,
271 0,
272 NULL
273 }
274 };
275
276 static const struct ubsec_product *
277 ubsec_lookup(const struct pci_attach_args *pa)
278 {
279 const struct ubsec_product *up;
280
281 for (up = ubsec_products; up->ubsec_name != NULL; up++) {
282 if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
283 PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
284 return (up);
285 }
286 return (NULL);
287 }
288
289 static int
290 ubsec_probe(device_t parent, cfdata_t match, void *aux)
291 {
292 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
293
294 if (ubsec_lookup(pa) != NULL)
295 return (1);
296
297 return (0);
298 }
299
300 static void
301 ubsec_attach(device_t parent, device_t self, void *aux)
302 {
303 struct ubsec_softc *sc = device_private(self);
304 struct pci_attach_args *pa = aux;
305 const struct ubsec_product *up;
306 pci_chipset_tag_t pc = pa->pa_pc;
307 pci_intr_handle_t ih;
308 const char *intrstr = NULL;
309 struct ubsec_dma *dmap;
310 u_int32_t cmd, i;
311
312 sc->sc_dev = self;
313 up = ubsec_lookup(pa);
314 if (up == NULL) {
315 printf("\n");
316 panic("ubsec_attach: impossible");
317 }
318
319 pci_aprint_devinfo_fancy(pa, "Crypto processor", up->ubsec_name, 1);
320
321 SIMPLEQ_INIT(&sc->sc_queue);
322 SIMPLEQ_INIT(&sc->sc_qchip);
323 SIMPLEQ_INIT(&sc->sc_queue2);
324 SIMPLEQ_INIT(&sc->sc_qchip2);
325 SIMPLEQ_INIT(&sc->sc_q2free);
326
327 sc->sc_flags = up->ubsec_flags;
328 sc->sc_statmask = up->ubsec_statmask;
329
330 cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
331 cmd |= PCI_COMMAND_MASTER_ENABLE;
332 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
333
334 if (pci_mapreg_map(pa, BS_BAR, PCI_MAPREG_TYPE_MEM, 0,
335 &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
336 aprint_error_dev(self, "can't find mem space");
337 return;
338 }
339
340 sc->sc_dmat = pa->pa_dmat;
341
342 if (pci_intr_map(pa, &ih)) {
343 aprint_error_dev(self, "couldn't map interrupt\n");
344 return;
345 }
346 intrstr = pci_intr_string(pc, ih);
347 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc);
348 if (sc->sc_ih == NULL) {
349 aprint_error_dev(self, "couldn't establish interrupt");
350 if (intrstr != NULL)
351 aprint_error(" at %s", intrstr);
352 aprint_error("\n");
353 return;
354 }
355 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
356
357 sc->sc_cid = crypto_get_driverid(0);
358 if (sc->sc_cid < 0) {
359 aprint_error_dev(self, "couldn't get crypto driver id\n");
360 pci_intr_disestablish(pc, sc->sc_ih);
361 return;
362 }
363
364 sc->sc_rng_need = RND_POOLBITS / NBBY;
365 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_VM);
366
367 SIMPLEQ_INIT(&sc->sc_freequeue);
368 dmap = sc->sc_dmaa;
369 for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
370 struct ubsec_q *q;
371
372 q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
373 M_DEVBUF, M_NOWAIT);
374 if (q == NULL) {
375 aprint_error_dev(self, "can't allocate queue buffers\n");
376 break;
377 }
378
379 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
380 &dmap->d_alloc, 0)) {
381 aprint_error_dev(self, "can't allocate dma buffers\n");
382 free(q, M_DEVBUF);
383 break;
384 }
385 dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
386
387 q->q_dma = dmap;
388 sc->sc_queuea[i] = q;
389
390 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
391 }
392
393 crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
394 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
395 crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
396 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
397 crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0,
398 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
399 crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0,
400 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
401
402 /*
403 * Reset Broadcom chip
404 */
405 ubsec_reset_board(sc);
406
407 /*
408 * Init Broadcom specific PCI settings
409 */
410 ubsec_init_pciregs(pa);
411
412 /*
413 * Init Broadcom chip
414 */
415 ubsec_init_board(sc);
416
417 #ifndef UBSEC_NO_RNG
418 if (sc->sc_flags & UBS_FLAGS_RNG) {
419 sc->sc_statmask |= BS_STAT_MCR2_DONE;
420
421 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
422 &sc->sc_rng.rng_q.q_mcr, 0))
423 goto skip_rng;
424
425 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
426 &sc->sc_rng.rng_q.q_ctx, 0)) {
427 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
428 goto skip_rng;
429 }
430
431 if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
432 UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
433 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
434 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
435 goto skip_rng;
436 }
437
438 rndsource_setcb(&sc->sc_rnd_source, ubsec_rng_get, sc);
439 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
440 RND_TYPE_RNG,
441 RND_FLAG_NO_ESTIMATE|RND_FLAG_HASCB);
442 if (hz >= 100)
443 sc->sc_rnghz = hz / 100;
444 else
445 sc->sc_rnghz = 1;
446 #ifdef __OpenBSD__
447 timeout_set(&sc->sc_rngto, ubsec_rng, sc);
448 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
449 #else
450 callout_init(&sc->sc_rngto, 0);
451 callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
452 #endif
453 skip_rng:
454 if (sc->sc_rnghz)
455 aprint_normal_dev(self, "random number generator enabled\n");
456 else
457 aprint_error_dev(self, "WARNING: random number generator "
458 "disabled\n");
459 }
460 #endif /* UBSEC_NO_RNG */
461
462 if (sc->sc_flags & UBS_FLAGS_KEY) {
463 sc->sc_statmask |= BS_STAT_MCR2_DONE;
464
465 crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
466 ubsec_kprocess, sc);
467 #if 0
468 crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
469 ubsec_kprocess, sc);
470 #endif
471 }
472 }
473
474 /*
475 * UBSEC Interrupt routine
476 */
477 static int
478 ubsec_intr(void *arg)
479 {
480 struct ubsec_softc *sc = arg;
481 volatile u_int32_t stat;
482 struct ubsec_q *q;
483 struct ubsec_dma *dmap;
484 int npkts = 0, i;
485
486 mutex_spin_enter(&sc->sc_mtx);
487 stat = READ_REG(sc, BS_STAT);
488 stat &= sc->sc_statmask;
489 if (stat == 0) {
490 mutex_spin_exit(&sc->sc_mtx);
491 return (0);
492 }
493
494 WRITE_REG(sc, BS_STAT, stat); /* IACK */
495
496 /*
497 * Check to see if we have any packets waiting for us
498 */
499 if ((stat & BS_STAT_MCR1_DONE)) {
500 while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
501 q = SIMPLEQ_FIRST(&sc->sc_qchip);
502 dmap = q->q_dma;
503
504 if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
505 break;
506
507 q = SIMPLEQ_FIRST(&sc->sc_qchip);
508 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
509
510 npkts = q->q_nstacked_mcrs;
511 sc->sc_nqchip -= 1+npkts;
512 /*
513 * search for further sc_qchip ubsec_q's that share
514 * the same MCR, and complete them too, they must be
515 * at the top.
516 */
517 for (i = 0; i < npkts; i++) {
518 if(q->q_stacked_mcr[i])
519 ubsec_callback(sc, q->q_stacked_mcr[i]);
520 else
521 break;
522 }
523 ubsec_callback(sc, q);
524 }
525
526 /*
527 * Don't send any more packet to chip if there has been
528 * a DMAERR.
529 */
530 if (!(stat & BS_STAT_DMAERR))
531 ubsec_feed(sc);
532 }
533
534 /*
535 * Check to see if we have any key setups/rng's waiting for us
536 */
537 if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
538 (stat & BS_STAT_MCR2_DONE)) {
539 struct ubsec_q2 *q2;
540 struct ubsec_mcr *mcr;
541
542 while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
543 q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
544
545 bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
546 0, q2->q_mcr.dma_map->dm_mapsize,
547 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
548
549 mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
550 if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
551 bus_dmamap_sync(sc->sc_dmat,
552 q2->q_mcr.dma_map, 0,
553 q2->q_mcr.dma_map->dm_mapsize,
554 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
555 break;
556 }
557 q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
558 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
559 ubsec_callback2(sc, q2);
560 /*
561 * Don't send any more packet to chip if there has been
562 * a DMAERR.
563 */
564 if (!(stat & BS_STAT_DMAERR))
565 ubsec_feed2(sc);
566 }
567 }
568
569 /*
570 * Check to see if we got any DMA Error
571 */
572 if (stat & BS_STAT_DMAERR) {
573 #ifdef UBSEC_DEBUG
574 if (ubsec_debug) {
575 volatile u_int32_t a = READ_REG(sc, BS_ERR);
576
577 printf("%s: dmaerr %s@%08x\n", device_xname(sc->sc_dev),
578 (a & BS_ERR_READ) ? "read" : "write",
579 a & BS_ERR_ADDR);
580 }
581 #endif /* UBSEC_DEBUG */
582 ubsecstats.hst_dmaerr++;
583 ubsec_totalreset(sc);
584 ubsec_feed(sc);
585 }
586
587 if (sc->sc_needwakeup) { /* XXX check high watermark */
588 int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
589 #ifdef UBSEC_DEBUG
590 if (ubsec_debug)
591 printf("%s: wakeup crypto (%x)\n", device_xname(sc->sc_dev),
592 sc->sc_needwakeup);
593 #endif /* UBSEC_DEBUG */
594 sc->sc_needwakeup &= ~wkeup;
595 crypto_unblock(sc->sc_cid, wkeup);
596 }
597 mutex_spin_exit(&sc->sc_mtx);
598 return (1);
599 }
600
601 /*
602 * ubsec_feed() - aggregate and post requests to chip
603 * OpenBSD comments:
604 * It is assumed that the caller set splnet()
605 */
606 static void
607 ubsec_feed(struct ubsec_softc *sc)
608 {
609 struct ubsec_q *q, *q2;
610 int npkts, i;
611 void *v;
612 u_int32_t stat;
613 #ifdef UBSEC_DEBUG
614 static int max;
615 #endif /* UBSEC_DEBUG */
616
617 npkts = sc->sc_nqueue;
618 if (npkts > ubsecstats.hst_maxqueue)
619 ubsecstats.hst_maxqueue = npkts;
620 if (npkts < 2)
621 goto feed1;
622
623 /*
624 * Decide how many ops to combine in a single MCR. We cannot
625 * aggregate more than UBS_MAX_AGGR because this is the number
626 * of slots defined in the data structure. Otherwise we clamp
627 * based on the tunable parameter ubsec_maxaggr. Note that
628 * aggregation can happen in two ways: either by batching ops
629 * from above or because the h/w backs up and throttles us.
