Home | History | Annotate | Line # | Download | only in pci
ubsec.c revision 1.38
      1 /*	$NetBSD: ubsec.c,v 1.38 2014/03/29 19:28:25 christos Exp $	*/
      2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
      3 /*	$OpenBSD: ubsec.c,v 1.127 2003/06/04 14:04:58 jason Exp $	*/
      4 
      5 /*
      6  * Copyright (c) 2000 Jason L. Wright (jason (at) thought.net)
      7  * Copyright (c) 2000 Theo de Raadt (deraadt (at) openbsd.org)
      8  * Copyright (c) 2001 Patrik Lindergren (patrik (at) ipunplugged.com)
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
     23  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     27  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     28  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  *
     31  * Effort sponsored in part by the Defense Advanced Research Projects
     32  * Agency (DARPA) and Air Force Research Laboratory, Air Force
     33  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
     34  *
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: ubsec.c,v 1.38 2014/03/29 19:28:25 christos Exp $");
     39 
     40 #undef UBSEC_DEBUG
     41 
     42 /*
     43  * uBsec 5[56]01, bcm580xx, bcm582x hardware crypto accelerator
     44  */
     45 
     46 #include <sys/param.h>
     47 #include <sys/systm.h>
     48 #include <sys/proc.h>
     49 #include <sys/endian.h>
     50 #ifdef __NetBSD__
     51   #define UBSEC_NO_RNG	/* hangs on attach */
     52   #define letoh16 htole16
     53   #define letoh32 htole32
     54 #endif
     55 #include <sys/errno.h>
     56 #include <sys/malloc.h>
     57 #include <sys/kernel.h>
     58 #include <sys/mbuf.h>
     59 #include <sys/device.h>
     60 #include <sys/module.h>
     61 #include <sys/queue.h>
     62 #include <sys/sysctl.h>
     63 
     64 #include <opencrypto/cryptodev.h>
     65 #include <opencrypto/xform.h>
     66 #ifdef __OpenBSD__
     67  #include <dev/rndvar.h>
     68  #include <sys/md5k.h>
     69 #else
     70  #include <sys/cprng.h>
     71  #include <sys/md5.h>
     72 #endif
     73 #include <sys/sha1.h>
     74 
     75 #include <dev/pci/pcireg.h>
     76 #include <dev/pci/pcivar.h>
     77 #include <dev/pci/pcidevs.h>
     78 
     79 #include <dev/pci/ubsecreg.h>
     80 #include <dev/pci/ubsecvar.h>
     81 
     82 /*
     83  * Prototypes and count for the pci_device structure
     84  */
     85 static	int ubsec_probe(device_t, cfdata_t, void *);
     86 static	void ubsec_attach(device_t, device_t, void *);
     87 static	int  ubsec_detach(device_t, int);
     88 static	int  ubsec_sysctl_init(void);
     89 static	void ubsec_reset_board(struct ubsec_softc *);
     90 static	void ubsec_init_board(struct ubsec_softc *);
     91 static	void ubsec_init_pciregs(struct pci_attach_args *pa);
     92 static	void ubsec_cleanchip(struct ubsec_softc *);
     93 static	void ubsec_totalreset(struct ubsec_softc *);
     94 static	int  ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
     95 
     96 #ifdef __OpenBSD__
     97 struct cfattach ubsec_ca = {
     98 	sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
     99 };
    100 
    101 struct cfdriver ubsec_cd = {
    102 	0, "ubsec", DV_DULL
    103 };
    104 #else
    105 CFATTACH_DECL_NEW(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
    106 	      ubsec_detach, NULL);
    107 extern struct cfdriver ubsec_cd;
    108 #endif
    109 
    110 /* patchable */
    111 #ifdef	UBSEC_DEBUG
    112 extern int ubsec_debug;
    113 int ubsec_debug=1;
    114 #endif
    115 
    116 static	int	ubsec_intr(void *);
    117 static	int	ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
    118 static	int	ubsec_freesession(void*, u_int64_t);
    119 static	int	ubsec_process(void*, struct cryptop *, int hint);
    120 static	void	ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
    121 static	void	ubsec_feed(struct ubsec_softc *);
    122 static	void	ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
    123 static	void	ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
    124 static	void	ubsec_feed2(struct ubsec_softc *);
    125 static	void	ubsec_feed4(struct ubsec_softc *);
    126 #ifndef UBSEC_NO_RNG
    127 static  void	ubsec_rng(void *);
    128 static  void	ubsec_rng_locked(void *);
    129 static  void	ubsec_rng_get(size_t, void *);
    130 #endif /* UBSEC_NO_RNG */
    131 static	int 	ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
    132 				 struct ubsec_dma_alloc *, int);
    133 static	void	ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
    134 static	int	ubsec_dmamap_aligned(bus_dmamap_t);
    135 
    136 static	int	ubsec_kprocess(void*, struct cryptkop *, int);
    137 static	int	ubsec_kprocess_modexp_sw(struct ubsec_softc *,
    138 					 struct cryptkop *, int);
    139 static	int	ubsec_kprocess_modexp_hw(struct ubsec_softc *,
    140 					 struct cryptkop *, int);
    141 static	int	ubsec_kprocess_rsapriv(struct ubsec_softc *,
    142 				       struct cryptkop *, int);
    143 static	void	ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
    144 static	int	ubsec_ksigbits(struct crparam *);
    145 static	void	ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
    146 static	void	ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
    147 
    148 #ifdef UBSEC_DEBUG
    149 static void	ubsec_dump_pb(volatile struct ubsec_pktbuf *);
    150 static void	ubsec_dump_mcr(struct ubsec_mcr *);
    151 static	void	ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
    152 #endif
    153 
    154 #define	READ_REG(sc,r) \
    155 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
    156 
    157 #define WRITE_REG(sc,reg,val) \
    158 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
    159 
    160 #define	SWAP32(x) (x) = htole32(ntohl((x)))
    161 #ifndef HTOLE32
    162  #define	HTOLE32(x) (x) = htole32(x)
    163 #endif
    164 
    165 struct ubsec_stats ubsecstats;
    166 
    167 static struct sysctllog *ubsec_sysctllog;
    168 
    169 /*
    170  * ubsec_maxbatch controls the number of crypto ops to voluntarily
    171  * collect into one submission to the hardware.  This batching happens
    172  * when ops are dispatched from the crypto subsystem with a hint that
    173  * more are to follow immediately.  These ops must also not be marked
    174  * with a ``no delay'' flag.
    175  */
    176 static	int ubsec_maxbatch = 1;
    177 
    178 /*
    179  * ubsec_maxaggr controls the number of crypto ops to submit to the
    180  * hardware as a unit.  This aggregation reduces the number of interrupts
    181  * to the host at the expense of increased latency (for all but the last
    182  * operation).  For network traffic setting this to one yields the highest
    183  * performance but at the expense of more interrupt processing.
    184  */
    185 static	int ubsec_maxaggr = 1;
    186 
    187 static const struct ubsec_product {
    188 	pci_vendor_id_t		ubsec_vendor;
    189 	pci_product_id_t	ubsec_product;
    190 	int			ubsec_flags;
    191 	int			ubsec_statmask;
    192 	int			ubsec_maxaggr;
    193 	const char		*ubsec_name;
    194 } ubsec_products[] = {
    195 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5501,
    196 	  0,
    197 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    198 	  UBS_MIN_AGGR,
    199 	  "Bluesteel 5501"
    200 	},
    201 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5601,
    202 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
    203 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    204 	  UBS_MIN_AGGR,
    205 	  "Bluesteel 5601"
    206 	},
    207 
    208 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5801,
    209 	  0,
    210 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    211 	  UBS_MIN_AGGR,
    212 	  "Broadcom BCM5801"
    213 	},
    214 
    215 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5802,
    216 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
    217 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    218 	  UBS_MIN_AGGR,
    219 	  "Broadcom BCM5802"
    220 	},
    221 
    222 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5805,
    223 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
    224 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    225 	  UBS_MIN_AGGR,
    226 	  "Broadcom BCM5805"
    227 	},
    228 
    229 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5820,
    230 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    231 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    232 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    233 	  UBS_MIN_AGGR,
    234 	  "Broadcom BCM5820"
    235 	},
    236 
    237 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5821,
    238 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    239 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    240 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    241 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    242 	  UBS_MIN_AGGR,
    243 	  "Broadcom BCM5821"
    244 	},
    245 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_SCA1K,
    246 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    247 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    248 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    249 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    250 	  UBS_MIN_AGGR,
    251 	  "Sun Crypto Accelerator 1000"
    252 	},
    253 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_5821,
    254 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    255 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    256 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    257 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    258 	  UBS_MIN_AGGR,
    259 	  "Broadcom BCM5821 (Sun)"
    260 	},
    261 
    262 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5822,
    263 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    264 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    265 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    266 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    267 	  UBS_MIN_AGGR,
    268 	  "Broadcom BCM5822"
    269 	},
    270 
    271 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5823,
    272 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    273 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    274 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    275 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    276 	  UBS_MIN_AGGR,
    277 	  "Broadcom BCM5823"
    278 	},
    279 
    280 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5825,
    281 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    282 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    283 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    284 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    285 	  UBS_MIN_AGGR,
    286 	  "Broadcom BCM5825"
    287 	},
    288 
    289 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5860,
    290 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
    291 	      UBS_FLAGS_LONGCTX |
    292 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
    293 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY,
    294 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    295 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
    296 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
    297 	  UBS_MAX_AGGR,
    298 	  "Broadcom BCM5860"
    299 	},
    300 
    301 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5861,
    302 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
    303 	      UBS_FLAGS_LONGCTX |
    304 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
    305 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY,
    306 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    307 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
    308 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
    309 	  UBS_MAX_AGGR,
    310 	  "Broadcom BCM5861"
    311 	},
    312 
    313 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5862,
    314 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
    315 	      UBS_FLAGS_LONGCTX |
    316 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
    317 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY,
    318 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    319 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
    320 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
    321 	  UBS_MAX_AGGR,
    322 	  "Broadcom BCM5862"
    323 	},
    324 
    325 	{ 0,			0,
    326 	  0,
    327 	  0,
    328 	  0,
    329 	  NULL
    330 	}
    331 };
    332 
    333 static const struct ubsec_product *
    334 ubsec_lookup(const struct pci_attach_args *pa)
    335 {
    336 	const struct ubsec_product *up;
    337 
    338 	for (up = ubsec_products; up->ubsec_name != NULL; up++) {
    339 		if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
    340 		    PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
    341 			return (up);
    342 	}
    343 	return (NULL);
    344 }
    345 
    346 static int
    347 ubsec_probe(device_t parent, cfdata_t match, void *aux)
    348 {
    349 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    350 
    351 	if (ubsec_lookup(pa) != NULL)
    352 		return (1);
    353 
    354 	return (0);
    355 }
    356 
    357 static void
    358 ubsec_attach(device_t parent, device_t self, void *aux)
    359 {
    360 	struct ubsec_softc *sc = device_private(self);
    361 	struct pci_attach_args *pa = aux;
    362 	const struct ubsec_product *up;
    363 	pci_chipset_tag_t pc = pa->pa_pc;
    364 	pci_intr_handle_t ih;
    365 	const char *intrstr = NULL;
    366 	pcireg_t memtype;
    367 	struct ubsec_dma *dmap;
    368 	u_int32_t cmd, i;
    369 	char intrbuf[PCI_INTRSTR_LEN];
    370 
    371 	sc->sc_dev = self;
    372 	sc->sc_pct = pc;
    373 
    374 	up = ubsec_lookup(pa);
    375 	if (up == NULL) {
