ubsec.c revision 1.38 1 /* $NetBSD: ubsec.c,v 1.38 2014/03/29 19:28:25 christos Exp $ */
2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
3 /* $OpenBSD: ubsec.c,v 1.127 2003/06/04 14:04:58 jason Exp $ */
4
5 /*
6 * Copyright (c) 2000 Jason L. Wright (jason (at) thought.net)
7 * Copyright (c) 2000 Theo de Raadt (deraadt (at) openbsd.org)
8 * Copyright (c) 2001 Patrik Lindergren (patrik (at) ipunplugged.com)
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Effort sponsored in part by the Defense Advanced Research Projects
32 * Agency (DARPA) and Air Force Research Laboratory, Air Force
33 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
34 *
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: ubsec.c,v 1.38 2014/03/29 19:28:25 christos Exp $");
39
40 #undef UBSEC_DEBUG
41
42 /*
43 * uBsec 5[56]01, bcm580xx, bcm582x hardware crypto accelerator
44 */
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/endian.h>
50 #ifdef __NetBSD__
51 #define UBSEC_NO_RNG /* hangs on attach */
52 #define letoh16 htole16
53 #define letoh32 htole32
54 #endif
55 #include <sys/errno.h>
56 #include <sys/malloc.h>
57 #include <sys/kernel.h>
58 #include <sys/mbuf.h>
59 #include <sys/device.h>
60 #include <sys/module.h>
61 #include <sys/queue.h>
62 #include <sys/sysctl.h>
63
64 #include <opencrypto/cryptodev.h>
65 #include <opencrypto/xform.h>
66 #ifdef __OpenBSD__
67 #include <dev/rndvar.h>
68 #include <sys/md5k.h>
69 #else
70 #include <sys/cprng.h>
71 #include <sys/md5.h>
72 #endif
73 #include <sys/sha1.h>
74
75 #include <dev/pci/pcireg.h>
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcidevs.h>
78
79 #include <dev/pci/ubsecreg.h>
80 #include <dev/pci/ubsecvar.h>
81
82 /*
83 * Prototypes and count for the pci_device structure
84 */
85 static int ubsec_probe(device_t, cfdata_t, void *);
86 static void ubsec_attach(device_t, device_t, void *);
87 static int ubsec_detach(device_t, int);
88 static int ubsec_sysctl_init(void);
89 static void ubsec_reset_board(struct ubsec_softc *);
90 static void ubsec_init_board(struct ubsec_softc *);
91 static void ubsec_init_pciregs(struct pci_attach_args *pa);
92 static void ubsec_cleanchip(struct ubsec_softc *);
93 static void ubsec_totalreset(struct ubsec_softc *);
94 static int ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
95
96 #ifdef __OpenBSD__
97 struct cfattach ubsec_ca = {
98 sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
99 };
100
101 struct cfdriver ubsec_cd = {
102 0, "ubsec", DV_DULL
103 };
104 #else
105 CFATTACH_DECL_NEW(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
106 ubsec_detach, NULL);
107 extern struct cfdriver ubsec_cd;
108 #endif
109
110 /* patchable */
111 #ifdef UBSEC_DEBUG
112 extern int ubsec_debug;
113 int ubsec_debug=1;
114 #endif
115
116 static int ubsec_intr(void *);
117 static int ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
118 static int ubsec_freesession(void*, u_int64_t);
119 static int ubsec_process(void*, struct cryptop *, int hint);
120 static void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
121 static void ubsec_feed(struct ubsec_softc *);
122 static void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
123 static void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
124 static void ubsec_feed2(struct ubsec_softc *);
125 static void ubsec_feed4(struct ubsec_softc *);
126 #ifndef UBSEC_NO_RNG
127 static void ubsec_rng(void *);
128 static void ubsec_rng_locked(void *);
129 static void ubsec_rng_get(size_t, void *);
130 #endif /* UBSEC_NO_RNG */
131 static int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
132 struct ubsec_dma_alloc *, int);
133 static void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
134 static int ubsec_dmamap_aligned(bus_dmamap_t);
135
136 static int ubsec_kprocess(void*, struct cryptkop *, int);
137 static int ubsec_kprocess_modexp_sw(struct ubsec_softc *,
138 struct cryptkop *, int);
139 static int ubsec_kprocess_modexp_hw(struct ubsec_softc *,
140 struct cryptkop *, int);
141 static int ubsec_kprocess_rsapriv(struct ubsec_softc *,
142 struct cryptkop *, int);
143 static void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
144 static int ubsec_ksigbits(struct crparam *);
145 static void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
146 static void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
147
148 #ifdef UBSEC_DEBUG
149 static void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
150 static void ubsec_dump_mcr(struct ubsec_mcr *);
151 static void ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
152 #endif
153
154 #define READ_REG(sc,r) \
155 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
156
157 #define WRITE_REG(sc,reg,val) \
158 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
159
160 #define SWAP32(x) (x) = htole32(ntohl((x)))
161 #ifndef HTOLE32
162 #define HTOLE32(x) (x) = htole32(x)
163 #endif
164
165 struct ubsec_stats ubsecstats;
166
167 static struct sysctllog *ubsec_sysctllog;
168
169 /*
170 * ubsec_maxbatch controls the number of crypto ops to voluntarily
171 * collect into one submission to the hardware. This batching happens
172 * when ops are dispatched from the crypto subsystem with a hint that
173 * more are to follow immediately. These ops must also not be marked
174 * with a ``no delay'' flag.
175 */
176 static int ubsec_maxbatch = 1;
177
178 /*
179 * ubsec_maxaggr controls the number of crypto ops to submit to the
180 * hardware as a unit. This aggregation reduces the number of interrupts
181 * to the host at the expense of increased latency (for all but the last
182 * operation). For network traffic setting this to one yields the highest
183 * performance but at the expense of more interrupt processing.