630 * Aggregating ops reduces the number of interrupts to the host
631 * but also (potentially) increases the latency for processing
632 * completed ops as we only get an interrupt when all aggregated
633 * ops have completed.
634 */
635 if (npkts > UBS_MAX_AGGR)
636 npkts = UBS_MAX_AGGR;
637 if (npkts > ubsec_maxaggr)
638 npkts = ubsec_maxaggr;
639 if (npkts > ubsecstats.hst_maxbatch)
640 ubsecstats.hst_maxbatch = npkts;
641 if (npkts < 2)
642 goto feed1;
643 ubsecstats.hst_totbatch += npkts-1;
644
645 if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
646 if (stat & BS_STAT_DMAERR) {
647 ubsec_totalreset(sc);
648 ubsecstats.hst_dmaerr++;
649 } else {
650 ubsecstats.hst_mcr1full++;
651 }
652 return;
653 }
654
655 #ifdef UBSEC_DEBUG
656 if (ubsec_debug)
657 printf("merging %d records\n", npkts);
658 /* XXX temporary aggregation statistics reporting code */
659 if (max < npkts) {
660 max = npkts;
661 printf("%s: new max aggregate %d\n", device_xname(sc->sc_dev), max);
662 }
663 #endif /* UBSEC_DEBUG */
664
665 q = SIMPLEQ_FIRST(&sc->sc_queue);
666 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
667 --sc->sc_nqueue;
668
669 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
670 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
671 if (q->q_dst_map != NULL)
672 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
673 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
674
675 q->q_nstacked_mcrs = npkts - 1; /* Number of packets stacked */
676
677 for (i = 0; i < q->q_nstacked_mcrs; i++) {
678 q2 = SIMPLEQ_FIRST(&sc->sc_queue);
679 bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
680 0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
681 if (q2->q_dst_map != NULL)
682 bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
683 0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
684 q2= SIMPLEQ_FIRST(&sc->sc_queue);
685 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
686 --sc->sc_nqueue;
687
688 v = ((void *)&q2->q_dma->d_dma->d_mcr);
689 v = (char*)v + (sizeof(struct ubsec_mcr) -
690 sizeof(struct ubsec_mcr_add));
691 memcpy(&q->q_dma->d_dma->d_mcradd[i], v, sizeof(struct ubsec_mcr_add));
692 q->q_stacked_mcr[i] = q2;
693 }
694 q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
695 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
696 sc->sc_nqchip += npkts;
697 if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
698 ubsecstats.hst_maxqchip = sc->sc_nqchip;
699 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
700 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
701 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
702 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
703 offsetof(struct ubsec_dmachunk, d_mcr));
704 return;
705
706 feed1:
707 while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
708 if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
709 if (stat & BS_STAT_DMAERR) {
710 ubsec_totalreset(sc);
711 ubsecstats.hst_dmaerr++;
712 } else {
713 ubsecstats.hst_mcr1full++;
714 }
715 break;
716 }
717
718 q = SIMPLEQ_FIRST(&sc->sc_queue);
719
720 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
721 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
722 if (q->q_dst_map != NULL)
723 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
724 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
725 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
726 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
727 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
728
729 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
730 offsetof(struct ubsec_dmachunk, d_mcr));
731 #ifdef UBSEC_DEBUG
732 if (ubsec_debug)
733 printf("feed: q->chip %p %08x stat %08x\n",
734 q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
735 stat);
736 #endif /* UBSEC_DEBUG */
737 q = SIMPLEQ_FIRST(&sc->sc_queue);
738 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
739 --sc->sc_nqueue;
740 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
741 sc->sc_nqchip++;
742 }
743 if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
744 ubsecstats.hst_maxqchip = sc->sc_nqchip;
745 }
746
747 /*
748 * Allocate a new 'session' and return an encoded session id. 'sidp'
749 * contains our registration id, and should contain an encoded session
750 * id on successful allocation.
751 */
752 static int
753 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
754 {
755 struct cryptoini *c, *encini = NULL, *macini = NULL;
756 struct ubsec_softc *sc;
757 struct ubsec_session *ses = NULL;
758 MD5_CTX md5ctx;
759 SHA1_CTX sha1ctx;
760 int i, sesn;
761
762 sc = arg;
763 KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
764
765 if (sidp == NULL || cri == NULL || sc == NULL)
766 return (EINVAL);
767
768 for (c = cri; c != NULL; c = c->cri_next) {
769 if (c->cri_alg == CRYPTO_MD5_HMAC_96 ||
770 c->cri_alg == CRYPTO_SHA1_HMAC_96) {
771 if (macini)
772 return (EINVAL);
773 macini = c;
774 } else if (c->cri_alg == CRYPTO_DES_CBC ||
775 c->cri_alg == CRYPTO_3DES_CBC) {
776 if (encini)
777 return (EINVAL);
778 encini = c;
779 } else
780 return (EINVAL);
781 }
782 if (encini == NULL && macini == NULL)
783 return (EINVAL);
784
785 if (sc->sc_sessions == NULL) {
786 ses = sc->sc_sessions = (struct ubsec_session *)malloc(
787 sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
788 if (ses == NULL)
789 return (ENOMEM);
790 sesn = 0;
791 sc->sc_nsessions = 1;
792 } else {
793 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
794 if (sc->sc_sessions[sesn].ses_used == 0) {
795 ses = &sc->sc_sessions[sesn];
796 break;
797 }
798 }
799
800 if (ses == NULL) {
801 sesn = sc->sc_nsessions;
802 ses = (struct ubsec_session *)malloc((sesn + 1) *
803 sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
804 if (ses == NULL)
805 return (ENOMEM);
806 memcpy(ses, sc->sc_sessions, sesn *
807 sizeof(struct ubsec_session));
808 memset(sc->sc_sessions, 0, sesn *
809 sizeof(struct ubsec_session));
810 free(sc->sc_sessions, M_DEVBUF);
811 sc->sc_sessions = ses;
812 ses = &sc->sc_sessions[sesn];
813 sc->sc_nsessions++;
814 }
815 }
816
817 memset(ses, 0, sizeof(struct ubsec_session));
818 ses->ses_used = 1;
819 if (encini) {
820 /* get an IV, network byte order */
821 #ifdef __NetBSD__
822 cprng_fast(ses->ses_iv, sizeof(ses->ses_iv));
823 #else
824 get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv));
825 #endif
826
827 /* Go ahead and compute key in ubsec's byte order */
828 if (encini->cri_alg == CRYPTO_DES_CBC) {
829 memcpy(&ses->ses_deskey[0], encini->cri_key, 8);
830 memcpy(&ses->ses_deskey[2], encini->cri_key, 8);
831 memcpy(&ses->ses_deskey[4], encini->cri_key, 8);
832 } else
833 memcpy(ses->ses_deskey, encini->cri_key, 24);
834
835 SWAP32(ses->ses_deskey[0]);
836 SWAP32(ses->ses_deskey[1]);
837 SWAP32(ses->ses_deskey[2]);
838 SWAP32(ses->ses_deskey[3]);
839 SWAP32(ses->ses_deskey[4]);
840 SWAP32(ses->ses_deskey[5]);
841 }
842
843 if (macini) {
844 for (i = 0; i < macini->cri_klen / 8; i++)
845 macini->cri_key[i] ^= HMAC_IPAD_VAL;
846
847 if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
848 MD5Init(&md5ctx);
849 MD5Update(&md5ctx, macini->cri_key,
850 macini->cri_klen / 8);
851 MD5Update(&md5ctx, hmac_ipad_buffer,
852 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
853 memcpy(ses->ses_hminner, md5ctx.state,
854 sizeof(md5ctx.state));
855 } else {
856 SHA1Init(&sha1ctx);
857 SHA1Update(&sha1ctx, macini->cri_key,
858 macini->cri_klen / 8);
859 SHA1Update(&sha1ctx, hmac_ipad_buffer,
860 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
861 memcpy(ses->ses_hminner, sha1ctx.state,
862 sizeof(sha1ctx.state));
863 }
864
865 for (i = 0; i < macini->cri_klen / 8; i++)
866 macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
867
868 if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
869 MD5Init(&md5ctx);
870 MD5Update(&md5ctx, macini->cri_key,
871 macini->cri_klen / 8);
872 MD5Update(&md5ctx, hmac_opad_buffer,
873 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
874 memcpy(ses->ses_hmouter, md5ctx.state,
875 sizeof(md5ctx.state));
876 } else {
877 SHA1Init(&sha1ctx);
878 SHA1Update(&sha1ctx, macini->cri_key,
879 macini->cri_klen / 8);
880 SHA1Update(&sha1ctx, hmac_opad_buffer,
881 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
882 memcpy(ses->ses_hmouter, sha1ctx.state,
883 sizeof(sha1ctx.state));
884 }
885
886 for (i = 0; i < macini->cri_klen / 8; i++)
887 macini->cri_key[i] ^= HMAC_OPAD_VAL;
888 }
889
890 *sidp = UBSEC_SID(device_unit(sc->sc_dev), sesn);
891 return (0);
892 }
893
894 /*
895 * Deallocate a session.