    376 		printf("\n");
    377 		panic("ubsec_attach: impossible");
    378 	}
    379 
    380 	pci_aprint_devinfo_fancy(pa, "Crypto processor", up->ubsec_name, 1);
    381 
    382 	SIMPLEQ_INIT(&sc->sc_queue);
    383 	SIMPLEQ_INIT(&sc->sc_qchip);
    384 	SIMPLEQ_INIT(&sc->sc_queue2);
    385 	SIMPLEQ_INIT(&sc->sc_qchip2);
    386 	SIMPLEQ_INIT(&sc->sc_queue4);
    387 	SIMPLEQ_INIT(&sc->sc_qchip4);
    388 	SIMPLEQ_INIT(&sc->sc_q2free);
    389 
    390 	sc->sc_flags = up->ubsec_flags;
    391 	sc->sc_statmask = up->ubsec_statmask;
    392 	sc->sc_maxaggr = up->ubsec_maxaggr;
    393 
    394 	cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    395 	cmd |= PCI_COMMAND_MASTER_ENABLE;
    396 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
    397 
    398 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BS_BAR);
    399 	if (pci_mapreg_map(pa, BS_BAR, memtype, 0,
    400 	    &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize)) {
    401 		aprint_error_dev(self, "can't find mem space");
    402 		return;
    403 	}
    404 
    405 	sc->sc_dmat = pa->pa_dmat;
    406 
    407 	if (pci_intr_map(pa, &ih)) {
    408 		aprint_error_dev(self, "couldn't map interrupt\n");
    409 		return;
    410 	}
    411 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    412 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc);
    413 	if (sc->sc_ih == NULL) {
    414 		aprint_error_dev(self, "couldn't establish interrupt");
    415 		if (intrstr != NULL)
    416 			aprint_error(" at %s", intrstr);
    417 		aprint_error("\n");
    418 		return;
    419 	}
    420 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    421 
    422 	sc->sc_cid = crypto_get_driverid(0);
    423 	if (sc->sc_cid < 0) {
    424 		aprint_error_dev(self, "couldn't get crypto driver id\n");
    425 		pci_intr_disestablish(pc, sc->sc_ih);
    426 		return;
    427 	}
    428 
    429 	sc->sc_rng_need = RND_POOLBITS / NBBY;
    430 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_VM);
    431 
    432 	SIMPLEQ_INIT(&sc->sc_freequeue);
    433 	dmap = sc->sc_dmaa;
    434 	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
    435 		struct ubsec_q *q;
    436 
    437 		q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
    438 		    M_DEVBUF, M_NOWAIT);
    439 		if (q == NULL) {
    440 			aprint_error_dev(self, "can't allocate queue buffers\n");
    441 			break;
    442 		}
    443 
    444 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
    445 		    &dmap->d_alloc, 0)) {
    446 			aprint_error_dev(self, "can't allocate dma buffers\n");
    447 			free(q, M_DEVBUF);
    448 			break;
    449 		}
    450 		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
    451 
    452 		q->q_dma = dmap;
    453 		sc->sc_queuea[i] = q;
    454 
    455 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
    456 	}
    457 
    458 	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
    459 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
    460 	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
    461 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
    462 	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0,
    463 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
    464 	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0,
    465 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
    466 
    467 	/*
    468 	 * Reset Broadcom chip
    469 	 */
    470 	ubsec_reset_board(sc);
    471 
    472 	/*
    473 	 * Init Broadcom specific PCI settings
    474 	 */
    475 	ubsec_init_pciregs(pa);
    476 
    477 	/*
    478 	 * Init Broadcom chip
    479 	 */
    480 	ubsec_init_board(sc);
    481 
    482 #ifndef UBSEC_NO_RNG
    483 	if (sc->sc_flags & UBS_FLAGS_RNG) {
    484 		if (sc->sc_flags & UBS_FLAGS_RNG4)
    485 			sc->sc_statmask |= BS_STAT_MCR4_DONE;
    486 		else
    487 			sc->sc_statmask |= BS_STAT_MCR2_DONE;
    488 
    489 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
    490 		    &sc->sc_rng.rng_q.q_mcr, 0))
    491 			goto skip_rng;
    492 
    493 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
    494 		    &sc->sc_rng.rng_q.q_ctx, 0)) {
    495 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
    496 			goto skip_rng;
    497 		}
    498 
    499 		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
    500 		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
    501 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
    502 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
    503 			goto skip_rng;
    504 		}
    505 
    506 		rndsource_setcb(&sc->sc_rnd_source, ubsec_rng_get, sc);
    507 		rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
    508 				  RND_TYPE_RNG,
    509 				  RND_FLAG_NO_ESTIMATE|RND_FLAG_HASCB);
    510 		if (hz >= 100)
    511 			sc->sc_rnghz = hz / 100;
    512 		else
    513 			sc->sc_rnghz = 1;
    514 #ifdef __OpenBSD__
    515 		timeout_set(&sc->sc_rngto, ubsec_rng, sc);
    516 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
    517 #else
    518 		callout_init(&sc->sc_rngto, 0);
    519 		callout_setfunc(&sc->sc_rngto, ubsec_rng, sc);
    520 		callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
    521 #endif
    522  skip_rng:
    523 		if (sc->sc_rnghz)
    524 			aprint_normal_dev(self, "random number generator enabled\n");
    525 		else
    526 			aprint_error_dev(self, "WARNING: random number generator "
    527 			    "disabled\n");
    528 	}
    529 #endif /* UBSEC_NO_RNG */
    530 
    531 	if (sc->sc_flags & UBS_FLAGS_KEY) {
    532 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
    533 
    534 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
    535 				 ubsec_kprocess, sc);
    536 #if 0
    537 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
    538 				 ubsec_kprocess, sc);
    539 #endif
    540 	}
    541 }
    542 
    543 static int
    544 ubsec_detach(device_t self, int flags)
    545 {
    546 	struct ubsec_softc *sc = device_private(self);
    547 	struct ubsec_q *q, *qtmp;
    548 	volatile u_int32_t ctrl;
    549 
    550 	/* disable interrupts */
    551 	/* XXX wait/abort current ops? where is DMAERR enabled? */
    552 	ctrl = READ_REG(sc, BS_CTRL);
    553 
    554 	ctrl &= ~(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR);
    555 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
    556 		ctrl &= ~BS_CTRL_MCR4INT;
    557 
    558 	WRITE_REG(sc, BS_CTRL, ctrl);
    559 
    560 #ifndef UBSEC_NO_RNG
    561 	if (sc->sc_flags & UBS_FLAGS_RNG) {
    562 		callout_halt(&sc->sc_rngto, NULL);
    563 		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
    564 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
    565 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
    566 		rnd_detach_source(&sc->sc_rnd_source);
    567 	}
    568 #endif /* UBSEC_NO_RNG */
    569 
    570 	crypto_unregister_all(sc->sc_cid);
    571 
    572 	mutex_spin_enter(&sc->sc_mtx);
    573 
    574 	ubsec_totalreset(sc);  /* XXX leaves the chip running */
    575 
    576 	SIMPLEQ_FOREACH_SAFE(q, &sc->sc_freequeue, q_next, qtmp) {
    577 		ubsec_dma_free(sc, &q->q_dma->d_alloc);
    578 		free(q, M_DEVBUF);
    579 	}
    580 
    581 	mutex_spin_exit(&sc->sc_mtx);
    582 
    583 	if (sc->sc_ih != NULL) {
    584 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    585 		sc->sc_ih = NULL;
    586 	}
    587 
    588 	if (sc->sc_memsize != 0) {
    589 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
    590 		sc->sc_memsize = 0;
    591 	}
    592 
    593 	return 0;
    594 }
    595 
    596 MODULE(MODULE_CLASS_DRIVER, ubsec, "pci,opencrypto");
    597 
    598 #ifdef _MODULE
    599 #include "ioconf.c"
    600 #endif
    601 
    602 static int
    603 ubsec_modcmd(modcmd_t cmd, void *data)
    604 {
    605 	int error = 0;
    606 
    607 	switch (cmd) {
    608 	case MODULE_CMD_INIT:
    609 #ifdef _MODULE
    610 		error = config_init_component(cfdriver_ioconf_ubsec,
    611 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
    612 #endif
    613 		if (error == 0)
    614 			error = ubsec_sysctl_init();
    615 		return error;
    616 	case MODULE_CMD_FINI:
    617 		if (ubsec_sysctllog != NULL)
    618 			sysctl_teardown(&ubsec_sysctllog);
    619 #ifdef _MODULE
    620 		error = config_fini_component(cfdriver_ioconf_ubsec,
    621 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
    622 #endif
    623 		return error;
    624 	default:
    625 		return ENOTTY;
    626 	}
    627 }
    628 
    629 static int
    630 ubsec_sysctl_init(void)
    631 {
    632 	const struct sysctlnode *node = NULL;
    633 
    634 	ubsec_sysctllog = NULL;
    635 
    636 	sysctl_createv(&ubsec_sysctllog, 0, NULL, &node,
    637 		CTLFLAG_PERMANENT,
    638 		CTLTYPE_NODE, "ubsec",
    639 		SYSCTL_DESCR("ubsec opetions"),
    640 		NULL, 0, NULL, 0,
    641 		CTL_HW, CTL_CREATE, CTL_EOL);
    642 	sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
    643 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    644 		CTLTYPE_INT, "maxbatch",
    645 		SYSCTL_DESCR("max ops to batch w/o interrupt"),
    646 		NULL, 0, &ubsec_maxbatch, 0,
    647 		CTL_CREATE, CTL_EOL);
    648 	sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
    649 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    650 		CTLTYPE_INT, "maxaggr",
    651 		SYSCTL_DESCR("max ops to aggregate under one interrupt"),
    652 		NULL, 0, &ubsec_maxaggr, 0,
    653 		CTL_CREATE, CTL_EOL);
    654 
    655 	return 0;
    656 }
    657 
    658 /*
    659  * UBSEC Interrupt routine
    660  */
    661 static int
    662 ubsec_intr(void *arg)
    663 {
    664 	struct ubsec_softc *sc = arg;
    665 	volatile u_int32_t stat;
    666 	struct ubsec_q *q;
    667 	struct ubsec_dma *dmap;
    668 	int flags;
    669 	int npkts = 0, i;
    670 
    671 	mutex_spin_enter(&sc->sc_mtx);
    672 	stat = READ_REG(sc, BS_STAT);
    673 	stat &= sc->sc_statmask;
    674 	if (stat == 0) {
    675 		mutex_spin_exit(&sc->sc_mtx);
    676 		return (0);
    677 	}
    678 
    679 	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
    680 
    681 	/*
    682 	 * Check to see if we have any packets waiting for us
    683 	 */
    684 	if ((stat & BS_STAT_MCR1_DONE)) {
    685 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
    686 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
    687 			dmap = q->q_dma;
    688 
    689 			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
    690 				break;
    691 
    692 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
    693 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
    694 
    695 			npkts = q->q_nstacked_mcrs;
    696 			sc->sc_nqchip -= 1+npkts;
    697 			/*
    698 			 * search for further sc_qchip ubsec_q's that share
    699 			 * the same MCR, and complete them too, they must be
    700 			 * at the top.
    701 			 */
    702 			for (i = 0; i < npkts; i++) {
    703 				if(q->q_stacked_mcr[i])
    704 					ubsec_callback(sc, q->q_stacked_mcr[i]);
    705 				else
    706 					break;
    707 			}
    708 			ubsec_callback(sc, q);
    709 		}
    710 
    711 		/*
    712 		 * Don't send any more packet to chip if there has been
    713 		 * a DMAERR.
    714 		 */
    715 		if (!(stat & BS_STAT_DMAERR))
    716 			ubsec_feed(sc);
    717 	}
    718 
    719 	/*
    720 	 * Check to see if we have any key setups/rng's waiting for us
    721 	 */
    722 	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
    723 	    (stat & BS_STAT_MCR2_DONE)) {
    724 		struct ubsec_q2 *q2;
    725 		struct ubsec_mcr *mcr;
    726 
    727 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
    728 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
    729 
    730 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
    731 			    0, q2->q_mcr.dma_map->dm_mapsize,
    732 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    733 
    734 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
    735 
    736 			/* A bug in new devices requires to swap this field */
    737 			if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
    738 				flags = htole16(mcr->mcr_flags);
    739 			else
    740 				flags = mcr->mcr_flags;
    741 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
    742 				bus_dmamap_sync(sc->sc_dmat,
    743 				    q2->q_mcr.dma_map, 0,
    744 				    q2->q_mcr.dma_map->dm_mapsize,
    745 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    746 				break;
    747 			}
    748 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
    749 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
    750 			ubsec_callback2(sc, q2);
    751 			/*
    752 			 * Don't send any more packet to chip if there has been
    753 			 * a DMAERR.
    754 			 */
    755 			if (!(stat & BS_STAT_DMAERR))
    756 				ubsec_feed2(sc);
    757 		}
    758 	}
    759 	if ((sc->sc_flags & UBS_FLAGS_RNG4) && (stat & BS_STAT_MCR4_DONE)) {
    760 		struct ubsec_q2 *q2;
    761 		struct ubsec_mcr *mcr;
    762 
    763 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip4)) {
    764 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip4);
    765 
    766 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
    767 			    0, q2->q_mcr.dma_map->dm_mapsize,
    768 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    769 
    770 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
    771 
    772 			/* A bug in new devices requires to swap this field */
    773 			flags = htole16(mcr->mcr_flags);
    774 
    775 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
    776 				bus_dmamap_sync(sc->sc_dmat,
    777 				    q2->q_mcr.dma_map, 0,
    778 				    q2->q_mcr.dma_map->dm_mapsize,
    779 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    780 				break;
    781 			}
    782 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip4, q_next);
    783 			ubsec_callback2(sc, q2);
    784 			/*
    785 			 * Don't send any more packet to chip if there has been
    786 			 * a DMAERR.