184 */
185 static int ubsec_maxaggr = 1;
186
187 static const struct ubsec_product {
188 pci_vendor_id_t ubsec_vendor;
189 pci_product_id_t ubsec_product;
190 int ubsec_flags;
191 int ubsec_statmask;
192 int ubsec_maxaggr;
193 const char *ubsec_name;
194 } ubsec_products[] = {
195 { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5501,
196 0,
197 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
198 UBS_MIN_AGGR,
199 "Bluesteel 5501"
200 },
201 { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5601,
202 UBS_FLAGS_KEY | UBS_FLAGS_RNG,
203 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
204 UBS_MIN_AGGR,
205 "Bluesteel 5601"
206 },
207
208 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5801,
209 0,
210 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
211 UBS_MIN_AGGR,
212 "Broadcom BCM5801"
213 },
214
215 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5802,
216 UBS_FLAGS_KEY | UBS_FLAGS_RNG,
217 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
218 UBS_MIN_AGGR,
219 "Broadcom BCM5802"
220 },
221
222 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5805,
223 UBS_FLAGS_KEY | UBS_FLAGS_RNG,
224 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
225 UBS_MIN_AGGR,
226 "Broadcom BCM5805"
227 },
228
229 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5820,
230 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
231 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
232 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
233 UBS_MIN_AGGR,
234 "Broadcom BCM5820"
235 },
236
237 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5821,
238 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
239 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
240 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
241 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
242 UBS_MIN_AGGR,
243 "Broadcom BCM5821"
244 },
245 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_SCA1K,
246 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
247 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
248 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
249 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
250 UBS_MIN_AGGR,
251 "Sun Crypto Accelerator 1000"
252 },
253 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_5821,
254 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
255 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
256 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
257 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
258 UBS_MIN_AGGR,
259 "Broadcom BCM5821 (Sun)"
260 },
261
262 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5822,
263 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
264 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
265 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
266 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
267 UBS_MIN_AGGR,
268 "Broadcom BCM5822"
269 },
270
271 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5823,
272 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
273 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
274 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
275 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
276 UBS_MIN_AGGR,
277 "Broadcom BCM5823"
278 },
279
280 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5825,
281 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
282 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
283 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
284 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
285 UBS_MIN_AGGR,
286 "Broadcom BCM5825"
287 },
288
289 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5860,
290 UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
291 UBS_FLAGS_LONGCTX |
292 UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
293 UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY,
294 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
295 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
296 BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
297 UBS_MAX_AGGR,
298 "Broadcom BCM5860"
299 },
300
301 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5861,
302 UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
303 UBS_FLAGS_LONGCTX |
304 UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
305 UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY,
306 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
307 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
308 BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
309 UBS_MAX_AGGR,
310 "Broadcom BCM5861"
311 },
312
313 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5862,
314 UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
315 UBS_FLAGS_LONGCTX |
316 UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
317 UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY,
318 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
319 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
320 BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
321 UBS_MAX_AGGR,
322 "Broadcom BCM5862"
323 },
324
325 { 0, 0,
326 0,
327 0,
328 0,
329 NULL
330 }
331 };
332
333 static const struct ubsec_product *
334 ubsec_lookup(const struct pci_attach_args *pa)
335 {
336 const struct ubsec_product *up;
337
338 for (up = ubsec_products; up->ubsec_name != NULL; up++) {
339 if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
340 PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
341 return (up);
342 }
343 return (NULL);
344 }
345
346 static int
347 ubsec_probe(device_t parent, cfdata_t match, void *aux)
348 {
349 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
350
351 if (ubsec_lookup(pa) != NULL)
352 return (1);
353
354 return (0);
355 }
356
357 static void
358 ubsec_attach(device_t parent, device_t self, void *aux)
359 {
360 struct ubsec_softc *sc = device_private(self);
361 struct pci_attach_args *pa = aux;
362 const struct ubsec_product *up;
363 pci_chipset_tag_t pc = pa->pa_pc;
364 pci_intr_handle_t ih;
365 const char *intrstr = NULL;
366 pcireg_t memtype;
367 struct ubsec_dma *dmap;
368 u_int32_t cmd, i;
369 char intrbuf[PCI_INTRSTR_LEN];
370
371 sc->sc_dev = self;
372 sc->sc_pct = pc;
373
374 up = ubsec_lookup(pa);
375 if (up == NULL) {
376 printf("\n");
377 panic("ubsec_attach: impossible");
378 }
379
380 pci_aprint_devinfo_fancy(pa, "Crypto processor", up->ubsec_name, 1);
381
382 SIMPLEQ_INIT(&sc->sc_queue);
383 SIMPLEQ_INIT(&sc->sc_qchip);
384 SIMPLEQ_INIT(&sc->sc_queue2);
385 SIMPLEQ_INIT(&sc->sc_qchip2);
386 SIMPLEQ_INIT(&sc->sc_queue4);
387 SIMPLEQ_INIT(&sc->sc_qchip4);
388 SIMPLEQ_INIT(&sc->sc_q2free);
389
390 sc->sc_flags = up->ubsec_flags;
391 sc->sc_statmask = up->ubsec_statmask;
392 sc->sc_maxaggr = up->ubsec_maxaggr;
393
394 cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
395 cmd |= PCI_COMMAND_MASTER_ENABLE;
396 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
397
398 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BS_BAR);
399 if (pci_mapreg_map(pa, BS_BAR, memtype, 0,
400 &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize)) {
401 aprint_error_dev(self, "can't find mem space");
402 return;
403 }
404
405 sc->sc_dmat = pa->pa_dmat;
406
407 if (pci_intr_map(pa, &ih)) {
408 aprint_error_dev(self, "couldn't map interrupt\n");
409 return;
410 }
411 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
412 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc);
413 if (sc->sc_ih == NULL) {
414 aprint_error_dev(self, "couldn't establish interrupt");
415 if (intrstr != NULL)
416 aprint_error(" at %s", intrstr);
417 aprint_error("\n");
418 return;
419 }
420 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
421
422 sc->sc_cid = crypto_get_driverid(0);
423 if (sc->sc_cid < 0) {
424 aprint_error_dev(self, "couldn't get crypto driver id\n");
425 pci_intr_disestablish(pc, sc->sc_ih);
426 return;
427 }
428
429 sc->sc_rng_need = RND_POOLBITS / NBBY;
430 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_VM);
431
432 SIMPLEQ_INIT(&sc->sc_freequeue);
433 dmap = sc->sc_dmaa;
434 for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
435 struct ubsec_q *q;
436
437 q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
438 M_DEVBUF, M_NOWAIT);
439 if (q == NULL) {
440 aprint_error_dev(self, "can't allocate queue buffers\n");
441 break;
442 }
443
444 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
445 &dmap->d_alloc, 0)) {
446 aprint_error_dev(self, "can't allocate dma buffers\n");
447 free(q, M_DEVBUF);
448 break;
449 }
450 dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
451
452 q->q_dma = dmap;
453 sc->sc_queuea[i] = q;
454
455 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
456 }
457
458 crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
459 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
460 crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
461 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
462 crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0,
463 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
464 crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0,
465 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
466
467 /*
468 * Reset Broadcom chip
469 */
470 ubsec_reset_board(sc);
471
472 /*
473 * Init Broadcom specific PCI settings
474 */
475 ubsec_init_pciregs(pa);
476
477 /*
478 * Init Broadcom chip
479 */
480 ubsec_init_board(sc);
481
482 #ifndef UBSEC_NO_RNG
483 if (sc->sc_flags & UBS_FLAGS_RNG) {
484 if (sc->sc_flags & UBS_FLAGS_RNG4)
485 sc->sc_statmask |= BS_STAT_MCR4_DONE;
486 else
487 sc->sc_statmask |= BS_STAT_MCR2_DONE;
488
489 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
490 &sc->sc_rng.rng_q.q_mcr, 0))
491 goto skip_rng;
492
493 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
494 &sc->sc_rng.rng_q.q_ctx, 0)) {
495 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
496 goto skip_rng;
497 }
498