896 */
897 static int
898 ubsec_freesession(void *arg, u_int64_t tid)
899 {
900 struct ubsec_softc *sc;
901 int session;
902 u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
903
904 sc = arg;
905 KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
906
907 session = UBSEC_SESSION(sid);
908 if (session >= sc->sc_nsessions)
909 return (EINVAL);
910
911 memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session]));
912 return (0);
913 }
914
915 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
916 static void
917 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
918 {
919 struct ubsec_operand *op = arg;
920
921 KASSERT(nsegs <= UBS_MAX_SCATTER
922 /*, ("Too many DMA segments returned when mapping operand")*/);
923 #ifdef UBSEC_DEBUG
924 if (ubsec_debug)
925 printf("ubsec_op_cb: mapsize %u nsegs %d\n",
926 (u_int) mapsize, nsegs);
927 #endif
928 op->mapsize = mapsize;
929 op->nsegs = nsegs;
930 memcpy(op->segs, seg, nsegs * sizeof (seg[0]));
931 }
932 #endif
933
934 static int
935 ubsec_process(void *arg, struct cryptop *crp, int hint)
936 {
937 struct ubsec_q *q = NULL;
938 #ifdef __OpenBSD__
939 int card;
940 #endif
941 int err = 0, i, j, nicealign;
942 struct ubsec_softc *sc;
943 struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
944 int encoffset = 0, macoffset = 0, cpskip, cpoffset;
945 int sskip, dskip, stheend, dtheend;
946 int16_t coffset;
947 struct ubsec_session *ses;
948 struct ubsec_pktctx ctx;
949 struct ubsec_dma *dmap = NULL;
950
951 sc = arg;
952 KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/);
953
954 if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
955 ubsecstats.hst_invalid++;
956 return (EINVAL);
957 }
958 if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
959 ubsecstats.hst_badsession++;
960 return (EINVAL);
961 }
962
963 mutex_spin_enter(&sc->sc_mtx);
964
965 if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
966 ubsecstats.hst_queuefull++;
967 sc->sc_needwakeup |= CRYPTO_SYMQ;
968 mutex_spin_exit(&sc->sc_mtx);
969 return(ERESTART);
970 }
971
972 q = SIMPLEQ_FIRST(&sc->sc_freequeue);
973 SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
974 mutex_spin_exit(&sc->sc_mtx);
975
976 dmap = q->q_dma; /* Save dma pointer */
977 memset(q, 0, sizeof(struct ubsec_q));
978 memset(&ctx, 0, sizeof(ctx));
979
980 q->q_sesn = UBSEC_SESSION(crp->crp_sid);
981 q->q_dma = dmap;
982 ses = &sc->sc_sessions[q->q_sesn];
983
984 if (crp->crp_flags & CRYPTO_F_IMBUF) {
985 q->q_src_m = (struct mbuf *)crp->crp_buf;
986 q->q_dst_m = (struct mbuf *)crp->crp_buf;
987 } else if (crp->crp_flags & CRYPTO_F_IOV) {
988 q->q_src_io = (struct uio *)crp->crp_buf;
989 q->q_dst_io = (struct uio *)crp->crp_buf;
990 } else {
991 ubsecstats.hst_badflags++;
992 err = EINVAL;
993 goto errout; /* XXX we don't handle contiguous blocks! */
994 }
995
996 memset(&dmap->d_dma->d_mcr, 0, sizeof(struct ubsec_mcr));
997
998 dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
999 dmap->d_dma->d_mcr.mcr_flags = 0;
1000 q->q_crp = crp;
1001
1002 crd1 = crp->crp_desc;
1003 if (crd1 == NULL) {
1004 ubsecstats.hst_nodesc++;
1005 err = EINVAL;
1006 goto errout;
1007 }
1008 crd2 = crd1->crd_next;
1009
1010 if (crd2 == NULL) {
1011 if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1012 crd1->crd_alg == CRYPTO_SHA1_HMAC_96) {
1013 maccrd = crd1;
1014 enccrd = NULL;
1015 } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1016 crd1->crd_alg == CRYPTO_3DES_CBC) {
1017 maccrd = NULL;
1018 enccrd = crd1;
1019 } else {
1020 ubsecstats.hst_badalg++;
1021 err = EINVAL;
1022 goto errout;
1023 }
1024 } else {
1025 if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1026 crd1->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1027 (crd2->crd_alg == CRYPTO_DES_CBC ||
1028 crd2->crd_alg == CRYPTO_3DES_CBC) &&
1029 ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1030 maccrd = crd1;
1031 enccrd = crd2;
1032 } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1033 crd1->crd_alg == CRYPTO_3DES_CBC) &&
1034 (crd2->crd_alg == CRYPTO_MD5_HMAC_96 ||
1035 crd2->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1036 (crd1->crd_flags & CRD_F_ENCRYPT)) {
1037 enccrd = crd1;
1038 maccrd = crd2;
1039 } else {
1040 /*
1041 * We cannot order the ubsec as requested
1042 */
1043 ubsecstats.hst_badalg++;
1044 err = EINVAL;
1045 goto errout;
1046 }
1047 }
1048
1049 if (enccrd) {
1050 encoffset = enccrd->crd_skip;
1051 ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1052
1053 if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1054 q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1055
1056 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1057 memcpy(ctx.pc_iv, enccrd->crd_iv, 8);
1058 else {
1059 ctx.pc_iv[0] = ses->ses_iv[0];
1060 ctx.pc_iv[1] = ses->ses_iv[1];
1061 }
1062
1063 if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1064 if (crp->crp_flags & CRYPTO_F_IMBUF)
1065 m_copyback(q->q_src_m,
1066 enccrd->crd_inject,
1067 8, (void *)ctx.pc_iv);
1068 else if (crp->crp_flags & CRYPTO_F_IOV)
1069 cuio_copyback(q->q_src_io,
1070 enccrd->crd_inject,
1071 8, (void *)ctx.pc_iv);
1072 }
1073 } else {
1074 ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1075
1076 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1077 memcpy(ctx.pc_iv, enccrd->crd_iv, 8);
1078 else if (crp->crp_flags & CRYPTO_F_IMBUF)
1079 m_copydata(q->q_src_m, enccrd->crd_inject,
1080 8, (void *)ctx.pc_iv);
1081 else if (crp->crp_flags & CRYPTO_F_IOV)
1082 cuio_copydata(q->q_src_io,
1083 enccrd->crd_inject, 8,
1084 (void *)ctx.pc_iv);
1085 }
1086
1087 ctx.pc_deskey[0] = ses->ses_deskey[0];
1088 ctx.pc_deskey[1] = ses->ses_deskey[1];
1089 ctx.pc_deskey[2] = ses->ses_deskey[2];
1090 ctx.pc_deskey[3] = ses->ses_deskey[3];
1091 ctx.pc_deskey[4] = ses->ses_deskey[4];
1092 ctx.pc_deskey[5] = ses->ses_deskey[5];
1093 SWAP32(ctx.pc_iv[0]);
1094 SWAP32(ctx.pc_iv[1]);
1095 }
1096
1097 if (maccrd) {
1098 macoffset = maccrd->crd_skip;
1099
1100 if (maccrd->crd_alg == CRYPTO_MD5_HMAC_96)
1101 ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1102 else
1103 ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1104
1105 for (i = 0; i < 5; i++) {
1106 ctx.pc_hminner[i] = ses->ses_hminner[i];
1107 ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1108
1109 HTOLE32(ctx.pc_hminner[i]);
1110 HTOLE32(ctx.pc_hmouter[i]);
1111 }
1112 }
1113
1114 if (enccrd && maccrd) {
1115 /*
1116 * ubsec cannot handle packets where the end of encryption
1117 * and authentication are not the same, or where the
1118 * encrypted part begins before the authenticated part.