    787 			 */
    788 			if (!(stat & BS_STAT_DMAERR))
    789 				ubsec_feed4(sc);
    790 		}
    791 	}
    792 
    793 	/*
    794 	 * Check to see if we got any DMA Error
    795 	 */
    796 	if (stat & BS_STAT_DMAERR) {
    797 #ifdef UBSEC_DEBUG
    798 		if (ubsec_debug) {
    799 			volatile u_int32_t a = READ_REG(sc, BS_ERR);
    800 
    801 			printf("%s: dmaerr %s@%08x\n", device_xname(sc->sc_dev),
    802 			    (a & BS_ERR_READ) ? "read" : "write",
    803 			       a & BS_ERR_ADDR);
    804 		}
    805 #endif /* UBSEC_DEBUG */
    806 		ubsecstats.hst_dmaerr++;
    807 		ubsec_totalreset(sc);
    808 		ubsec_feed(sc);
    809 	}
    810 
    811 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
    812 		int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
    813 #ifdef UBSEC_DEBUG
    814 		if (ubsec_debug)
    815 			printf("%s: wakeup crypto (%x)\n", device_xname(sc->sc_dev),
    816 				sc->sc_needwakeup);
    817 #endif /* UBSEC_DEBUG */
    818 		sc->sc_needwakeup &= ~wkeup;
    819 		crypto_unblock(sc->sc_cid, wkeup);
    820 	}
    821 	mutex_spin_exit(&sc->sc_mtx);
    822 	return (1);
    823 }
    824 
    825 /*
    826  * ubsec_feed() - aggregate and post requests to chip
    827  * OpenBSD comments:
    828  *		  It is assumed that the caller set splnet()
    829  */
    830 static void
    831 ubsec_feed(struct ubsec_softc *sc)
    832 {
    833 	struct ubsec_q *q, *q2;
    834 	int npkts, i;
    835 	void *v;
    836 	u_int32_t stat;
    837 #ifdef UBSEC_DEBUG
    838 	static int max;
    839 #endif /* UBSEC_DEBUG */
    840 
    841 	npkts = sc->sc_nqueue;
    842 	if (npkts > ubsecstats.hst_maxqueue)
    843 		ubsecstats.hst_maxqueue = npkts;
    844 	if (npkts < 2)
    845 		goto feed1;
    846 
    847 	/*
    848 	 * Decide how many ops to combine in a single MCR.  We cannot
    849 	 * aggregate more than UBS_MAX_AGGR because this is the number
    850 	 * of slots defined in the data structure.  Otherwise we clamp
    851 	 * based on the tunable parameter ubsec_maxaggr.  Note that
    852 	 * aggregation can happen in two ways: either by batching ops
    853 	 * from above or because the h/w backs up and throttles us.
    854 	 * Aggregating ops reduces the number of interrupts to the host
    855 	 * but also (potentially) increases the latency for processing
    856 	 * completed ops as we only get an interrupt when all aggregated
    857 	 * ops have completed.
    858 	 */
    859 	if (npkts > sc->sc_maxaggr)
    860 		npkts = sc->sc_maxaggr;
    861 	if (npkts > ubsec_maxaggr)
    862 		npkts = ubsec_maxaggr;
    863 	if (npkts > ubsecstats.hst_maxbatch)
    864 		ubsecstats.hst_maxbatch = npkts;
    865 	if (npkts < 2)
    866 		goto feed1;
    867 	ubsecstats.hst_totbatch += npkts-1;
    868 
    869 	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
    870 		if (stat & BS_STAT_DMAERR) {
    871 			ubsec_totalreset(sc);
    872 			ubsecstats.hst_dmaerr++;
    873 		} else {
    874 			ubsecstats.hst_mcr1full++;
    875 		}
    876 		return;
    877 	}
    878 
    879 #ifdef UBSEC_DEBUG
    880 	if (ubsec_debug)
    881 	    printf("merging %d records\n", npkts);
    882 	/* XXX temporary aggregation statistics reporting code */
    883 	if (max < npkts) {
    884 		max = npkts;
    885 		printf("%s: new max aggregate %d\n", device_xname(sc->sc_dev), max);
    886 	}
    887 #endif /* UBSEC_DEBUG */
    888 
    889 	q = SIMPLEQ_FIRST(&sc->sc_queue);
    890 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
    891 	--sc->sc_nqueue;
    892 
    893 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
    894 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
    895 	if (q->q_dst_map != NULL)
    896 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
    897 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
    898 
    899 	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
    900 
    901 	for (i = 0; i < q->q_nstacked_mcrs; i++) {
    902 		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
    903 		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
    904 		    0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
    905 		if (q2->q_dst_map != NULL)
    906 			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
    907 			    0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
    908 		q2= SIMPLEQ_FIRST(&sc->sc_queue);
    909 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
    910 		--sc->sc_nqueue;
    911 
    912 		v = ((void *)&q2->q_dma->d_dma->d_mcr);
    913 		v = (char*)v + (sizeof(struct ubsec_mcr) -
    914 				 sizeof(struct ubsec_mcr_add));
    915 		memcpy(&q->q_dma->d_dma->d_mcradd[i], v, sizeof(struct ubsec_mcr_add));
    916 		q->q_stacked_mcr[i] = q2;
    917 	}
    918 	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
    919 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
    920 	sc->sc_nqchip += npkts;
    921 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
    922 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
    923 	bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
    924 	    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
    925 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    926 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
    927 	    offsetof(struct ubsec_dmachunk, d_mcr));
    928 	return;
    929 
    930 feed1:
    931 	while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
    932 		if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
    933 			if (stat & BS_STAT_DMAERR) {
    934 				ubsec_totalreset(sc);
    935 				ubsecstats.hst_dmaerr++;
    936 			} else {
    937 				ubsecstats.hst_mcr1full++;
    938 			}
    939 			break;
    940 		}
    941 
    942 		q = SIMPLEQ_FIRST(&sc->sc_queue);
    943 
    944 		bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
    945 		    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
    946 		if (q->q_dst_map != NULL)
    947 			bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
    948 			    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
    949 		bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
    950 		    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
    951 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    952 
    953 		WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
    954 		    offsetof(struct ubsec_dmachunk, d_mcr));
    955 #ifdef UBSEC_DEBUG
    956 		if (ubsec_debug)
    957 			printf("feed: q->chip %p %08x stat %08x\n",
    958  		    	       q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
    959 			       stat);
    960 #endif /* UBSEC_DEBUG */
    961 		q = SIMPLEQ_FIRST(&sc->sc_queue);
    962 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
    963 		--sc->sc_nqueue;
    964 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
    965 		sc->sc_nqchip++;
    966 	}
    967 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
    968 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
    969 }
    970 
    971 /*
    972  * Allocate a new 'session' and return an encoded session id.  'sidp'
    973  * contains our registration id, and should contain an encoded session
    974  * id on successful allocation.
    975  */
    976 static int
    977 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
    978 {
    979 	struct cryptoini *c, *encini = NULL, *macini = NULL;
    980 	struct ubsec_softc *sc;
    981 	struct ubsec_session *ses = NULL;
    982 	MD5_CTX md5ctx;
    983 	SHA1_CTX sha1ctx;
    984 	int i, sesn;
    985 
    986 	sc = arg;
    987 	KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
    988 
    989 	if (sidp == NULL || cri == NULL || sc == NULL)
    990 		return (EINVAL);
    991 
    992 	for (c = cri; c != NULL; c = c->cri_next) {
    993 		if (c->cri_alg == CRYPTO_MD5_HMAC_96 ||
    994 		    c->cri_alg == CRYPTO_SHA1_HMAC_96) {
    995 			if (macini)
    996 				return (EINVAL);
    997 			macini = c;
    998 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
    999 		    c->cri_alg == CRYPTO_3DES_CBC) {
   1000 			if (encini)
   1001 				return (EINVAL);
   1002 			encini = c;
   1003 		} else
   1004 			return (EINVAL);
   1005 	}
   1006 	if (encini == NULL && macini == NULL)
   1007 		return (EINVAL);
   1008 
   1009 	if (sc->sc_sessions == NULL) {
   1010 		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
   1011 		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
   1012 		if (ses == NULL)
   1013 			return (ENOMEM);
   1014 		sesn = 0;
   1015 		sc->sc_nsessions = 1;
   1016 	} else {
   1017 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
   1018 			if (sc->sc_sessions[sesn].ses_used == 0) {
   1019 				ses = &sc->sc_sessions[sesn];
   1020 				break;
   1021 			}
   1022 		}
   1023 
   1024 		if (ses == NULL) {
   1025 			sesn = sc->sc_nsessions;
   1026 			ses = (struct ubsec_session *)malloc((sesn + 1) *
   1027 			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
   1028 			if (ses == NULL)
   1029 				return (ENOMEM);
   1030 			memcpy(ses, sc->sc_sessions, sesn *
   1031 			    sizeof(struct ubsec_session));
   1032 			memset(sc->sc_sessions, 0, sesn *
   1033 			    sizeof(struct ubsec_session));
   1034 			free(sc->sc_sessions, M_DEVBUF);
   1035 			sc->sc_sessions = ses;
   1036 			ses = &sc->sc_sessions[sesn];
   1037 			sc->sc_nsessions++;
   1038 		}
   1039 	}
   1040 
   1041 	memset(ses, 0, sizeof(struct ubsec_session));
   1042 	ses->ses_used = 1;
   1043 	if (encini) {
   1044 		/* get an IV, network byte order */
   1045 #ifdef __NetBSD__
   1046 		cprng_fast(ses->ses_iv, sizeof(ses->ses_iv));
   1047 #else
   1048 		get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv));
   1049 #endif
   1050 
   1051 		/* Go ahead and compute key in ubsec's byte order */
   1052 		if (encini->cri_alg == CRYPTO_DES_CBC) {
   1053 			memcpy(&ses->ses_deskey[0], encini->cri_key, 8);
   1054 			memcpy(&ses->ses_deskey[2], encini->cri_key, 8);
   1055 			memcpy(&ses->ses_deskey[4], encini->cri_key, 8);
   1056 		} else
   1057 			memcpy(ses->ses_deskey, encini->cri_key, 24);
   1058 
   1059 		SWAP32(ses->ses_deskey[0]);
   1060 		SWAP32(ses->ses_deskey[1]);
   1061 		SWAP32(ses->ses_deskey[2]);
   1062 		SWAP32(ses->ses_deskey[3]);
   1063 		SWAP32(ses->ses_deskey[4]);
   1064 		SWAP32(ses->ses_deskey[5]);
   1065 	}
   1066 
   1067 	if (macini) {
   1068 		for (i = 0; i < macini->cri_klen / 8; i++)
   1069 			macini->cri_key[i] ^= HMAC_IPAD_VAL;
   1070 
   1071 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
   1072 			MD5Init(&md5ctx);
   1073 			MD5Update(&md5ctx, macini->cri_key,
   1074 			    macini->cri_klen / 8);
   1075 			MD5Update(&md5ctx, hmac_ipad_buffer,
   1076 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
   1077 			memcpy(ses->ses_hminner, md5ctx.state,
   1078 			    sizeof(md5ctx.state));
   1079 		} else {
   1080 			SHA1Init(&sha1ctx);
   1081 			SHA1Update(&sha1ctx, macini->cri_key,
   1082 			    macini->cri_klen / 8);
   1083 			SHA1Update(&sha1ctx, hmac_ipad_buffer,
   1084 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
   1085 			memcpy(ses->ses_hminner, sha1ctx.state,
   1086 			    sizeof(sha1ctx.state));
   1087 		}
   1088 
   1089 		for (i = 0; i < macini->cri_klen / 8; i++)
   1090 			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
   1091 
   1092 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
   1093 			MD5Init(&md5ctx);
   1094 			MD5Update(&md5ctx, macini->cri_key,
   1095 			    macini->cri_klen / 8);
   1096 			MD5Update(&md5ctx, hmac_opad_buffer,
   1097 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
   1098 			memcpy(ses->ses_hmouter, md5ctx.state,
   1099 			    sizeof(md5ctx.state));
   1100 		} else {
   1101 			SHA1Init(&sha1ctx);
   1102 			SHA1Update(&sha1ctx, macini->cri_key,
   1103 			    macini->cri_klen / 8);
   1104 			SHA1Update(&sha1ctx, hmac_opad_buffer,
   1105 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
   1106 			memcpy(ses->ses_hmouter, sha1ctx.state,
   1107 			    sizeof(sha1ctx.state));
   1108 		}
   1109 
   1110 		for (i = 0; i < macini->cri_klen / 8; i++)
   1111 			macini->cri_key[i] ^= HMAC_OPAD_VAL;
   1112 	}
   1113 
   1114 	*sidp = UBSEC_SID(device_unit(sc->sc_dev), sesn);
   1115 	return (0);
   1116 }
   1117 
   1118 /*
   1119  * Deallocate a session.
