Home | History | Annotate | Line # | Download | only in pci
ubsec.c revision 1.37
      1 /*	$NetBSD: ubsec.c,v 1.37 2014/02/25 18:30:10 pooka Exp $	*/
      2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
      3 /*	$OpenBSD: ubsec.c,v 1.127 2003/06/04 14:04:58 jason Exp $	*/
      4 
      5 /*
      6  * Copyright (c) 2000 Jason L. Wright (jason (at) thought.net)
      7  * Copyright (c) 2000 Theo de Raadt (deraadt (at) openbsd.org)
      8  * Copyright (c) 2001 Patrik Lindergren (patrik (at) ipunplugged.com)
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
     23  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     27  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     28  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  *
     31  * Effort sponsored in part by the Defense Advanced Research Projects
     32  * Agency (DARPA) and Air Force Research Laboratory, Air Force
     33  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
     34  *
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: ubsec.c,v 1.37 2014/02/25 18:30:10 pooka Exp $");
     39 
     40 #undef UBSEC_DEBUG
     41 
     42 /*
     43  * uBsec 5[56]01, bcm580xx, bcm582x hardware crypto accelerator
     44  */
     45 
     46 #include <sys/param.h>
     47 #include <sys/systm.h>
     48 #include <sys/proc.h>
     49 #include <sys/endian.h>
     50 #ifdef __NetBSD__
     51   #define UBSEC_NO_RNG	/* hangs on attach */
     52   #define letoh16 htole16
     53   #define letoh32 htole32
     54 #endif
     55 #include <sys/errno.h>
     56 #include <sys/malloc.h>
     57 #include <sys/kernel.h>
     58 #include <sys/mbuf.h>
     59 #include <sys/device.h>
     60 #include <sys/module.h>
     61 #include <sys/queue.h>
     62 #include <sys/sysctl.h>
     63 
     64 #include <opencrypto/cryptodev.h>
     65 #include <opencrypto/xform.h>
     66 #ifdef __OpenBSD__
     67  #include <dev/rndvar.h>
     68  #include <sys/md5k.h>
     69 #else
     70  #include <sys/cprng.h>
     71  #include <sys/md5.h>
     72 #endif
     73 #include <sys/sha1.h>
     74 
     75 #include <dev/pci/pcireg.h>
     76 #include <dev/pci/pcivar.h>
     77 #include <dev/pci/pcidevs.h>
     78 
     79 #include <dev/pci/ubsecreg.h>
     80 #include <dev/pci/ubsecvar.h>
     81 
     82 /*
     83  * Prototypes and count for the pci_device structure
     84  */
     85 static	int ubsec_probe(device_t, cfdata_t, void *);
     86 static	void ubsec_attach(device_t, device_t, void *);
     87 static	int  ubsec_detach(device_t, int);
     88 static	int  ubsec_sysctl_init(void);
     89 static	void ubsec_reset_board(struct ubsec_softc *);
     90 static	void ubsec_init_board(struct ubsec_softc *);
     91 static	void ubsec_init_pciregs(struct pci_attach_args *pa);
     92 static	void ubsec_cleanchip(struct ubsec_softc *);
     93 static	void ubsec_totalreset(struct ubsec_softc *);
     94 static	int  ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
     95 
     96 #ifdef __OpenBSD__
     97 struct cfattach ubsec_ca = {
     98 	sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
     99 };
    100 
    101 struct cfdriver ubsec_cd = {
    102 	0, "ubsec", DV_DULL
    103 };
    104 #else
    105 CFATTACH_DECL_NEW(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
    106 	      ubsec_detach, NULL);
    107 extern struct cfdriver ubsec_cd;
    108 #endif
    109 
    110 /* patchable */
    111 #ifdef	UBSEC_DEBUG
    112 extern int ubsec_debug;
    113 int ubsec_debug=1;
    114 #endif
    115 
    116 static	int	ubsec_intr(void *);
    117 static	int	ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
    118 static	int	ubsec_freesession(void*, u_int64_t);
    119 static	int	ubsec_process(void*, struct cryptop *, int hint);
    120 static	void	ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
    121 static	void	ubsec_feed(struct ubsec_softc *);
    122 static	void	ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
    123 static	void	ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
    124 static	void	ubsec_feed2(struct ubsec_softc *);
    125 static	void	ubsec_feed4(struct ubsec_softc *);
    126 #ifndef UBSEC_NO_RNG
    127 static  void	ubsec_rng(void *);
    128 static  void	ubsec_rng_locked(void *);
    129 static  void	ubsec_rng_get(size_t, void *);
    130 #endif /* UBSEC_NO_RNG */
    131 static	int 	ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
    132 				 struct ubsec_dma_alloc *, int);
    133 static	void	ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
    134 static	int	ubsec_dmamap_aligned(bus_dmamap_t);
    135 
    136 static	int	ubsec_kprocess(void*, struct cryptkop *, int);
    137 static	int	ubsec_kprocess_modexp_sw(struct ubsec_softc *,
    138 					 struct cryptkop *, int);
    139 static	int	ubsec_kprocess_modexp_hw(struct ubsec_softc *,
    140 					 struct cryptkop *, int);
    141 static	int	ubsec_kprocess_rsapriv(struct ubsec_softc *,
    142 				       struct cryptkop *, int);
    143 static	void	ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
    144 static	int	ubsec_ksigbits(struct crparam *);
    145 static	void	ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
    146 static	void	ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
    147 
    148 #ifdef UBSEC_DEBUG
    149 static void	ubsec_dump_pb(volatile struct ubsec_pktbuf *);
    150 static void	ubsec_dump_mcr(struct ubsec_mcr *);
    151 static	void	ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
    152 #endif
    153 
    154 #define	READ_REG(sc,r) \
    155 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
    156 
    157 #define WRITE_REG(sc,reg,val) \
    158 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
    159 
    160 #define	SWAP32(x) (x) = htole32(ntohl((x)))
    161 #ifndef HTOLE32
    162  #define	HTOLE32(x) (x) = htole32(x)
    163 #endif
    164 
    165 struct ubsec_stats ubsecstats;
    166 
    167 static struct sysctllog *ubsec_sysctllog;
    168 
    169 /*
    170  * ubsec_maxbatch controls the number of crypto ops to voluntarily
    171  * collect into one submission to the hardware.  This batching happens
    172  * when ops are dispatched from the crypto subsystem with a hint that
    173  * more are to follow immediately.  These ops must also not be marked
    174  * with a ``no delay'' flag.
    175  */
    176 static	int ubsec_maxbatch = 1;
    177 
    178 /*
    179  * ubsec_maxaggr controls the number of crypto ops to submit to the
    180  * hardware as a unit.  This aggregation reduces the number of interrupts
    181  * to the host at the expense of increased latency (for all but the last
    182  * operation).  For network traffic setting this to one yields the highest
    183  * performance but at the expense of more interrupt processing.
    184  */
    185 static	int ubsec_maxaggr = 1;
    186 
    187 static const struct ubsec_product {
    188 	pci_vendor_id_t		ubsec_vendor;
    189 	pci_product_id_t	ubsec_product;
    190 	int			ubsec_flags;
    191 	int			ubsec_statmask;
    192 	int			ubsec_maxaggr;
    193 	const char		*ubsec_name;
    194 } ubsec_products[] = {
    195 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5501,
    196 	  0,
    197 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    198 	  UBS_MIN_AGGR,
    199 	  "Bluesteel 5501"
    200 	},
    201 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5601,
    202 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
    203 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    204 	  UBS_MIN_AGGR,
    205 	  "Bluesteel 5601"
    206 	},
    207 
    208 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5801,
    209 	  0,
    210 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    211 	  UBS_MIN_AGGR,
    212 	  "Broadcom BCM5801"
    213 	},
    214 
    215 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5802,
    216 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
    217 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    218 	  UBS_MIN_AGGR,
    219 	  "Broadcom BCM5802"
    220 	},
    221 
    222 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5805,
    223 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
    224 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    225 	  UBS_MIN_AGGR,
    226 	  "Broadcom BCM5805"
    227 	},
    228 
    229 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5820,
    230 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    231 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    232 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    233 	  UBS_MIN_AGGR,
    234 	  "Broadcom BCM5820"
    235 	},
    236 
    237 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5821,
    238 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    239 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    240 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    241 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    242 	  UBS_MIN_AGGR,
    243 	  "Broadcom BCM5821"
    244 	},
    245 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_SCA1K,
    246 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    247 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    248 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    249 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    250 	  UBS_MIN_AGGR,
    251 	  "Sun Crypto Accelerator 1000"
    252 	},
    253 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_5821,
    254 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    255 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    256 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    257 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    258 	  UBS_MIN_AGGR,
    259 	  "Broadcom BCM5821 (Sun)"
    260 	},
    261 
    262 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5822,
    263 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    264 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    265 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    266 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    267 	  UBS_MIN_AGGR,
    268 	  "Broadcom BCM5822"
    269 	},
    270 
    271 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5823,
    272 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    273 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    274 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    275 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    276 	  UBS_MIN_AGGR,
    277 	  "Broadcom BCM5823"
    278 	},
    279 
    280 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5825,
    281 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    282 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    283 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    284 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    285 	  UBS_MIN_AGGR,
    286 	  "Broadcom BCM5825"
    287 	},
    288 
    289 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5860,
    290 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
    291 	      UBS_FLAGS_LONGCTX |
    292 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
    293 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY,
    294 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    295 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
    296 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
    297 	  UBS_MAX_AGGR,
    298 	  "Broadcom BCM5860"
    299 	},
    300 
    301 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5861,
    302 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
    303 	      UBS_FLAGS_LONGCTX |
    304 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
    305 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY,
    306 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    307 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
    308 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
    309 	  UBS_MAX_AGGR,
    310 	  "Broadcom BCM5861"
    311 	},
    312 
    313 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5862,
    314 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
    315 	      UBS_FLAGS_LONGCTX |
    316 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
    317 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY,
    318 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    319 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
    320 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
    321 	  UBS_MAX_AGGR,
    322 	  "Broadcom BCM5862"
    323 	},
    324 
    325 	{ 0,			0,
    326 	  0,
    327 	  0,
    328 	  0,
    329 	  NULL
    330 	}
    331 };
    332 
    333 static const struct ubsec_product *
    334 ubsec_lookup(const struct pci_attach_args *pa)
    335 {
    336 	const struct ubsec_product *up;
    337 
    338 	for (up = ubsec_products; up->ubsec_name != NULL; up++) {
    339 		if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
    340 		    PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
    341 			return (up);
    342 	}
    343 	return (NULL);
    344 }
    345 
    346 static int
    347 ubsec_probe(device_t parent, cfdata_t match, void *aux)
    348 {
    349 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    350 
    351 	if (ubsec_lookup(pa) != NULL)
    352 		return (1);
    353 
    354 	return (0);
    355 }
    356 
    357 static void
    358 ubsec_attach(device_t parent, device_t self, void *aux)
    359 {
    360 	struct ubsec_softc *sc = device_private(self);
    361 	struct pci_attach_args *pa = aux;
    362 	const struct ubsec_product *up;
    363 	pci_chipset_tag_t pc = pa->pa_pc;
    364 	pci_intr_handle_t ih;
    365 	const char *intrstr = NULL;
    366 	pcireg_t memtype;
    367 	struct ubsec_dma *dmap;
    368 	u_int32_t cmd, i;
    369 
    370 	sc->sc_dev = self;
    371 	sc->sc_pct = pc;
    372 
    373 	up = ubsec_lookup(pa);
    374 	if (up == NULL) {
    375 		printf("\n");