1119 */
1120 if ((encoffset + enccrd->crd_len) !=
1121 (macoffset + maccrd->crd_len)) {
1122 ubsecstats.hst_lenmismatch++;
1123 err = EINVAL;
1124 goto errout;
1125 }
1126 if (enccrd->crd_skip < maccrd->crd_skip) {
1127 ubsecstats.hst_skipmismatch++;
1128 err = EINVAL;
1129 goto errout;
1130 }
1131 sskip = maccrd->crd_skip;
1132 cpskip = dskip = enccrd->crd_skip;
1133 stheend = maccrd->crd_len;
1134 dtheend = enccrd->crd_len;
1135 coffset = enccrd->crd_skip - maccrd->crd_skip;
1136 cpoffset = cpskip + dtheend;
1137 #ifdef UBSEC_DEBUG
1138 if (ubsec_debug) {
1139 printf("mac: skip %d, len %d, inject %d\n",
1140 maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1141 printf("enc: skip %d, len %d, inject %d\n",
1142 enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1143 printf("src: skip %d, len %d\n", sskip, stheend);
1144 printf("dst: skip %d, len %d\n", dskip, dtheend);
1145 printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1146 coffset, stheend, cpskip, cpoffset);
1147 }
1148 #endif
1149 } else {
1150 cpskip = dskip = sskip = macoffset + encoffset;
1151 dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1152 cpoffset = cpskip + dtheend;
1153 coffset = 0;
1154 }
1155 ctx.pc_offset = htole16(coffset >> 2);
1156
1157 /* XXX FIXME: jonathan asks, what the heck's that 0xfff0? */
1158 if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
1159 0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
1160 err = ENOMEM;
1161 goto errout;
1162 }
1163 if (crp->crp_flags & CRYPTO_F_IMBUF) {
1164 if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1165 q->q_src_m, BUS_DMA_NOWAIT) != 0) {
1166 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1167 q->q_src_map = NULL;
1168 ubsecstats.hst_noload++;
1169 err = ENOMEM;
1170 goto errout;
1171 }
1172 } else if (crp->crp_flags & CRYPTO_F_IOV) {
1173 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1174 q->q_src_io, BUS_DMA_NOWAIT) != 0) {
1175 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1176 q->q_src_map = NULL;
1177 ubsecstats.hst_noload++;
1178 err = ENOMEM;
1179 goto errout;
1180 }
1181 }
1182 nicealign = ubsec_dmamap_aligned(q->q_src_map);
1183
1184 dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1185
1186 #ifdef UBSEC_DEBUG
1187 if (ubsec_debug)
1188 printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1189 #endif
1190 for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
1191 struct ubsec_pktbuf *pb;
1192 bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
1193 bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
1194
1195 if (sskip >= packl) {
1196 sskip -= packl;
1197 continue;
1198 }
1199
1200 packl -= sskip;
1201 packp += sskip;
1202 sskip = 0;
1203
1204 if (packl > 0xfffc) {
1205 err = EIO;
1206 goto errout;
1207 }
1208
1209 if (j == 0)
1210 pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1211 else
1212 pb = &dmap->d_dma->d_sbuf[j - 1];
1213
1214 pb->pb_addr = htole32(packp);
1215
1216 if (stheend) {
1217 if (packl > stheend) {
1218 pb->pb_len = htole32(stheend);
1219 stheend = 0;
1220 } else {
1221 pb->pb_len = htole32(packl);
1222 stheend -= packl;
1223 }
1224 } else
1225 pb->pb_len = htole32(packl);
1226
1227 if ((i + 1) == q->q_src_map->dm_nsegs)
1228 pb->pb_next = 0;
1229 else
1230 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1231 offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1232 j++;
1233 }
1234
1235 if (enccrd == NULL && maccrd != NULL) {
1236 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1237 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1238 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1239 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1240 #ifdef UBSEC_DEBUG
1241 if (ubsec_debug)
1242 printf("opkt: %x %x %x\n",
1243 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1244 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1245 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1246
1247 #endif
1248 } else {
1249 if (crp->crp_flags & CRYPTO_F_IOV) {
1250 if (!nicealign) {
1251 ubsecstats.hst_iovmisaligned++;
1252 err = EINVAL;
1253 goto errout;
1254 }
1255 /* XXX: ``what the heck's that'' 0xfff0? */
1256 if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1257 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1258 &q->q_dst_map) != 0) {
1259 ubsecstats.hst_nomap++;
1260 err = ENOMEM;
1261 goto errout;
1262 }
1263 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1264 q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
1265 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1266 q->q_dst_map = NULL;
1267 ubsecstats.hst_noload++;
1268 err = ENOMEM;
1269 goto errout;
1270 }
1271 } else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1272 if (nicealign) {
1273 q->q_dst_m = q->q_src_m;
1274 q->q_dst_map = q->q_src_map;
1275 } else {
1276 int totlen, len;
1277 struct mbuf *m, *top, **mp;
1278
1279 ubsecstats.hst_unaligned++;
1280 totlen = q->q_src_map->dm_mapsize;
1281 if (q->q_src_m->m_flags & M_PKTHDR) {
1282 len = MHLEN;
1283 MGETHDR(m, M_DONTWAIT, MT_DATA);
1284 /*XXX FIXME: m_dup_pkthdr */
1285 if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
1286 m_free(m);
1287 m = NULL;
1288 }
1289 } else {
1290 len = MLEN;
1291 MGET(m, M_DONTWAIT, MT_DATA);
1292 }
1293 if (m == NULL) {
1294 ubsecstats.hst_nombuf++;
1295 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1296 goto errout;
1297 }
1298 if (len == MHLEN)
1299 /*XXX was M_DUP_PKTHDR*/
1300 M_COPY_PKTHDR(m, q->q_src_m);
1301 if (totlen >= MINCLSIZE) {
1302 MCLGET(m, M_DONTWAIT);
1303 if ((m->m_flags & M_EXT) == 0) {
1304 m_free(m);
1305 ubsecstats.hst_nomcl++;
1306 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1307 goto errout;
1308 }
1309 len = MCLBYTES;
1310 }
1311 m->m_len = len;
1312 top = NULL;
1313 mp = ⊤
1314
1315 while (totlen > 0) {
1316 if (top) {
1317 MGET(m, M_DONTWAIT, MT_DATA);
1318 if (m == NULL) {
1319 m_freem(top);
1320 ubsecstats.hst_nombuf++;
1321 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1322 goto errout;
1323 }
1324 len = MLEN;
1325 }
1326 if (top && totlen >= MINCLSIZE) {
1327 MCLGET(m, M_DONTWAIT);
1328 if ((m->m_flags & M_EXT) == 0) {
1329 *mp = m;
1330 m_freem(top);
1331 ubsecstats.hst_nomcl++;
1332 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1333 goto errout;
1334 }
1335 len = MCLBYTES;
1336 }
1337 m->m_len = len = min(totlen, len);
1338 totlen -= len;
1339 *mp = m;
1340 mp = &m->m_next;
1341 }
1342 q->q_dst_m = top;
1343 ubsec_mcopy(q->q_src_m, q->q_dst_m,
1344 cpskip, cpoffset);
1345 /* XXX again, what the heck is that 0xfff0? */
1346 if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1347 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1348 &q->q_dst_map) != 0) {
1349 ubsecstats.hst_nomap++;
1350 err = ENOMEM;
1351 goto errout;
1352 }
1353 if (bus_dmamap_load_mbuf(sc->sc_dmat,
1354 q->q_dst_map, q->q_dst_m,
1355 BUS_DMA_NOWAIT) != 0) {
1356 bus_dmamap_destroy(sc->sc_dmat,
1357 q->q_dst_map);
1358 q->q_dst_map = NULL;
1359 ubsecstats.hst_noload++;
1360 err = ENOMEM;
1361 goto errout;
1362 }
1363 }
1364 } else {
1365 ubsecstats.hst_badflags++;
1366 err = EINVAL;
1367 goto errout;
1368 }
1369
1370 #ifdef UBSEC_DEBUG
1371 if (ubsec_debug)
1372 printf("dst skip: %d\n", dskip);
1373 #endif
1374 for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
1375 struct ubsec_pktbuf *pb;
1376 bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
1377 bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
1378
1379 if (dskip >= packl) {
1380 dskip -= packl;
1381 continue;
1382 }
1383
1384 packl -= dskip;
1385 packp += dskip;
1386 dskip = 0;
1387
1388 if (packl > 0xfffc) {
1389 err = EIO;
1390 goto errout;
1391 }
1392
1393 if (j == 0)
1394 pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1395 else
1396 pb = &dmap->d_dma->d_dbuf[j - 1];
1397
1398 pb->pb_addr = htole32(packp);
1399
1400 if (dtheend) {
1401 if (packl > dtheend) {
1402 pb->pb_len = htole32(dtheend);
1403 dtheend = 0;
1404 } else {
1405 pb->pb_len = htole32(packl);
1406 dtheend -= packl;
1407 }
1408 } else
1409 pb->pb_len = htole32(packl);
1410
1411 if ((i + 1) == q->q_dst_map->dm_nsegs) {
1412 if (maccrd)
1413 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1414 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1415 else
1416 pb->pb_next = 0;
1417 } else
1418 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1419 offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1420 j++;
1421 }
1422 }
1423
1424 dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1425 offsetof(struct ubsec_dmachunk, d_ctx));
1426
1427 if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1428 struct ubsec_pktctx_long *ctxl;
1429
1430 ctxl = (struct ubsec_pktctx_long *)((char *)dmap->d_alloc.dma_vaddr +
1431 offsetof(struct ubsec_dmachunk, d_ctx));
1432
1433 /* transform small context into long context */
1434 ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1435 ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1436 ctxl->pc_flags = ctx.pc_flags;
1437 ctxl->pc_offset = ctx.pc_offset;
1438 for (i = 0; i < 6; i++)
1439 ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1440 for (i = 0; i < 5; i++)
1441 ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1442 for (i = 0; i < 5; i++)
1443 ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1444 ctxl->pc_iv[0] = ctx.pc_iv[0];
1445 ctxl->pc_iv[1] = ctx.pc_iv[1];
1446 } else
1447 memcpy((char *)dmap->d_alloc.dma_vaddr +
1448 offsetof(struct ubsec_dmachunk, d_ctx), &ctx,
1449 sizeof(struct ubsec_pktctx));
1450
1451 mutex_spin_enter(&sc->sc_mtx);
1452 SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1453 sc->sc_nqueue++;
1454 ubsecstats.hst_ipackets++;
1455 ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
1456 if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
1457 ubsec_feed(sc);
1458 mutex_spin_exit(&sc->sc_mtx);
1459 return (0);
1460
1461 errout:
1462 if (q != NULL) {
1463 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1464 m_freem(q->q_dst_m);
1465
1466 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1467 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1468 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1469 }
1470 if (q->q_src_map != NULL) {
1471 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1472 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1473 }
1474
1475 mutex_spin_enter(&sc->sc_mtx);
1476 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1477 mutex_spin_exit(&sc->sc_mtx);
1478 }
1479 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
1480 if (err == EINVAL)