499 if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
500 UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
501 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
502 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
503 goto skip_rng;
504 }
505
506 rndsource_setcb(&sc->sc_rnd_source, ubsec_rng_get, sc);
507 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
508 RND_TYPE_RNG,
509 RND_FLAG_NO_ESTIMATE|RND_FLAG_HASCB);
510 if (hz >= 100)
511 sc->sc_rnghz = hz / 100;
512 else
513 sc->sc_rnghz = 1;
514 #ifdef __OpenBSD__
515 timeout_set(&sc->sc_rngto, ubsec_rng, sc);
516 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
517 #else
518 callout_init(&sc->sc_rngto, 0);
519 callout_setfunc(&sc->sc_rngto, ubsec_rng, sc);
520 callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
521 #endif
522 skip_rng:
523 if (sc->sc_rnghz)
524 aprint_normal_dev(self, "random number generator enabled\n");
525 else
526 aprint_error_dev(self, "WARNING: random number generator "
527 "disabled\n");
528 }
529 #endif /* UBSEC_NO_RNG */
530
531 if (sc->sc_flags & UBS_FLAGS_KEY) {
532 sc->sc_statmask |= BS_STAT_MCR2_DONE;
533
534 crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
535 ubsec_kprocess, sc);
536 #if 0
537 crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
538 ubsec_kprocess, sc);
539 #endif
540 }
541 }
542
543 static int
544 ubsec_detach(device_t self, int flags)
545 {
546 struct ubsec_softc *sc = device_private(self);
547 struct ubsec_q *q, *qtmp;
548 volatile u_int32_t ctrl;
549
550 /* disable interrupts */
551 /* XXX wait/abort current ops? where is DMAERR enabled? */
552 ctrl = READ_REG(sc, BS_CTRL);
553
554 ctrl &= ~(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR);
555 if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
556 ctrl &= ~BS_CTRL_MCR4INT;
557
558 WRITE_REG(sc, BS_CTRL, ctrl);
559
560 #ifndef UBSEC_NO_RNG
561 if (sc->sc_flags & UBS_FLAGS_RNG) {
562 callout_halt(&sc->sc_rngto, NULL);
563 ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
564 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
565 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
566 rnd_detach_source(&sc->sc_rnd_source);
567 }
568 #endif /* UBSEC_NO_RNG */
569
570 crypto_unregister_all(sc->sc_cid);
571
572 mutex_spin_enter(&sc->sc_mtx);
573
574 ubsec_totalreset(sc); /* XXX leaves the chip running */
575
576 SIMPLEQ_FOREACH_SAFE(q, &sc->sc_freequeue, q_next, qtmp) {
577 ubsec_dma_free(sc, &q->q_dma->d_alloc);
578 free(q, M_DEVBUF);
579 }
580
581 mutex_spin_exit(&sc->sc_mtx);
582
583 if (sc->sc_ih != NULL) {
584 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
585 sc->sc_ih = NULL;
586 }
587
588 if (sc->sc_memsize != 0) {
589 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
590 sc->sc_memsize = 0;
591 }
592
593 return 0;
594 }
595
596 MODULE(MODULE_CLASS_DRIVER, ubsec, "pci,opencrypto");
597
598 #ifdef _MODULE
599 #include "ioconf.c"
600 #endif
601
602 static int
603 ubsec_modcmd(modcmd_t cmd, void *data)
604 {
605 int error = 0;
606
607 switch (cmd) {
608 case MODULE_CMD_INIT:
609 #ifdef _MODULE
610 error = config_init_component(cfdriver_ioconf_ubsec,
611 cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
612 #endif
613 if (error == 0)
614 error = ubsec_sysctl_init();
615 return error;
616 case MODULE_CMD_FINI:
617 if (ubsec_sysctllog != NULL)
618 sysctl_teardown(&ubsec_sysctllog);
619 #ifdef _MODULE
620 error = config_fini_component(cfdriver_ioconf_ubsec,
621 cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
622 #endif
623 return error;
624 default:
625 return ENOTTY;
626 }
627 }
628
629 static int
630 ubsec_sysctl_init(void)
631 {
632 const struct sysctlnode *node = NULL;
633
634 ubsec_sysctllog = NULL;
635
636 sysctl_createv(&ubsec_sysctllog, 0, NULL, &node,
637 CTLFLAG_PERMANENT,
638 CTLTYPE_NODE, "ubsec",
639 SYSCTL_DESCR("ubsec opetions"),
640 NULL, 0, NULL, 0,
641 CTL_HW, CTL_CREATE, CTL_EOL);
642 sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
643 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
644 CTLTYPE_INT, "maxbatch",
645 SYSCTL_DESCR("max ops to batch w/o interrupt"),
646 NULL, 0, &ubsec_maxbatch, 0,
647 CTL_CREATE, CTL_EOL);
648 sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
649 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
650 CTLTYPE_INT, "maxaggr",
651 SYSCTL_DESCR("max ops to aggregate under one interrupt"),
652 NULL, 0, &ubsec_maxaggr, 0,
653 CTL_CREATE, CTL_EOL);
654
655 return 0;
656 }
657
658 /*
659 * UBSEC Interrupt routine
660 */
661 static int
662 ubsec_intr(void *arg)
663 {
664 struct ubsec_softc *sc = arg;
665 volatile u_int32_t stat;
666 struct ubsec_q *q;
667 struct ubsec_dma *dmap;
668 int flags;
669 int npkts = 0, i;
670
671 mutex_spin_enter(&sc->sc_mtx);
672 stat = READ_REG(sc, BS_STAT);
673 stat &= sc->sc_statmask;
674 if (stat == 0) {
675 mutex_spin_exit(&sc->sc_mtx);
676 return (0);
677 }
678
679 WRITE_REG(sc, BS_STAT, stat); /* IACK */
680
681 /*
682 * Check to see if we have any packets waiting for us
683 */
684 if ((stat & BS_STAT_MCR1_DONE)) {
685 while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
686 q = SIMPLEQ_FIRST(&sc->sc_qchip);
687 dmap = q->q_dma;
688
689 if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
690 break;
691
692 q = SIMPLEQ_FIRST(&sc->sc_qchip);
693 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
694
695 npkts = q->q_nstacked_mcrs;
696 sc->sc_nqchip -= 1+npkts;
697 /*
698 * search for further sc_qchip ubsec_q's that share
699 * the same MCR, and complete them too, they must be
700 * at the top.
701 */
702 for (i = 0; i < npkts; i++) {
703 if(q->q_stacked_mcr[i])
704 ubsec_callback(sc, q->q_stacked_mcr[i]);
705 else
706 break;
707 }
708 ubsec_callback(sc, q);
709 }
710
711 /*
712 * Don't send any more packet to chip if there has been
713 * a DMAERR.
714 */
715 if (!(stat & BS_STAT_DMAERR))
716 ubsec_feed(sc);
717 }
718
719 /*
720 * Check to see if we have any key setups/rng's waiting for us
721 */
722 if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
723 (stat & BS_STAT_MCR2_DONE)) {
724 struct ubsec_q2 *q2;
725 struct ubsec_mcr *mcr;
726
727 while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
728 q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
729
730 bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
731 0, q2->q_mcr.dma_map->dm_mapsize,
732 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
733
734 mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
735
736 /* A bug in new devices requires to swap this field */
737 if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
738 flags = htole16(mcr->mcr_flags);
739 else
740 flags = mcr->mcr_flags;
741 if ((flags & htole16(UBS_MCR_DONE)) == 0) {
742 bus_dmamap_sync(sc->sc_dmat,
743 q2->q_mcr.dma_map, 0,
744 q2->q_mcr.dma_map->dm_mapsize,
745 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
746 break;
747 }
748 q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
749 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
750 ubsec_callback2(sc, q2);
751 /*
752 * Don't send any more packet to chip if there has been
753 * a DMAERR.
754 */
755 if (!(stat & BS_STAT_DMAERR))
756 ubsec_feed2(sc);
757 }
758 }
759 if ((sc->sc_flags & UBS_FLAGS_RNG4) && (stat & BS_STAT_MCR4_DONE)) {
760 struct ubsec_q2 *q2;
761 struct ubsec_mcr *mcr;
762
763 while (!SIMPLEQ_EMPTY(&sc->sc_qchip4)) {
764 q2 = SIMPLEQ_FIRST(&sc->sc_qchip4);
765
766 bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
767 0, q2->q_mcr.dma_map->dm_mapsize,
768 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
769
770 mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
771
772 /* A bug in new devices requires to swap this field */
773 flags = htole16(mcr->mcr_flags);
774
775 if ((flags & htole16(UBS_MCR_DONE)) == 0) {
776 bus_dmamap_sync(sc->sc_dmat,
777 q2->q_mcr.dma_map, 0,
778 q2->q_mcr.dma_map->dm_mapsize,
779 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
780 break;
781 }
782 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip4, q_next);
783 ubsec_callback2(sc, q2);
784 /*
785 * Don't send any more packet to chip if there has been
786 * a DMAERR.
787 */
788 if (!(stat & BS_STAT_DMAERR))
789 ubsec_feed4(sc);
790 }
791 }
792
793 /*
794 * Check to see if we got any DMA Error
795 */
796 if (stat & BS_STAT_DMAERR) {
797 #ifdef UBSEC_DEBUG
798 if (ubsec_debug) {
799 volatile u_int32_t a = READ_REG(sc, BS_ERR);
800
801 printf("%s: dmaerr %s@%08x\n", device_xname(sc->sc_dev),
802 (a & BS_ERR_READ) ? "read" : "write",
803 a & BS_ERR_ADDR);
804 }
805 #endif /* UBSEC_DEBUG */
806 ubsecstats.hst_dmaerr++;
807 ubsec_totalreset(sc);
808 ubsec_feed(sc);
809 }
810
811 if (sc->sc_needwakeup) { /* XXX check high watermark */
812 int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
813 #ifdef UBSEC_DEBUG
814 if (ubsec_debug)
815 printf("%s: wakeup crypto (%x)\n", device_xname(sc->sc_dev),
816 sc->sc_needwakeup);
817 #endif /* UBSEC_DEBUG */
818 sc->sc_needwakeup &= ~wkeup;
819 crypto_unblock(sc->sc_cid, wkeup);
820 }
821 mutex_spin_exit(&sc->sc_mtx);
822 return (1);
823 }
824
825 /*
826 * ubsec_feed() - aggregate and post requests to chip
827 * OpenBSD comments:
828 * It is assumed that the caller set splnet()
829 */
830 static void
831 ubsec_feed(struct ubsec_softc *sc)
832 {
833 struct ubsec_q *q, *q2;
834 int npkts, i;
835 void *v;
836 u_int32_t stat;
837 #ifdef UBSEC_DEBUG
838 static int max;
839 #endif /* UBSEC_DEBUG */
840
841 npkts = sc->sc_nqueue;
842 if (npkts > ubsecstats.hst_maxqueue)
843 ubsecstats.hst_maxqueue = npkts;
844 if (npkts < 2)
845 goto feed1;
846
847 /*
848 * Decide how many ops to combine in a single MCR. We cannot
849 * aggregate more than UBS_MAX_AGGR because this is the number
850 * of slots defined in the data structure. Otherwise we clamp
851 * based on the tunable parameter ubsec_maxaggr. Note that
852 * aggregation can happen in two ways: either by batching ops
853 * from above or because the h/w backs up and throttles us.