    376 		panic("ubsec_attach: impossible");
    377 	}
    378 
    379 	pci_aprint_devinfo_fancy(pa, "Crypto processor", up->ubsec_name, 1);
    380 
    381 	SIMPLEQ_INIT(&sc->sc_queue);
    382 	SIMPLEQ_INIT(&sc->sc_qchip);
    383 	SIMPLEQ_INIT(&sc->sc_queue2);
    384 	SIMPLEQ_INIT(&sc->sc_qchip2);
    385 	SIMPLEQ_INIT(&sc->sc_queue4);
    386 	SIMPLEQ_INIT(&sc->sc_qchip4);
    387 	SIMPLEQ_INIT(&sc->sc_q2free);
    388 
    389 	sc->sc_flags = up->ubsec_flags;
    390 	sc->sc_statmask = up->ubsec_statmask;
    391 	sc->sc_maxaggr = up->ubsec_maxaggr;
    392 
    393 	cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    394 	cmd |= PCI_COMMAND_MASTER_ENABLE;
    395 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
    396 
    397 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BS_BAR);
    398 	if (pci_mapreg_map(pa, BS_BAR, memtype, 0,
    399 	    &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize)) {
    400 		aprint_error_dev(self, "can't find mem space");
    401 		return;
    402 	}
    403 
    404 	sc->sc_dmat = pa->pa_dmat;
    405 
    406 	if (pci_intr_map(pa, &ih)) {
    407 		aprint_error_dev(self, "couldn't map interrupt\n");
    408 		return;
    409 	}
    410 	intrstr = pci_intr_string(pc, ih);
    411 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc);
    412 	if (sc->sc_ih == NULL) {
    413 		aprint_error_dev(self, "couldn't establish interrupt");
    414 		if (intrstr != NULL)
    415 			aprint_error(" at %s", intrstr);
    416 		aprint_error("\n");
    417 		return;
    418 	}
    419 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    420 
    421 	sc->sc_cid = crypto_get_driverid(0);
    422 	if (sc->sc_cid < 0) {
    423 		aprint_error_dev(self, "couldn't get crypto driver id\n");
    424 		pci_intr_disestablish(pc, sc->sc_ih);
    425 		return;
    426 	}
    427 
    428 	sc->sc_rng_need = RND_POOLBITS / NBBY;
    429 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_VM);
    430 
    431 	SIMPLEQ_INIT(&sc->sc_freequeue);
    432 	dmap = sc->sc_dmaa;
    433 	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
    434 		struct ubsec_q *q;
    435 
    436 		q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
    437 		    M_DEVBUF, M_NOWAIT);
    438 		if (q == NULL) {
    439 			aprint_error_dev(self, "can't allocate queue buffers\n");
    440 			break;
    441 		}
    442 
    443 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
    444 		    &dmap->d_alloc, 0)) {
    445 			aprint_error_dev(self, "can't allocate dma buffers\n");
    446 			free(q, M_DEVBUF);
    447 			break;
    448 		}
    449 		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
    450 
    451 		q->q_dma = dmap;
    452 		sc->sc_queuea[i] = q;
    453 
    454 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
    455 	}
    456 
    457 	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
    458 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
    459 	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
    460 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
    461 	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0,
    462 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
    463 	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0,
    464 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
    465 
    466 	/*
    467 	 * Reset Broadcom chip
    468 	 */
    469 	ubsec_reset_board(sc);
    470 
    471 	/*
    472 	 * Init Broadcom specific PCI settings
    473 	 */
    474 	ubsec_init_pciregs(pa);
    475 
    476 	/*
    477 	 * Init Broadcom chip
    478 	 */
    479 	ubsec_init_board(sc);
    480 
    481 #ifndef UBSEC_NO_RNG
    482 	if (sc->sc_flags & UBS_FLAGS_RNG) {
    483 		if (sc->sc_flags & UBS_FLAGS_RNG4)
    484 			sc->sc_statmask |= BS_STAT_MCR4_DONE;
    485 		else
    486 			sc->sc_statmask |= BS_STAT_MCR2_DONE;
    487 
    488 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
    489 		    &sc->sc_rng.rng_q.q_mcr, 0))
    490 			goto skip_rng;
    491 
    492 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
    493 		    &sc->sc_rng.rng_q.q_ctx, 0)) {
    494 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
    495 			goto skip_rng;
    496 		}
    497 
    498 		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
    499 		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
    500 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
    501 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
    502 			goto skip_rng;
    503 		}
    504 
    505 		rndsource_setcb(&sc->sc_rnd_source, ubsec_rng_get, sc);
    506 		rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
    507 				  RND_TYPE_RNG,
    508 				  RND_FLAG_NO_ESTIMATE|RND_FLAG_HASCB);
    509 		if (hz >= 100)
    510 			sc->sc_rnghz = hz / 100;
    511 		else
    512 			sc->sc_rnghz = 1;
    513 #ifdef __OpenBSD__
    514 		timeout_set(&sc->sc_rngto, ubsec_rng, sc);
    515 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
    516 #else
    517 		callout_init(&sc->sc_rngto, 0);
    518 		callout_setfunc(&sc->sc_rngto, ubsec_rng, sc);
    519 		callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
    520 #endif
    521  skip_rng:
    522 		if (sc->sc_rnghz)
    523 			aprint_normal_dev(self, "random number generator enabled\n");
    524 		else
    525 			aprint_error_dev(self, "WARNING: random number generator "
    526 			    "disabled\n");
    527 	}
    528 #endif /* UBSEC_NO_RNG */
    529 
    530 	if (sc->sc_flags & UBS_FLAGS_KEY) {
    531 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
    532 
    533 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
    534 				 ubsec_kprocess, sc);
    535 #if 0
    536 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
    537 				 ubsec_kprocess, sc);
    538 #endif
    539 	}
    540 }
    541 
    542 static int
    543 ubsec_detach(device_t self, int flags)
    544 {
    545 	struct ubsec_softc *sc = device_private(self);
    546 	struct ubsec_q *q, *qtmp;
    547 	volatile u_int32_t ctrl;
    548 
    549 	/* disable interrupts */
    550 	/* XXX wait/abort current ops? where is DMAERR enabled? */
    551 	ctrl = READ_REG(sc, BS_CTRL);
    552 
    553 	ctrl &= ~(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR);
    554 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
    555 		ctrl &= ~BS_CTRL_MCR4INT;
    556 
    557 	WRITE_REG(sc, BS_CTRL, ctrl);
    558 
    559 #ifndef UBSEC_NO_RNG
    560 	if (sc->sc_flags & UBS_FLAGS_RNG) {
    561 		callout_halt(&sc->sc_rngto, NULL);
    562 		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
    563 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
    564 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
    565 		rnd_detach_source(&sc->sc_rnd_source);
    566 	}
    567 #endif /* UBSEC_NO_RNG */
    568 
    569 	crypto_unregister_all(sc->sc_cid);
    570 
    571 	mutex_spin_enter(&sc->sc_mtx);
    572 
    573 	ubsec_totalreset(sc);  /* XXX leaves the chip running */
    574 
    575 	SIMPLEQ_FOREACH_SAFE(q, &sc->sc_freequeue, q_next, qtmp) {
    576 		ubsec_dma_free(sc, &q->q_dma->d_alloc);
    577 		free(q, M_DEVBUF);
    578 	}
    579 
    580 	mutex_spin_exit(&sc->sc_mtx);
    581 
    582 	if (sc->sc_ih != NULL) {
    583 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    584 		sc->sc_ih = NULL;
    585 	}
    586 
    587 	if (sc->sc_memsize != 0) {
    588 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
    589 		sc->sc_memsize = 0;
    590 	}
    591 
    592 	return 0;
    593 }
    594 
    595 MODULE(MODULE_CLASS_DRIVER, ubsec, "pci,opencrypto");
    596 
    597 #ifdef _MODULE
    598 #include "ioconf.c"
    599 #endif
    600 
    601 static int
    602 ubsec_modcmd(modcmd_t cmd, void *data)
    603 {
    604 	int error = 0;
    605 
    606 	switch (cmd) {
    607 	case MODULE_CMD_INIT:
    608 #ifdef _MODULE
    609 		error = config_init_component(cfdriver_ioconf_ubsec,
    610 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
    611 #endif
    612 		if (error == 0)
    613 			error = ubsec_sysctl_init();
    614 		return error;
    615 	case MODULE_CMD_FINI:
    616 		if (ubsec_sysctllog != NULL)
    617 			sysctl_teardown(&ubsec_sysctllog);
    618 #ifdef _MODULE
    619 		error = config_fini_component(cfdriver_ioconf_ubsec,
    620 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
    621 #endif
    622 		return error;
    623 	default:
    624 		return ENOTTY;
    625 	}
    626 }
    627 
    628 static int
    629 ubsec_sysctl_init(void)
    630 {
    631 	const struct sysctlnode *node = NULL;
    632 
    633 	ubsec_sysctllog = NULL;
    634 
    635 	sysctl_createv(&ubsec_sysctllog, 0, NULL, &node,
    636 		CTLFLAG_PERMANENT,
    637 		CTLTYPE_NODE, "ubsec",
    638 		SYSCTL_DESCR("ubsec opetions"),
    639 		NULL, 0, NULL, 0,
    640 		CTL_HW, CTL_CREATE, CTL_EOL);
    641 	sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
    642 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    643 		CTLTYPE_INT, "maxbatch",
    644 		SYSCTL_DESCR("max ops to batch w/o interrupt"),
    645 		NULL, 0, &ubsec_maxbatch, 0,
    646 		CTL_CREATE, CTL_EOL);
    647 	sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
    648 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    649 		CTLTYPE_INT, "maxaggr",
    650 		SYSCTL_DESCR("max ops to aggregate under one interrupt"),
    651 		NULL, 0, &ubsec_maxaggr, 0,
    652 		CTL_CREATE, CTL_EOL);
    653 
    654 	return 0;
    655 }
    656 
    657 /*
    658  * UBSEC Interrupt routine
    659  */
    660 static int
    661 ubsec_intr(void *arg)
    662 {
    663 	struct ubsec_softc *sc = arg;
    664 	volatile u_int32_t stat;
    665 	struct ubsec_q *q;
    666 	struct ubsec_dma *dmap;
    667 	int flags;
    668 	int npkts = 0, i;
    669 
    670 	mutex_spin_enter(&sc->sc_mtx);
    671 	stat = READ_REG(sc, BS_STAT);
    672 	stat &= sc->sc_statmask;
    673 	if (stat == 0) {
    674 		mutex_spin_exit(&sc->sc_mtx);
    675 		return (0);
    676 	}
    677 
    678 	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
    679 
    680 	/*
    681 	 * Check to see if we have any packets waiting for us
    682 	 */
    683 	if ((stat & BS_STAT_MCR1_DONE)) {
    684 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
    685 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
    686 			dmap = q->q_dma;
    687 
    688 			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
    689 				break;
    690 
    691 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
    692 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
    693 
    694 			npkts = q->q_nstacked_mcrs;
    695 			sc->sc_nqchip -= 1+npkts;
    696 			/*
    697 			 * search for further sc_qchip ubsec_q's that share
    698 			 * the same MCR, and complete them too, they must be
    699 			 * at the top.
    700 			 */
    701 			for (i = 0; i < npkts; i++) {
    702 				if(q->q_stacked_mcr[i])
    703 					ubsec_callback(sc, q->q_stacked_mcr[i]);
    704 				else
    705 					break;
    706 			}
    707 			ubsec_callback(sc, q);
    708 		}
    709 
    710 		/*
    711 		 * Don't send any more packet to chip if there has been
    712 		 * a DMAERR.
    713 		 */
    714 		if (!(stat & BS_STAT_DMAERR))
    715 			ubsec_feed(sc);
    716 	}
    717 
    718 	/*
    719 	 * Check to see if we have any key setups/rng's waiting for us
    720 	 */
    721 	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
    722 	    (stat & BS_STAT_MCR2_DONE)) {
    723 		struct ubsec_q2 *q2;
    724 		struct ubsec_mcr *mcr;
    725 
    726 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
    727 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
    728 
    729 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
    730 			    0, q2->q_mcr.dma_map->dm_mapsize,
    731 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    732 
    733 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
    734 
    735 			/* A bug in new devices requires to swap this field */
    736 			if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
    737 				flags = htole16(mcr->mcr_flags);
    738 			else
    739 				flags = mcr->mcr_flags;
    740 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
    741 				bus_dmamap_sync(sc->sc_dmat,
    742 				    q2->q_mcr.dma_map, 0,
    743 				    q2->q_mcr.dma_map->dm_mapsize,
    744 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    745 				break;
    746 			}
    747 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
    748 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
    749 			ubsec_callback2(sc, q2);
    750 			/*
    751 			 * Don't send any more packet to chip if there has been
    752 			 * a DMAERR.
    753 			 */
    754 			if (!(stat & BS_STAT_DMAERR))
    755 				ubsec_feed2(sc);
    756 		}
    757 	}
    758 	if ((sc->sc_flags & UBS_FLAGS_RNG4) && (stat & BS_STAT_MCR4_DONE)) {
    759 		struct ubsec_q2 *q2;
    760 		struct ubsec_mcr *mcr;
    761 
    762 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip4)) {
    763 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip4);
    764 
    765 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
    766 			    0, q2->q_mcr.dma_map->dm_mapsize,
    767 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    768 
    769 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
    770 
    771 			/* A bug in new devices requires to swap this field */
    772 			flags = htole16(mcr->mcr_flags);
    773 
    774 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
    775 				bus_dmamap_sync(sc->sc_dmat,
    776 				    q2->q_mcr.dma_map, 0,
    777 				    q2->q_mcr.dma_map->dm_mapsize,
    778 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    779 				break;
    780 			}
    781 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip4, q_next);
    782 			ubsec_callback2(sc, q2);
    783 			/*
    784 			 * Don't send any more packet to chip if there has been
    785 			 * a DMAERR.