   1120  */
   1121 static int
   1122 ubsec_freesession(void *arg, u_int64_t tid)
   1123 {
   1124 	struct ubsec_softc *sc;
   1125 	int session;
   1126 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
   1127 
   1128 	sc = arg;
   1129 	KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
   1130 
   1131 	session = UBSEC_SESSION(sid);
   1132 	if (session >= sc->sc_nsessions)
   1133 		return (EINVAL);
   1134 
   1135 	memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session]));
   1136 	return (0);
   1137 }
   1138 
   1139 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
   1140 static void
   1141 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
   1142 {
   1143 	struct ubsec_operand *op = arg;
   1144 
   1145 	KASSERT(nsegs <= UBS_MAX_SCATTER
   1146 		/*, ("Too many DMA segments returned when mapping operand")*/);
   1147 #ifdef UBSEC_DEBUG
   1148 	if (ubsec_debug)
   1149 		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
   1150 			(u_int) mapsize, nsegs);
   1151 #endif
   1152 	op->mapsize = mapsize;
   1153 	op->nsegs = nsegs;
   1154 	memcpy(op->segs, seg, nsegs * sizeof (seg[0]));
   1155 }
   1156 #endif
   1157 
   1158 static int
   1159 ubsec_process(void *arg, struct cryptop *crp, int hint)
   1160 {
   1161 	struct ubsec_q *q = NULL;
   1162 #ifdef	__OpenBSD__
   1163 	int card;
   1164 #endif
   1165 	int err = 0, i, j, nicealign;
   1166 	struct ubsec_softc *sc;
   1167 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
   1168 	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
   1169 	int sskip, dskip, stheend, dtheend;
   1170 	int16_t coffset;
   1171 	struct ubsec_session *ses;
   1172 	struct ubsec_pktctx ctx;
   1173 	struct ubsec_dma *dmap = NULL;
   1174 
   1175 	sc = arg;
   1176 	KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/);
   1177 
   1178 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
   1179 		ubsecstats.hst_invalid++;
   1180 		return (EINVAL);
   1181 	}
   1182 	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
   1183 		ubsecstats.hst_badsession++;
   1184 		return (EINVAL);
   1185 	}
   1186 
   1187 	mutex_spin_enter(&sc->sc_mtx);
   1188 
   1189 	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
   1190 		ubsecstats.hst_queuefull++;
   1191 		sc->sc_needwakeup |= CRYPTO_SYMQ;
   1192 		mutex_spin_exit(&sc->sc_mtx);
   1193 		return(ERESTART);
   1194 	}
   1195 
   1196 	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
   1197 	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
   1198 	mutex_spin_exit(&sc->sc_mtx);
   1199 
   1200 	dmap = q->q_dma; /* Save dma pointer */
   1201 	memset(q, 0, sizeof(struct ubsec_q));
   1202 	memset(&ctx, 0, sizeof(ctx));
   1203 
   1204 	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
   1205 	q->q_dma = dmap;
   1206 	ses = &sc->sc_sessions[q->q_sesn];
   1207 
   1208 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
   1209 		q->q_src_m = (struct mbuf *)crp->crp_buf;
   1210 		q->q_dst_m = (struct mbuf *)crp->crp_buf;
   1211 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
   1212 		q->q_src_io = (struct uio *)crp->crp_buf;
   1213 		q->q_dst_io = (struct uio *)crp->crp_buf;
   1214 	} else {
   1215 		ubsecstats.hst_badflags++;
   1216 		err = EINVAL;
   1217 		goto errout;	/* XXX we don't handle contiguous blocks! */
   1218 	}
   1219 
   1220 	memset(&dmap->d_dma->d_mcr, 0, sizeof(struct ubsec_mcr));
   1221 
   1222 	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
   1223 	dmap->d_dma->d_mcr.mcr_flags = 0;
   1224 	q->q_crp = crp;
   1225 
   1226 	crd1 = crp->crp_desc;
   1227 	if (crd1 == NULL) {
   1228 		ubsecstats.hst_nodesc++;
   1229 		err = EINVAL;
   1230 		goto errout;
   1231 	}
   1232 	crd2 = crd1->crd_next;
   1233 
   1234 	if (crd2 == NULL) {
   1235 		if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
   1236 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) {
   1237 			maccrd = crd1;
   1238 			enccrd = NULL;
   1239 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
   1240 		    crd1->crd_alg == CRYPTO_3DES_CBC) {
   1241 			maccrd = NULL;
   1242 			enccrd = crd1;
   1243 		} else {
   1244 			ubsecstats.hst_badalg++;
   1245 			err = EINVAL;
   1246 			goto errout;
   1247 		}
   1248 	} else {
   1249 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
   1250 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) &&
   1251 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
   1252 			crd2->crd_alg == CRYPTO_3DES_CBC) &&
   1253 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
   1254 			maccrd = crd1;
   1255 			enccrd = crd2;
   1256 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
   1257 		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
   1258 		    (crd2->crd_alg == CRYPTO_MD5_HMAC_96 ||
   1259 			crd2->crd_alg == CRYPTO_SHA1_HMAC_96) &&
   1260 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
   1261 			enccrd = crd1;
   1262 			maccrd = crd2;
   1263 		} else {
   1264 			/*
   1265 			 * We cannot order the ubsec as requested
   1266 			 */
   1267 			ubsecstats.hst_badalg++;
   1268 			err = EINVAL;
   1269 			goto errout;
   1270 		}
   1271 	}
   1272 
   1273 	if (enccrd) {
   1274 		encoffset = enccrd->crd_skip;
   1275 		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
   1276 
   1277 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
   1278 			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
   1279 
   1280 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
   1281 				memcpy(ctx.pc_iv, enccrd->crd_iv, 8);
   1282 			else {
   1283 				ctx.pc_iv[0] = ses->ses_iv[0];
   1284 				ctx.pc_iv[1] = ses->ses_iv[1];
   1285 			}
   1286 
   1287 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
   1288 				if (crp->crp_flags & CRYPTO_F_IMBUF)
   1289 					m_copyback(q->q_src_m,
   1290 					    enccrd->crd_inject,
   1291 					    8, (void *)ctx.pc_iv);
   1292 				else if (crp->crp_flags & CRYPTO_F_IOV)
   1293 					cuio_copyback(q->q_src_io,
   1294 					    enccrd->crd_inject,
   1295 					    8, (void *)ctx.pc_iv);
   1296 			}
   1297 		} else {
   1298 			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
   1299 
   1300 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
   1301 				memcpy(ctx.pc_iv, enccrd->crd_iv, 8);
   1302 			else if (crp->crp_flags & CRYPTO_F_IMBUF)
   1303 				m_copydata(q->q_src_m, enccrd->crd_inject,
   1304 				    8, (void *)ctx.pc_iv);
   1305 			else if (crp->crp_flags & CRYPTO_F_IOV)
   1306 				cuio_copydata(q->q_src_io,
   1307 				    enccrd->crd_inject, 8,
   1308 				    (void *)ctx.pc_iv);
   1309 		}
   1310 
   1311 		ctx.pc_deskey[0] = ses->ses_deskey[0];
   1312 		ctx.pc_deskey[1] = ses->ses_deskey[1];
   1313 		ctx.pc_deskey[2] = ses->ses_deskey[2];
   1314 		ctx.pc_deskey[3] = ses->ses_deskey[3];
   1315 		ctx.pc_deskey[4] = ses->ses_deskey[4];
   1316 		ctx.pc_deskey[5] = ses->ses_deskey[5];
   1317 		SWAP32(ctx.pc_iv[0]);
   1318 		SWAP32(ctx.pc_iv[1]);
   1319 	}
   1320 
   1321 	if (maccrd) {
   1322 		macoffset = maccrd->crd_skip;
   1323 
   1324 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC_96)
   1325 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
   1326 		else
   1327 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
   1328 
   1329 		for (i = 0; i < 5; i++) {
   1330 			ctx.pc_hminner[i] = ses->ses_hminner[i];
   1331 			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
   1332 
   1333 			HTOLE32(ctx.pc_hminner[i]);
   1334 			HTOLE32(ctx.pc_hmouter[i]);
   1335 		}
   1336 	}
   1337 
   1338 	if (enccrd && maccrd) {
   1339 		/*
   1340 		 * ubsec cannot handle packets where the end of encryption
   1341 		 * and authentication are not the same, or where the
   1342 		 * encrypted part begins before the authenticated part.
   1343 		 */
   1344 		if ((encoffset + enccrd->crd_len) !=
   1345 		    (macoffset + maccrd->crd_len)) {
   1346 			ubsecstats.hst_lenmismatch++;
   1347 			err = EINVAL;
   1348 			goto errout;
   1349 		}
   1350 		if (enccrd->crd_skip < maccrd->crd_skip) {
   1351 			ubsecstats.hst_skipmismatch++;
   1352 			err = EINVAL;
   1353 			goto errout;
   1354 		}
   1355 		sskip = maccrd->crd_skip;
   1356 		cpskip = dskip = enccrd->crd_skip;
   1357 		stheend = maccrd->crd_len;
   1358 		dtheend = enccrd->crd_len;
   1359 		coffset = enccrd->crd_skip - maccrd->crd_skip;
   1360 		cpoffset = cpskip + dtheend;
   1361 #ifdef UBSEC_DEBUG
   1362 		if (ubsec_debug) {
   1363 			printf("mac: skip %d, len %d, inject %d\n",
   1364 			       maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
   1365 			printf("enc: skip %d, len %d, inject %d\n",
   1366 			       enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
   1367 			printf("src: skip %d, len %d\n", sskip, stheend);
   1368 			printf("dst: skip %d, len %d\n", dskip, dtheend);
   1369 			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
   1370 			       coffset, stheend, cpskip, cpoffset);
   1371 		}
   1372 #endif
   1373 	} else {
   1374 		cpskip = dskip = sskip = macoffset + encoffset;
   1375 		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
   1376 		cpoffset = cpskip + dtheend;
   1377 		coffset = 0;
   1378 	}
   1379 	ctx.pc_offset = htole16(coffset >> 2);
   1380 
   1381 	/* XXX FIXME: jonathan asks, what the heck's that 0xfff0?  */
   1382 	if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
   1383 		0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
   1384 		err = ENOMEM;
   1385 		goto errout;
   1386 	}
   1387 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
   1388 		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
   1389 		    q->q_src_m, BUS_DMA_NOWAIT) != 0) {
   1390 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
   1391 			q->q_src_map = NULL;
   1392 			ubsecstats.hst_noload++;
   1393 			err = ENOMEM;
   1394 			goto errout;
   1395 		}
   1396 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
   1397 		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
   1398 		    q->q_src_io, BUS_DMA_NOWAIT) != 0) {
   1399 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
   1400 			q->q_src_map = NULL;
   1401 			ubsecstats.hst_noload++;
   1402 			err = ENOMEM;
   1403 			goto errout;
   1404 		}
   1405 	}
   1406 	nicealign = ubsec_dmamap_aligned(q->q_src_map);
   1407 
   1408 	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
   1409 
   1410 #ifdef UBSEC_DEBUG
   1411 	if (ubsec_debug)
   1412 		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
   1413 #endif
   1414 	for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
   1415 		struct ubsec_pktbuf *pb;
   1416 		bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
   1417 		bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
   1418 
   1419 		if (sskip >= packl) {
   1420 			sskip -= packl;
   1421 			continue;
   1422 		}
   1423 
   1424 		packl -= sskip;
   1425 		packp += sskip;
   1426 		sskip = 0;
   1427 
   1428 		if (packl > 0xfffc) {
   1429 			err = EIO;
   1430 			goto errout;
   1431 		}
   1432 
   1433 		if (j == 0)
   1434 			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
   1435 		else
   1436 			pb = &dmap->d_dma->d_sbuf[j - 1];
   1437 
   1438 		pb->pb_addr = htole32(packp);
   1439 
   1440 		if (stheend) {
   1441 			if (packl > stheend) {
   1442 				pb->pb_len = htole32(stheend);
   1443 				stheend = 0;
   1444 			} else {
   1445 				pb->pb_len = htole32(packl);
   1446 				stheend -= packl;
   1447 			}
   1448 		} else
   1449 			pb->pb_len = htole32(packl);
   1450 
   1451 		if ((i + 1) == q->q_src_map->dm_nsegs)
   1452 			pb->pb_next = 0;
   1453 		else
   1454 			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
   1455 			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
   1456 		j++;
   1457 	}
   1458 
   1459 	if (enccrd == NULL && maccrd != NULL) {
   1460 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
   1461 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
   1462 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
   1463 		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
   1464 #ifdef UBSEC_DEBUG
   1465 		if (ubsec_debug)
   1466 			printf("opkt: %x %x %x\n",