854 * Aggregating ops reduces the number of interrupts to the host
855 * but also (potentially) increases the latency for processing
856 * completed ops as we only get an interrupt when all aggregated
857 * ops have completed.
858 */
859 if (npkts > sc->sc_maxaggr)
860 npkts = sc->sc_maxaggr;
861 if (npkts > ubsec_maxaggr)
862 npkts = ubsec_maxaggr;
863 if (npkts > ubsecstats.hst_maxbatch)
864 ubsecstats.hst_maxbatch = npkts;
865 if (npkts < 2)
866 goto feed1;
867 ubsecstats.hst_totbatch += npkts-1;
868
869 if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
870 if (stat & BS_STAT_DMAERR) {
871 ubsec_totalreset(sc);
872 ubsecstats.hst_dmaerr++;
873 } else {
874 ubsecstats.hst_mcr1full++;
875 }
876 return;
877 }
878
879 #ifdef UBSEC_DEBUG
880 if (ubsec_debug)
881 printf("merging %d records\n", npkts);
882 /* XXX temporary aggregation statistics reporting code */
883 if (max < npkts) {
884 max = npkts;
885 printf("%s: new max aggregate %d\n", device_xname(sc->sc_dev), max);
886 }
887 #endif /* UBSEC_DEBUG */
888
889 q = SIMPLEQ_FIRST(&sc->sc_queue);
890 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
891 --sc->sc_nqueue;
892
893 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
894 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
895 if (q->q_dst_map != NULL)
896 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
897 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
898
899 q->q_nstacked_mcrs = npkts - 1; /* Number of packets stacked */
900
901 for (i = 0; i < q->q_nstacked_mcrs; i++) {
902 q2 = SIMPLEQ_FIRST(&sc->sc_queue);
903 bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
904 0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
905 if (q2->q_dst_map != NULL)
906 bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
907 0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
908 q2= SIMPLEQ_FIRST(&sc->sc_queue);
909 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
910 --sc->sc_nqueue;
911
912 v = ((void *)&q2->q_dma->d_dma->d_mcr);
913 v = (char*)v + (sizeof(struct ubsec_mcr) -
914 sizeof(struct ubsec_mcr_add));
915 memcpy(&q->q_dma->d_dma->d_mcradd[i], v, sizeof(struct ubsec_mcr_add));
916 q->q_stacked_mcr[i] = q2;
917 }
918 q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
919 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
920 sc->sc_nqchip += npkts;
921 if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
922 ubsecstats.hst_maxqchip = sc->sc_nqchip;
923 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
924 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
925 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
926 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
927 offsetof(struct ubsec_dmachunk, d_mcr));
928 return;
929
930 feed1:
931 while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
932 if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
933 if (stat & BS_STAT_DMAERR) {
934 ubsec_totalreset(sc);
935 ubsecstats.hst_dmaerr++;
936 } else {
937 ubsecstats.hst_mcr1full++;
938 }
939 break;
940 }
941
942 q = SIMPLEQ_FIRST(&sc->sc_queue);
943
944 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
945 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
946 if (q->q_dst_map != NULL)
947 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
948 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
949 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
950 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
951 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
952
953 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
954 offsetof(struct ubsec_dmachunk, d_mcr));
955 #ifdef UBSEC_DEBUG
956 if (ubsec_debug)
957 printf("feed: q->chip %p %08x stat %08x\n",
958 q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
959 stat);
960 #endif /* UBSEC_DEBUG */
961 q = SIMPLEQ_FIRST(&sc->sc_queue);
962 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
963 --sc->sc_nqueue;
964 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
965 sc->sc_nqchip++;
966 }
967 if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
968 ubsecstats.hst_maxqchip = sc->sc_nqchip;
969 }
970
971 /*
972 * Allocate a new 'session' and return an encoded session id. 'sidp'
973 * contains our registration id, and should contain an encoded session
974 * id on successful allocation.
975 */
976 static int
977 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
978 {
979 struct cryptoini *c, *encini = NULL, *macini = NULL;
980 struct ubsec_softc *sc;
981 struct ubsec_session *ses = NULL;
982 MD5_CTX md5ctx;
983 SHA1_CTX sha1ctx;
984 int i, sesn;
985
986 sc = arg;
987 KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
988
989 if (sidp == NULL || cri == NULL || sc == NULL)
990 return (EINVAL);
991
992 for (c = cri; c != NULL; c = c->cri_next) {
993 if (c->cri_alg == CRYPTO_MD5_HMAC_96 ||
994 c->cri_alg == CRYPTO_SHA1_HMAC_96) {
995 if (macini)
996 return (EINVAL);
997 macini = c;
998 } else if (c->cri_alg == CRYPTO_DES_CBC ||
999 c->cri_alg == CRYPTO_3DES_CBC) {
1000 if (encini)
1001 return (EINVAL);
1002 encini = c;
1003 } else
1004 return (EINVAL);
1005 }
1006 if (encini == NULL && macini == NULL)
1007 return (EINVAL);
1008
1009 if (sc->sc_sessions == NULL) {
1010 ses = sc->sc_sessions = (struct ubsec_session *)malloc(
1011 sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
1012 if (ses == NULL)
1013 return (ENOMEM);
1014 sesn = 0;
1015 sc->sc_nsessions = 1;
1016 } else {
1017 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
1018 if (sc->sc_sessions[sesn].ses_used == 0) {
1019 ses = &sc->sc_sessions[sesn];
1020 break;
1021 }
1022 }
1023
1024 if (ses == NULL) {
1025 sesn = sc->sc_nsessions;
1026 ses = (struct ubsec_session *)malloc((sesn + 1) *
1027 sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
1028 if (ses == NULL)
1029 return (ENOMEM);
1030 memcpy(ses, sc->sc_sessions, sesn *
1031 sizeof(struct ubsec_session));
1032 memset(sc->sc_sessions, 0, sesn *
1033 sizeof(struct ubsec_session));
1034 free(sc->sc_sessions, M_DEVBUF);
1035 sc->sc_sessions = ses;
1036 ses = &sc->sc_sessions[sesn];
1037 sc->sc_nsessions++;
1038 }
1039 }
1040
1041 memset(ses, 0, sizeof(struct ubsec_session));
1042 ses->ses_used = 1;
1043 if (encini) {
1044 /* get an IV, network byte order */
1045 #ifdef __NetBSD__
1046 cprng_fast(ses->ses_iv, sizeof(ses->ses_iv));
1047 #else
1048 get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv));
1049 #endif
1050
1051 /* Go ahead and compute key in ubsec's byte order */
1052 if (encini->cri_alg == CRYPTO_DES_CBC) {
1053 memcpy(&ses->ses_deskey[0], encini->cri_key, 8);
1054 memcpy(&ses->ses_deskey[2], encini->cri_key, 8);
1055 memcpy(&ses->ses_deskey[4], encini->cri_key, 8);
1056 } else
1057 memcpy(ses->ses_deskey, encini->cri_key, 24);
1058
1059 SWAP32(ses->ses_deskey[0]);
1060 SWAP32(ses->ses_deskey[1]);
1061 SWAP32(ses->ses_deskey[2]);
1062 SWAP32(ses->ses_deskey[3]);
1063 SWAP32(ses->ses_deskey[4]);
1064 SWAP32(ses->ses_deskey[5]);
1065 }
1066
1067 if (macini) {
1068 for (i = 0; i < macini->cri_klen / 8; i++)
1069 macini->cri_key[i] ^= HMAC_IPAD_VAL;
1070
1071 if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
1072 MD5Init(&md5ctx);
1073 MD5Update(&md5ctx, macini->cri_key,
1074 macini->cri_klen / 8);
1075 MD5Update(&md5ctx, hmac_ipad_buffer,
1076 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1077 memcpy(ses->ses_hminner, md5ctx.state,
1078 sizeof(md5ctx.state));
1079 } else {
1080 SHA1Init(&sha1ctx);
1081 SHA1Update(&sha1ctx, macini->cri_key,
1082 macini->cri_klen / 8);
1083 SHA1Update(&sha1ctx, hmac_ipad_buffer,
1084 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1085 memcpy(ses->ses_hminner, sha1ctx.state,
1086 sizeof(sha1ctx.state));
1087 }
1088
1089 for (i = 0; i < macini->cri_klen / 8; i++)
1090 macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
1091
1092 if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
1093 MD5Init(&md5ctx);
1094 MD5Update(&md5ctx, macini->cri_key,
1095 macini->cri_klen / 8);
1096 MD5Update(&md5ctx, hmac_opad_buffer,
1097 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1098 memcpy(ses->ses_hmouter, md5ctx.state,
1099 sizeof(md5ctx.state));
1100 } else {
1101 SHA1Init(&sha1ctx);
1102 SHA1Update(&sha1ctx, macini->cri_key,
1103 macini->cri_klen / 8);
1104 SHA1Update(&sha1ctx, hmac_opad_buffer,
1105 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1106 memcpy(ses->ses_hmouter, sha1ctx.state,
1107 sizeof(sha1ctx.state));
1108 }
1109
1110 for (i = 0; i < macini->cri_klen / 8; i++)
1111 macini->cri_key[i] ^= HMAC_OPAD_VAL;
1112 }
1113
1114 *sidp = UBSEC_SID(device_unit(sc->sc_dev), sesn);
1115 return (0);
1116 }
1117
1118 /*
1119 * Deallocate a session.