    786 			 */
    787 			if (!(stat & BS_STAT_DMAERR))
    788 				ubsec_feed4(sc);
    789 		}
    790 	}
    791 
    792 	/*
    793 	 * Check to see if we got any DMA Error
    794 	 */
    795 	if (stat & BS_STAT_DMAERR) {
    796 #ifdef UBSEC_DEBUG
    797 		if (ubsec_debug) {
    798 			volatile u_int32_t a = READ_REG(sc, BS_ERR);
    799 
    800 			printf("%s: dmaerr %s@%08x\n", device_xname(sc->sc_dev),
    801 			    (a & BS_ERR_READ) ? "read" : "write",
    802 			       a & BS_ERR_ADDR);
    803 		}
    804 #endif /* UBSEC_DEBUG */
    805 		ubsecstats.hst_dmaerr++;
    806 		ubsec_totalreset(sc);
    807 		ubsec_feed(sc);
    808 	}
    809 
    810 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
    811 		int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
    812 #ifdef UBSEC_DEBUG
    813 		if (ubsec_debug)
    814 			printf("%s: wakeup crypto (%x)\n", device_xname(sc->sc_dev),
    815 				sc->sc_needwakeup);
    816 #endif /* UBSEC_DEBUG */
    817 		sc->sc_needwakeup &= ~wkeup;
    818 		crypto_unblock(sc->sc_cid, wkeup);
    819 	}
    820 	mutex_spin_exit(&sc->sc_mtx);
    821 	return (1);
    822 }
    823 
    824 /*
    825  * ubsec_feed() - aggregate and post requests to chip
    826  * OpenBSD comments:
    827  *		  It is assumed that the caller set splnet()
    828  */
    829 static void
    830 ubsec_feed(struct ubsec_softc *sc)
    831 {
    832 	struct ubsec_q *q, *q2;
    833 	int npkts, i;
    834 	void *v;
    835 	u_int32_t stat;
    836 #ifdef UBSEC_DEBUG
    837 	static int max;
    838 #endif /* UBSEC_DEBUG */
    839 
    840 	npkts = sc->sc_nqueue;
    841 	if (npkts > ubsecstats.hst_maxqueue)
    842 		ubsecstats.hst_maxqueue = npkts;
    843 	if (npkts < 2)
    844 		goto feed1;
    845 
    846 	/*
    847 	 * Decide how many ops to combine in a single MCR.  We cannot
    848 	 * aggregate more than UBS_MAX_AGGR because this is the number
    849 	 * of slots defined in the data structure.  Otherwise we clamp
    850 	 * based on the tunable parameter ubsec_maxaggr.  Note that
    851 	 * aggregation can happen in two ways: either by batching ops
    852 	 * from above or because the h/w backs up and throttles us.
    853 	 * Aggregating ops reduces the number of interrupts to the host
    854 	 * but also (potentially) increases the latency for processing
    855 	 * completed ops as we only get an interrupt when all aggregated
    856 	 * ops have completed.
    857 	 */
    858 	if (npkts > sc->sc_maxaggr)
    859 		npkts = sc->sc_maxaggr;
    860 	if (npkts > ubsec_maxaggr)
    861 		npkts = ubsec_maxaggr;
    862 	if (npkts > ubsecstats.hst_maxbatch)
    863 		ubsecstats.hst_maxbatch = npkts;
    864 	if (npkts < 2)
    865 		goto feed1;
    866 	ubsecstats.hst_totbatch += npkts-1;
    867 
    868 	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
    869 		if (stat & BS_STAT_DMAERR) {
    870 			ubsec_totalreset(sc);
    871 			ubsecstats.hst_dmaerr++;
    872 		} else {
    873 			ubsecstats.hst_mcr1full++;
    874 		}
    875 		return;
    876 	}
    877 
    878 #ifdef UBSEC_DEBUG
    879 	if (ubsec_debug)
    880 	    printf("merging %d records\n", npkts);
    881 	/* XXX temporary aggregation statistics reporting code */
    882 	if (max < npkts) {
    883 		max = npkts;
    884 		printf("%s: new max aggregate %d\n", device_xname(sc->sc_dev), max);
    885 	}
    886 #endif /* UBSEC_DEBUG */
    887 
    888 	q = SIMPLEQ_FIRST(&sc->sc_queue);
    889 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
    890 	--sc->sc_nqueue;
    891 
    892 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
    893 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
    894 	if (q->q_dst_map != NULL)
    895 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
    896 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
    897 
    898 	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
    899 
    900 	for (i = 0; i < q->q_nstacked_mcrs; i++) {
    901 		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
    902 		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
    903 		    0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
    904 		if (q2->q_dst_map != NULL)
    905 			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
    906 			    0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
    907 		q2= SIMPLEQ_FIRST(&sc->sc_queue);
    908 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
    909 		--sc->sc_nqueue;
    910 
    911 		v = ((void *)&q2->q_dma->d_dma->d_mcr);
    912 		v = (char*)v + (sizeof(struct ubsec_mcr) -
    913 				 sizeof(struct ubsec_mcr_add));
    914 		memcpy(&q->q_dma->d_dma->d_mcradd[i], v, sizeof(struct ubsec_mcr_add));
    915 		q->q_stacked_mcr[i] = q2;
    916 	}
    917 	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
    918 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
    919 	sc->sc_nqchip += npkts;
    920 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
    921 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
    922 	bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
    923 	    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
    924 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    925 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
    926 	    offsetof(struct ubsec_dmachunk, d_mcr));
    927 	return;
    928 
    929 feed1:
    930 	while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
    931 		if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
    932 			if (stat & BS_STAT_DMAERR) {
    933 				ubsec_totalreset(sc);
    934 				ubsecstats.hst_dmaerr++;
    935 			} else {
    936 				ubsecstats.hst_mcr1full++;
    937 			}
    938 			break;
    939 		}
    940 
    941 		q = SIMPLEQ_FIRST(&sc->sc_queue);
    942 
    943 		bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
    944 		    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
    945 		if (q->q_dst_map != NULL)
    946 			bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
    947 			    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
    948 		bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
    949 		    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
    950 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    951 
    952 		WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
    953 		    offsetof(struct ubsec_dmachunk, d_mcr));
    954 #ifdef UBSEC_DEBUG
    955 		if (ubsec_debug)
    956 			printf("feed: q->chip %p %08x stat %08x\n",
    957  		    	       q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
    958 			       stat);
    959 #endif /* UBSEC_DEBUG */
    960 		q = SIMPLEQ_FIRST(&sc->sc_queue);
    961 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
    962 		--sc->sc_nqueue;
    963 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
    964 		sc->sc_nqchip++;
    965 	}
    966 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
    967 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
    968 }
    969 
    970 /*
    971  * Allocate a new 'session' and return an encoded session id.  'sidp'
    972  * contains our registration id, and should contain an encoded session
    973  * id on successful allocation.
    974  */
    975 static int
    976 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
    977 {
    978 	struct cryptoini *c, *encini = NULL, *macini = NULL;
    979 	struct ubsec_softc *sc;
    980 	struct ubsec_session *ses = NULL;
    981 	MD5_CTX md5ctx;
    982 	SHA1_CTX sha1ctx;
    983 	int i, sesn;
    984 
    985 	sc = arg;
    986 	KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
    987 
    988 	if (sidp == NULL || cri == NULL || sc == NULL)
    989 		return (EINVAL);
    990 
    991 	for (c = cri; c != NULL; c = c->cri_next) {
    992 		if (c->cri_alg == CRYPTO_MD5_HMAC_96 ||
    993 		    c->cri_alg == CRYPTO_SHA1_HMAC_96) {
    994 			if (macini)
    995 				return (EINVAL);
    996 			macini = c;
    997 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
    998 		    c->cri_alg == CRYPTO_3DES_CBC) {
    999 			if (encini)
   1000 				return (EINVAL);
   1001 			encini = c;
   1002 		} else
   1003 			return (EINVAL);
   1004 	}
   1005 	if (encini == NULL && macini == NULL)
   1006 		return (EINVAL);
   1007 
   1008 	if (sc->sc_sessions == NULL) {
   1009 		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
   1010 		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
   1011 		if (ses == NULL)
   1012 			return (ENOMEM);
   1013 		sesn = 0;
   1014 		sc->sc_nsessions = 1;
   1015 	} else {
   1016 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
   1017 			if (sc->sc_sessions[sesn].ses_used == 0) {
   1018 				ses = &sc->sc_sessions[sesn];
   1019 				break;
   1020 			}
   1021 		}
   1022 
   1023 		if (ses == NULL) {
   1024 			sesn = sc->sc_nsessions;
   1025 			ses = (struct ubsec_session *)malloc((sesn + 1) *
   1026 			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
   1027 			if (ses == NULL)
   1028 				return (ENOMEM);
   1029 			memcpy(ses, sc->sc_sessions, sesn *
   1030 			    sizeof(struct ubsec_session));
   1031 			memset(sc->sc_sessions, 0, sesn *
   1032 			    sizeof(struct ubsec_session));
   1033 			free(sc->sc_sessions, M_DEVBUF);
   1034 			sc->sc_sessions = ses;
   1035 			ses = &sc->sc_sessions[sesn];
   1036 			sc->sc_nsessions++;
   1037 		}
   1038 	}
   1039 
   1040 	memset(ses, 0, sizeof(struct ubsec_session));
   1041 	ses->ses_used = 1;
   1042 	if (encini) {
   1043 		/* get an IV, network byte order */
   1044 #ifdef __NetBSD__
   1045 		cprng_fast(ses->ses_iv, sizeof(ses->ses_iv));
   1046 #else
   1047 		get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv));
   1048 #endif
   1049 
   1050 		/* Go ahead and compute key in ubsec's byte order */
   1051 		if (encini->cri_alg == CRYPTO_DES_CBC) {
   1052 			memcpy(&ses->ses_deskey[0], encini->cri_key, 8);
   1053 			memcpy(&ses->ses_deskey[2], encini->cri_key, 8);
   1054 			memcpy(&ses->ses_deskey[4], encini->cri_key, 8);
   1055 		} else
   1056 			memcpy(ses->ses_deskey, encini->cri_key, 24);
   1057 
   1058 		SWAP32(ses->ses_deskey[0]);
   1059 		SWAP32(ses->ses_deskey[1]);
   1060 		SWAP32(ses->ses_deskey[2]);
   1061 		SWAP32(ses->ses_deskey[3]);
   1062 		SWAP32(ses->ses_deskey[4]);
   1063 		SWAP32(ses->ses_deskey[5]);
   1064 	}
   1065 
   1066 	if (macini) {
   1067 		for (i = 0; i < macini->cri_klen / 8; i++)
   1068 			macini->cri_key[i] ^= HMAC_IPAD_VAL;
   1069 
   1070 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
   1071 			MD5Init(&md5ctx);
   1072 			MD5Update(&md5ctx, macini->cri_key,
   1073 			    macini->cri_klen / 8);
   1074 			MD5Update(&md5ctx, hmac_ipad_buffer,
   1075 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
   1076 			memcpy(ses->ses_hminner, md5ctx.state,
   1077 			    sizeof(md5ctx.state));
   1078 		} else {
   1079 			SHA1Init(&sha1ctx);
   1080 			SHA1Update(&sha1ctx, macini->cri_key,
   1081 			    macini->cri_klen / 8);
   1082 			SHA1Update(&sha1ctx, hmac_ipad_buffer,
   1083 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
   1084 			memcpy(ses->ses_hminner, sha1ctx.state,
   1085 			    sizeof(sha1ctx.state));
   1086 		}
   1087 
   1088 		for (i = 0; i < macini->cri_klen / 8; i++)
   1089 			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
   1090 
   1091 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
   1092 			MD5Init(&md5ctx);
   1093 			MD5Update(&md5ctx, macini->cri_key,
   1094 			    macini->cri_klen / 8);
   1095 			MD5Update(&md5ctx, hmac_opad_buffer,
   1096 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
   1097 			memcpy(ses->ses_hmouter, md5ctx.state,
   1098 			    sizeof(md5ctx.state));
   1099 		} else {
   1100 			SHA1Init(&sha1ctx);
   1101 			SHA1Update(&sha1ctx, macini->cri_key,
   1102 			    macini->cri_klen / 8);
   1103 			SHA1Update(&sha1ctx, hmac_opad_buffer,
   1104 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
   1105 			memcpy(ses->ses_hmouter, sha1ctx.state,
   1106 			    sizeof(sha1ctx.state));
   1107 		}
   1108 
   1109 		for (i = 0; i < macini->cri_klen / 8; i++)
   1110 			macini->cri_key[i] ^= HMAC_OPAD_VAL;
   1111 	}
   1112 
   1113 	*sidp = UBSEC_SID(device_unit(sc->sc_dev), sesn);
   1114 	return (0);
   1115 }
   1116 
   1117 /*
   1118  * Deallocate a session.