   1467 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
   1468 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
   1469 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
   1470 
   1471 #endif
   1472 	} else {
   1473 		if (crp->crp_flags & CRYPTO_F_IOV) {
   1474 			if (!nicealign) {
   1475 				ubsecstats.hst_iovmisaligned++;
   1476 				err = EINVAL;
   1477 				goto errout;
   1478 			}
   1479 			/* XXX: ``what the heck's that'' 0xfff0? */
   1480 			if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
   1481 			    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
   1482 			    &q->q_dst_map) != 0) {
   1483 				ubsecstats.hst_nomap++;
   1484 				err = ENOMEM;
   1485 				goto errout;
   1486 			}
   1487 			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
   1488 			    q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
   1489 				bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
   1490 				q->q_dst_map = NULL;
   1491 				ubsecstats.hst_noload++;
   1492 				err = ENOMEM;
   1493 				goto errout;
   1494 			}
   1495 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
   1496 			if (nicealign) {
   1497 				q->q_dst_m = q->q_src_m;
   1498 				q->q_dst_map = q->q_src_map;
   1499 			} else {
   1500 				int totlen, len;
   1501 				struct mbuf *m, *top, **mp;
   1502 
   1503 				ubsecstats.hst_unaligned++;
   1504 				totlen = q->q_src_map->dm_mapsize;
   1505 				if (q->q_src_m->m_flags & M_PKTHDR) {
   1506 					len = MHLEN;
   1507 					MGETHDR(m, M_DONTWAIT, MT_DATA);
   1508 					/*XXX FIXME: m_dup_pkthdr */
   1509 					if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
   1510 						m_free(m);
   1511 						m = NULL;
   1512 					}
   1513 				} else {
   1514 					len = MLEN;
   1515 					MGET(m, M_DONTWAIT, MT_DATA);
   1516 				}
   1517 				if (m == NULL) {
   1518 					ubsecstats.hst_nombuf++;
   1519 					err = sc->sc_nqueue ? ERESTART : ENOMEM;
   1520 					goto errout;
   1521 				}
   1522 				if (len == MHLEN)
   1523 				  /*XXX was M_DUP_PKTHDR*/
   1524 				  M_COPY_PKTHDR(m, q->q_src_m);
   1525 				if (totlen >= MINCLSIZE) {
   1526 					MCLGET(m, M_DONTWAIT);
   1527 					if ((m->m_flags & M_EXT) == 0) {
   1528 						m_free(m);
   1529 						ubsecstats.hst_nomcl++;
   1530 						err = sc->sc_nqueue ? ERESTART : ENOMEM;
   1531 						goto errout;
   1532 					}
   1533 					len = MCLBYTES;
   1534 				}
   1535 				m->m_len = len;
   1536 				top = NULL;
   1537 				mp = &top;
   1538 
   1539 				while (totlen > 0) {
   1540 					if (top) {
   1541 						MGET(m, M_DONTWAIT, MT_DATA);
   1542 						if (m == NULL) {
   1543 							m_freem(top);
   1544 							ubsecstats.hst_nombuf++;
   1545 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
   1546 							goto errout;
   1547 						}
   1548 						len = MLEN;
   1549 					}
   1550 					if (top && totlen >= MINCLSIZE) {
   1551 						MCLGET(m, M_DONTWAIT);
   1552 						if ((m->m_flags & M_EXT) == 0) {
   1553 							*mp = m;
   1554 							m_freem(top);
   1555 							ubsecstats.hst_nomcl++;
   1556 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
   1557 							goto errout;
   1558 						}
   1559 						len = MCLBYTES;
   1560 					}
   1561 					m->m_len = len = min(totlen, len);
   1562 					totlen -= len;
   1563 					*mp = m;
   1564 					mp = &m->m_next;
   1565 				}
   1566 				q->q_dst_m = top;
   1567 				ubsec_mcopy(q->q_src_m, q->q_dst_m,
   1568 				    cpskip, cpoffset);
   1569 				/* XXX again, what the heck is that 0xfff0? */
   1570 				if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
   1571 				    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
   1572 				    &q->q_dst_map) != 0) {
   1573 					ubsecstats.hst_nomap++;
   1574 					err = ENOMEM;
   1575 					goto errout;
   1576 				}
   1577 				if (bus_dmamap_load_mbuf(sc->sc_dmat,
   1578 				    q->q_dst_map, q->q_dst_m,
   1579 				    BUS_DMA_NOWAIT) != 0) {
   1580 					bus_dmamap_destroy(sc->sc_dmat,
   1581 					q->q_dst_map);
   1582 					q->q_dst_map = NULL;
   1583 					ubsecstats.hst_noload++;
   1584 					err = ENOMEM;
   1585 					goto errout;
   1586 				}
   1587 			}
   1588 		} else {
   1589 			ubsecstats.hst_badflags++;
   1590 			err = EINVAL;
   1591 			goto errout;
   1592 		}
   1593 
   1594 #ifdef UBSEC_DEBUG
   1595 		if (ubsec_debug)
   1596 			printf("dst skip: %d\n", dskip);
   1597 #endif
   1598 		for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
   1599 			struct ubsec_pktbuf *pb;
   1600 			bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
   1601 			bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
   1602 
   1603 			if (dskip >= packl) {
   1604 				dskip -= packl;
   1605 				continue;
   1606 			}
   1607 
   1608 			packl -= dskip;
   1609 			packp += dskip;
   1610 			dskip = 0;
   1611 
   1612 			if (packl > 0xfffc) {
   1613 				err = EIO;
   1614 				goto errout;
   1615 			}
   1616 
   1617 			if (j == 0)
   1618 				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
   1619 			else
   1620 				pb = &dmap->d_dma->d_dbuf[j - 1];
   1621 
   1622 			pb->pb_addr = htole32(packp);
   1623 
   1624 			if (dtheend) {
   1625 				if (packl > dtheend) {
   1626 					pb->pb_len = htole32(dtheend);
   1627 					dtheend = 0;
   1628 				} else {
   1629 					pb->pb_len = htole32(packl);
   1630 					dtheend -= packl;
   1631 				}
   1632 			} else
   1633 				pb->pb_len = htole32(packl);
   1634 
   1635 			if ((i + 1) == q->q_dst_map->dm_nsegs) {
   1636 				if (maccrd)
   1637 					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
   1638 					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
   1639 				else
   1640 					pb->pb_next = 0;
   1641 			} else
   1642 				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
   1643 				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
   1644 			j++;
   1645 		}
   1646 	}
   1647 
   1648 	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
   1649 	    offsetof(struct ubsec_dmachunk, d_ctx));
   1650 
   1651 	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
   1652 		struct ubsec_pktctx_long *ctxl;
   1653 
   1654 		ctxl = (struct ubsec_pktctx_long *)((char *)dmap->d_alloc.dma_vaddr +
   1655 		    offsetof(struct ubsec_dmachunk, d_ctx));
   1656 
   1657 		/* transform small context into long context */
   1658 		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
   1659 		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
   1660 		ctxl->pc_flags = ctx.pc_flags;
   1661 		ctxl->pc_offset = ctx.pc_offset;
   1662 		for (i = 0; i < 6; i++)
   1663 			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
   1664 		for (i = 0; i < 5; i++)
   1665 			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
   1666 		for (i = 0; i < 5; i++)
   1667 			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
   1668 		ctxl->pc_iv[0] = ctx.pc_iv[0];
   1669 		ctxl->pc_iv[1] = ctx.pc_iv[1];
   1670 	} else
   1671 		memcpy((char *)dmap->d_alloc.dma_vaddr +
   1672 		    offsetof(struct ubsec_dmachunk, d_ctx), &ctx,
   1673 		    sizeof(struct ubsec_pktctx));
   1674 
   1675 	mutex_spin_enter(&sc->sc_mtx);
   1676 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
   1677 	sc->sc_nqueue++;
   1678 	ubsecstats.hst_ipackets++;
   1679 	ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
   1680 	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
   1681 		ubsec_feed(sc);
   1682 	mutex_spin_exit(&sc->sc_mtx);
   1683 	return (0);
   1684 
   1685 errout:
   1686 	if (q != NULL) {
   1687 		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
   1688 			m_freem(q->q_dst_m);
   1689 
   1690 		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
   1691 			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
   1692 			bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
   1693 		}
   1694 		if (q->q_src_map != NULL) {
   1695 			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
   1696 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
   1697 		}
   1698 
   1699 		mutex_spin_enter(&sc->sc_mtx);
   1700 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
   1701 		mutex_spin_exit(&sc->sc_mtx);
   1702 	}
   1703 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
   1704 	if (err == EINVAL)
   1705 		ubsecstats.hst_invalid++;
   1706 	else
   1707 		ubsecstats.hst_nomem++;
   1708 #endif
   1709 	if (err != ERESTART) {
   1710 		crp->crp_etype = err;
   1711 		crypto_done(crp);
   1712 	} else {
   1713 		sc->sc_needwakeup |= CRYPTO_SYMQ;
   1714 	}
   1715 	return (err);
   1716 }
   1717 
   1718 static void
   1719 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
   1720 {
   1721 	struct cryptop *crp = (struct cryptop *)q->q_crp;
   1722 	struct cryptodesc *crd;
   1723 	struct ubsec_dma *dmap = q->q_dma;
   1724 
   1725 	ubsecstats.hst_opackets++;
   1726 	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
   1727 
   1728 	bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
   1729 	    dmap->d_alloc.dma_map->dm_mapsize,
   1730 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1731 	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
   1732 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
   1733 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1734 		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
   1735 		bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
   1736 	}
   1737 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
   1738 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1739 	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
   1740 	bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
   1741 
   1742 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
   1743 		m_freem(q->q_src_m);
   1744 		crp->crp_buf = (void *)q->q_dst_m;
   1745 	}
   1746 
   1747 	/* copy out IV for future use */
   1748 	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
   1749 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
   1750 			if (crd->crd_alg != CRYPTO_DES_CBC &&
   1751 			    crd->crd_alg != CRYPTO_3DES_CBC)
   1752 				continue;
   1753 			if (crp->crp_flags & CRYPTO_F_IMBUF)
   1754 				m_copydata((struct mbuf *)crp->crp_buf,
   1755 				    crd->crd_skip + crd->crd_len - 8, 8,
   1756 				    (void *)sc->sc_sessions[q->q_sesn].ses_iv);
   1757 			else if (crp->crp_flags & CRYPTO_F_IOV) {
   1758 				cuio_copydata((struct uio *)crp->crp_buf,
   1759 				    crd->crd_skip + crd->crd_len - 8, 8,
   1760 				    (void *)sc->sc_sessions[q->q_sesn].ses_iv);
   1761 			}
   1762 			break;
   1763 		}
   1764 	}
   1765 
   1766 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
   1767 		if (crd->crd_alg != CRYPTO_MD5_HMAC_96 &&
   1768 		    crd->crd_alg != CRYPTO_SHA1_HMAC_96)
   1769 			continue;
   1770 		if (crp->crp_flags & CRYPTO_F_IMBUF)
   1771 			m_copyback((struct mbuf *)crp->crp_buf,
   1772 			    crd->crd_inject, 12,
   1773 			    (void *)dmap->d_dma->d_macbuf);
   1774 		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
   1775 			bcopy((void *)dmap->d_dma->d_macbuf,
   1776 			    crp->crp_mac, 12);
   1777 		break;
   1778 	}
   1779 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
   1780 	crypto_done(crp);
   1781 }
   1782 
   1783 static void
   1784 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
   1785 {
   1786 	int i, j, dlen, slen;
   1787 	char *dptr, *sptr;
   1788 
   1789 	j = 0;
   1790 	sptr = srcm->m_data;
   1791 	slen = srcm->m_len;
   1792 	dptr = dstm->m_data;
   1793 	dlen = dstm->m_len;
   1794 
   1795 	while (1) {
   1796 		for (i = 0; i < min(slen, dlen); i++) {
   1797 			if (j < hoffset || j >= toffset)
   1798 				*dptr++ = *sptr++;
   1799 			slen--;
   1800 			dlen--;
   1801 			j++;
   1802 		}
   1803 		if (slen == 0) {
   1804 			srcm = srcm->m_next;
   1805 			if (srcm == NULL)
   1806 				return;
   1807 			sptr = srcm->m_data;
   1808 			slen = srcm->m_len;
   1809 		}
   1810 		if (dlen == 0) {
   1811 			dstm = dstm->m_next;
   1812 			if (dstm == NULL)
   1813 				return;
   1814 			dptr = dstm->m_data;
   1815 			dlen = dstm->m_len;
   1816 		}
   1817 	}
   1818 }
   1819 
   1820 /*
   1821  * feed the key generator, must be called at splnet() or higher.