1120 */
1121 static int
1122 ubsec_freesession(void *arg, u_int64_t tid)
1123 {
1124 struct ubsec_softc *sc;
1125 int session;
1126 u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
1127
1128 sc = arg;
1129 KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
1130
1131 session = UBSEC_SESSION(sid);
1132 if (session >= sc->sc_nsessions)
1133 return (EINVAL);
1134
1135 memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session]));
1136 return (0);
1137 }
1138
1139 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
1140 static void
1141 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
1142 {
1143 struct ubsec_operand *op = arg;
1144
1145 KASSERT(nsegs <= UBS_MAX_SCATTER
1146 /*, ("Too many DMA segments returned when mapping operand")*/);
1147 #ifdef UBSEC_DEBUG
1148 if (ubsec_debug)
1149 printf("ubsec_op_cb: mapsize %u nsegs %d\n",
1150 (u_int) mapsize, nsegs);
1151 #endif
1152 op->mapsize = mapsize;
1153 op->nsegs = nsegs;
1154 memcpy(op->segs, seg, nsegs * sizeof (seg[0]));
1155 }
1156 #endif
1157
1158 static int
1159 ubsec_process(void *arg, struct cryptop *crp, int hint)
1160 {
1161 struct ubsec_q *q = NULL;
1162 #ifdef __OpenBSD__
1163 int card;
1164 #endif
1165 int err = 0, i, j, nicealign;
1166 struct ubsec_softc *sc;
1167 struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1168 int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1169 int sskip, dskip, stheend, dtheend;
1170 int16_t coffset;
1171 struct ubsec_session *ses;
1172 struct ubsec_pktctx ctx;
1173 struct ubsec_dma *dmap = NULL;
1174
1175 sc = arg;
1176 KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/);
1177
1178 if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1179 ubsecstats.hst_invalid++;
1180 return (EINVAL);
1181 }
1182 if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1183 ubsecstats.hst_badsession++;
1184 return (EINVAL);
1185 }
1186
1187 mutex_spin_enter(&sc->sc_mtx);
1188
1189 if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1190 ubsecstats.hst_queuefull++;
1191 sc->sc_needwakeup |= CRYPTO_SYMQ;
1192 mutex_spin_exit(&sc->sc_mtx);
1193 return(ERESTART);
1194 }
1195
1196 q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1197 SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
1198 mutex_spin_exit(&sc->sc_mtx);
1199
1200 dmap = q->q_dma; /* Save dma pointer */
1201 memset(q, 0, sizeof(struct ubsec_q));
1202 memset(&ctx, 0, sizeof(ctx));
1203
1204 q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1205 q->q_dma = dmap;
1206 ses = &sc->sc_sessions[q->q_sesn];
1207
1208 if (crp->crp_flags & CRYPTO_F_IMBUF) {
1209 q->q_src_m = (struct mbuf *)crp->crp_buf;
1210 q->q_dst_m = (struct mbuf *)crp->crp_buf;
1211 } else if (crp->crp_flags & CRYPTO_F_IOV) {
1212 q->q_src_io = (struct uio *)crp->crp_buf;
1213 q->q_dst_io = (struct uio *)crp->crp_buf;
1214 } else {
1215 ubsecstats.hst_badflags++;
1216 err = EINVAL;
1217 goto errout; /* XXX we don't handle contiguous blocks! */
1218 }
1219
1220 memset(&dmap->d_dma->d_mcr, 0, sizeof(struct ubsec_mcr));
1221
1222 dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1223 dmap->d_dma->d_mcr.mcr_flags = 0;
1224 q->q_crp = crp;
1225
1226 crd1 = crp->crp_desc;
1227 if (crd1 == NULL) {
1228 ubsecstats.hst_nodesc++;
1229 err = EINVAL;
1230 goto errout;
1231 }
1232 crd2 = crd1->crd_next;
1233
1234 if (crd2 == NULL) {
1235 if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1236 crd1->crd_alg == CRYPTO_SHA1_HMAC_96) {
1237 maccrd = crd1;
1238 enccrd = NULL;
1239 } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1240 crd1->crd_alg == CRYPTO_3DES_CBC) {
1241 maccrd = NULL;
1242 enccrd = crd1;
1243 } else {
1244 ubsecstats.hst_badalg++;
1245 err = EINVAL;
1246 goto errout;
1247 }
1248 } else {
1249 if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1250 crd1->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1251 (crd2->crd_alg == CRYPTO_DES_CBC ||
1252 crd2->crd_alg == CRYPTO_3DES_CBC) &&
1253 ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1254 maccrd = crd1;
1255 enccrd = crd2;
1256 } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1257 crd1->crd_alg == CRYPTO_3DES_CBC) &&
1258 (crd2->crd_alg == CRYPTO_MD5_HMAC_96 ||
1259 crd2->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1260 (crd1->crd_flags & CRD_F_ENCRYPT)) {
1261 enccrd = crd1;
1262 maccrd = crd2;
1263 } else {
1264 /*
1265 * We cannot order the ubsec as requested
1266 */
1267 ubsecstats.hst_badalg++;
1268 err = EINVAL;
1269 goto errout;
1270 }
1271 }
1272
1273 if (enccrd) {
1274 encoffset = enccrd->crd_skip;
1275 ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1276
1277 if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1278 q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1279
1280 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1281 memcpy(ctx.pc_iv, enccrd->crd_iv, 8);
1282 else {
1283 ctx.pc_iv[0] = ses->ses_iv[0];
1284 ctx.pc_iv[1] = ses->ses_iv[1];
1285 }
1286
1287 if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1288 if (crp->crp_flags & CRYPTO_F_IMBUF)
1289 m_copyback(q->q_src_m,
1290 enccrd->crd_inject,
1291 8, (void *)ctx.pc_iv);
1292 else if (crp->crp_flags & CRYPTO_F_IOV)
1293 cuio_copyback(q->q_src_io,
1294 enccrd->crd_inject,
1295 8, (void *)ctx.pc_iv);
1296 }
1297 } else {
1298 ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1299
1300 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1301 memcpy(ctx.pc_iv, enccrd->crd_iv, 8);
1302 else if (crp->crp_flags & CRYPTO_F_IMBUF)
1303 m_copydata(q->q_src_m, enccrd->crd_inject,
1304 8, (void *)ctx.pc_iv);
1305 else if (crp->crp_flags & CRYPTO_F_IOV)
1306 cuio_copydata(q->q_src_io,
1307 enccrd->crd_inject, 8,
1308 (void *)ctx.pc_iv);
1309 }
1310
1311 ctx.pc_deskey[0] = ses->ses_deskey[0];
1312 ctx.pc_deskey[1] = ses->ses_deskey[1];
1313 ctx.pc_deskey[2] = ses->ses_deskey[2];
1314 ctx.pc_deskey[3] = ses->ses_deskey[3];
1315 ctx.pc_deskey[4] = ses->ses_deskey[4];
1316 ctx.pc_deskey[5] = ses->ses_deskey[5];
1317 SWAP32(ctx.pc_iv[0]);
1318 SWAP32(ctx.pc_iv[1]);
1319 }
1320
1321 if (maccrd) {
1322 macoffset = maccrd->crd_skip;
1323
1324 if (maccrd->crd_alg == CRYPTO_MD5_HMAC_96)
1325 ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1326 else
1327 ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1328
1329 for (i = 0; i < 5; i++) {
1330 ctx.pc_hminner[i] = ses->ses_hminner[i];
1331 ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1332
1333 HTOLE32(ctx.pc_hminner[i]);
1334 HTOLE32(ctx.pc_hmouter[i]);
1335 }
1336 }
1337
1338 if (enccrd && maccrd) {
1339 /*
1340 * ubsec cannot handle packets where the end of encryption
1341 * and authentication are not the same, or where the
1342 * encrypted part begins before the authenticated part.