   1119  */
   1120 static int
   1121 ubsec_freesession(void *arg, u_int64_t tid)
   1122 {
   1123 	struct ubsec_softc *sc;
   1124 	int session;
   1125 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
   1126 
   1127 	sc = arg;
   1128 	KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
   1129 
   1130 	session = UBSEC_SESSION(sid);
   1131 	if (session >= sc->sc_nsessions)
   1132 		return (EINVAL);
   1133 
   1134 	memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session]));
   1135 	return (0);
   1136 }
   1137 
   1138 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
   1139 static void
   1140 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
   1141 {
   1142 	struct ubsec_operand *op = arg;
   1143 
   1144 	KASSERT(nsegs <= UBS_MAX_SCATTER
   1145 		/*, ("Too many DMA segments returned when mapping operand")*/);
   1146 #ifdef UBSEC_DEBUG
   1147 	if (ubsec_debug)
   1148 		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
   1149 			(u_int) mapsize, nsegs);
   1150 #endif
   1151 	op->mapsize = mapsize;
   1152 	op->nsegs = nsegs;
   1153 	memcpy(op->segs, seg, nsegs * sizeof (seg[0]));
   1154 }
   1155 #endif
   1156 
   1157 static int
   1158 ubsec_process(void *arg, struct cryptop *crp, int hint)
   1159 {
   1160 	struct ubsec_q *q = NULL;
   1161 #ifdef	__OpenBSD__
   1162 	int card;
   1163 #endif
   1164 	int err = 0, i, j, nicealign;
   1165 	struct ubsec_softc *sc;
   1166 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
   1167 	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
   1168 	int sskip, dskip, stheend, dtheend;
   1169 	int16_t coffset;
   1170 	struct ubsec_session *ses;
   1171 	struct ubsec_pktctx ctx;
   1172 	struct ubsec_dma *dmap = NULL;
   1173 
   1174 	sc = arg;
   1175 	KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/);
   1176 
   1177 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
   1178 		ubsecstats.hst_invalid++;
   1179 		return (EINVAL);
   1180 	}
   1181 	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
   1182 		ubsecstats.hst_badsession++;
   1183 		return (EINVAL);
   1184 	}
   1185 
   1186 	mutex_spin_enter(&sc->sc_mtx);
   1187 
   1188 	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
   1189 		ubsecstats.hst_queuefull++;
   1190 		sc->sc_needwakeup |= CRYPTO_SYMQ;
   1191 		mutex_spin_exit(&sc->sc_mtx);
   1192 		return(ERESTART);
   1193 	}
   1194 
   1195 	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
   1196 	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
   1197 	mutex_spin_exit(&sc->sc_mtx);
   1198 
   1199 	dmap = q->q_dma; /* Save dma pointer */
   1200 	memset(q, 0, sizeof(struct ubsec_q));
   1201 	memset(&ctx, 0, sizeof(ctx));
   1202 
   1203 	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
   1204 	q->q_dma = dmap;
   1205 	ses = &sc->sc_sessions[q->q_sesn];
   1206 
   1207 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
   1208 		q->q_src_m = (struct mbuf *)crp->crp_buf;
   1209 		q->q_dst_m = (struct mbuf *)crp->crp_buf;
   1210 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
   1211 		q->q_src_io = (struct uio *)crp->crp_buf;
   1212 		q->q_dst_io = (struct uio *)crp->crp_buf;
   1213 	} else {
   1214 		ubsecstats.hst_badflags++;
   1215 		err = EINVAL;
   1216 		goto errout;	/* XXX we don't handle contiguous blocks! */
   1217 	}
   1218 
   1219 	memset(&dmap->d_dma->d_mcr, 0, sizeof(struct ubsec_mcr));
   1220 
   1221 	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
   1222 	dmap->d_dma->d_mcr.mcr_flags = 0;
   1223 	q->q_crp = crp;
   1224 
   1225 	crd1 = crp->crp_desc;
   1226 	if (crd1 == NULL) {
   1227 		ubsecstats.hst_nodesc++;
   1228 		err = EINVAL;
   1229 		goto errout;
   1230 	}
   1231 	crd2 = crd1->crd_next;
   1232 
   1233 	if (crd2 == NULL) {
   1234 		if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
   1235 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) {
   1236 			maccrd = crd1;
   1237 			enccrd = NULL;
   1238 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
   1239 		    crd1->crd_alg == CRYPTO_3DES_CBC) {
   1240 			maccrd = NULL;
   1241 			enccrd = crd1;
   1242 		} else {
   1243 			ubsecstats.hst_badalg++;
   1244 			err = EINVAL;
   1245 			goto errout;
   1246 		}
   1247 	} else {
   1248 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
   1249 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) &&
   1250 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
   1251 			crd2->crd_alg == CRYPTO_3DES_CBC) &&
   1252 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
   1253 			maccrd = crd1;
   1254 			enccrd = crd2;
   1255 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
   1256 		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
   1257 		    (crd2->crd_alg == CRYPTO_MD5_HMAC_96 ||
   1258 			crd2->crd_alg == CRYPTO_SHA1_HMAC_96) &&
   1259 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
   1260 			enccrd = crd1;
   1261 			maccrd = crd2;
   1262 		} else {
   1263 			/*
   1264 			 * We cannot order the ubsec as requested
   1265 			 */
   1266 			ubsecstats.hst_badalg++;
   1267 			err = EINVAL;
   1268 			goto errout;
   1269 		}
   1270 	}
   1271 
   1272 	if (enccrd) {
   1273 		encoffset = enccrd->crd_skip;
   1274 		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
   1275 
   1276 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
   1277 			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
   1278 
   1279 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
   1280 				memcpy(ctx.pc_iv, enccrd->crd_iv, 8);
   1281 			else {
   1282 				ctx.pc_iv[0] = ses->ses_iv[0];
   1283 				ctx.pc_iv[1] = ses->ses_iv[1];
   1284 			}
   1285 
   1286 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
   1287 				if (crp->crp_flags & CRYPTO_F_IMBUF)
   1288 					m_copyback(q->q_src_m,
   1289 					    enccrd->crd_inject,
   1290 					    8, (void *)ctx.pc_iv);
   1291 				else if (crp->crp_flags & CRYPTO_F_IOV)
   1292 					cuio_copyback(q->q_src_io,
   1293 					    enccrd->crd_inject,
   1294 					    8, (void *)ctx.pc_iv);
   1295 			}
   1296 		} else {
   1297 			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
   1298 
   1299 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
   1300 				memcpy(ctx.pc_iv, enccrd->crd_iv, 8);
   1301 			else if (crp->crp_flags & CRYPTO_F_IMBUF)
   1302 				m_copydata(q->q_src_m, enccrd->crd_inject,
   1303 				    8, (void *)ctx.pc_iv);
   1304 			else if (crp->crp_flags & CRYPTO_F_IOV)
   1305 				cuio_copydata(q->q_src_io,
   1306 				    enccrd->crd_inject, 8,
   1307 				    (void *)ctx.pc_iv);
   1308 		}
   1309 
   1310 		ctx.pc_deskey[0] = ses->ses_deskey[0];
   1311 		ctx.pc_deskey[1] = ses->ses_deskey[1];
   1312 		ctx.pc_deskey[2] = ses->ses_deskey[2];
   1313 		ctx.pc_deskey[3] = ses->ses_deskey[3];
   1314 		ctx.pc_deskey[4] = ses->ses_deskey[4];
   1315 		ctx.pc_deskey[5] = ses->ses_deskey[5];
   1316 		SWAP32(ctx.pc_iv[0]);
   1317 		SWAP32(ctx.pc_iv[1]);
   1318 	}
   1319 
   1320 	if (maccrd) {
   1321 		macoffset = maccrd->crd_skip;
   1322 
   1323 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC_96)
   1324 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
   1325 		else
   1326 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
   1327 
   1328 		for (i = 0; i < 5; i++) {
   1329 			ctx.pc_hminner[i] = ses->ses_hminner[i];
   1330 			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
   1331 
   1332 			HTOLE32(ctx.pc_hminner[i]);
   1333 			HTOLE32(ctx.pc_hmouter[i]);
   1334 		}
   1335 	}
   1336 
   1337 	if (enccrd && maccrd) {
   1338 		/*
   1339 		 * ubsec cannot handle packets where the end of encryption
   1340 		 * and authentication are not the same, or where the
   1341 		 * encrypted part begins before the authenticated part.
   1342 		 */
   1343 		if ((encoffset + enccrd->crd_len) !=
   1344 		    (macoffset + maccrd->crd_len)) {
   1345 			ubsecstats.hst_lenmismatch++;
   1346 			err = EINVAL;
   1347 			goto errout;
   1348 		}
   1349 		if (enccrd->crd_skip < maccrd->crd_skip) {
   1350 			ubsecstats.hst_skipmismatch++;
   1351 			err = EINVAL;
   1352 			goto errout;
   1353 		}
   1354 		sskip = maccrd->crd_skip;
   1355 		cpskip = dskip = enccrd->crd_skip;
   1356 		stheend = maccrd->crd_len;
   1357 		dtheend = enccrd->crd_len;
   1358 		coffset = enccrd->crd_skip - maccrd->crd_skip;
   1359 		cpoffset = cpskip + dtheend;
   1360 #ifdef UBSEC_DEBUG
   1361 		if (ubsec_debug) {
   1362 			printf("mac: skip %d, len %d, inject %d\n",
   1363 			       maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
   1364 			printf("enc: skip %d, len %d, inject %d\n",
   1365 			       enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
   1366 			printf("src: skip %d, len %d\n", sskip, stheend);
   1367 			printf("dst: skip %d, len %d\n", dskip, dtheend);
   1368 			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
   1369 			       coffset, stheend, cpskip, cpoffset);
   1370 		}
   1371 #endif
   1372 	} else {
   1373 		cpskip = dskip = sskip = macoffset + encoffset;
   1374 		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
   1375 		cpoffset = cpskip + dtheend;
   1376 		coffset = 0;
   1377 	}
   1378 	ctx.pc_offset = htole16(coffset >> 2);
   1379 
   1380 	/* XXX FIXME: jonathan asks, what the heck's that 0xfff0?  */
   1381 	if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
   1382 		0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
   1383 		err = ENOMEM;
   1384 		goto errout;
   1385 	}
   1386 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
   1387 		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
   1388 		    q->q_src_m, BUS_DMA_NOWAIT) != 0) {
   1389 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
   1390 			q->q_src_map = NULL;
   1391 			ubsecstats.hst_noload++;
   1392 			err = ENOMEM;
   1393 			goto errout;
   1394 		}
   1395 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
   1396 		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
   1397 		    q->q_src_io, BUS_DMA_NOWAIT) != 0) {
   1398 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
   1399 			q->q_src_map = NULL;
   1400 			ubsecstats.hst_noload++;
   1401 			err = ENOMEM;
   1402 			goto errout;
   1403 		}
   1404 	}
   1405 	nicealign = ubsec_dmamap_aligned(q->q_src_map);
   1406 
   1407 	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
   1408 
   1409 #ifdef UBSEC_DEBUG
   1410 	if (ubsec_debug)
   1411 		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
   1412 #endif
   1413 	for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
   1414 		struct ubsec_pktbuf *pb;
   1415 		bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
   1416 		bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
   1417 
   1418 		if (sskip >= packl) {
   1419 			sskip -= packl;
   1420 			continue;
   1421 		}
   1422 
   1423 		packl -= sskip;
   1424 		packp += sskip;
   1425 		sskip = 0;
   1426 
   1427 		if (packl > 0xfffc) {
   1428 			err = EIO;
   1429 			goto errout;
   1430 		}
   1431 
   1432 		if (j == 0)
   1433 			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
   1434 		else
   1435 			pb = &dmap->d_dma->d_sbuf[j - 1];
   1436 
   1437 		pb->pb_addr = htole32(packp);
   1438 
   1439 		if (stheend) {
   1440 			if (packl > stheend) {
   1441 				pb->pb_len = htole32(stheend);
   1442 				stheend = 0;
   1443 			} else {
   1444 				pb->pb_len = htole32(packl);
   1445 				stheend -= packl;
   1446 			}
   1447 		} else
   1448 			pb->pb_len = htole32(packl);
   1449 
   1450 		if ((i + 1) == q->q_src_map->dm_nsegs)
   1451 			pb->pb_next = 0;
   1452 		else
   1453 			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
   1454 			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
   1455 		j++;
   1456 	}
   1457 
   1458 	if (enccrd == NULL && maccrd != NULL) {
   1459 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
   1460 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
   1461 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
   1462 		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
   1463 #ifdef UBSEC_DEBUG
   1464 		if (ubsec_debug)
   1465 			printf("opkt: %x %x %x\n",