   1822  */
   1823 static void
   1824 ubsec_feed2(struct ubsec_softc *sc)
   1825 {
   1826 	struct ubsec_q2 *q;
   1827 
   1828 	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
   1829 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
   1830 			break;
   1831 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
   1832 
   1833 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
   1834 		    q->q_mcr.dma_map->dm_mapsize,
   1835 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1836 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
   1837 		    q->q_ctx.dma_map->dm_mapsize,
   1838 		    BUS_DMASYNC_PREWRITE);
   1839 
   1840 		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
   1841 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
   1842 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
   1843 		--sc->sc_nqueue2;
   1844 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
   1845 	}
   1846 }
   1847 
   1848 /*
   1849  * feed the RNG (used instead of ubsec_feed2() on 5827+ devices)
   1850  */
   1851 void
   1852 ubsec_feed4(struct ubsec_softc *sc)
   1853 {
   1854 	struct ubsec_q2 *q;
   1855 
   1856 	while (!SIMPLEQ_EMPTY(&sc->sc_queue4)) {
   1857 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR4_FULL)
   1858 			break;
   1859 		q = SIMPLEQ_FIRST(&sc->sc_queue4);
   1860 
   1861 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
   1862 		    q->q_mcr.dma_map->dm_mapsize,
   1863 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1864 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
   1865 		    q->q_ctx.dma_map->dm_mapsize,
   1866 		    BUS_DMASYNC_PREWRITE);
   1867 
   1868 		WRITE_REG(sc, BS_MCR4, q->q_mcr.dma_paddr);
   1869 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue4, q_next);
   1870 		--sc->sc_nqueue4;
   1871 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip4, q, q_next);
   1872 	}
   1873 }
   1874 
   1875 /*
   1876  * Callback for handling random numbers
   1877  */
   1878 static void
   1879 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
   1880 {
   1881 	struct cryptkop *krp;
   1882 	struct ubsec_ctx_keyop *ctx;
   1883 
   1884 	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
   1885 	bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
   1886 	    q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1887 
   1888 	switch (q->q_type) {
   1889 #ifndef UBSEC_NO_RNG
   1890 	case UBS_CTXOP_RNGSHA1:
   1891 	case UBS_CTXOP_RNGBYPASS: {
   1892 		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
   1893 		u_int32_t *p;
   1894 		int i;
   1895 
   1896 		bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
   1897 		    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1898 		p = (u_int32_t *)rng->rng_buf.dma_vaddr;
   1899 #ifndef __NetBSD__
   1900 		for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++)
   1901 			add_true_randomness(letoh32(*p));
   1902 #else
   1903 		i = UBSEC_RNG_BUFSIZ * sizeof(u_int32_t);
   1904 		rnd_add_data(&sc->sc_rnd_source, (char *)p, i, i * NBBY);
   1905 		sc->sc_rng_need -= i;
   1906 #endif
   1907 		rng->rng_used = 0;
   1908 #ifdef __OpenBSD__
   1909 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
   1910 #else
   1911 		if (sc->sc_rng_need > 0) {
   1912 			callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
   1913 		}
   1914 #endif
   1915 		break;
   1916 	}
   1917 #endif
   1918 	case UBS_CTXOP_MODEXP: {
   1919 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
   1920 		u_int rlen, clen;
   1921 
   1922 		krp = me->me_krp;
   1923 		rlen = (me->me_modbits + 7) / 8;
   1924 		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
   1925 
   1926 		bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
   1927 		    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1928 		bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
   1929 		    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1930 		bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
   1931 		    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1932 		bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
   1933 		    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1934 
   1935 		if (clen < rlen)
   1936 			krp->krp_status = E2BIG;
   1937 		else {
   1938 			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
   1939 				memset(krp->krp_param[krp->krp_iparams].crp_p, 0,
   1940 				    (krp->krp_param[krp->krp_iparams].crp_nbits
   1941 					+ 7) / 8);
   1942 				bcopy(me->me_C.dma_vaddr,
   1943 				    krp->krp_param[krp->krp_iparams].crp_p,
   1944 				    (me->me_modbits + 7) / 8);
   1945 			} else
   1946 				ubsec_kshift_l(me->me_shiftbits,
   1947 				    me->me_C.dma_vaddr, me->me_normbits,
   1948 				    krp->krp_param[krp->krp_iparams].crp_p,
   1949 				    krp->krp_param[krp->krp_iparams].crp_nbits);
   1950 		}
   1951 
   1952 		crypto_kdone(krp);
   1953 
   1954 		/* bzero all potentially sensitive data */
   1955 		memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
   1956 		memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
   1957 		memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   1958 		memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
   1959 
   1960 		/* Can't free here, so put us on the free list. */
   1961 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
   1962 		break;
   1963 	}
   1964 	case UBS_CTXOP_RSAPRIV: {
   1965 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
   1966 		u_int len;
   1967 
   1968 		krp = rp->rpr_krp;
   1969 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
   1970 		    rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1971 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
   1972 		    rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1973 
   1974 		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
   1975 		bcopy(rp->rpr_msgout.dma_vaddr,
   1976 		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
   1977 
   1978 		crypto_kdone(krp);
   1979 
   1980 		memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
   1981 		memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
   1982 		memset(rp->rpr_q.q_ctx.dma_vaddr, 0, rp->rpr_q.q_ctx.dma_size);
   1983 
   1984 		/* Can't free here, so put us on the free list. */
   1985 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
   1986 		break;
   1987 	}
   1988 	default:
   1989 		printf("%s: unknown ctx op: %x\n", device_xname(sc->sc_dev),
   1990 		    letoh16(ctx->ctx_op));
   1991 		break;
   1992 	}
   1993 }
   1994 
   1995 #ifndef UBSEC_NO_RNG
   1996 
   1997 static void
   1998 ubsec_rng_get(size_t bytes, void *vsc)
   1999 {
   2000 	struct ubsec_softc *sc = vsc;
   2001 
   2002 	mutex_spin_enter(&sc->sc_mtx);
   2003 	sc->sc_rng_need = bytes;
   2004 	ubsec_rng_locked(sc);
   2005 	mutex_spin_exit(&sc->sc_mtx);
   2006 
   2007 }
   2008 
   2009 static void
   2010 ubsec_rng(void *vsc)
   2011 {
   2012 	struct ubsec_softc *sc = vsc;
   2013 	mutex_spin_enter(&sc->sc_mtx);
   2014 	ubsec_rng_locked(sc);
   2015 	mutex_spin_exit(&sc->sc_mtx);
   2016 }
   2017 
   2018 static void
   2019 ubsec_rng_locked(void *vsc)
   2020 {
   2021 	struct ubsec_softc *sc = vsc;
   2022 	struct ubsec_q2_rng *rng = &sc->sc_rng;
   2023 	struct ubsec_mcr *mcr;
   2024 	struct ubsec_ctx_rngbypass *ctx;
   2025 	int *nqueue;
   2026 
   2027 	/* Caller is responsible to lock and release sc_mtx. */
   2028 	KASSERT(mutex_owned(&sc->sc_mtx));
   2029 
   2030 	if (rng->rng_used) {
   2031 		return;
   2032 	}
   2033 
   2034 	if (sc->sc_rng_need < 1) {
   2035 		callout_stop(&sc->sc_rngto);
   2036 		return;
   2037 	}
   2038 
   2039 	if (sc->sc_flags & UBS_FLAGS_RNG4)
   2040 		nqueue = &sc->sc_nqueue4;
   2041 	else
   2042 		nqueue = &sc->sc_nqueue2;
   2043 
   2044 	(*nqueue)++;
   2045 	if (*nqueue >= UBS_MAX_NQUEUE)
   2046  		goto out;
   2047 
   2048 	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
   2049 	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
   2050 
   2051 	mcr->mcr_pkts = htole16(1);
   2052 	mcr->mcr_flags = 0;
   2053 	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
   2054 	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
   2055 	mcr->mcr_ipktbuf.pb_len = 0;
   2056 	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
   2057 	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
   2058 	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
   2059 	    UBS_PKTBUF_LEN);
   2060 	mcr->mcr_opktbuf.pb_next = 0;
   2061 
   2062 	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
   2063 	ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
   2064 	rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
   2065 
   2066 	bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
   2067 	    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2068 
   2069 	if (sc->sc_flags & UBS_FLAGS_RNG4) {
   2070 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue4, &rng->rng_q, q_next);
   2071 		ubsec_feed4(sc);
   2072 	} else {
   2073 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
   2074 		ubsec_feed2(sc);
   2075 	}
   2076 	rng->rng_used = 1;
   2077 	ubsecstats.hst_rng++;
   2078 
   2079 	return;
   2080 
   2081 out:
   2082 	/*
   2083 	 * Something weird happened, generate our own call back.
   2084 	 */
   2085 	(*nqueue)--;
   2086 #ifdef __OpenBSD__
   2087 	timeout_add(&sc->sc_rngto, sc->sc_rnghz);
   2088 #else
   2089 	callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
   2090 #endif
   2091 }
   2092 #endif /* UBSEC_NO_RNG */
   2093 
   2094 static int
   2095 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
   2096 		 struct ubsec_dma_alloc *dma,int mapflags)
   2097 {
   2098 	int r;
   2099 
   2100 	if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
   2101 	    &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
   2102 		goto fail_0;
   2103 
   2104 	if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
   2105 	    size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
   2106 		goto fail_1;
   2107 
   2108 	if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
   2109 	    BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
   2110 		goto fail_2;
   2111 
   2112 	if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
   2113 	    size, NULL, BUS_DMA_NOWAIT)) != 0)
   2114 		goto fail_3;
   2115 
   2116 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
   2117 	dma->dma_size = size;
   2118 	return (0);
   2119 
   2120 fail_3:
   2121 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
   2122 fail_2:
   2123 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
   2124 fail_1:
   2125 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
   2126 fail_0:
   2127 	dma->dma_map = NULL;
   2128 	return (r);
   2129 }
   2130 
   2131 static void
   2132 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
   2133 {
   2134 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
   2135 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
   2136 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
   2137 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
   2138 }
   2139 
   2140 /*
   2141  * Resets the board.  Values in the regesters are left as is
   2142  * from the reset (i.e. initial values are assigned elsewhere).
   2143  */
   2144 static void
   2145 ubsec_reset_board(struct ubsec_softc *sc)
   2146 {
   2147 	volatile u_int32_t ctrl;
   2148 
   2149 	ctrl = READ_REG(sc, BS_CTRL);
   2150 	ctrl |= BS_CTRL_RESET;
   2151 	WRITE_REG(sc, BS_CTRL, ctrl);
   2152 
   2153 	/*
   2154 	* Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
   2155 	*/
   2156 	DELAY(10);
   2157 
   2158 	/* Enable RNG and interrupts on newer devices */
   2159 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
   2160 #ifndef UBSEC_NO_RNG
   2161 		WRITE_REG(sc, BS_CFG, BS_CFG_RNG);
   2162 #endif
   2163 		WRITE_REG(sc, BS_INT, BS_INT_DMAINT);
   2164 	}
   2165 }
   2166 
   2167 /*
   2168  * Init Broadcom registers
   2169  */
   2170 static void
   2171 ubsec_init_board(struct ubsec_softc *sc)
   2172 {
   2173 	u_int32_t ctrl;
   2174 
   2175 	ctrl = READ_REG(sc, BS_CTRL);
   2176 	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
   2177 	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
   2178 
   2179 	/*
   2180 	 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
   2181 	 * anyone got hw docs?
   2182 	 */
   2183 	if (sc->sc_flags & UBS_FLAGS_KEY)
   2184 		ctrl |= BS_CTRL_MCR2INT;
   2185 	else
   2186 		ctrl &= ~BS_CTRL_MCR2INT;
   2187 
   2188 	if (sc->sc_flags & UBS_FLAGS_HWNORM)
   2189 		ctrl &= ~BS_CTRL_SWNORM;
   2190 
   2191 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
   2192 		ctrl |= BS_CTRL_BSIZE240;
   2193 		ctrl &= ~BS_CTRL_MCR3INT; /* MCR3 is reserved for SSL */
   2194 
   2195 		if (sc->sc_flags & UBS_FLAGS_RNG4)
   2196 			ctrl |= BS_CTRL_MCR4INT;
   2197 		else
   2198 			ctrl &= ~BS_CTRL_MCR4INT;
   2199 	}
   2200 
   2201 	WRITE_REG(sc, BS_CTRL, ctrl);
   2202 }
   2203 
   2204 /*
   2205  * Init Broadcom PCI registers
   2206  */
   2207 static void
   2208 ubsec_init_pciregs(struct pci_attach_args *pa)
   2209 {
   2210 	pci_chipset_tag_t pc = pa->pa_pc;
   2211 	u_int32_t misc;
   2212 
   2213 	/*
   2214 	 * This will set the cache line size to 1, this will
   2215 	 * force the BCM58xx chip just to do burst read/writes.
   2216 	 * Cache line read/writes are to slow
   2217 	 */
   2218 	misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
   2219 	misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
   2220 	    | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
   2221 	pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
   2222 }
   2223 
   2224 /*
   2225  * Clean up after a chip crash.
   2226  * It is assumed that the caller in splnet()
   2227  */
   2228 static void
   2229 ubsec_cleanchip(struct ubsec_softc *sc)
   2230 {
   2231 	struct ubsec_q *q;
   2232 
   2233 	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
   2234 		q = SIMPLEQ_FIRST(&sc->sc_qchip);
   2235 		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
   2236 		ubsec_free_q(sc, q);
   2237 	}
   2238 	sc->sc_nqchip = 0;
   2239 }
   2240 
   2241 /*
   2242  * free a ubsec_q
   2243  * It is assumed that the caller is within splnet()
   2244  */
   2245 static int
   2246 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
   2247 {
   2248 	struct ubsec_q *q2;
   2249 	struct cryptop *crp;
   2250 	int npkts;
   2251 	int i;
   2252 
   2253 	npkts = q->q_nstacked_mcrs;
   2254 
   2255 	for (i = 0; i < npkts; i++) {
   2256 		if(q->q_stacked_mcr[i]) {
   2257 			q2 = q->q_stacked_mcr[i];
   2258 
   2259 			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
   2260 				m_freem(q2->q_dst_m);
   2261 
   2262 			crp = (struct cryptop *)q2->q_crp;
   2263 
   2264 			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
   2265 
   2266 			crp->crp_etype = EFAULT;
   2267 			crypto_done(crp);
   2268 		} else {
   2269 			break;
   2270 		}
   2271 	}
   2272 
   2273 	/*
   2274 	 * Free header MCR
   2275 	 */
   2276 	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
   2277 		m_freem(q->q_dst_m);
   2278 
   2279 	crp = (struct cryptop *)q->q_crp;
   2280 
   2281 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
   2282 
   2283 	crp->crp_etype = EFAULT;
   2284 	crypto_done(crp);
   2285 	return(0);
   2286 }
   2287 
   2288 /*
   2289  * Routine to reset the chip and clean up.