1343 */
1344 if ((encoffset + enccrd->crd_len) !=
1345 (macoffset + maccrd->crd_len)) {
1346 ubsecstats.hst_lenmismatch++;
1347 err = EINVAL;
1348 goto errout;
1349 }
1350 if (enccrd->crd_skip < maccrd->crd_skip) {
1351 ubsecstats.hst_skipmismatch++;
1352 err = EINVAL;
1353 goto errout;
1354 }
1355 sskip = maccrd->crd_skip;
1356 cpskip = dskip = enccrd->crd_skip;
1357 stheend = maccrd->crd_len;
1358 dtheend = enccrd->crd_len;
1359 coffset = enccrd->crd_skip - maccrd->crd_skip;
1360 cpoffset = cpskip + dtheend;
1361 #ifdef UBSEC_DEBUG
1362 if (ubsec_debug) {
1363 printf("mac: skip %d, len %d, inject %d\n",
1364 maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1365 printf("enc: skip %d, len %d, inject %d\n",
1366 enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1367 printf("src: skip %d, len %d\n", sskip, stheend);
1368 printf("dst: skip %d, len %d\n", dskip, dtheend);
1369 printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1370 coffset, stheend, cpskip, cpoffset);
1371 }
1372 #endif
1373 } else {
1374 cpskip = dskip = sskip = macoffset + encoffset;
1375 dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1376 cpoffset = cpskip + dtheend;
1377 coffset = 0;
1378 }
1379 ctx.pc_offset = htole16(coffset >> 2);
1380
1381 /* XXX FIXME: jonathan asks, what the heck's that 0xfff0? */
1382 if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
1383 0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
1384 err = ENOMEM;
1385 goto errout;
1386 }
1387 if (crp->crp_flags & CRYPTO_F_IMBUF) {
1388 if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1389 q->q_src_m, BUS_DMA_NOWAIT) != 0) {
1390 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1391 q->q_src_map = NULL;
1392 ubsecstats.hst_noload++;
1393 err = ENOMEM;
1394 goto errout;
1395 }
1396 } else if (crp->crp_flags & CRYPTO_F_IOV) {
1397 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1398 q->q_src_io, BUS_DMA_NOWAIT) != 0) {
1399 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1400 q->q_src_map = NULL;
1401 ubsecstats.hst_noload++;
1402 err = ENOMEM;
1403 goto errout;
1404 }
1405 }
1406 nicealign = ubsec_dmamap_aligned(q->q_src_map);
1407
1408 dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1409
1410 #ifdef UBSEC_DEBUG
1411 if (ubsec_debug)
1412 printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1413 #endif
1414 for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
1415 struct ubsec_pktbuf *pb;
1416 bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
1417 bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
1418
1419 if (sskip >= packl) {
1420 sskip -= packl;
1421 continue;
1422 }
1423
1424 packl -= sskip;
1425 packp += sskip;
1426 sskip = 0;
1427
1428 if (packl > 0xfffc) {
1429 err = EIO;
1430 goto errout;
1431 }
1432
1433 if (j == 0)
1434 pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1435 else
1436 pb = &dmap->d_dma->d_sbuf[j - 1];
1437
1438 pb->pb_addr = htole32(packp);
1439
1440 if (stheend) {
1441 if (packl > stheend) {
1442 pb->pb_len = htole32(stheend);
1443 stheend = 0;
1444 } else {
1445 pb->pb_len = htole32(packl);
1446 stheend -= packl;
1447 }
1448 } else
1449 pb->pb_len = htole32(packl);
1450
1451 if ((i + 1) == q->q_src_map->dm_nsegs)
1452 pb->pb_next = 0;
1453 else
1454 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1455 offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1456 j++;
1457 }
1458
1459 if (enccrd == NULL && maccrd != NULL) {
1460 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1461 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1462 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1463 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1464 #ifdef UBSEC_DEBUG
1465 if (ubsec_debug)
1466 printf("opkt: %x %x %x\n",
1467 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1468 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1469 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1470
1471 #endif
1472 } else {
1473 if (crp->crp_flags & CRYPTO_F_IOV) {
1474 if (!nicealign) {
1475 ubsecstats.hst_iovmisaligned++;
1476 err = EINVAL;
1477 goto errout;
1478 }
1479 /* XXX: ``what the heck's that'' 0xfff0? */
1480 if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1481 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1482 &q->q_dst_map) != 0) {
1483 ubsecstats.hst_nomap++;
1484 err = ENOMEM;
1485 goto errout;
1486 }
1487 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1488 q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
1489 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1490 q->q_dst_map = NULL;
1491 ubsecstats.hst_noload++;
1492 err = ENOMEM;
1493 goto errout;
1494 }
1495 } else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1496 if (nicealign) {
1497 q->q_dst_m = q->q_src_m;
1498 q->q_dst_map = q->q_src_map;
1499 } else {
1500 int totlen, len;
1501 struct mbuf *m, *top, **mp;
1502
1503 ubsecstats.hst_unaligned++;
1504 totlen = q->q_src_map->dm_mapsize;
1505 if (q->q_src_m->m_flags & M_PKTHDR) {
1506 len = MHLEN;
1507 MGETHDR(m, M_DONTWAIT, MT_DATA);
1508 /*XXX FIXME: m_dup_pkthdr */
1509 if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
1510 m_free(m);
1511 m = NULL;
1512 }
1513 } else {
1514 len = MLEN;
1515 MGET(m, M_DONTWAIT, MT_DATA);
1516 }
1517 if (m == NULL) {
1518 ubsecstats.hst_nombuf++;
1519 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1520 goto errout;
1521 }
1522 if (len == MHLEN)
1523 /*XXX was M_DUP_PKTHDR*/
1524 M_COPY_PKTHDR(m, q->q_src_m);
1525 if (totlen >= MINCLSIZE) {
1526 MCLGET(m, M_DONTWAIT);
1527 if ((m->m_flags & M_EXT) == 0) {
1528 m_free(m);
1529 ubsecstats.hst_nomcl++;
1530 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1531 goto errout;
1532 }
1533 len = MCLBYTES;
1534 }
1535 m->m_len = len;
1536 top = NULL;
1537 mp = ⊤
1538
1539 while (totlen > 0) {
1540 if (top) {
1541 MGET(m, M_DONTWAIT, MT_DATA);
1542 if (m == NULL) {
1543 m_freem(top);
1544 ubsecstats.hst_nombuf++;
1545 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1546 goto errout;
1547 }
1548 len = MLEN;
1549 }
1550 if (top && totlen >= MINCLSIZE) {
1551 MCLGET(m, M_DONTWAIT);
1552 if ((m->m_flags & M_EXT) == 0) {
1553 *mp = m;
1554 m_freem(top);
1555 ubsecstats.hst_nomcl++;
1556 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1557 goto errout;
1558 }
1559 len = MCLBYTES;
1560 }
1561 m->m_len = len = min(totlen, len);
1562 totlen -= len;
1563 *mp = m;
1564 mp = &m->m_next;
1565 }
1566 q->q_dst_m = top;
1567 ubsec_mcopy(q->q_src_m, q->q_dst_m,
1568 cpskip, cpoffset);
1569 /* XXX again, what the heck is that 0xfff0? */
1570 if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1571 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1572 &q->q_dst_map) != 0) {
1573 ubsecstats.hst_nomap++;
1574 err = ENOMEM;
1575 goto errout;
1576 }
1577 if (bus_dmamap_load_mbuf(sc->sc_dmat,
1578 q->q_dst_map, q->q_dst_m,
1579 BUS_DMA_NOWAIT) != 0) {
1580 bus_dmamap_destroy(sc->sc_dmat,
1581 q->q_dst_map);
1582 q->q_dst_map = NULL;
1583 ubsecstats.hst_noload++;