   1466 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
   1467 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
   1468 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
   1469 
   1470 #endif
   1471 	} else {
   1472 		if (crp->crp_flags & CRYPTO_F_IOV) {
   1473 			if (!nicealign) {
   1474 				ubsecstats.hst_iovmisaligned++;
   1475 				err = EINVAL;
   1476 				goto errout;
   1477 			}
   1478 			/* XXX: ``what the heck's that'' 0xfff0? */
   1479 			if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
   1480 			    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
   1481 			    &q->q_dst_map) != 0) {
   1482 				ubsecstats.hst_nomap++;
   1483 				err = ENOMEM;
   1484 				goto errout;
   1485 			}
   1486 			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
   1487 			    q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
   1488 				bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
   1489 				q->q_dst_map = NULL;
   1490 				ubsecstats.hst_noload++;
   1491 				err = ENOMEM;
   1492 				goto errout;
   1493 			}
   1494 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
   1495 			if (nicealign) {
   1496 				q->q_dst_m = q->q_src_m;
   1497 				q->q_dst_map = q->q_src_map;
   1498 			} else {
   1499 				int totlen, len;
   1500 				struct mbuf *m, *top, **mp;
   1501 
   1502 				ubsecstats.hst_unaligned++;
   1503 				totlen = q->q_src_map->dm_mapsize;
   1504 				if (q->q_src_m->m_flags & M_PKTHDR) {
   1505 					len = MHLEN;
   1506 					MGETHDR(m, M_DONTWAIT, MT_DATA);
   1507 					/*XXX FIXME: m_dup_pkthdr */
   1508 					if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
   1509 						m_free(m);
   1510 						m = NULL;
   1511 					}
   1512 				} else {
   1513 					len = MLEN;
   1514 					MGET(m, M_DONTWAIT, MT_DATA);
   1515 				}
   1516 				if (m == NULL) {
   1517 					ubsecstats.hst_nombuf++;
   1518 					err = sc->sc_nqueue ? ERESTART : ENOMEM;
   1519 					goto errout;
   1520 				}
   1521 				if (len == MHLEN)
   1522 				  /*XXX was M_DUP_PKTHDR*/
   1523 				  M_COPY_PKTHDR(m, q->q_src_m);
   1524 				if (totlen >= MINCLSIZE) {
   1525 					MCLGET(m, M_DONTWAIT);
   1526 					if ((m->m_flags & M_EXT) == 0) {
   1527 						m_free(m);
   1528 						ubsecstats.hst_nomcl++;
   1529 						err = sc->sc_nqueue ? ERESTART : ENOMEM;
   1530 						goto errout;
   1531 					}
   1532 					len = MCLBYTES;
   1533 				}
   1534 				m->m_len = len;
   1535 				top = NULL;
   1536 				mp = &top;
   1537 
   1538 				while (totlen > 0) {
   1539 					if (top) {
   1540 						MGET(m, M_DONTWAIT, MT_DATA);
   1541 						if (m == NULL) {
   1542 							m_freem(top);
   1543 							ubsecstats.hst_nombuf++;
   1544 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
   1545 							goto errout;
   1546 						}
   1547 						len = MLEN;
   1548 					}
   1549 					if (top && totlen >= MINCLSIZE) {
   1550 						MCLGET(m, M_DONTWAIT);
   1551 						if ((m->m_flags & M_EXT) == 0) {
   1552 							*mp = m;
   1553 							m_freem(top);
   1554 							ubsecstats.hst_nomcl++;
   1555 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
   1556 							goto errout;
   1557 						}
   1558 						len = MCLBYTES;
   1559 					}
   1560 					m->m_len = len = min(totlen, len);
   1561 					totlen -= len;
   1562 					*mp = m;
   1563 					mp = &m->m_next;
   1564 				}
   1565 				q->q_dst_m = top;
   1566 				ubsec_mcopy(q->q_src_m, q->q_dst_m,
   1567 				    cpskip, cpoffset);
   1568 				/* XXX again, what the heck is that 0xfff0? */
   1569 				if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
   1570 				    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
   1571 				    &q->q_dst_map) != 0) {
   1572 					ubsecstats.hst_nomap++;
   1573 					err = ENOMEM;
   1574 					goto errout;
   1575 				}
   1576 				if (bus_dmamap_load_mbuf(sc->sc_dmat,
   1577 				    q->q_dst_map, q->q_dst_m,
   1578 				    BUS_DMA_NOWAIT) != 0) {
   1579 					bus_dmamap_destroy(sc->sc_dmat,
   1580 					q->q_dst_map);
   1581 					q->q_dst_map = NULL;
   1582 					ubsecstats.hst_noload++;
   1583 					err = ENOMEM;
   1584 					goto errout;
   1585 				}
   1586 			}
   1587 		} else {
   1588 			ubsecstats.hst_badflags++;
   1589 			err = EINVAL;
   1590 			goto errout;
   1591 		}
   1592 
   1593 #ifdef UBSEC_DEBUG
   1594 		if (ubsec_debug)
   1595 			printf("dst skip: %d\n", dskip);
   1596 #endif
   1597 		for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
   1598 			struct ubsec_pktbuf *pb;
   1599 			bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
   1600 			bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
   1601 
   1602 			if (dskip >= packl) {
   1603 				dskip -= packl;
   1604 				continue;
   1605 			}
   1606 
   1607 			packl -= dskip;
   1608 			packp += dskip;
   1609 			dskip = 0;
   1610 
   1611 			if (packl > 0xfffc) {
   1612 				err = EIO;
   1613 				goto errout;
   1614 			}
   1615 
   1616 			if (j == 0)
   1617 				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
   1618 			else
   1619 				pb = &dmap->d_dma->d_dbuf[j - 1];
   1620 
   1621 			pb->pb_addr = htole32(packp);
   1622 
   1623 			if (dtheend) {
   1624 				if (packl > dtheend) {
   1625 					pb->pb_len = htole32(dtheend);
   1626 					dtheend = 0;
   1627 				} else {
   1628 					pb->pb_len = htole32(packl);
   1629 					dtheend -= packl;
   1630 				}
   1631 			} else
   1632 				pb->pb_len = htole32(packl);
   1633 
   1634 			if ((i + 1) == q->q_dst_map->dm_nsegs) {
   1635 				if (maccrd)
   1636 					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
   1637 					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
   1638 				else
   1639 					pb->pb_next = 0;
   1640 			} else
   1641 				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
   1642 				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
   1643 			j++;
   1644 		}
   1645 	}
   1646 
   1647 	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
   1648 	    offsetof(struct ubsec_dmachunk, d_ctx));
   1649 
   1650 	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
   1651 		struct ubsec_pktctx_long *ctxl;
   1652 
   1653 		ctxl = (struct ubsec_pktctx_long *)((char *)dmap->d_alloc.dma_vaddr +
   1654 		    offsetof(struct ubsec_dmachunk, d_ctx));
   1655 
   1656 		/* transform small context into long context */
   1657 		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
   1658 		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
   1659 		ctxl->pc_flags = ctx.pc_flags;
   1660 		ctxl->pc_offset = ctx.pc_offset;
   1661 		for (i = 0; i < 6; i++)
   1662 			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
   1663 		for (i = 0; i < 5; i++)
   1664 			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
   1665 		for (i = 0; i < 5; i++)
   1666 			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
   1667 		ctxl->pc_iv[0] = ctx.pc_iv[0];
   1668 		ctxl->pc_iv[1] = ctx.pc_iv[1];
   1669 	} else
   1670 		memcpy((char *)dmap->d_alloc.dma_vaddr +
   1671 		    offsetof(struct ubsec_dmachunk, d_ctx), &ctx,
   1672 		    sizeof(struct ubsec_pktctx));
   1673 
   1674 	mutex_spin_enter(&sc->sc_mtx);
   1675 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
   1676 	sc->sc_nqueue++;
   1677 	ubsecstats.hst_ipackets++;
   1678 	ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
   1679 	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
   1680 		ubsec_feed(sc);
   1681 	mutex_spin_exit(&sc->sc_mtx);
   1682 	return (0);
   1683 
   1684 errout:
   1685 	if (q != NULL) {
   1686 		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
   1687 			m_freem(q->q_dst_m);
   1688 
   1689 		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
   1690 			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
   1691 			bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
   1692 		}
   1693 		if (q->q_src_map != NULL) {
   1694 			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
   1695 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
   1696 		}
   1697 
   1698 		mutex_spin_enter(&sc->sc_mtx);
   1699 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
   1700 		mutex_spin_exit(&sc->sc_mtx);
   1701 	}
   1702 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
   1703 	if (err == EINVAL)
   1704 		ubsecstats.hst_invalid++;
   1705 	else
   1706 		ubsecstats.hst_nomem++;
   1707 #endif
   1708 	if (err != ERESTART) {
   1709 		crp->crp_etype = err;
   1710 		crypto_done(crp);
   1711 	} else {
   1712 		sc->sc_needwakeup |= CRYPTO_SYMQ;
   1713 	}
   1714 	return (err);
   1715 }
   1716 
   1717 static void
   1718 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
   1719 {
   1720 	struct cryptop *crp = (struct cryptop *)q->q_crp;
   1721 	struct cryptodesc *crd;
   1722 	struct ubsec_dma *dmap = q->q_dma;
   1723 
   1724 	ubsecstats.hst_opackets++;
   1725 	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
   1726 
   1727 	bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
   1728 	    dmap->d_alloc.dma_map->dm_mapsize,
   1729 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1730 	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
   1731 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
   1732 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1733 		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
   1734 		bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
   1735 	}
   1736 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
   1737 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1738 	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
   1739 	bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
   1740 
   1741 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
   1742 		m_freem(q->q_src_m);
   1743 		crp->crp_buf = (void *)q->q_dst_m;
   1744 	}
   1745 
   1746 	/* copy out IV for future use */
   1747 	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
   1748 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
   1749 			if (crd->crd_alg != CRYPTO_DES_CBC &&
   1750 			    crd->crd_alg != CRYPTO_3DES_CBC)
   1751 				continue;
   1752 			if (crp->crp_flags & CRYPTO_F_IMBUF)
   1753 				m_copydata((struct mbuf *)crp->crp_buf,
   1754 				    crd->crd_skip + crd->crd_len - 8, 8,
   1755 				    (void *)sc->sc_sessions[q->q_sesn].ses_iv);
   1756 			else if (crp->crp_flags & CRYPTO_F_IOV) {
   1757 				cuio_copydata((struct uio *)crp->crp_buf,
   1758 				    crd->crd_skip + crd->crd_len - 8, 8,
   1759 				    (void *)sc->sc_sessions[q->q_sesn].ses_iv);
   1760 			}
   1761 			break;
   1762 		}
   1763 	}
   1764 
   1765 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
   1766 		if (crd->crd_alg != CRYPTO_MD5_HMAC_96 &&
   1767 		    crd->crd_alg != CRYPTO_SHA1_HMAC_96)
   1768 			continue;
   1769 		if (crp->crp_flags & CRYPTO_F_IMBUF)
   1770 			m_copyback((struct mbuf *)crp->crp_buf,
   1771 			    crd->crd_inject, 12,
   1772 			    (void *)dmap->d_dma->d_macbuf);
   1773 		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
   1774 			bcopy((void *)dmap->d_dma->d_macbuf,
   1775 			    crp->crp_mac, 12);
   1776 		break;
   1777 	}
   1778 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
   1779 	crypto_done(crp);
   1780 }
   1781 
   1782 static void
   1783 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
   1784 {
   1785 	int i, j, dlen, slen;
   1786 	char *dptr, *sptr;
   1787 
   1788 	j = 0;
   1789 	sptr = srcm->m_data;
   1790 	slen = srcm->m_len;
   1791 	dptr = dstm->m_data;
   1792 	dlen = dstm->m_len;
   1793 
   1794 	while (1) {
   1795 		for (i = 0; i < min(slen, dlen); i++) {
   1796 			if (j < hoffset || j >= toffset)
   1797 				*dptr++ = *sptr++;
   1798 			slen--;
   1799 			dlen--;
   1800 			j++;
   1801 		}
   1802 		if (slen == 0) {
   1803 			srcm = srcm->m_next;
   1804 			if (srcm == NULL)
   1805 				return;
   1806 			sptr = srcm->m_data;
   1807 			slen = srcm->m_len;
   1808 		}
   1809 		if (dlen == 0) {
   1810 			dstm = dstm->m_next;
   1811 			if (dstm == NULL)
   1812 				return;
   1813 			dptr = dstm->m_data;
   1814 			dlen = dstm->m_len;
   1815 		}
   1816 	}
   1817 }
   1818 
   1819 /*
   1820  * feed the key generator, must be called at splnet() or higher.