1481 ubsecstats.hst_invalid++;
1482 else
1483 ubsecstats.hst_nomem++;
1484 #endif
1485 if (err != ERESTART) {
1486 crp->crp_etype = err;
1487 crypto_done(crp);
1488 } else {
1489 sc->sc_needwakeup |= CRYPTO_SYMQ;
1490 }
1491 return (err);
1492 }
1493
1494 static void
1495 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1496 {
1497 struct cryptop *crp = (struct cryptop *)q->q_crp;
1498 struct cryptodesc *crd;
1499 struct ubsec_dma *dmap = q->q_dma;
1500
1501 ubsecstats.hst_opackets++;
1502 ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1503
1504 bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
1505 dmap->d_alloc.dma_map->dm_mapsize,
1506 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1507 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1508 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1509 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1510 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1511 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1512 }
1513 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
1514 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1515 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1516 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1517
1518 if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1519 m_freem(q->q_src_m);
1520 crp->crp_buf = (void *)q->q_dst_m;
1521 }
1522
1523 /* copy out IV for future use */
1524 if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1525 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1526 if (crd->crd_alg != CRYPTO_DES_CBC &&
1527 crd->crd_alg != CRYPTO_3DES_CBC)
1528 continue;
1529 if (crp->crp_flags & CRYPTO_F_IMBUF)
1530 m_copydata((struct mbuf *)crp->crp_buf,
1531 crd->crd_skip + crd->crd_len - 8, 8,
1532 (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1533 else if (crp->crp_flags & CRYPTO_F_IOV) {
1534 cuio_copydata((struct uio *)crp->crp_buf,
1535 crd->crd_skip + crd->crd_len - 8, 8,
1536 (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1537 }
1538 break;
1539 }
1540 }
1541
1542 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1543 if (crd->crd_alg != CRYPTO_MD5_HMAC_96 &&
1544 crd->crd_alg != CRYPTO_SHA1_HMAC_96)
1545 continue;
1546 if (crp->crp_flags & CRYPTO_F_IMBUF)
1547 m_copyback((struct mbuf *)crp->crp_buf,
1548 crd->crd_inject, 12,
1549 (void *)dmap->d_dma->d_macbuf);
1550 else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1551 bcopy((void *)dmap->d_dma->d_macbuf,
1552 crp->crp_mac, 12);
1553 break;
1554 }
1555 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1556 crypto_done(crp);
1557 }
1558
1559 static void
1560 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1561 {
1562 int i, j, dlen, slen;
1563 char *dptr, *sptr;
1564
1565 j = 0;
1566 sptr = srcm->m_data;
1567 slen = srcm->m_len;
1568 dptr = dstm->m_data;
1569 dlen = dstm->m_len;
1570
1571 while (1) {
1572 for (i = 0; i < min(slen, dlen); i++) {
1573 if (j < hoffset || j >= toffset)
1574 *dptr++ = *sptr++;
1575 slen--;
1576 dlen--;
1577 j++;
1578 }
1579 if (slen == 0) {
1580 srcm = srcm->m_next;
1581 if (srcm == NULL)
1582 return;
1583 sptr = srcm->m_data;
1584 slen = srcm->m_len;
1585 }
1586 if (dlen == 0) {
1587 dstm = dstm->m_next;
1588 if (dstm == NULL)
1589 return;
1590 dptr = dstm->m_data;
1591 dlen = dstm->m_len;
1592 }
1593 }
1594 }
1595
1596 /*
1597 * feed the key generator, must be called at splnet() or higher.
1598 */
1599 static void
1600 ubsec_feed2(struct ubsec_softc *sc)
1601 {
1602 struct ubsec_q2 *q;
1603
1604 while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1605 if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1606 break;
1607 q = SIMPLEQ_FIRST(&sc->sc_queue2);
1608
1609 bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1610 q->q_mcr.dma_map->dm_mapsize,
1611 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1612 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1613 q->q_ctx.dma_map->dm_mapsize,
1614 BUS_DMASYNC_PREWRITE);
1615
1616 WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1617 q = SIMPLEQ_FIRST(&sc->sc_queue2);
1618 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
1619 --sc->sc_nqueue2;
1620 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1621 }
1622 }
1623
1624 /*
1625 * Callback for handling random numbers
1626 */
1627 static void
1628 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1629 {
1630 struct cryptkop *krp;
1631 struct ubsec_ctx_keyop *ctx;
1632
1633 ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1634 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1635 q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1636
1637 switch (q->q_type) {
1638 #ifndef UBSEC_NO_RNG
1639 case UBS_CTXOP_RNGSHA1:
1640 case UBS_CTXOP_RNGBYPASS: {
1641 struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1642 u_int32_t *p;
1643 int i;
1644
1645 bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
1646 rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1647 p = (u_int32_t *)rng->rng_buf.dma_vaddr;
1648 #ifndef __NetBSD__
1649 for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++)
1650 add_true_randomness(letoh32(*p));
1651 rng->rng_used = 0;
1652 #else
1653 i = UBSEC_RNG_BUFSIZ * sizeof(u_int32_t);
1654 rnd_add_data(&sc->sc_rnd_source, (char *)p, i, i * NBBY);
1655 sc->sc_rng_need -= i;
1656 rng->rng_used = 0;
1657 #endif
1658 #ifdef __OpenBSD__
1659 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
1660 #else
1661 if (sc->sc_rng_need > 0) {
1662 callout_reset(&sc->sc_rngto, sc->sc_rnghz,
1663 ubsec_rng, sc);
1664 }
1665 #endif
1666 break;
1667 }
1668 #endif
1669 case UBS_CTXOP_MODEXP: {
1670 struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1671 u_int rlen, clen;
1672
1673 krp = me->me_krp;
1674 rlen = (me->me_modbits + 7) / 8;
1675 clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1676
1677 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
1678 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1679 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
1680 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1681 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
1682 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1683 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
1684 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1685
1686 if (clen < rlen)
1687 krp->krp_status = E2BIG;
1688 else {
1689 if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1690 memset(krp->krp_param[krp->krp_iparams].crp_p, 0,
1691 (krp->krp_param[krp->krp_iparams].crp_nbits
1692 + 7) / 8);
1693 bcopy(me->me_C.dma_vaddr,
1694 krp->krp_param[krp->krp_iparams].crp_p,
1695 (me->me_modbits + 7) / 8);
1696 } else
1697 ubsec_kshift_l(me->me_shiftbits,
1698 me->me_C.dma_vaddr, me->me_normbits,
1699 krp->krp_param[krp->krp_iparams].crp_p,
1700 krp->krp_param[krp->krp_iparams].crp_nbits);
1701 }
1702
1703 crypto_kdone(krp);
1704
1705 /* bzero all potentially sensitive data */
1706 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
1707 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
1708 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
1709 memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
1710
1711 /* Can't free here, so put us on the free list. */
1712 SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1713 break;
1714 }
1715 case UBS_CTXOP_RSAPRIV: {
1716 struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1717 u_int len;
1718
1719 krp = rp->rpr_krp;
1720 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
1721 rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1722 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
1723 rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1724
1725 len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1726 bcopy(rp->rpr_msgout.dma_vaddr,
1727 krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1728
1729 crypto_kdone(krp);
1730
1731 memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
1732 memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
1733 memset(rp->rpr_q.q_ctx.dma_vaddr, 0, rp->rpr_q.q_ctx.dma_size);
1734
1735 /* Can't free here, so put us on the free list. */
1736 SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1737 break;
1738 }
1739 default:
1740 printf("%s: unknown ctx op: %x\n", device_xname(sc->sc_dev),
1741 letoh16(ctx->ctx_op));
1742 break;
1743 }
1744 }
1745
1746 #ifndef UBSEC_NO_RNG
1747
1748 static void
1749 ubsec_rng_get(size_t bytes, void *vsc)
1750 {
1751 struct ubsec_softc *sc = vsc;
1752
1753 mutex_spin_enter(&sc->sc_mtx);
1754 sc->sc_rng_need = bytes;
1755 ubsec_rng_locked(sc);
1756 mutex_spin_exit(&sc->sc_mtx);
1757
1758 }
1759
1760 static void
1761 ubsec_rng(void *vsc)
1762 {
1763 struct ubsec_softc *sc = vsc;
1764 mutex_spin_enter(&sc->sc_mtx);
1765 ubsec_rng_locked(sc);
1766 mutex_spin_exit(&sc->sc_mtx);
1767 }
1768
1769 static void
1770 ubsec_rng_locked(void *vsc)
1771 {
1772 struct ubsec_softc *sc = vsc;
1773 struct ubsec_q2_rng *rng = &sc->sc_rng;
1774 struct ubsec_mcr *mcr;
1775 struct ubsec_ctx_rngbypass *ctx;
1776
1777 mutex_spin_enter(&sc->sc_mtx);
1778 if (rng->rng_used) {
1779 mutex_spin_exit(&sc->sc_mtx);
1780 return;
1781 }
1782
1783 if (sc->sc_rng_need < 1) {
1784 callout_stop(&sc->sc_rngto);
1785 mutex_spin_exit(&sc->sc_mtx);
1786 return;
1787 }
1788
1789 sc->sc_nqueue2++;
1790 if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1791 goto out;
1792
1793 mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1794 ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1795
1796 mcr->mcr_pkts = htole16(1);
1797 mcr->mcr_flags = 0;
1798 mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1799 mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1800 mcr->mcr_ipktbuf.pb_len = 0;
1801 mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1802 mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1803 mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1804 UBS_PKTBUF_LEN);
1805 mcr->mcr_opktbuf.pb_next = 0;
1806
1807 ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1808 ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
1809 rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
1810
1811 bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
1812 rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1813
1814 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1815 rng->rng_used = 1;
1816 ubsec_feed2(sc);
1817 ubsecstats.hst_rng++;
1818 mutex_spin_exit(&sc->sc_mtx);
1819
1820 return;
1821
1822 out:
1823 /*
1824 * Something weird happened, generate our own call back.