1584 err = ENOMEM;
1585 goto errout;
1586 }
1587 }
1588 } else {
1589 ubsecstats.hst_badflags++;
1590 err = EINVAL;
1591 goto errout;
1592 }
1593
1594 #ifdef UBSEC_DEBUG
1595 if (ubsec_debug)
1596 printf("dst skip: %d\n", dskip);
1597 #endif
1598 for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
1599 struct ubsec_pktbuf *pb;
1600 bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
1601 bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
1602
1603 if (dskip >= packl) {
1604 dskip -= packl;
1605 continue;
1606 }
1607
1608 packl -= dskip;
1609 packp += dskip;
1610 dskip = 0;
1611
1612 if (packl > 0xfffc) {
1613 err = EIO;
1614 goto errout;
1615 }
1616
1617 if (j == 0)
1618 pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1619 else
1620 pb = &dmap->d_dma->d_dbuf[j - 1];
1621
1622 pb->pb_addr = htole32(packp);
1623
1624 if (dtheend) {
1625 if (packl > dtheend) {
1626 pb->pb_len = htole32(dtheend);
1627 dtheend = 0;
1628 } else {
1629 pb->pb_len = htole32(packl);
1630 dtheend -= packl;
1631 }
1632 } else
1633 pb->pb_len = htole32(packl);
1634
1635 if ((i + 1) == q->q_dst_map->dm_nsegs) {
1636 if (maccrd)
1637 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1638 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1639 else
1640 pb->pb_next = 0;
1641 } else
1642 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1643 offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1644 j++;
1645 }
1646 }
1647
1648 dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1649 offsetof(struct ubsec_dmachunk, d_ctx));
1650
1651 if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1652 struct ubsec_pktctx_long *ctxl;
1653
1654 ctxl = (struct ubsec_pktctx_long *)((char *)dmap->d_alloc.dma_vaddr +
1655 offsetof(struct ubsec_dmachunk, d_ctx));
1656
1657 /* transform small context into long context */
1658 ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1659 ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1660 ctxl->pc_flags = ctx.pc_flags;
1661 ctxl->pc_offset = ctx.pc_offset;
1662 for (i = 0; i < 6; i++)
1663 ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1664 for (i = 0; i < 5; i++)
1665 ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1666 for (i = 0; i < 5; i++)
1667 ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1668 ctxl->pc_iv[0] = ctx.pc_iv[0];
1669 ctxl->pc_iv[1] = ctx.pc_iv[1];
1670 } else
1671 memcpy((char *)dmap->d_alloc.dma_vaddr +
1672 offsetof(struct ubsec_dmachunk, d_ctx), &ctx,
1673 sizeof(struct ubsec_pktctx));
1674
1675 mutex_spin_enter(&sc->sc_mtx);
1676 SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1677 sc->sc_nqueue++;
1678 ubsecstats.hst_ipackets++;
1679 ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
1680 if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
1681 ubsec_feed(sc);
1682 mutex_spin_exit(&sc->sc_mtx);
1683 return (0);
1684
1685 errout:
1686 if (q != NULL) {
1687 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1688 m_freem(q->q_dst_m);
1689
1690 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1691 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1692 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1693 }
1694 if (q->q_src_map != NULL) {
1695 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1696 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1697 }
1698
1699 mutex_spin_enter(&sc->sc_mtx);
1700 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1701 mutex_spin_exit(&sc->sc_mtx);
1702 }
1703 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
1704 if (err == EINVAL)
1705 ubsecstats.hst_invalid++;
1706 else
1707 ubsecstats.hst_nomem++;
1708 #endif
1709 if (err != ERESTART) {
1710 crp->crp_etype = err;
1711 crypto_done(crp);
1712 } else {
1713 sc->sc_needwakeup |= CRYPTO_SYMQ;
1714 }
1715 return (err);
1716 }
1717
1718 static void
1719 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1720 {
1721 struct cryptop *crp = (struct cryptop *)q->q_crp;
1722 struct cryptodesc *crd;
1723 struct ubsec_dma *dmap = q->q_dma;
1724
1725 ubsecstats.hst_opackets++;
1726 ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1727
1728 bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
1729 dmap->d_alloc.dma_map->dm_mapsize,
1730 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1731 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1732 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1733 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1734 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1735 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1736 }
1737 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
1738 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1739 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1740 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1741
1742 if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1743 m_freem(q->q_src_m);
1744 crp->crp_buf = (void *)q->q_dst_m;
1745 }
1746
1747 /* copy out IV for future use */
1748 if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1749 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1750 if (crd->crd_alg != CRYPTO_DES_CBC &&
1751 crd->crd_alg != CRYPTO_3DES_CBC)
1752 continue;
1753 if (crp->crp_flags & CRYPTO_F_IMBUF)
1754 m_copydata((struct mbuf *)crp->crp_buf,
1755 crd->crd_skip + crd->crd_len - 8, 8,
1756 (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1757 else if (crp->crp_flags & CRYPTO_F_IOV) {
1758 cuio_copydata((struct uio *)crp->crp_buf,
1759 crd->crd_skip + crd->crd_len - 8, 8,
1760 (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1761 }
1762 break;
1763 }
1764 }
1765
1766 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1767 if (crd->crd_alg != CRYPTO_MD5_HMAC_96 &&
1768 crd->crd_alg != CRYPTO_SHA1_HMAC_96)
1769 continue;
1770 if (crp->crp_flags & CRYPTO_F_IMBUF)
1771 m_copyback((struct mbuf *)crp->crp_buf,
1772 crd->crd_inject, 12,
1773 (void *)dmap->d_dma->d_macbuf);
1774 else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1775 bcopy((void *)dmap->d_dma->d_macbuf,
1776 crp->crp_mac, 12);
1777 break;
1778 }
1779 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1780 crypto_done(crp);
1781 }
1782
1783 static void
1784 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1785 {
1786 int i, j, dlen, slen;
1787 char *dptr, *sptr;
1788
1789 j = 0;
1790 sptr = srcm->m_data;
1791 slen = srcm->m_len;
1792 dptr = dstm->m_data;
1793 dlen = dstm->m_len;
1794
1795 while (1) {
1796 for (i = 0; i < min(slen, dlen); i++) {
1797 if (j < hoffset || j >= toffset)
1798 *dptr++ = *sptr++;
1799 slen--;
1800 dlen--;
1801 j++;
1802 }
1803 if (slen == 0) {
1804 srcm = srcm->m_next;
1805 if (srcm == NULL)
1806 return;
1807 sptr = srcm->m_data;
1808 slen = srcm->m_len;
1809 }
1810 if (dlen == 0) {
1811 dstm = dstm->m_next;
1812 if (dstm == NULL)
1813 return;
1814 dptr = dstm->m_data;
1815 dlen = dstm->m_len;
1816 }
1817 }
1818 }
1819
1820 /*
1821 * feed the key generator, must be called at splnet() or higher.