   2290  * It is assumed that the caller is in splnet()
   2291  */
   2292 static void
   2293 ubsec_totalreset(struct ubsec_softc *sc)
   2294 {
   2295 	ubsec_reset_board(sc);
   2296 	ubsec_init_board(sc);
   2297 	ubsec_cleanchip(sc);
   2298 }
   2299 
   2300 static int
   2301 ubsec_dmamap_aligned(bus_dmamap_t map)
   2302 {
   2303 	int i;
   2304 
   2305 	for (i = 0; i < map->dm_nsegs; i++) {
   2306 		if (map->dm_segs[i].ds_addr & 3)
   2307 			return (0);
   2308 		if ((i != (map->dm_nsegs - 1)) &&
   2309 		    (map->dm_segs[i].ds_len & 3))
   2310 			return (0);
   2311 	}
   2312 	return (1);
   2313 }
   2314 
   2315 #ifdef __OpenBSD__
   2316 struct ubsec_softc *
   2317 ubsec_kfind(struct cryptkop *krp)
   2318 {
   2319 	struct ubsec_softc *sc;
   2320 	int i;
   2321 
   2322 	for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
   2323 		sc = ubsec_cd.cd_devs[i];
   2324 		if (sc == NULL)
   2325 			continue;
   2326 		if (sc->sc_cid == krp->krp_hid)
   2327 			return (sc);
   2328 	}
   2329 	return (NULL);
   2330 }
   2331 #endif
   2332 
   2333 static void
   2334 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
   2335 {
   2336 	switch (q->q_type) {
   2337 	case UBS_CTXOP_MODEXP: {
   2338 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
   2339 
   2340 		ubsec_dma_free(sc, &me->me_q.q_mcr);
   2341 		ubsec_dma_free(sc, &me->me_q.q_ctx);
   2342 		ubsec_dma_free(sc, &me->me_M);
   2343 		ubsec_dma_free(sc, &me->me_E);
   2344 		ubsec_dma_free(sc, &me->me_C);
   2345 		ubsec_dma_free(sc, &me->me_epb);
   2346 		free(me, M_DEVBUF);
   2347 		break;
   2348 	}
   2349 	case UBS_CTXOP_RSAPRIV: {
   2350 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
   2351 
   2352 		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
   2353 		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
   2354 		ubsec_dma_free(sc, &rp->rpr_msgin);
   2355 		ubsec_dma_free(sc, &rp->rpr_msgout);
   2356 		free(rp, M_DEVBUF);
   2357 		break;
   2358 	}
   2359 	default:
   2360 		printf("%s: invalid kfree 0x%x\n", device_xname(sc->sc_dev),
   2361 		    q->q_type);
   2362 		break;
   2363 	}
   2364 }
   2365 
   2366 static int
   2367 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
   2368 {
   2369 	struct ubsec_softc *sc;
   2370 	int r;
   2371 
   2372 	if (krp == NULL || krp->krp_callback == NULL)
   2373 		return (EINVAL);
   2374 #ifdef __OpenBSD__
   2375 	if ((sc = ubsec_kfind(krp)) == NULL)
   2376 		return (EINVAL);
   2377 #else
   2378 	sc = arg;
   2379 	KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/);
   2380 #endif
   2381 
   2382 	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
   2383 		struct ubsec_q2 *q;
   2384 
   2385 		q = SIMPLEQ_FIRST(&sc->sc_q2free);
   2386 		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
   2387 		ubsec_kfree(sc, q);
   2388 	}
   2389 
   2390 	switch (krp->krp_op) {
   2391 	case CRK_MOD_EXP:
   2392 		if (sc->sc_flags & UBS_FLAGS_HWNORM)
   2393 			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
   2394 		else
   2395 			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
   2396 		break;
   2397 	case CRK_MOD_EXP_CRT:
   2398 		r = ubsec_kprocess_rsapriv(sc, krp, hint);
   2399 		break;
   2400 	default:
   2401 		printf("%s: kprocess: invalid op 0x%x\n",
   2402 		    device_xname(sc->sc_dev), krp->krp_op);
   2403 		krp->krp_status = EOPNOTSUPP;
   2404 		crypto_kdone(krp);
   2405 		r = 0;
   2406 	}
   2407 	return (r);
   2408 }
   2409 
   2410 /*
   2411  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
   2412  */
   2413 static int
   2414 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
   2415 			 int hint)
   2416 {
   2417 	struct ubsec_q2_modexp *me;
   2418 	struct ubsec_mcr *mcr;
   2419 	struct ubsec_ctx_modexp *ctx;
   2420 	struct ubsec_pktbuf *epb;
   2421 	int err = 0;
   2422 	u_int nbits, normbits, mbits, shiftbits, ebits;
   2423 
   2424 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
   2425 	if (me == NULL) {
   2426 		err = ENOMEM;
   2427 		goto errout;
   2428 	}
   2429 	memset(me, 0, sizeof *me);
   2430 	me->me_krp = krp;
   2431 	me->me_q.q_type = UBS_CTXOP_MODEXP;
   2432 
   2433 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
   2434 	if (nbits <= 512)
   2435 		normbits = 512;
   2436 	else if (nbits <= 768)
   2437 		normbits = 768;
   2438 	else if (nbits <= 1024)
   2439 		normbits = 1024;
   2440 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
   2441 		normbits = 1536;
   2442 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
   2443 		normbits = 2048;
   2444 	else {
   2445 		err = E2BIG;
   2446 		goto errout;
   2447 	}
   2448 
   2449 	shiftbits = normbits - nbits;
   2450 
   2451 	me->me_modbits = nbits;
   2452 	me->me_shiftbits = shiftbits;
   2453 	me->me_normbits = normbits;
   2454 
   2455 	/* Sanity check: result bits must be >= true modulus bits. */
   2456 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
   2457 		err = ERANGE;
   2458 		goto errout;
   2459 	}
   2460 
   2461 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
   2462 	    &me->me_q.q_mcr, 0)) {
   2463 		err = ENOMEM;
   2464 		goto errout;
   2465 	}
   2466 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
   2467 
   2468 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
   2469 	    &me->me_q.q_ctx, 0)) {
   2470 		err = ENOMEM;
   2471 		goto errout;
   2472 	}
   2473 
   2474 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
   2475 	if (mbits > nbits) {
   2476 		err = E2BIG;
   2477 		goto errout;
   2478 	}
   2479 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
   2480 		err = ENOMEM;
   2481 		goto errout;
   2482 	}
   2483 	ubsec_kshift_r(shiftbits,
   2484 	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
   2485 	    me->me_M.dma_vaddr, normbits);
   2486 
   2487 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
   2488 		err = ENOMEM;
   2489 		goto errout;
   2490 	}
   2491 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   2492 
   2493 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
   2494 	if (ebits > nbits) {
   2495 		err = E2BIG;
   2496 		goto errout;
   2497 	}
   2498 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
   2499 		err = ENOMEM;
   2500 		goto errout;
   2501 	}
   2502 	ubsec_kshift_r(shiftbits,
   2503 	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
   2504 	    me->me_E.dma_vaddr, normbits);
   2505 
   2506 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
   2507 	    &me->me_epb, 0)) {
   2508 		err = ENOMEM;
   2509 		goto errout;
   2510 	}
   2511 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
   2512 	epb->pb_addr = htole32(me->me_E.dma_paddr);
   2513 	epb->pb_next = 0;
   2514 	epb->pb_len = htole32(normbits / 8);
   2515 
   2516 #ifdef UBSEC_DEBUG
   2517 	if (ubsec_debug) {
   2518 		printf("Epb ");
   2519 		ubsec_dump_pb(epb);
   2520 	}
   2521 #endif
   2522 
   2523 	mcr->mcr_pkts = htole16(1);
   2524 	mcr->mcr_flags = 0;
   2525 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
   2526 	mcr->mcr_reserved = 0;
   2527 	mcr->mcr_pktlen = 0;
   2528 
   2529 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
   2530 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
   2531 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
   2532 
   2533 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
   2534 	mcr->mcr_opktbuf.pb_next = 0;
   2535 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
   2536 
   2537 #ifdef DIAGNOSTIC
   2538 	/* Misaligned output buffer will hang the chip. */
   2539 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
   2540 		panic("%s: modexp invalid addr 0x%x",
   2541 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr));
   2542 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
   2543 		panic("%s: modexp invalid len 0x%x",
   2544 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len));
   2545 #endif
   2546 
   2547 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
   2548 	memset(ctx, 0, sizeof(*ctx));
   2549 	ubsec_kshift_r(shiftbits,
   2550 	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
   2551 	    ctx->me_N, normbits);
   2552 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
   2553 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
   2554 	ctx->me_E_len = htole16(nbits);
   2555 	ctx->me_N_len = htole16(nbits);
   2556 
   2557 #ifdef UBSEC_DEBUG
   2558 	if (ubsec_debug) {
   2559 		ubsec_dump_mcr(mcr);
   2560 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
   2561 	}
   2562 #endif
   2563 
   2564 	/*
   2565 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
   2566 	 * everything else.
   2567 	 */
   2568 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
   2569 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2570 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
   2571 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2572 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
   2573 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2574 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
   2575 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2576 
   2577 	/* Enqueue and we're done... */
   2578 	mutex_spin_enter(&sc->sc_mtx);
   2579 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
   2580 	ubsec_feed2(sc);
   2581 	ubsecstats.hst_modexp++;
   2582 	mutex_spin_exit(&sc->sc_mtx);
   2583 
   2584 	return (0);
   2585 
   2586 errout:
   2587 	if (me != NULL) {
   2588 		if (me->me_q.q_mcr.dma_map != NULL)
   2589 			ubsec_dma_free(sc, &me->me_q.q_mcr);
   2590 		if (me->me_q.q_ctx.dma_map != NULL) {
   2591 			memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
   2592 			ubsec_dma_free(sc, &me->me_q.q_ctx);
   2593 		}
   2594 		if (me->me_M.dma_map != NULL) {
   2595 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
   2596 			ubsec_dma_free(sc, &me->me_M);
   2597 		}
   2598 		if (me->me_E.dma_map != NULL) {
   2599 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
   2600 			ubsec_dma_free(sc, &me->me_E);
   2601 		}
   2602 		if (me->me_C.dma_map != NULL) {
   2603 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   2604 			ubsec_dma_free(sc, &me->me_C);
   2605 		}
   2606 		if (me->me_epb.dma_map != NULL)
   2607 			ubsec_dma_free(sc, &me->me_epb);
   2608 		free(me, M_DEVBUF);
   2609 	}
   2610 	krp->krp_status = err;
   2611 	crypto_kdone(krp);
   2612 	return (0);
   2613 }
   2614 
   2615 /*
   2616  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
   2617  */
   2618 static int
   2619 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
   2620 			 int hint)
   2621 {
   2622 	struct ubsec_q2_modexp *me;
   2623 	struct ubsec_mcr *mcr;
   2624 	struct ubsec_ctx_modexp *ctx;
   2625 	struct ubsec_pktbuf *epb;
   2626 	int err = 0;
   2627 	u_int nbits, normbits, mbits, shiftbits, ebits;
   2628 
   2629 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
   2630 	if (me == NULL) {
   2631 		err = ENOMEM;
   2632 		goto errout;
   2633 	}
   2634 	memset(me, 0, sizeof *me);
   2635 	me->me_krp = krp;
   2636 	me->me_q.q_type = UBS_CTXOP_MODEXP;
   2637 
   2638 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
   2639 	if (nbits <= 512)
   2640 		normbits = 512;
   2641 	else if (nbits <= 768)
   2642 		normbits = 768;
   2643 	else if (nbits <= 1024)
   2644 		normbits = 1024;
   2645 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
   2646 		normbits = 1536;
   2647 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
   2648 		normbits = 2048;
   2649 	else {
   2650 		err = E2BIG;
   2651 		goto errout;
   2652 	}
   2653 
   2654 	shiftbits = normbits - nbits;
   2655 
   2656 	/* XXX ??? */
   2657 	me->me_modbits = nbits;
   2658 	me->me_shiftbits = shiftbits;
   2659 	me->me_normbits = normbits;
   2660 
   2661 	/* Sanity check: result bits must be >= true modulus bits. */
   2662 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
   2663 		err = ERANGE;
   2664 		goto errout;
   2665 	}
   2666 
   2667 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
   2668 	    &me->me_q.q_mcr, 0)) {
   2669 		err = ENOMEM;
   2670 		goto errout;
   2671 	}
   2672 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
   2673 
   2674 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
   2675 	    &me->me_q.q_ctx, 0)) {
   2676 		err = ENOMEM;
   2677 		goto errout;
   2678 	}
   2679 
   2680 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
   2681 	if (mbits > nbits) {
   2682 		err = E2BIG;
   2683 		goto errout;
   2684 	}
   2685 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
   2686 		err = ENOMEM;
   2687 		goto errout;
   2688 	}
   2689 	memset(me->me_M.dma_vaddr, 0, normbits / 8);
   2690 	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
   2691 	    me->me_M.dma_vaddr, (mbits + 7) / 8);
   2692 
   2693 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
   2694 		err = ENOMEM;
   2695 		goto errout;
   2696 	}
   2697 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   2698 
   2699 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
   2700 	if (ebits > nbits) {
   2701 		err = E2BIG;
   2702 		goto errout;
   2703 	}
   2704 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
   2705 		err = ENOMEM;
   2706 		goto errout;
   2707 	}
   2708 	memset(me->me_E.dma_vaddr, 0, normbits / 8);
   2709 	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
   2710 	    me->me_E.dma_vaddr, (ebits + 7) / 8);
   2711 
   2712 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
   2713 	    &me->me_epb, 0)) {
   2714 		err = ENOMEM;
   2715 		goto errout;
   2716 	}
   2717 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
   2718 	epb->pb_addr = htole32(me->me_E.dma_paddr);
   2719 	epb->pb_next = 0;
   2720 	epb->pb_len = htole32((ebits + 7) / 8);
   2721 
   2722 #ifdef UBSEC_DEBUG
   2723 	if (ubsec_debug) {
   2724 		printf("Epb ");
   2725 		ubsec_dump_pb(epb);
   2726 	}
   2727 #endif
   2728 
   2729 	mcr->mcr_pkts = htole16(1);
   2730 	mcr->mcr_flags = 0;
   2731 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
   2732 	mcr->mcr_reserved = 0;
   2733 	mcr->mcr_pktlen = 0;
   2734 
   2735 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
   2736 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
   2737 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
   2738 
   2739 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
   2740 	mcr->mcr_opktbuf.pb_next = 0;
   2741 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
   2742 
   2743 #ifdef DIAGNOSTIC
   2744 	/* Misaligned output buffer will hang the chip. */
   2745 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
   2746 		panic("%s: modexp invalid addr 0x%x",
   2747 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr));
   2748 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
   2749 		panic("%s: modexp invalid len 0x%x",
   2750 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len));
   2751 #endif
   2752 
   2753 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
   2754 	memset(ctx, 0, sizeof(*ctx));
   2755 	memcpy(ctx->me_N, krp->krp_param[UBS_MODEXP_PAR_N].crp_p,
   2756 	    (nbits + 7) / 8);
   2757 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
   2758 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
   2759 	ctx->me_E_len = htole16(ebits);
   2760 	ctx->me_N_len = htole16(nbits);
   2761 
   2762 #ifdef UBSEC_DEBUG
   2763 	if (ubsec_debug) {
   2764 		ubsec_dump_mcr(mcr);
   2765 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
   2766 	}
   2767 #endif
   2768 
   2769 	/*
   2770 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
   2771 	 * everything else.