   1821  */
   1822 static void
   1823 ubsec_feed2(struct ubsec_softc *sc)
   1824 {
   1825 	struct ubsec_q2 *q;
   1826 
   1827 	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
   1828 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
   1829 			break;
   1830 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
   1831 
   1832 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
   1833 		    q->q_mcr.dma_map->dm_mapsize,
   1834 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1835 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
   1836 		    q->q_ctx.dma_map->dm_mapsize,
   1837 		    BUS_DMASYNC_PREWRITE);
   1838 
   1839 		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
   1840 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
   1841 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
   1842 		--sc->sc_nqueue2;
   1843 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
   1844 	}
   1845 }
   1846 
   1847 /*
   1848  * feed the RNG (used instead of ubsec_feed2() on 5827+ devices)
   1849  */
   1850 void
   1851 ubsec_feed4(struct ubsec_softc *sc)
   1852 {
   1853 	struct ubsec_q2 *q;
   1854 
   1855 	while (!SIMPLEQ_EMPTY(&sc->sc_queue4)) {
   1856 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR4_FULL)
   1857 			break;
   1858 		q = SIMPLEQ_FIRST(&sc->sc_queue4);
   1859 
   1860 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
   1861 		    q->q_mcr.dma_map->dm_mapsize,
   1862 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1863 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
   1864 		    q->q_ctx.dma_map->dm_mapsize,
   1865 		    BUS_DMASYNC_PREWRITE);
   1866 
   1867 		WRITE_REG(sc, BS_MCR4, q->q_mcr.dma_paddr);
   1868 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue4, q_next);
   1869 		--sc->sc_nqueue4;
   1870 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip4, q, q_next);
   1871 	}
   1872 }
   1873 
   1874 /*
   1875  * Callback for handling random numbers
   1876  */
   1877 static void
   1878 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
   1879 {
   1880 	struct cryptkop *krp;
   1881 	struct ubsec_ctx_keyop *ctx;
   1882 
   1883 	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
   1884 	bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
   1885 	    q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1886 
   1887 	switch (q->q_type) {
   1888 #ifndef UBSEC_NO_RNG
   1889 	case UBS_CTXOP_RNGSHA1:
   1890 	case UBS_CTXOP_RNGBYPASS: {
   1891 		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
   1892 		u_int32_t *p;
   1893 		int i;
   1894 
   1895 		bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
   1896 		    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1897 		p = (u_int32_t *)rng->rng_buf.dma_vaddr;
   1898 #ifndef __NetBSD__
   1899 		for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++)
   1900 			add_true_randomness(letoh32(*p));
   1901 #else
   1902 		i = UBSEC_RNG_BUFSIZ * sizeof(u_int32_t);
   1903 		rnd_add_data(&sc->sc_rnd_source, (char *)p, i, i * NBBY);
   1904 		sc->sc_rng_need -= i;
   1905 #endif
   1906 		rng->rng_used = 0;
   1907 #ifdef __OpenBSD__
   1908 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
   1909 #else
   1910 		if (sc->sc_rng_need > 0) {
   1911 			callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
   1912 		}
   1913 #endif
   1914 		break;
   1915 	}
   1916 #endif
   1917 	case UBS_CTXOP_MODEXP: {
   1918 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
   1919 		u_int rlen, clen;
   1920 
   1921 		krp = me->me_krp;
   1922 		rlen = (me->me_modbits + 7) / 8;
   1923 		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
   1924 
   1925 		bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
   1926 		    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1927 		bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
   1928 		    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1929 		bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
   1930 		    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1931 		bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
   1932 		    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1933 
   1934 		if (clen < rlen)
   1935 			krp->krp_status = E2BIG;
   1936 		else {
   1937 			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
   1938 				memset(krp->krp_param[krp->krp_iparams].crp_p, 0,
   1939 				    (krp->krp_param[krp->krp_iparams].crp_nbits
   1940 					+ 7) / 8);
   1941 				bcopy(me->me_C.dma_vaddr,
   1942 				    krp->krp_param[krp->krp_iparams].crp_p,
   1943 				    (me->me_modbits + 7) / 8);
   1944 			} else
   1945 				ubsec_kshift_l(me->me_shiftbits,
   1946 				    me->me_C.dma_vaddr, me->me_normbits,
   1947 				    krp->krp_param[krp->krp_iparams].crp_p,
   1948 				    krp->krp_param[krp->krp_iparams].crp_nbits);
   1949 		}
   1950 
   1951 		crypto_kdone(krp);
   1952 
   1953 		/* bzero all potentially sensitive data */
   1954 		memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
   1955 		memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
   1956 		memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   1957 		memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
   1958 
   1959 		/* Can't free here, so put us on the free list. */
   1960 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
   1961 		break;
   1962 	}
   1963 	case UBS_CTXOP_RSAPRIV: {
   1964 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
   1965 		u_int len;
   1966 
   1967 		krp = rp->rpr_krp;
   1968 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
   1969 		    rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1970 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
   1971 		    rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1972 
   1973 		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
   1974 		bcopy(rp->rpr_msgout.dma_vaddr,
   1975 		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
   1976 
   1977 		crypto_kdone(krp);
   1978 
   1979 		memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
   1980 		memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
   1981 		memset(rp->rpr_q.q_ctx.dma_vaddr, 0, rp->rpr_q.q_ctx.dma_size);
   1982 
   1983 		/* Can't free here, so put us on the free list. */
   1984 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
   1985 		break;
   1986 	}
   1987 	default:
   1988 		printf("%s: unknown ctx op: %x\n", device_xname(sc->sc_dev),
   1989 		    letoh16(ctx->ctx_op));
   1990 		break;
   1991 	}
   1992 }
   1993 
   1994 #ifndef UBSEC_NO_RNG
   1995 
   1996 static void
   1997 ubsec_rng_get(size_t bytes, void *vsc)
   1998 {
   1999 	struct ubsec_softc *sc = vsc;
   2000 
   2001 	mutex_spin_enter(&sc->sc_mtx);
   2002 	sc->sc_rng_need = bytes;
   2003 	ubsec_rng_locked(sc);
   2004 	mutex_spin_exit(&sc->sc_mtx);
   2005 
   2006 }
   2007 
   2008 static void
   2009 ubsec_rng(void *vsc)
   2010 {
   2011 	struct ubsec_softc *sc = vsc;
   2012 	mutex_spin_enter(&sc->sc_mtx);
   2013 	ubsec_rng_locked(sc);
   2014 	mutex_spin_exit(&sc->sc_mtx);
   2015 }
   2016 
   2017 static void
   2018 ubsec_rng_locked(void *vsc)
   2019 {
   2020 	struct ubsec_softc *sc = vsc;
   2021 	struct ubsec_q2_rng *rng = &sc->sc_rng;
   2022 	struct ubsec_mcr *mcr;
   2023 	struct ubsec_ctx_rngbypass *ctx;
   2024 	int *nqueue;
   2025 
   2026 	/* Caller is responsible to lock and release sc_mtx. */
   2027 	KASSERT(mutex_owned(&sc->sc_mtx));
   2028 
   2029 	if (rng->rng_used) {
   2030 		return;
   2031 	}
   2032 
   2033 	if (sc->sc_rng_need < 1) {
   2034 		callout_stop(&sc->sc_rngto);
   2035 		return;
   2036 	}
   2037 
   2038 	if (sc->sc_flags & UBS_FLAGS_RNG4)
   2039 		nqueue = &sc->sc_nqueue4;
   2040 	else
   2041 		nqueue = &sc->sc_nqueue2;
   2042 
   2043 	(*nqueue)++;
   2044 	if (*nqueue >= UBS_MAX_NQUEUE)
   2045  		goto out;
   2046 
   2047 	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
   2048 	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
   2049 
   2050 	mcr->mcr_pkts = htole16(1);
   2051 	mcr->mcr_flags = 0;
   2052 	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
   2053 	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
   2054 	mcr->mcr_ipktbuf.pb_len = 0;
   2055 	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
   2056 	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
   2057 	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
   2058 	    UBS_PKTBUF_LEN);
   2059 	mcr->mcr_opktbuf.pb_next = 0;
   2060 
   2061 	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
   2062 	ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
   2063 	rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
   2064 
   2065 	bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
   2066 	    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2067 
   2068 	if (sc->sc_flags & UBS_FLAGS_RNG4) {
   2069 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue4, &rng->rng_q, q_next);
   2070 		ubsec_feed4(sc);
   2071 	} else {
   2072 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
   2073 		ubsec_feed2(sc);
   2074 	}
   2075 	rng->rng_used = 1;
   2076 	ubsecstats.hst_rng++;
   2077 
   2078 	return;
   2079 
   2080 out:
   2081 	/*
   2082 	 * Something weird happened, generate our own call back.
   2083 	 */
   2084 	(*nqueue)--;
   2085 #ifdef __OpenBSD__
   2086 	timeout_add(&sc->sc_rngto, sc->sc_rnghz);
   2087 #else
   2088 	callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
   2089 #endif
   2090 }
   2091 #endif /* UBSEC_NO_RNG */
   2092 
   2093 static int
   2094 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
   2095 		 struct ubsec_dma_alloc *dma,int mapflags)
   2096 {
   2097 	int r;
   2098 
   2099 	if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
   2100 	    &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
   2101 		goto fail_0;
   2102 
   2103 	if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
   2104 	    size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
   2105 		goto fail_1;
   2106 
   2107 	if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
   2108 	    BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
   2109 		goto fail_2;
   2110 
   2111 	if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
   2112 	    size, NULL, BUS_DMA_NOWAIT)) != 0)
   2113 		goto fail_3;
   2114 
   2115 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
   2116 	dma->dma_size = size;
   2117 	return (0);
   2118 
   2119 fail_3:
   2120 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
   2121 fail_2:
   2122 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
   2123 fail_1:
   2124 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
   2125 fail_0:
   2126 	dma->dma_map = NULL;
   2127 	return (r);
   2128 }
   2129 
   2130 static void
   2131 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
   2132 {
   2133 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
   2134 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
   2135 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
   2136 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
   2137 }
   2138 
   2139 /*
   2140  * Resets the board.  Values in the regesters are left as is
   2141  * from the reset (i.e. initial values are assigned elsewhere).
   2142  */
   2143 static void
   2144 ubsec_reset_board(struct ubsec_softc *sc)
   2145 {
   2146 	volatile u_int32_t ctrl;
   2147 
   2148 	ctrl = READ_REG(sc, BS_CTRL);
   2149 	ctrl |= BS_CTRL_RESET;
   2150 	WRITE_REG(sc, BS_CTRL, ctrl);
   2151 
   2152 	/*
   2153 	* Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
   2154 	*/
   2155 	DELAY(10);
   2156 
   2157 	/* Enable RNG and interrupts on newer devices */
   2158 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
   2159 #ifndef UBSEC_NO_RNG
   2160 		WRITE_REG(sc, BS_CFG, BS_CFG_RNG);
   2161 #endif
   2162 		WRITE_REG(sc, BS_INT, BS_INT_DMAINT);
   2163 	}
   2164 }
   2165 
   2166 /*
   2167  * Init Broadcom registers
   2168  */
   2169 static void
   2170 ubsec_init_board(struct ubsec_softc *sc)
   2171 {
   2172 	u_int32_t ctrl;
   2173 
   2174 	ctrl = READ_REG(sc, BS_CTRL);
   2175 	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
   2176 	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
   2177 
   2178 	/*
   2179 	 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
   2180 	 * anyone got hw docs?
   2181 	 */
   2182 	if (sc->sc_flags & UBS_FLAGS_KEY)
   2183 		ctrl |= BS_CTRL_MCR2INT;
   2184 	else
   2185 		ctrl &= ~BS_CTRL_MCR2INT;
   2186 
   2187 	if (sc->sc_flags & UBS_FLAGS_HWNORM)
   2188 		ctrl &= ~BS_CTRL_SWNORM;
   2189 
   2190 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
   2191 		ctrl |= BS_CTRL_BSIZE240;
   2192 		ctrl &= ~BS_CTRL_MCR3INT; /* MCR3 is reserved for SSL */
   2193 
   2194 		if (sc->sc_flags & UBS_FLAGS_RNG4)
   2195 			ctrl |= BS_CTRL_MCR4INT;
   2196 		else
   2197 			ctrl &= ~BS_CTRL_MCR4INT;
   2198 	}
   2199 
   2200 	WRITE_REG(sc, BS_CTRL, ctrl);
   2201 }
   2202 
   2203 /*
   2204  * Init Broadcom PCI registers
   2205  */
   2206 static void
   2207 ubsec_init_pciregs(struct pci_attach_args *pa)
   2208 {
   2209 	pci_chipset_tag_t pc = pa->pa_pc;
   2210 	u_int32_t misc;
   2211 
   2212 	/*
   2213 	 * This will set the cache line size to 1, this will
   2214 	 * force the BCM58xx chip just to do burst read/writes.
   2215 	 * Cache line read/writes are to slow
   2216 	 */
   2217 	misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
   2218 	misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
   2219 	    | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
   2220 	pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
   2221 }
   2222 
   2223 /*
   2224  * Clean up after a chip crash.
   2225  * It is assumed that the caller in splnet()
   2226  */
   2227 static void
   2228 ubsec_cleanchip(struct ubsec_softc *sc)
   2229 {
   2230 	struct ubsec_q *q;
   2231 
   2232 	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
   2233 		q = SIMPLEQ_FIRST(&sc->sc_qchip);
   2234 		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
   2235 		ubsec_free_q(sc, q);
   2236 	}
   2237 	sc->sc_nqchip = 0;
   2238 }
   2239 
   2240 /*
   2241  * free a ubsec_q
   2242  * It is assumed that the caller is within splnet()
   2243  */
   2244 static int
   2245 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
   2246 {
   2247 	struct ubsec_q *q2;
   2248 	struct cryptop *crp;
   2249 	int npkts;
   2250 	int i;
   2251 
   2252 	npkts = q->q_nstacked_mcrs;
   2253 
   2254 	for (i = 0; i < npkts; i++) {
   2255 		if(q->q_stacked_mcr[i]) {
   2256 			q2 = q->q_stacked_mcr[i];
   2257 
   2258 			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
   2259 				m_freem(q2->q_dst_m);
   2260 
   2261 			crp = (struct cryptop *)q2->q_crp;
   2262 
   2263 			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
   2264 
   2265 			crp->crp_etype = EFAULT;
   2266 			crypto_done(crp);
   2267 		} else {
   2268 			break;
   2269 		}
   2270 	}
   2271 
   2272 	/*
   2273 	 * Free header MCR
   2274 	 */
   2275 	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
   2276 		m_freem(q->q_dst_m);
   2277 
   2278 	crp = (struct cryptop *)q->q_crp;
   2279 
   2280 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
   2281 
   2282 	crp->crp_etype = EFAULT;
   2283 	crypto_done(crp);
   2284 	return(0);
   2285 }
   2286 
   2287 /*
   2288  * Routine to reset the chip and clean up.