1825 */
1826 sc->sc_nqueue2--;
1827 mutex_spin_exit(&sc->sc_mtx);
1828 #ifdef __OpenBSD__
1829 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
1830 #else
1831 callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1832 #endif
1833 }
1834 #endif /* UBSEC_NO_RNG */
1835
1836 static int
1837 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
1838 struct ubsec_dma_alloc *dma,int mapflags)
1839 {
1840 int r;
1841
1842 if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
1843 &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
1844 goto fail_0;
1845
1846 if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
1847 size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
1848 goto fail_1;
1849
1850 if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1851 BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
1852 goto fail_2;
1853
1854 if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
1855 size, NULL, BUS_DMA_NOWAIT)) != 0)
1856 goto fail_3;
1857
1858 dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
1859 dma->dma_size = size;
1860 return (0);
1861
1862 fail_3:
1863 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
1864 fail_2:
1865 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
1866 fail_1:
1867 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
1868 fail_0:
1869 dma->dma_map = NULL;
1870 return (r);
1871 }
1872
1873 static void
1874 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1875 {
1876 bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
1877 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
1878 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
1879 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
1880 }
1881
1882 /*
1883 * Resets the board. Values in the regesters are left as is
1884 * from the reset (i.e. initial values are assigned elsewhere).
1885 */
1886 static void
1887 ubsec_reset_board(struct ubsec_softc *sc)
1888 {
1889 volatile u_int32_t ctrl;
1890
1891 ctrl = READ_REG(sc, BS_CTRL);
1892 ctrl |= BS_CTRL_RESET;
1893 WRITE_REG(sc, BS_CTRL, ctrl);
1894
1895 /*
1896 * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
1897 */
1898 DELAY(10);
1899 }
1900
1901 /*
1902 * Init Broadcom registers
1903 */
1904 static void
1905 ubsec_init_board(struct ubsec_softc *sc)
1906 {
1907 u_int32_t ctrl;
1908
1909 ctrl = READ_REG(sc, BS_CTRL);
1910 ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
1911 ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
1912
1913 /*
1914 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
1915 * anyone got hw docs?
1916 */
1917 if (sc->sc_flags & UBS_FLAGS_KEY)
1918 ctrl |= BS_CTRL_MCR2INT;
1919 else
1920 ctrl &= ~BS_CTRL_MCR2INT;
1921
1922 if (sc->sc_flags & UBS_FLAGS_HWNORM)
1923 ctrl &= ~BS_CTRL_SWNORM;
1924
1925 WRITE_REG(sc, BS_CTRL, ctrl);
1926 }
1927
1928 /*
1929 * Init Broadcom PCI registers
1930 */
1931 static void
1932 ubsec_init_pciregs(struct pci_attach_args *pa)
1933 {
1934 pci_chipset_tag_t pc = pa->pa_pc;
1935 u_int32_t misc;
1936
1937 /*
1938 * This will set the cache line size to 1, this will
1939 * force the BCM58xx chip just to do burst read/writes.
1940 * Cache line read/writes are to slow
1941 */
1942 misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
1943 misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
1944 | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
1945 pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
1946 }
1947
1948 /*
1949 * Clean up after a chip crash.
1950 * It is assumed that the caller in splnet()
1951 */
1952 static void
1953 ubsec_cleanchip(struct ubsec_softc *sc)
1954 {
1955 struct ubsec_q *q;
1956
1957 while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
1958 q = SIMPLEQ_FIRST(&sc->sc_qchip);
1959 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
1960 ubsec_free_q(sc, q);
1961 }
1962 sc->sc_nqchip = 0;
1963 }
1964
1965 /*
1966 * free a ubsec_q
1967 * It is assumed that the caller is within splnet()
1968 */
1969 static int
1970 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
1971 {
1972 struct ubsec_q *q2;
1973 struct cryptop *crp;
1974 int npkts;
1975 int i;
1976
1977 npkts = q->q_nstacked_mcrs;
1978
1979 for (i = 0; i < npkts; i++) {
1980 if(q->q_stacked_mcr[i]) {
1981 q2 = q->q_stacked_mcr[i];
1982
1983 if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
1984 m_freem(q2->q_dst_m);
1985
1986 crp = (struct cryptop *)q2->q_crp;
1987
1988 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
1989
1990 crp->crp_etype = EFAULT;
1991 crypto_done(crp);
1992 } else {
1993 break;
1994 }
1995 }
1996
1997 /*
1998 * Free header MCR
1999 */
2000 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2001 m_freem(q->q_dst_m);
2002
2003 crp = (struct cryptop *)q->q_crp;
2004
2005 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2006
2007 crp->crp_etype = EFAULT;
2008 crypto_done(crp);
2009 return(0);
2010 }
2011
2012 /*
2013 * Routine to reset the chip and clean up.
2014 * It is assumed that the caller is in splnet()
2015 */
2016 static void
2017 ubsec_totalreset(struct ubsec_softc *sc)
2018 {
2019 ubsec_reset_board(sc);
2020 ubsec_init_board(sc);
2021 ubsec_cleanchip(sc);
2022 }
2023
2024 static int
2025 ubsec_dmamap_aligned(bus_dmamap_t map)
2026 {
2027 int i;
2028
2029 for (i = 0; i < map->dm_nsegs; i++) {
2030 if (map->dm_segs[i].ds_addr & 3)
2031 return (0);
2032 if ((i != (map->dm_nsegs - 1)) &&
2033 (map->dm_segs[i].ds_len & 3))
2034 return (0);
2035 }
2036 return (1);
2037 }
2038
2039 #ifdef __OpenBSD__
2040 struct ubsec_softc *
2041 ubsec_kfind(struct cryptkop *krp)
2042 {
2043 struct ubsec_softc *sc;
2044 int i;
2045
2046 for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
2047 sc = ubsec_cd.cd_devs[i];
2048 if (sc == NULL)
2049 continue;
2050 if (sc->sc_cid == krp->krp_hid)
2051 return (sc);
2052 }
2053 return (NULL);
2054 }
2055 #endif
2056
2057 static void
2058 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2059 {
2060 switch (q->q_type) {
2061 case UBS_CTXOP_MODEXP: {
2062 struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2063
2064 ubsec_dma_free(sc, &me->me_q.q_mcr);
2065 ubsec_dma_free(sc, &me->me_q.q_ctx);
2066 ubsec_dma_free(sc, &me->me_M);
2067 ubsec_dma_free(sc, &me->me_E);
2068 ubsec_dma_free(sc, &me->me_C);
2069 ubsec_dma_free(sc, &me->me_epb);
2070 free(me, M_DEVBUF);
2071 break;
2072 }
2073 case UBS_CTXOP_RSAPRIV: {
2074 struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2075
2076 ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2077 ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2078 ubsec_dma_free(sc, &rp->rpr_msgin);
2079 ubsec_dma_free(sc, &rp->rpr_msgout);
2080 free(rp, M_DEVBUF);
2081 break;
2082 }
2083 default:
2084 printf("%s: invalid kfree 0x%x\n", device_xname(sc->sc_dev),
2085 q->q_type);
2086 break;
2087 }
2088 }
2089
2090 static int
2091 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2092 {
2093 struct ubsec_softc *sc;
2094 int r;
2095
2096 if (krp == NULL || krp->krp_callback == NULL)
2097 return (EINVAL);
2098 #ifdef __OpenBSD__
2099 if ((sc = ubsec_kfind(krp)) == NULL)
2100 return (EINVAL);
2101 #else
2102 sc = arg;
2103 KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/);
2104 #endif
2105
2106 while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2107 struct ubsec_q2 *q;
2108
2109 q = SIMPLEQ_FIRST(&sc->sc_q2free);
2110 SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
2111 ubsec_kfree(sc, q);
2112 }
2113
2114 switch (krp->krp_op) {
2115 case CRK_MOD_EXP:
2116 if (sc->sc_flags & UBS_FLAGS_HWNORM)
2117 r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2118 else
2119 r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2120 break;
2121 case CRK_MOD_EXP_CRT:
2122 r = ubsec_kprocess_rsapriv(sc, krp, hint);
2123 break;
2124 default:
2125 printf("%s: kprocess: invalid op 0x%x\n",
2126 device_xname(sc->sc_dev), krp->krp_op);
2127 krp->krp_status = EOPNOTSUPP;
2128 crypto_kdone(krp);
2129 r = 0;
2130 }
2131 return (r);
2132 }
2133
2134 /*
2135 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2136 */
2137 static int
2138 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
2139 int hint)
2140 {
2141 struct ubsec_q2_modexp *me;
2142 struct ubsec_mcr *mcr;
2143 struct ubsec_ctx_modexp *ctx;
2144 struct ubsec_pktbuf *epb;
2145 int err = 0;
2146 u_int nbits, normbits, mbits, shiftbits, ebits;
2147
2148 me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2149 if (me == NULL) {
2150 err = ENOMEM;
2151 goto errout;
2152 }
2153 memset(me, 0, sizeof *me);
2154 me->me_krp = krp;
2155 me->me_q.q_type = UBS_CTXOP_MODEXP;
2156
2157 nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2158 if (nbits <= 512)
2159 normbits = 512;
2160 else if (nbits <= 768)
2161 normbits = 768;
2162 else if (nbits <= 1024)
2163 normbits = 1024;
2164 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2165 normbits = 1536;
2166 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2167 normbits = 2048;
2168 else {
2169 err = E2BIG;
2170 goto errout;
2171 }
2172
2173 shiftbits = normbits - nbits;
2174
2175 me->me_modbits = nbits;
2176 me->me_shiftbits = shiftbits;
2177 me->me_normbits = normbits;
2178
2179 /* Sanity check: result bits must be >= true modulus bits. */
2180 if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2181 err = ERANGE;
2182 goto errout;
2183 }
2184
2185 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2186 &me->me_q.q_mcr, 0)) {
2187 err = ENOMEM;
2188 goto errout;
2189 }
2190 mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2191
2192 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2193 &me->me_q.q_ctx, 0)) {
2194 err = ENOMEM;
2195 goto errout;
2196 }
2197
2198 mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2199 if (mbits > nbits) {
2200 err = E2BIG;
2201 goto errout;
2202 }
2203 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2204 err = ENOMEM;
2205 goto errout;
2206 }
2207 ubsec_kshift_r(shiftbits,
2208 krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2209 me->me_M.dma_vaddr, normbits);
2210
2211 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2212 err = ENOMEM;
2213 goto errout;
2214 }
2215 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2216
2217 ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2218 if (ebits > nbits) {
2219 err = E2BIG;
2220 goto errout;
2221 }
2222 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2223 err = ENOMEM;
2224 goto errout;
2225 }
2226 ubsec_kshift_r(shiftbits,
2227 krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2228 me->me_E.dma_vaddr, normbits);
2229
2230 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2231 &me->me_epb, 0)) {
2232 err = ENOMEM;
2233 goto errout;
2234 }
2235 epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2236 epb->pb_addr = htole32(me->me_E.dma_paddr);
2237 epb->pb_next = 0;
2238 epb->pb_len = htole32(normbits / 8);
2239
2240 #ifdef UBSEC_DEBUG
2241 if (ubsec_debug) {
2242 printf("Epb ");
2243 ubsec_dump_pb(epb);
2244 }
2245 #endif
2246
2247 mcr->mcr_pkts = htole16(1);
2248 mcr->mcr_flags = 0;
2249 mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2250 mcr->mcr_reserved = 0;
2251 mcr->mcr_pktlen = 0;
2252
2253 mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2254 mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2255 mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2256
2257 mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2258 mcr->mcr_opktbuf.pb_next = 0;
2259 mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2260
2261 #ifdef DIAGNOSTIC
2262 /* Misaligned output buffer will hang the chip. */
2263 if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2264 panic("%s: modexp invalid addr 0x%x",
2265 device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr));
2266 if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2267 panic("%s: modexp invalid len 0x%x",
2268 device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len));
2269 #endif
2270
2271 ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2272 memset(ctx, 0, sizeof(*ctx));
2273 ubsec_kshift_r(shiftbits,
2274 krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2275 ctx->me_N, normbits);
2276 ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2277 ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2278 ctx->me_E_len = htole16(nbits);
2279 ctx->me_N_len = htole16(nbits);
2280
2281 #ifdef UBSEC_DEBUG
2282 if (ubsec_debug) {
2283 ubsec_dump_mcr(mcr);
2284 ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2285 }
2286 #endif
2287
2288 /*
2289 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2290 * everything else.