   2772 	 */
   2773 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
   2774 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2775 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
   2776 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2777 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
   2778 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2779 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
   2780 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2781 
   2782 	/* Enqueue and we're done... */
   2783 	mutex_spin_enter(&sc->sc_mtx);
   2784 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
   2785 	ubsec_feed2(sc);
   2786 	mutex_spin_exit(&sc->sc_mtx);
   2787 
   2788 	return (0);
   2789 
   2790 errout:
   2791 	if (me != NULL) {
   2792 		if (me->me_q.q_mcr.dma_map != NULL)
   2793 			ubsec_dma_free(sc, &me->me_q.q_mcr);
   2794 		if (me->me_q.q_ctx.dma_map != NULL) {
   2795 			memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
   2796 			ubsec_dma_free(sc, &me->me_q.q_ctx);
   2797 		}
   2798 		if (me->me_M.dma_map != NULL) {
   2799 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
   2800 			ubsec_dma_free(sc, &me->me_M);
   2801 		}
   2802 		if (me->me_E.dma_map != NULL) {
   2803 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
   2804 			ubsec_dma_free(sc, &me->me_E);
   2805 		}
   2806 		if (me->me_C.dma_map != NULL) {
   2807 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   2808 			ubsec_dma_free(sc, &me->me_C);
   2809 		}
   2810 		if (me->me_epb.dma_map != NULL)
   2811 			ubsec_dma_free(sc, &me->me_epb);
   2812 		free(me, M_DEVBUF);
   2813 	}
   2814 	krp->krp_status = err;
   2815 	crypto_kdone(krp);
   2816 	return (0);
   2817 }
   2818 
   2819 static int
   2820 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
   2821 		       int hint)
   2822 {
   2823 	struct ubsec_q2_rsapriv *rp = NULL;
   2824 	struct ubsec_mcr *mcr;
   2825 	struct ubsec_ctx_rsapriv *ctx;
   2826 	int err = 0;
   2827 	u_int padlen, msglen;
   2828 
   2829 	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
   2830 	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
   2831 	if (msglen > padlen)
   2832 		padlen = msglen;
   2833 
   2834 	if (padlen <= 256)
   2835 		padlen = 256;
   2836 	else if (padlen <= 384)
   2837 		padlen = 384;
   2838 	else if (padlen <= 512)
   2839 		padlen = 512;
   2840 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
   2841 		padlen = 768;
   2842 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
   2843 		padlen = 1024;
   2844 	else {
   2845 		err = E2BIG;
   2846 		goto errout;
   2847 	}
   2848 
   2849 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
   2850 		err = E2BIG;
   2851 		goto errout;
   2852 	}
   2853 
   2854 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
   2855 		err = E2BIG;
   2856 		goto errout;
   2857 	}
   2858 
   2859 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
   2860 		err = E2BIG;
   2861 		goto errout;
   2862 	}
   2863 
   2864 	rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT|M_ZERO);
   2865 	if (rp == NULL)
   2866 		return (ENOMEM);
   2867 	rp->rpr_krp = krp;
   2868 	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
   2869 
   2870 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
   2871 	    &rp->rpr_q.q_mcr, 0)) {
   2872 		err = ENOMEM;
   2873 		goto errout;
   2874 	}
   2875 	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
   2876 
   2877 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
   2878 	    &rp->rpr_q.q_ctx, 0)) {
   2879 		err = ENOMEM;
   2880 		goto errout;
   2881 	}
   2882 	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
   2883 	memset(ctx, 0, sizeof *ctx);
   2884 
   2885 	/* Copy in p */
   2886 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
   2887 	    &ctx->rpr_buf[0 * (padlen / 8)],
   2888 	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
   2889 
   2890 	/* Copy in q */
   2891 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
   2892 	    &ctx->rpr_buf[1 * (padlen / 8)],
   2893 	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
   2894 
   2895 	/* Copy in dp */
   2896 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
   2897 	    &ctx->rpr_buf[2 * (padlen / 8)],
   2898 	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
   2899 
   2900 	/* Copy in dq */
   2901 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
   2902 	    &ctx->rpr_buf[3 * (padlen / 8)],
   2903 	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
   2904 
   2905 	/* Copy in pinv */
   2906 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
   2907 	    &ctx->rpr_buf[4 * (padlen / 8)],
   2908 	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
   2909 
   2910 	msglen = padlen * 2;
   2911 
   2912 	/* Copy in input message (aligned buffer/length). */
   2913 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
   2914 		/* Is this likely? */
   2915 		err = E2BIG;
   2916 		goto errout;
   2917 	}
   2918 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
   2919 		err = ENOMEM;
   2920 		goto errout;
   2921 	}
   2922 	memset(rp->rpr_msgin.dma_vaddr, 0, (msglen + 7) / 8);
   2923 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
   2924 	    rp->rpr_msgin.dma_vaddr,
   2925 	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
   2926 
   2927 	/* Prepare space for output message (aligned buffer/length). */
   2928 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
   2929 		/* Is this likely? */
   2930 		err = E2BIG;
   2931 		goto errout;
   2932 	}
   2933 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
   2934 		err = ENOMEM;
   2935 		goto errout;
   2936 	}
   2937 	memset(rp->rpr_msgout.dma_vaddr, 0, (msglen + 7) / 8);
   2938 
   2939 	mcr->mcr_pkts = htole16(1);
   2940 	mcr->mcr_flags = 0;
   2941 	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
   2942 	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
   2943 	mcr->mcr_ipktbuf.pb_next = 0;
   2944 	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
   2945 	mcr->mcr_reserved = 0;
   2946 	mcr->mcr_pktlen = htole16(msglen);
   2947 	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
   2948 	mcr->mcr_opktbuf.pb_next = 0;
   2949 	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
   2950 
   2951 #ifdef DIAGNOSTIC
   2952 	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
   2953 		panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
   2954 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgin.dma_paddr,
   2955 		    (u_long) rp->rpr_msgin.dma_size);
   2956 	}
   2957 	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
   2958 		panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
   2959 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgout.dma_paddr,
   2960 		    (u_long) rp->rpr_msgout.dma_size);
   2961 	}
   2962 #endif
   2963 
   2964 	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
   2965 	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
   2966 	ctx->rpr_q_len = htole16(padlen);
   2967 	ctx->rpr_p_len = htole16(padlen);
   2968 
   2969 	/*
   2970 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
   2971 	 * everything else.
   2972 	 */
   2973 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
   2974 	    0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2975 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
   2976 	    0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2977 
   2978 	/* Enqueue and we're done... */
   2979 	mutex_spin_enter(&sc->sc_mtx);
   2980 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
   2981 	ubsec_feed2(sc);
   2982 	ubsecstats.hst_modexpcrt++;
   2983 	mutex_spin_exit(&sc->sc_mtx);
   2984 	return (0);
   2985 
   2986 errout:
   2987 	if (rp != NULL) {
   2988 		if (rp->rpr_q.q_mcr.dma_map != NULL)
   2989 			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
   2990 		if (rp->rpr_msgin.dma_map != NULL) {
   2991 			memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
   2992 			ubsec_dma_free(sc, &rp->rpr_msgin);
   2993 		}
   2994 		if (rp->rpr_msgout.dma_map != NULL) {
   2995 			memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
   2996 			ubsec_dma_free(sc, &rp->rpr_msgout);
   2997 		}
   2998 		free(rp, M_DEVBUF);
   2999 	}
   3000 	krp->krp_status = err;
   3001 	crypto_kdone(krp);
   3002 	return (0);
   3003 }
   3004 
   3005 #ifdef UBSEC_DEBUG
   3006 static void
   3007 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
   3008 {
   3009 	printf("addr 0x%x (0x%x) next 0x%x\n",
   3010 	    pb->pb_addr, pb->pb_len, pb->pb_next);
   3011 }
   3012 
   3013 static void
   3014 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
   3015 {
   3016 	printf("CTX (0x%x):\n", c->ctx_len);
   3017 	switch (letoh16(c->ctx_op)) {
   3018 	case UBS_CTXOP_RNGBYPASS:
   3019 	case UBS_CTXOP_RNGSHA1:
   3020 		break;
   3021 	case UBS_CTXOP_MODEXP:
   3022 	{
   3023 		struct ubsec_ctx_modexp *cx = (void *)c;
   3024 		int i, len;
   3025 
   3026 		printf(" Elen %u, Nlen %u\n",
   3027 		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
   3028 		len = (cx->me_N_len + 7)/8;
   3029 		for (i = 0; i < len; i++)
   3030 			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
   3031 		printf("\n");
   3032 		break;
   3033 	}
   3034 	default:
   3035 		printf("unknown context: %x\n", c->ctx_op);
   3036 	}
   3037 	printf("END CTX\n");
   3038 }
   3039 
   3040 static void
   3041 ubsec_dump_mcr(struct ubsec_mcr *mcr)
   3042 {
   3043 	volatile struct ubsec_mcr_add *ma;
   3044 	int i;
   3045 
   3046 	printf("MCR:\n");
   3047 	printf(" pkts: %u, flags 0x%x\n",
   3048 	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
   3049 	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
   3050 	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
   3051 		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
   3052 		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
   3053 		    letoh16(ma->mcr_reserved));
   3054 		printf(" %d: ipkt ", i);
   3055 		ubsec_dump_pb(&ma->mcr_ipktbuf);
   3056 		printf(" %d: opkt ", i);
   3057 		ubsec_dump_pb(&ma->mcr_opktbuf);
   3058 		ma++;
   3059 	}
   3060 	printf("END MCR\n");
   3061 }
   3062 #endif /* UBSEC_DEBUG */
   3063 
   3064 /*
   3065  * Return the number of significant bits of a big number.
   3066  */
   3067 static int
   3068 ubsec_ksigbits(struct crparam *cr)
   3069 {
   3070 	u_int plen = (cr->crp_nbits + 7) / 8;
   3071 	int i, sig = plen * 8;
   3072 	u_int8_t c, *p = cr->crp_p;
   3073 
   3074 	for (i = plen - 1; i >= 0; i--) {
   3075 		c = p[i];
   3076 		if (c != 0) {
   3077 			while ((c & 0x80) == 0) {
   3078 				sig--;
   3079 				c <<= 1;
   3080 			}
   3081 			break;
   3082 		}
   3083 		sig -= 8;
   3084 	}
   3085 	return (sig);
   3086 }
   3087 
   3088 static void
   3089 ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits,
   3090     u_int8_t *dst, u_int dstbits)
   3091 {
   3092 	u_int slen, dlen;
   3093 	int i, si, di, n;
   3094 
   3095 	slen = (srcbits + 7) / 8;
   3096 	dlen = (dstbits + 7) / 8;
   3097 
   3098 	for (i = 0; i < slen; i++)
   3099 		dst[i] = src[i];
   3100 	for (i = 0; i < dlen - slen; i++)
   3101 		dst[slen + i] = 0;
   3102 
   3103 	n = shiftbits / 8;
   3104 	if (n != 0) {
   3105 		si = dlen - n - 1;
   3106 		di = dlen - 1;
   3107 		while (si >= 0)
   3108 			dst[di--] = dst[si--];
   3109 		while (di >= 0)
   3110 			dst[di--] = 0;
   3111 	}
   3112 
   3113 	n = shiftbits % 8;
   3114 	if (n != 0) {
   3115 		for (i = dlen - 1; i > 0; i--)
   3116 			dst[i] = (dst[i] << n) |
   3117 			    (dst[i - 1] >> (8 - n));
   3118 		dst[0] = dst[0] << n;
   3119 	}
   3120 }
   3121 
   3122 static void
   3123 ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits,
   3124     u_int8_t *dst, u_int dstbits)
   3125 {
   3126 	int slen, dlen, i, n;
   3127 
   3128 	slen = (srcbits + 7) / 8;
   3129 	dlen = (dstbits + 7) / 8;
   3130 
   3131 	n = shiftbits / 8;
   3132 	for (i = 0; i < slen; i++)
   3133 		dst[i] = src[i + n];
   3134 	for (i = 0; i < dlen - slen; i++)
   3135 		dst[slen + i] = 0;
   3136 
   3137 	n = shiftbits % 8;
   3138 	if (n != 0) {
   3139 		for (i = 0; i < (dlen - 1); i++)
   3140 			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
   3141 		dst[dlen - 1] = dst[dlen - 1] >> n;
   3142 	}
   3143 }
   3144