   2289  * It is assumed that the caller is in splnet()
   2290  */
   2291 static void
   2292 ubsec_totalreset(struct ubsec_softc *sc)
   2293 {
   2294 	ubsec_reset_board(sc);
   2295 	ubsec_init_board(sc);
   2296 	ubsec_cleanchip(sc);
   2297 }
   2298 
   2299 static int
   2300 ubsec_dmamap_aligned(bus_dmamap_t map)
   2301 {
   2302 	int i;
   2303 
   2304 	for (i = 0; i < map->dm_nsegs; i++) {
   2305 		if (map->dm_segs[i].ds_addr & 3)
   2306 			return (0);
   2307 		if ((i != (map->dm_nsegs - 1)) &&
   2308 		    (map->dm_segs[i].ds_len & 3))
   2309 			return (0);
   2310 	}
   2311 	return (1);
   2312 }
   2313 
   2314 #ifdef __OpenBSD__
   2315 struct ubsec_softc *
   2316 ubsec_kfind(struct cryptkop *krp)
   2317 {
   2318 	struct ubsec_softc *sc;
   2319 	int i;
   2320 
   2321 	for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
   2322 		sc = ubsec_cd.cd_devs[i];
   2323 		if (sc == NULL)
   2324 			continue;
   2325 		if (sc->sc_cid == krp->krp_hid)
   2326 			return (sc);
   2327 	}
   2328 	return (NULL);
   2329 }
   2330 #endif
   2331 
   2332 static void
   2333 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
   2334 {
   2335 	switch (q->q_type) {
   2336 	case UBS_CTXOP_MODEXP: {
   2337 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
   2338 
   2339 		ubsec_dma_free(sc, &me->me_q.q_mcr);
   2340 		ubsec_dma_free(sc, &me->me_q.q_ctx);
   2341 		ubsec_dma_free(sc, &me->me_M);
   2342 		ubsec_dma_free(sc, &me->me_E);
   2343 		ubsec_dma_free(sc, &me->me_C);
   2344 		ubsec_dma_free(sc, &me->me_epb);
   2345 		free(me, M_DEVBUF);
   2346 		break;
   2347 	}
   2348 	case UBS_CTXOP_RSAPRIV: {
   2349 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
   2350 
   2351 		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
   2352 		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
   2353 		ubsec_dma_free(sc, &rp->rpr_msgin);
   2354 		ubsec_dma_free(sc, &rp->rpr_msgout);
   2355 		free(rp, M_DEVBUF);
   2356 		break;
   2357 	}
   2358 	default:
   2359 		printf("%s: invalid kfree 0x%x\n", device_xname(sc->sc_dev),
   2360 		    q->q_type);
   2361 		break;
   2362 	}
   2363 }
   2364 
   2365 static int
   2366 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
   2367 {
   2368 	struct ubsec_softc *sc;
   2369 	int r;
   2370 
   2371 	if (krp == NULL || krp->krp_callback == NULL)
   2372 		return (EINVAL);
   2373 #ifdef __OpenBSD__
   2374 	if ((sc = ubsec_kfind(krp)) == NULL)
   2375 		return (EINVAL);
   2376 #else
   2377 	sc = arg;
   2378 	KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/);
   2379 #endif
   2380 
   2381 	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
   2382 		struct ubsec_q2 *q;
   2383 
   2384 		q = SIMPLEQ_FIRST(&sc->sc_q2free);
   2385 		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
   2386 		ubsec_kfree(sc, q);
   2387 	}
   2388 
   2389 	switch (krp->krp_op) {
   2390 	case CRK_MOD_EXP:
   2391 		if (sc->sc_flags & UBS_FLAGS_HWNORM)
   2392 			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
   2393 		else
   2394 			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
   2395 		break;
   2396 	case CRK_MOD_EXP_CRT:
   2397 		r = ubsec_kprocess_rsapriv(sc, krp, hint);
   2398 		break;
   2399 	default:
   2400 		printf("%s: kprocess: invalid op 0x%x\n",
   2401 		    device_xname(sc->sc_dev), krp->krp_op);
   2402 		krp->krp_status = EOPNOTSUPP;
   2403 		crypto_kdone(krp);
   2404 		r = 0;
   2405 	}
   2406 	return (r);
   2407 }
   2408 
   2409 /*
   2410  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
   2411  */
   2412 static int
   2413 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
   2414 			 int hint)
   2415 {
   2416 	struct ubsec_q2_modexp *me;
   2417 	struct ubsec_mcr *mcr;
   2418 	struct ubsec_ctx_modexp *ctx;
   2419 	struct ubsec_pktbuf *epb;
   2420 	int err = 0;
   2421 	u_int nbits, normbits, mbits, shiftbits, ebits;
   2422 
   2423 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
   2424 	if (me == NULL) {
   2425 		err = ENOMEM;
   2426 		goto errout;
   2427 	}
   2428 	memset(me, 0, sizeof *me);
   2429 	me->me_krp = krp;
   2430 	me->me_q.q_type = UBS_CTXOP_MODEXP;
   2431 
   2432 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
   2433 	if (nbits <= 512)
   2434 		normbits = 512;
   2435 	else if (nbits <= 768)
   2436 		normbits = 768;
   2437 	else if (nbits <= 1024)
   2438 		normbits = 1024;
   2439 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
   2440 		normbits = 1536;
   2441 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
   2442 		normbits = 2048;
   2443 	else {
   2444 		err = E2BIG;
   2445 		goto errout;
   2446 	}
   2447 
   2448 	shiftbits = normbits - nbits;
   2449 
   2450 	me->me_modbits = nbits;
   2451 	me->me_shiftbits = shiftbits;
   2452 	me->me_normbits = normbits;
   2453 
   2454 	/* Sanity check: result bits must be >= true modulus bits. */
   2455 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
   2456 		err = ERANGE;
   2457 		goto errout;
   2458 	}
   2459 
   2460 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
   2461 	    &me->me_q.q_mcr, 0)) {
   2462 		err = ENOMEM;
   2463 		goto errout;
   2464 	}
   2465 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
   2466 
   2467 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
   2468 	    &me->me_q.q_ctx, 0)) {
   2469 		err = ENOMEM;
   2470 		goto errout;
   2471 	}
   2472 
   2473 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
   2474 	if (mbits > nbits) {
   2475 		err = E2BIG;
   2476 		goto errout;
   2477 	}
   2478 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
   2479 		err = ENOMEM;
   2480 		goto errout;
   2481 	}
   2482 	ubsec_kshift_r(shiftbits,
   2483 	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
   2484 	    me->me_M.dma_vaddr, normbits);
   2485 
   2486 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
   2487 		err = ENOMEM;
   2488 		goto errout;
   2489 	}
   2490 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   2491 
   2492 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
   2493 	if (ebits > nbits) {
   2494 		err = E2BIG;
   2495 		goto errout;
   2496 	}
   2497 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
   2498 		err = ENOMEM;
   2499 		goto errout;
   2500 	}
   2501 	ubsec_kshift_r(shiftbits,
   2502 	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
   2503 	    me->me_E.dma_vaddr, normbits);
   2504 
   2505 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
   2506 	    &me->me_epb, 0)) {
   2507 		err = ENOMEM;
   2508 		goto errout;
   2509 	}
   2510 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
   2511 	epb->pb_addr = htole32(me->me_E.dma_paddr);
   2512 	epb->pb_next = 0;
   2513 	epb->pb_len = htole32(normbits / 8);
   2514 
   2515 #ifdef UBSEC_DEBUG
   2516 	if (ubsec_debug) {
   2517 		printf("Epb ");
   2518 		ubsec_dump_pb(epb);
   2519 	}
   2520 #endif
   2521 
   2522 	mcr->mcr_pkts = htole16(1);
   2523 	mcr->mcr_flags = 0;
   2524 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
   2525 	mcr->mcr_reserved = 0;
   2526 	mcr->mcr_pktlen = 0;
   2527 
   2528 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
   2529 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
   2530 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
   2531 
   2532 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
   2533 	mcr->mcr_opktbuf.pb_next = 0;
   2534 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
   2535 
   2536 #ifdef DIAGNOSTIC
   2537 	/* Misaligned output buffer will hang the chip. */
   2538 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
   2539 		panic("%s: modexp invalid addr 0x%x",
   2540 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr));
   2541 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
   2542 		panic("%s: modexp invalid len 0x%x",
   2543 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len));
   2544 #endif
   2545 
   2546 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
   2547 	memset(ctx, 0, sizeof(*ctx));
   2548 	ubsec_kshift_r(shiftbits,
   2549 	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
   2550 	    ctx->me_N, normbits);
   2551 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
   2552 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
   2553 	ctx->me_E_len = htole16(nbits);
   2554 	ctx->me_N_len = htole16(nbits);
   2555 
   2556 #ifdef UBSEC_DEBUG
   2557 	if (ubsec_debug) {
   2558 		ubsec_dump_mcr(mcr);
   2559 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
   2560 	}
   2561 #endif
   2562 
   2563 	/*
   2564 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
   2565 	 * everything else.
   2566 	 */
   2567 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
   2568 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2569 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
   2570 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2571 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
   2572 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2573 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
   2574 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2575 
   2576 	/* Enqueue and we're done... */
   2577 	mutex_spin_enter(&sc->sc_mtx);
   2578 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
   2579 	ubsec_feed2(sc);
   2580 	ubsecstats.hst_modexp++;
   2581 	mutex_spin_exit(&sc->sc_mtx);
   2582 
   2583 	return (0);
   2584 
   2585 errout:
   2586 	if (me != NULL) {
   2587 		if (me->me_q.q_mcr.dma_map != NULL)
   2588 			ubsec_dma_free(sc, &me->me_q.q_mcr);
   2589 		if (me->me_q.q_ctx.dma_map != NULL) {
   2590 			memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
   2591 			ubsec_dma_free(sc, &me->me_q.q_ctx);
   2592 		}
   2593 		if (me->me_M.dma_map != NULL) {
   2594 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
   2595 			ubsec_dma_free(sc, &me->me_M);
   2596 		}
   2597 		if (me->me_E.dma_map != NULL) {
   2598 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
   2599 			ubsec_dma_free(sc, &me->me_E);
   2600 		}
   2601 		if (me->me_C.dma_map != NULL) {
   2602 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   2603 			ubsec_dma_free(sc, &me->me_C);
   2604 		}
   2605 		if (me->me_epb.dma_map != NULL)
   2606 			ubsec_dma_free(sc, &me->me_epb);
   2607 		free(me, M_DEVBUF);
   2608 	}
   2609 	krp->krp_status = err;
   2610 	crypto_kdone(krp);
   2611 	return (0);
   2612 }
   2613 
   2614 /*
   2615  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
   2616  */
   2617 static int
   2618 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
   2619 			 int hint)
   2620 {
   2621 	struct ubsec_q2_modexp *me;
   2622 	struct ubsec_mcr *mcr;
   2623 	struct ubsec_ctx_modexp *ctx;
   2624 	struct ubsec_pktbuf *epb;
   2625 	int err = 0;
   2626 	u_int nbits, normbits, mbits, shiftbits, ebits;
   2627 
   2628 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
   2629 	if (me == NULL) {
   2630 		err = ENOMEM;
   2631 		goto errout;
   2632 	}
   2633 	memset(me, 0, sizeof *me);
   2634 	me->me_krp = krp;
   2635 	me->me_q.q_type = UBS_CTXOP_MODEXP;
   2636 
   2637 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
   2638 	if (nbits <= 512)
   2639 		normbits = 512;
   2640 	else if (nbits <= 768)
   2641 		normbits = 768;
   2642 	else if (nbits <= 1024)
   2643 		normbits = 1024;
   2644 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
   2645 		normbits = 1536;
   2646 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
   2647 		normbits = 2048;
   2648 	else {
   2649 		err = E2BIG;
   2650 		goto errout;
   2651 	}
   2652 
   2653 	shiftbits = normbits - nbits;
   2654 
   2655 	/* XXX ??? */
   2656 	me->me_modbits = nbits;
   2657 	me->me_shiftbits = shiftbits;
   2658 	me->me_normbits = normbits;
   2659 
   2660 	/* Sanity check: result bits must be >= true modulus bits. */
   2661 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
   2662 		err = ERANGE;
   2663 		goto errout;
   2664 	}
   2665 
   2666 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
   2667 	    &me->me_q.q_mcr, 0)) {
   2668 		err = ENOMEM;
   2669 		goto errout;
   2670 	}
   2671 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
   2672 
   2673 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
   2674 	    &me->me_q.q_ctx, 0)) {
   2675 		err = ENOMEM;
   2676 		goto errout;
   2677 	}
   2678 
   2679 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
   2680 	if (mbits > nbits) {
   2681 		err = E2BIG;
   2682 		goto errout;
   2683 	}
   2684 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
   2685 		err = ENOMEM;
   2686 		goto errout;
   2687 	}
   2688 	memset(me->me_M.dma_vaddr, 0, normbits / 8);
   2689 	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
   2690 	    me->me_M.dma_vaddr, (mbits + 7) / 8);
   2691 
   2692 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
   2693 		err = ENOMEM;
   2694 		goto errout;
   2695 	}
   2696 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   2697 
   2698 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
   2699 	if (ebits > nbits) {
   2700 		err = E2BIG;
   2701 		goto errout;
   2702 	}
   2703 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
   2704 		err = ENOMEM;
   2705 		goto errout;
   2706 	}
   2707 	memset(me->me_E.dma_vaddr, 0, normbits / 8);
   2708 	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
   2709 	    me->me_E.dma_vaddr, (ebits + 7) / 8);
   2710 
   2711 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
   2712 	    &me->me_epb, 0)) {
   2713 		err = ENOMEM;
   2714 		goto errout;
   2715 	}
   2716 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
   2717 	epb->pb_addr = htole32(me->me_E.dma_paddr);
   2718 	epb->pb_next = 0;
   2719 	epb->pb_len = htole32((ebits + 7) / 8);
   2720 
   2721 #ifdef UBSEC_DEBUG
   2722 	if (ubsec_debug) {
   2723 		printf("Epb ");
   2724 		ubsec_dump_pb(epb);
   2725 	}
   2726 #endif
   2727 
   2728 	mcr->mcr_pkts = htole16(1);
   2729 	mcr->mcr_flags = 0;
   2730 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
   2731 	mcr->mcr_reserved = 0;
   2732 	mcr->mcr_pktlen = 0;
   2733 
   2734 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
   2735 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
   2736 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
   2737 
   2738 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
   2739 	mcr->mcr_opktbuf.pb_next = 0;
   2740 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
   2741 
   2742 #ifdef DIAGNOSTIC
   2743 	/* Misaligned output buffer will hang the chip. */
   2744 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
   2745 		panic("%s: modexp invalid addr 0x%x",
   2746 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr));
   2747 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
   2748 		panic("%s: modexp invalid len 0x%x",
   2749 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len));
   2750 #endif
   2751 
   2752 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
   2753 	memset(ctx, 0, sizeof(*ctx));
   2754 	memcpy(ctx->me_N, krp->krp_param[UBS_MODEXP_PAR_N].crp_p,
   2755 	    (nbits + 7) / 8);
   2756 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
   2757 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
   2758 	ctx->me_E_len = htole16(ebits);
   2759 	ctx->me_N_len = htole16(nbits);
   2760 
   2761 #ifdef UBSEC_DEBUG
   2762 	if (ubsec_debug) {
   2763 		ubsec_dump_mcr(mcr);
   2764 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
   2765 	}
   2766 #endif
   2767 
   2768 	/*
   2769 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
   2770 	 * everything else.