2291 */
2292 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2293 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2294 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2295 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2296 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2297 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2298 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2299 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2300
2301 /* Enqueue and we're done... */
2302 mutex_spin_enter(&sc->sc_mtx);
2303 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2304 ubsec_feed2(sc);
2305 ubsecstats.hst_modexp++;
2306 mutex_spin_exit(&sc->sc_mtx);
2307
2308 return (0);
2309
2310 errout:
2311 if (me != NULL) {
2312 if (me->me_q.q_mcr.dma_map != NULL)
2313 ubsec_dma_free(sc, &me->me_q.q_mcr);
2314 if (me->me_q.q_ctx.dma_map != NULL) {
2315 memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
2316 ubsec_dma_free(sc, &me->me_q.q_ctx);
2317 }
2318 if (me->me_M.dma_map != NULL) {
2319 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2320 ubsec_dma_free(sc, &me->me_M);
2321 }
2322 if (me->me_E.dma_map != NULL) {
2323 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2324 ubsec_dma_free(sc, &me->me_E);
2325 }
2326 if (me->me_C.dma_map != NULL) {
2327 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2328 ubsec_dma_free(sc, &me->me_C);
2329 }
2330 if (me->me_epb.dma_map != NULL)
2331 ubsec_dma_free(sc, &me->me_epb);
2332 free(me, M_DEVBUF);
2333 }
2334 krp->krp_status = err;
2335 crypto_kdone(krp);
2336 return (0);
2337 }
2338
2339 /*
2340 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2341 */
2342 static int
2343 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
2344 int hint)
2345 {
2346 struct ubsec_q2_modexp *me;
2347 struct ubsec_mcr *mcr;
2348 struct ubsec_ctx_modexp *ctx;
2349 struct ubsec_pktbuf *epb;
2350 int err = 0;
2351 u_int nbits, normbits, mbits, shiftbits, ebits;
2352
2353 me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2354 if (me == NULL) {
2355 err = ENOMEM;
2356 goto errout;
2357 }
2358 memset(me, 0, sizeof *me);
2359 me->me_krp = krp;
2360 me->me_q.q_type = UBS_CTXOP_MODEXP;
2361
2362 nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2363 if (nbits <= 512)
2364 normbits = 512;
2365 else if (nbits <= 768)
2366 normbits = 768;
2367 else if (nbits <= 1024)
2368 normbits = 1024;
2369 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2370 normbits = 1536;
2371 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2372 normbits = 2048;
2373 else {
2374 err = E2BIG;
2375 goto errout;
2376 }
2377
2378 shiftbits = normbits - nbits;
2379
2380 /* XXX ??? */
2381 me->me_modbits = nbits;
2382 me->me_shiftbits = shiftbits;
2383 me->me_normbits = normbits;
2384
2385 /* Sanity check: result bits must be >= true modulus bits. */
2386 if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2387 err = ERANGE;
2388 goto errout;
2389 }
2390
2391 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2392 &me->me_q.q_mcr, 0)) {
2393 err = ENOMEM;
2394 goto errout;
2395 }
2396 mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2397
2398 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2399 &me->me_q.q_ctx, 0)) {
2400 err = ENOMEM;
2401 goto errout;
2402 }
2403
2404 mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2405 if (mbits > nbits) {
2406 err = E2BIG;
2407 goto errout;
2408 }
2409 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2410 err = ENOMEM;
2411 goto errout;
2412 }
2413 memset(me->me_M.dma_vaddr, 0, normbits / 8);
2414 bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2415 me->me_M.dma_vaddr, (mbits + 7) / 8);
2416
2417 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2418 err = ENOMEM;
2419 goto errout;
2420 }
2421 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2422
2423 ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2424 if (ebits > nbits) {
2425 err = E2BIG;
2426 goto errout;
2427 }
2428 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2429 err = ENOMEM;
2430 goto errout;
2431 }
2432 memset(me->me_E.dma_vaddr, 0, normbits / 8);
2433 bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2434 me->me_E.dma_vaddr, (ebits + 7) / 8);
2435
2436 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2437 &me->me_epb, 0)) {
2438 err = ENOMEM;
2439 goto errout;
2440 }
2441 epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2442 epb->pb_addr = htole32(me->me_E.dma_paddr);
2443 epb->pb_next = 0;
2444 epb->pb_len = htole32((ebits + 7) / 8);
2445
2446 #ifdef UBSEC_DEBUG
2447 if (ubsec_debug) {
2448 printf("Epb ");
2449 ubsec_dump_pb(epb);
2450 }
2451 #endif
2452
2453 mcr->mcr_pkts = htole16(1);
2454 mcr->mcr_flags = 0;
2455 mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2456 mcr->mcr_reserved = 0;
2457 mcr->mcr_pktlen = 0;
2458
2459 mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2460 mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2461 mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2462
2463 mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2464 mcr->mcr_opktbuf.pb_next = 0;
2465 mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2466
2467 #ifdef DIAGNOSTIC
2468 /* Misaligned output buffer will hang the chip. */
2469 if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2470 panic("%s: modexp invalid addr 0x%x",
2471 device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr));
2472 if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2473 panic("%s: modexp invalid len 0x%x",
2474 device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len));
2475 #endif
2476
2477 ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2478 memset(ctx, 0, sizeof(*ctx));
2479 memcpy(ctx->me_N, krp->krp_param[UBS_MODEXP_PAR_N].crp_p,
2480 (nbits + 7) / 8);
2481 ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2482 ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2483 ctx->me_E_len = htole16(ebits);
2484 ctx->me_N_len = htole16(nbits);
2485
2486 #ifdef UBSEC_DEBUG
2487 if (ubsec_debug) {
2488 ubsec_dump_mcr(mcr);
2489 ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2490 }
2491 #endif
2492
2493 /*
2494 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2495 * everything else.