   2771 	 */
   2772 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
   2773 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2774 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
   2775 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2776 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
   2777 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2778 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
   2779 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2780 
   2781 	/* Enqueue and we're done... */
   2782 	mutex_spin_enter(&sc->sc_mtx);
   2783 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
   2784 	ubsec_feed2(sc);
   2785 	mutex_spin_exit(&sc->sc_mtx);
   2786 
   2787 	return (0);
   2788 
   2789 errout:
   2790 	if (me != NULL) {
   2791 		if (me->me_q.q_mcr.dma_map != NULL)
   2792 			ubsec_dma_free(sc, &me->me_q.q_mcr);
   2793 		if (me->me_q.q_ctx.dma_map != NULL) {
   2794 			memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
   2795 			ubsec_dma_free(sc, &me->me_q.q_ctx);
   2796 		}
   2797 		if (me->me_M.dma_map != NULL) {
   2798 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
   2799 			ubsec_dma_free(sc, &me->me_M);
   2800 		}
   2801 		if (me->me_E.dma_map != NULL) {
   2802 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
   2803 			ubsec_dma_free(sc, &me->me_E);
   2804 		}
   2805 		if (me->me_C.dma_map != NULL) {
   2806 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   2807 			ubsec_dma_free(sc, &me->me_C);
   2808 		}
   2809 		if (me->me_epb.dma_map != NULL)
   2810 			ubsec_dma_free(sc, &me->me_epb);
   2811 		free(me, M_DEVBUF);
   2812 	}
   2813 	krp->krp_status = err;
   2814 	crypto_kdone(krp);
   2815 	return (0);
   2816 }
   2817 
   2818 static int
   2819 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
   2820 		       int hint)
   2821 {
   2822 	struct ubsec_q2_rsapriv *rp = NULL;
   2823 	struct ubsec_mcr *mcr;
   2824 	struct ubsec_ctx_rsapriv *ctx;
   2825 	int err = 0;
   2826 	u_int padlen, msglen;
   2827 
   2828 	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
   2829 	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
   2830 	if (msglen > padlen)
   2831 		padlen = msglen;
   2832 
   2833 	if (padlen <= 256)
   2834 		padlen = 256;
   2835 	else if (padlen <= 384)
   2836 		padlen = 384;
   2837 	else if (padlen <= 512)
   2838 		padlen = 512;
   2839 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
   2840 		padlen = 768;
   2841 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
   2842 		padlen = 1024;
   2843 	else {
   2844 		err = E2BIG;
   2845 		goto errout;
   2846 	}
   2847 
   2848 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
   2849 		err = E2BIG;
   2850 		goto errout;
   2851 	}
   2852 
   2853 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
   2854 		err = E2BIG;
   2855 		goto errout;
   2856 	}
   2857 
   2858 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
   2859 		err = E2BIG;
   2860 		goto errout;
   2861 	}
   2862 
   2863 	rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT|M_ZERO);
   2864 	if (rp == NULL)
   2865 		return (ENOMEM);
   2866 	rp->rpr_krp = krp;
   2867 	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
   2868 
   2869 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
   2870 	    &rp->rpr_q.q_mcr, 0)) {
   2871 		err = ENOMEM;
   2872 		goto errout;
   2873 	}
   2874 	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
   2875 
   2876 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
   2877 	    &rp->rpr_q.q_ctx, 0)) {
   2878 		err = ENOMEM;
   2879 		goto errout;
   2880 	}
   2881 	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
   2882 	memset(ctx, 0, sizeof *ctx);
   2883 
   2884 	/* Copy in p */
   2885 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
   2886 	    &ctx->rpr_buf[0 * (padlen / 8)],
   2887 	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
   2888 
   2889 	/* Copy in q */
   2890 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
   2891 	    &ctx->rpr_buf[1 * (padlen / 8)],
   2892 	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
   2893 
   2894 	/* Copy in dp */
   2895 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
   2896 	    &ctx->rpr_buf[2 * (padlen / 8)],
   2897 	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
   2898 
   2899 	/* Copy in dq */
   2900 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
   2901 	    &ctx->rpr_buf[3 * (padlen / 8)],
   2902 	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
   2903 
   2904 	/* Copy in pinv */
   2905 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
   2906 	    &ctx->rpr_buf[4 * (padlen / 8)],
   2907 	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
   2908 
   2909 	msglen = padlen * 2;
   2910 
   2911 	/* Copy in input message (aligned buffer/length). */
   2912 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
   2913 		/* Is this likely? */
   2914 		err = E2BIG;
   2915 		goto errout;
   2916 	}
   2917 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
   2918 		err = ENOMEM;
   2919 		goto errout;
   2920 	}
   2921 	memset(rp->rpr_msgin.dma_vaddr, 0, (msglen + 7) / 8);
   2922 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
   2923 	    rp->rpr_msgin.dma_vaddr,
   2924 	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
   2925 
   2926 	/* Prepare space for output message (aligned buffer/length). */
   2927 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
   2928 		/* Is this likely? */
   2929 		err = E2BIG;
   2930 		goto errout;
   2931 	}
   2932 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
   2933 		err = ENOMEM;
   2934 		goto errout;
   2935 	}
   2936 	memset(rp->rpr_msgout.dma_vaddr, 0, (msglen + 7) / 8);
   2937 
   2938 	mcr->mcr_pkts = htole16(1);
   2939 	mcr->mcr_flags = 0;
   2940 	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
   2941 	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
   2942 	mcr->mcr_ipktbuf.pb_next = 0;
   2943 	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
   2944 	mcr->mcr_reserved = 0;
   2945 	mcr->mcr_pktlen = htole16(msglen);
   2946 	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
   2947 	mcr->mcr_opktbuf.pb_next = 0;
   2948 	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
   2949 
   2950 #ifdef DIAGNOSTIC
   2951 	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
   2952 		panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
   2953 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgin.dma_paddr,
   2954 		    (u_long) rp->rpr_msgin.dma_size);
   2955 	}
   2956 	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
   2957 		panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
   2958 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgout.dma_paddr,
   2959 		    (u_long) rp->rpr_msgout.dma_size);
   2960 	}
   2961 #endif
   2962 
   2963 	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
   2964 	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
   2965 	ctx->rpr_q_len = htole16(padlen);
   2966 	ctx->rpr_p_len = htole16(padlen);
   2967 
   2968 	/*
   2969 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
   2970 	 * everything else.
   2971 	 */
   2972 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
   2973 	    0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2974 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
   2975 	    0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2976 
   2977 	/* Enqueue and we're done... */
   2978 	mutex_spin_enter(&sc->sc_mtx);
   2979 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
   2980 	ubsec_feed2(sc);
   2981 	ubsecstats.hst_modexpcrt++;
   2982 	mutex_spin_exit(&sc->sc_mtx);
   2983 	return (0);
   2984 
   2985 errout:
   2986 	if (rp != NULL) {
   2987 		if (rp->rpr_q.q_mcr.dma_map != NULL)
   2988 			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
   2989 		if (rp->rpr_msgin.dma_map != NULL) {
   2990 			memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
   2991 			ubsec_dma_free(sc, &rp->rpr_msgin);
   2992 		}
   2993 		if (rp->rpr_msgout.dma_map != NULL) {
   2994 			memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
   2995 			ubsec_dma_free(sc, &rp->rpr_msgout);
   2996 		}
   2997 		free(rp, M_DEVBUF);
   2998 	}
   2999 	krp->krp_status = err;
   3000 	crypto_kdone(krp);
   3001 	return (0);
   3002 }
   3003 
   3004 #ifdef UBSEC_DEBUG
   3005 static void
   3006 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
   3007 {
   3008 	printf("addr 0x%x (0x%x) next 0x%x\n",
   3009 	    pb->pb_addr, pb->pb_len, pb->pb_next);
   3010 }
   3011 
   3012 static void
   3013 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
   3014 {
   3015 	printf("CTX (0x%x):\n", c->ctx_len);
   3016 	switch (letoh16(c->ctx_op)) {
   3017 	case UBS_CTXOP_RNGBYPASS:
   3018 	case UBS_CTXOP_RNGSHA1:
   3019 		break;
   3020 	case UBS_CTXOP_MODEXP:
   3021 	{
   3022 		struct ubsec_ctx_modexp *cx = (void *)c;
   3023 		int i, len;
   3024 
   3025 		printf(" Elen %u, Nlen %u\n",
   3026 		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
   3027 		len = (cx->me_N_len + 7)/8;
   3028 		for (i = 0; i < len; i++)
   3029 			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
   3030 		printf("\n");
   3031 		break;
   3032 	}
   3033 	default:
   3034 		printf("unknown context: %x\n", c->ctx_op);
   3035 	}
   3036 	printf("END CTX\n");
   3037 }
   3038 
   3039 static void
   3040 ubsec_dump_mcr(struct ubsec_mcr *mcr)
   3041 {
   3042 	volatile struct ubsec_mcr_add *ma;
   3043 	int i;
   3044 
   3045 	printf("MCR:\n");
   3046 	printf(" pkts: %u, flags 0x%x\n",
   3047 	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
   3048 	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
   3049 	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
   3050 		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
   3051 		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
   3052 		    letoh16(ma->mcr_reserved));
   3053 		printf(" %d: ipkt ", i);
   3054 		ubsec_dump_pb(&ma->mcr_ipktbuf);
   3055 		printf(" %d: opkt ", i);
   3056 		ubsec_dump_pb(&ma->mcr_opktbuf);
   3057 		ma++;
   3058 	}
   3059 	printf("END MCR\n");
   3060 }
   3061 #endif /* UBSEC_DEBUG */
   3062 
   3063 /*
   3064  * Return the number of significant bits of a big number.
   3065  */
   3066 static int
   3067 ubsec_ksigbits(struct crparam *cr)
   3068 {
   3069 	u_int plen = (cr->crp_nbits + 7) / 8;
   3070 	int i, sig = plen * 8;
   3071 	u_int8_t c, *p = cr->crp_p;
   3072 
   3073 	for (i = plen - 1; i >= 0; i--) {
   3074 		c = p[i];
   3075 		if (c != 0) {
   3076 			while ((c & 0x80) == 0) {
   3077 				sig--;
   3078 				c <<= 1;
   3079 			}
   3080 			break;
   3081 		}
   3082 		sig -= 8;
   3083 	}
   3084 	return (sig);
   3085 }
   3086 
   3087 static void
   3088 ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits,
   3089     u_int8_t *dst, u_int dstbits)
   3090 {
   3091 	u_int slen, dlen;
   3092 	int i, si, di, n;
   3093 
   3094 	slen = (srcbits + 7) / 8;
   3095 	dlen = (dstbits + 7) / 8;
   3096 
   3097 	for (i = 0; i < slen; i++)
   3098 		dst[i] = src[i];
   3099 	for (i = 0; i < dlen - slen; i++)
   3100 		dst[slen + i] = 0;
   3101 
   3102 	n = shiftbits / 8;
   3103 	if (n != 0) {
   3104 		si = dlen - n - 1;
   3105 		di = dlen - 1;
   3106 		while (si >= 0)
   3107 			dst[di--] = dst[si--];
   3108 		while (di >= 0)
   3109 			dst[di--] = 0;
   3110 	}
   3111 
   3112 	n = shiftbits % 8;
   3113 	if (n != 0) {
   3114 		for (i = dlen - 1; i > 0; i--)
   3115 			dst[i] = (dst[i] << n) |
   3116 			    (dst[i - 1] >> (8 - n));
   3117 		dst[0] = dst[0] << n;
   3118 	}
   3119 }
   3120 
   3121 static void
   3122 ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits,
   3123     u_int8_t *dst, u_int dstbits)
   3124 {
   3125 	int slen, dlen, i, n;
   3126 
   3127 	slen = (srcbits + 7) / 8;
   3128 	dlen = (dstbits + 7) / 8;
   3129 
   3130 	n = shiftbits / 8;
   3131 	for (i = 0; i < slen; i++)
   3132 		dst[i] = src[i + n];
   3133 	for (i = 0; i < dlen - slen; i++)
   3134 		dst[slen + i] = 0;
   3135 
   3136 	n = shiftbits % 8;
   3137 	if (n != 0) {
   3138 		for (i = 0; i < (dlen - 1); i++)
   3139 			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
   3140 		dst[dlen - 1] = dst[dlen - 1] >> n;
   3141 	}
   3142 }
   3143