2496 */
2497 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2498 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2499 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2500 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2501 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2502 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2503 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2504 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2505
2506 /* Enqueue and we're done... */
2507 mutex_spin_enter(&sc->sc_mtx);
2508 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2509 ubsec_feed2(sc);
2510 mutex_spin_exit(&sc->sc_mtx);
2511
2512 return (0);
2513
2514 errout:
2515 if (me != NULL) {
2516 if (me->me_q.q_mcr.dma_map != NULL)
2517 ubsec_dma_free(sc, &me->me_q.q_mcr);
2518 if (me->me_q.q_ctx.dma_map != NULL) {
2519 memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
2520 ubsec_dma_free(sc, &me->me_q.q_ctx);
2521 }
2522 if (me->me_M.dma_map != NULL) {
2523 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2524 ubsec_dma_free(sc, &me->me_M);
2525 }
2526 if (me->me_E.dma_map != NULL) {
2527 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2528 ubsec_dma_free(sc, &me->me_E);
2529 }
2530 if (me->me_C.dma_map != NULL) {
2531 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2532 ubsec_dma_free(sc, &me->me_C);
2533 }
2534 if (me->me_epb.dma_map != NULL)
2535 ubsec_dma_free(sc, &me->me_epb);
2536 free(me, M_DEVBUF);
2537 }
2538 krp->krp_status = err;
2539 crypto_kdone(krp);
2540 return (0);
2541 }
2542
2543 static int
2544 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
2545 int hint)
2546 {
2547 struct ubsec_q2_rsapriv *rp = NULL;
2548 struct ubsec_mcr *mcr;
2549 struct ubsec_ctx_rsapriv *ctx;
2550 int err = 0;
2551 u_int padlen, msglen;
2552
2553 msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2554 padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2555 if (msglen > padlen)
2556 padlen = msglen;
2557
2558 if (padlen <= 256)
2559 padlen = 256;
2560 else if (padlen <= 384)
2561 padlen = 384;
2562 else if (padlen <= 512)
2563 padlen = 512;
2564 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2565 padlen = 768;
2566 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2567 padlen = 1024;
2568 else {
2569 err = E2BIG;
2570 goto errout;
2571 }
2572
2573 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2574 err = E2BIG;
2575 goto errout;
2576 }
2577
2578 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2579 err = E2BIG;
2580 goto errout;
2581 }
2582
2583 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2584 err = E2BIG;
2585 goto errout;
2586 }
2587
2588 rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT|M_ZERO);
2589 if (rp == NULL)
2590 return (ENOMEM);
2591 rp->rpr_krp = krp;
2592 rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2593
2594 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2595 &rp->rpr_q.q_mcr, 0)) {
2596 err = ENOMEM;
2597 goto errout;
2598 }
2599 mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2600
2601 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2602 &rp->rpr_q.q_ctx, 0)) {
2603 err = ENOMEM;
2604 goto errout;
2605 }
2606 ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2607 memset(ctx, 0, sizeof *ctx);
2608
2609 /* Copy in p */
2610 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2611 &ctx->rpr_buf[0 * (padlen / 8)],
2612 (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2613
2614 /* Copy in q */
2615 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2616 &ctx->rpr_buf[1 * (padlen / 8)],
2617 (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2618
2619 /* Copy in dp */
2620 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2621 &ctx->rpr_buf[2 * (padlen / 8)],
2622 (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2623
2624 /* Copy in dq */
2625 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2626 &ctx->rpr_buf[3 * (padlen / 8)],
2627 (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2628
2629 /* Copy in pinv */
2630 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2631 &ctx->rpr_buf[4 * (padlen / 8)],
2632 (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2633
2634 msglen = padlen * 2;
2635
2636 /* Copy in input message (aligned buffer/length). */
2637 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2638 /* Is this likely? */
2639 err = E2BIG;
2640 goto errout;
2641 }
2642 if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2643 err = ENOMEM;
2644 goto errout;
2645 }
2646 memset(rp->rpr_msgin.dma_vaddr, 0, (msglen + 7) / 8);
2647 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2648 rp->rpr_msgin.dma_vaddr,
2649 (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2650
2651 /* Prepare space for output message (aligned buffer/length). */
2652 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2653 /* Is this likely? */
2654 err = E2BIG;
2655 goto errout;
2656 }
2657 if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2658 err = ENOMEM;
2659 goto errout;
2660 }
2661 memset(rp->rpr_msgout.dma_vaddr, 0, (msglen + 7) / 8);
2662
2663 mcr->mcr_pkts = htole16(1);
2664 mcr->mcr_flags = 0;
2665 mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2666 mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2667 mcr->mcr_ipktbuf.pb_next = 0;
2668 mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2669 mcr->mcr_reserved = 0;
2670 mcr->mcr_pktlen = htole16(msglen);
2671 mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2672 mcr->mcr_opktbuf.pb_next = 0;
2673 mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2674
2675 #ifdef DIAGNOSTIC
2676 if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2677 panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
2678 device_xname(sc->sc_dev), (u_long) rp->rpr_msgin.dma_paddr,
2679 (u_long) rp->rpr_msgin.dma_size);
2680 }
2681 if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2682 panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
2683 device_xname(sc->sc_dev), (u_long) rp->rpr_msgout.dma_paddr,
2684 (u_long) rp->rpr_msgout.dma_size);
2685 }
2686 #endif
2687
2688 ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2689 ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2690 ctx->rpr_q_len = htole16(padlen);
2691 ctx->rpr_p_len = htole16(padlen);
2692
2693 /*
2694 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2695 * everything else.
2696 */
2697 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
2698 0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2699 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
2700 0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2701
2702 /* Enqueue and we're done... */
2703 mutex_spin_enter(&sc->sc_mtx);
2704 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2705 ubsec_feed2(sc);
2706 ubsecstats.hst_modexpcrt++;
2707 mutex_spin_exit(&sc->sc_mtx);
2708 return (0);
2709
2710 errout:
2711 if (rp != NULL) {
2712 if (rp->rpr_q.q_mcr.dma_map != NULL)
2713 ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2714 if (rp->rpr_msgin.dma_map != NULL) {
2715 memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
2716 ubsec_dma_free(sc, &rp->rpr_msgin);
2717 }
2718 if (rp->rpr_msgout.dma_map != NULL) {
2719 memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
2720 ubsec_dma_free(sc, &rp->rpr_msgout);
2721 }
2722 free(rp, M_DEVBUF);
2723 }
2724 krp->krp_status = err;
2725 crypto_kdone(krp);
2726 return (0);
2727 }
2728
2729 #ifdef UBSEC_DEBUG
2730 static void
2731 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
2732 {
2733 printf("addr 0x%x (0x%x) next 0x%x\n",
2734 pb->pb_addr, pb->pb_len, pb->pb_next);
2735 }
2736
2737 static void
2738 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
2739 {
2740 printf("CTX (0x%x):\n", c->ctx_len);
2741 switch (letoh16(c->ctx_op)) {
2742 case UBS_CTXOP_RNGBYPASS:
2743 case UBS_CTXOP_RNGSHA1:
2744 break;
2745 case UBS_CTXOP_MODEXP:
2746 {
2747 struct ubsec_ctx_modexp *cx = (void *)c;
2748 int i, len;
2749
2750 printf(" Elen %u, Nlen %u\n",
2751 letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2752 len = (cx->me_N_len + 7)/8;
2753 for (i = 0; i < len; i++)
2754 printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2755 printf("\n");
2756 break;
2757 }
2758 default:
2759 printf("unknown context: %x\n", c->ctx_op);
2760 }
2761 printf("END CTX\n");
2762 }
2763
2764 static void
2765 ubsec_dump_mcr(struct ubsec_mcr *mcr)
2766 {
2767 volatile struct ubsec_mcr_add *ma;
2768 int i;
2769
2770 printf("MCR:\n");
2771 printf(" pkts: %u, flags 0x%x\n",
2772 letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2773 ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2774 for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2775 printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2776 letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2777 letoh16(ma->mcr_reserved));
2778 printf(" %d: ipkt ", i);
2779 ubsec_dump_pb(&ma->mcr_ipktbuf);
2780 printf(" %d: opkt ", i);
2781 ubsec_dump_pb(&ma->mcr_opktbuf);
2782 ma++;
2783 }
2784 printf("END MCR\n");
2785 }
2786 #endif /* UBSEC_DEBUG */
2787
2788 /*
2789 * Return the number of significant bits of a big number.
2790 */
2791 static int
2792 ubsec_ksigbits(struct crparam *cr)
2793 {
2794 u_int plen = (cr->crp_nbits + 7) / 8;
2795 int i, sig = plen * 8;
2796 u_int8_t c, *p = cr->crp_p;
2797
2798 for (i = plen - 1; i >= 0; i--) {
2799 c = p[i];
2800 if (c != 0) {
2801 while ((c & 0x80) == 0) {
2802 sig--;
2803 c <<= 1;
2804 }
2805 break;
2806 }
2807 sig -= 8;
2808 }
2809 return (sig);
2810 }
2811
2812 static void
2813 ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits,
2814 u_int8_t *dst, u_int dstbits)
2815 {
2816 u_int slen, dlen;
2817 int i, si, di, n;
2818
2819 slen = (srcbits + 7) / 8;
2820 dlen = (dstbits + 7) / 8;
2821
2822 for (i = 0; i < slen; i++)
2823 dst[i] = src[i];
2824 for (i = 0; i < dlen - slen; i++)
2825 dst[slen + i] = 0;
2826
2827 n = shiftbits / 8;
2828 if (n != 0) {
2829 si = dlen - n - 1;
2830 di = dlen - 1;
2831 while (si >= 0)
2832 dst[di--] = dst[si--];
2833 while (di >= 0)
2834 dst[di--] = 0;
2835 }
2836
2837 n = shiftbits % 8;
2838 if (n != 0) {
2839 for (i = dlen - 1; i > 0; i--)
2840 dst[i] = (dst[i] << n) |
2841 (dst[i - 1] >> (8 - n));
2842 dst[0] = dst[0] << n;
2843 }
2844 }
2845
2846 static void
2847 ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits,
2848 u_int8_t *dst, u_int dstbits)
2849 {
2850 int slen, dlen, i, n;
2851
2852 slen = (srcbits + 7) / 8;
2853 dlen = (dstbits + 7) / 8;
2854
2855 n = shiftbits / 8;
2856 for (i = 0; i < slen; i++)
2857 dst[i] = src[i + n];
2858 for (i = 0; i < dlen - slen; i++)
2859 dst[slen + i] = 0;
2860
2861 n = shiftbits % 8;
2862 if (n != 0) {
2863 for (i = 0; i < (dlen - 1); i++)
2864 dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2865 dst[dlen - 1] = dst[dlen - 1] >> n;
2866 }
2867 }
2868