1822 */
1823 static void
1824 ubsec_feed2(struct ubsec_softc *sc)
1825 {
1826 struct ubsec_q2 *q;
1827
1828 while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1829 if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1830 break;
1831 q = SIMPLEQ_FIRST(&sc->sc_queue2);
1832
1833 bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1834 q->q_mcr.dma_map->dm_mapsize,
1835 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1836 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1837 q->q_ctx.dma_map->dm_mapsize,
1838 BUS_DMASYNC_PREWRITE);
1839
1840 WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1841 q = SIMPLEQ_FIRST(&sc->sc_queue2);
1842 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
1843 --sc->sc_nqueue2;
1844 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1845 }
1846 }
1847
1848 /*
1849 * feed the RNG (used instead of ubsec_feed2() on 5827+ devices)
1850 */
1851 void
1852 ubsec_feed4(struct ubsec_softc *sc)
1853 {
1854 struct ubsec_q2 *q;
1855
1856 while (!SIMPLEQ_EMPTY(&sc->sc_queue4)) {
1857 if (READ_REG(sc, BS_STAT) & BS_STAT_MCR4_FULL)
1858 break;
1859 q = SIMPLEQ_FIRST(&sc->sc_queue4);
1860
1861 bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1862 q->q_mcr.dma_map->dm_mapsize,
1863 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1864 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1865 q->q_ctx.dma_map->dm_mapsize,
1866 BUS_DMASYNC_PREWRITE);
1867
1868 WRITE_REG(sc, BS_MCR4, q->q_mcr.dma_paddr);
1869 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue4, q_next);
1870 --sc->sc_nqueue4;
1871 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip4, q, q_next);
1872 }
1873 }
1874
1875 /*
1876 * Callback for handling random numbers
1877 */
1878 static void
1879 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1880 {
1881 struct cryptkop *krp;
1882 struct ubsec_ctx_keyop *ctx;
1883
1884 ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1885 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1886 q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1887
1888 switch (q->q_type) {
1889 #ifndef UBSEC_NO_RNG
1890 case UBS_CTXOP_RNGSHA1:
1891 case UBS_CTXOP_RNGBYPASS: {
1892 struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1893 u_int32_t *p;
1894 int i;
1895
1896 bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
1897 rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1898 p = (u_int32_t *)rng->rng_buf.dma_vaddr;
1899 #ifndef __NetBSD__
1900 for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++)
1901 add_true_randomness(letoh32(*p));
1902 #else
1903 i = UBSEC_RNG_BUFSIZ * sizeof(u_int32_t);
1904 rnd_add_data(&sc->sc_rnd_source, (char *)p, i, i * NBBY);
1905 sc->sc_rng_need -= i;
1906 #endif
1907 rng->rng_used = 0;
1908 #ifdef __OpenBSD__
1909 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
1910 #else
1911 if (sc->sc_rng_need > 0) {
1912 callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
1913 }
1914 #endif
1915 break;
1916 }
1917 #endif
1918 case UBS_CTXOP_MODEXP: {
1919 struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1920 u_int rlen, clen;
1921
1922 krp = me->me_krp;
1923 rlen = (me->me_modbits + 7) / 8;
1924 clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1925
1926 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
1927 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1928 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
1929 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1930 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
1931 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1932 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
1933 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1934
1935 if (clen < rlen)
1936 krp->krp_status = E2BIG;
1937 else {
1938 if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1939 memset(krp->krp_param[krp->krp_iparams].crp_p, 0,
1940 (krp->krp_param[krp->krp_iparams].crp_nbits
1941 + 7) / 8);
1942 bcopy(me->me_C.dma_vaddr,
1943 krp->krp_param[krp->krp_iparams].crp_p,
1944 (me->me_modbits + 7) / 8);
1945 } else
1946 ubsec_kshift_l(me->me_shiftbits,
1947 me->me_C.dma_vaddr, me->me_normbits,
1948 krp->krp_param[krp->krp_iparams].crp_p,
1949 krp->krp_param[krp->krp_iparams].crp_nbits);
1950 }
1951
1952 crypto_kdone(krp);
1953
1954 /* bzero all potentially sensitive data */
1955 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
1956 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
1957 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
1958 memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
1959
1960 /* Can't free here, so put us on the free list. */
1961 SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1962 break;
1963 }
1964 case UBS_CTXOP_RSAPRIV: {
1965 struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1966 u_int len;
1967
1968 krp = rp->rpr_krp;
1969 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
1970 rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1971 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
1972 rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1973
1974 len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1975 bcopy(rp->rpr_msgout.dma_vaddr,
1976 krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1977
1978 crypto_kdone(krp);
1979
1980 memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
1981 memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
1982 memset(rp->rpr_q.q_ctx.dma_vaddr, 0, rp->rpr_q.q_ctx.dma_size);
1983
1984 /* Can't free here, so put us on the free list. */
1985 SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1986 break;
1987 }
1988 default:
1989 printf("%s: unknown ctx op: %x\n", device_xname(sc->sc_dev),
1990 letoh16(ctx->ctx_op));
1991 break;
1992 }
1993 }
1994
1995 #ifndef UBSEC_NO_RNG
1996
1997 static void
1998 ubsec_rng_get(size_t bytes, void *vsc)
1999 {
2000 struct ubsec_softc *sc = vsc;
2001
2002 mutex_spin_enter(&sc->sc_mtx);
2003 sc->sc_rng_need = bytes;
2004 ubsec_rng_locked(sc);
2005 mutex_spin_exit(&sc->sc_mtx);
2006
2007 }
2008
2009 static void
2010 ubsec_rng(void *vsc)
2011 {
2012 struct ubsec_softc *sc = vsc;
2013 mutex_spin_enter(&sc->sc_mtx);
2014 ubsec_rng_locked(sc);
2015 mutex_spin_exit(&sc->sc_mtx);
2016 }
2017
2018 static void
2019 ubsec_rng_locked(void *vsc)
2020 {
2021 struct ubsec_softc *sc = vsc;
2022 struct ubsec_q2_rng *rng = &sc->sc_rng;
2023 struct ubsec_mcr *mcr;
2024 struct ubsec_ctx_rngbypass *ctx;
2025 int *nqueue;
2026
2027 /* Caller is responsible to lock and release sc_mtx. */
2028 KASSERT(mutex_owned(&sc->sc_mtx));
2029
2030 if (rng->rng_used) {
2031 return;
2032 }
2033
2034 if (sc->sc_rng_need < 1) {
2035 callout_stop(&sc->sc_rngto);
2036 return;
2037 }
2038
2039 if (sc->sc_flags & UBS_FLAGS_RNG4)
2040 nqueue = &sc->sc_nqueue4;
2041 else
2042 nqueue = &sc->sc_nqueue2;
2043
2044 (*nqueue)++;
2045 if (*nqueue >= UBS_MAX_NQUEUE)
2046 goto out;
2047
2048 mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
2049 ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
2050
2051 mcr->mcr_pkts = htole16(1);
2052 mcr->mcr_flags = 0;
2053 mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
2054 mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
2055 mcr->mcr_ipktbuf.pb_len = 0;
2056 mcr->mcr_reserved = mcr->mcr_pktlen = 0;
2057 mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
2058 mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
2059 UBS_PKTBUF_LEN);
2060 mcr->mcr_opktbuf.pb_next = 0;
2061
2062 ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
2063 ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
2064 rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
2065
2066 bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
2067 rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2068
2069 if (sc->sc_flags & UBS_FLAGS_RNG4) {
2070 SIMPLEQ_INSERT_TAIL(&sc->sc_queue4, &rng->rng_q, q_next);
2071 ubsec_feed4(sc);
2072 } else {
2073 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
2074 ubsec_feed2(sc);
2075 }
2076 rng->rng_used = 1;
2077 ubsecstats.hst_rng++;
2078
2079 return;
2080
2081 out:
2082 /*
2083 * Something weird happened, generate our own call back.
2084 */
2085 (*nqueue)--;
2086 #ifdef __OpenBSD__
2087 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
2088 #else
2089 callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
2090 #endif
2091 }
2092 #endif /* UBSEC_NO_RNG */
2093
2094 static int
2095 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
2096 struct ubsec_dma_alloc *dma,int mapflags)
2097 {
2098 int r;
2099
2100 if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
2101 &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
2102 goto fail_0;
2103
2104 if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
2105 size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
2106 goto fail_1;
2107
2108 if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
2109 BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
2110 goto fail_2;
2111
2112 if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
2113 size, NULL, BUS_DMA_NOWAIT)) != 0)
2114 goto fail_3;
2115
2116 dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
2117 dma->dma_size = size;
2118 return (0);
2119
2120 fail_3:
2121 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
2122 fail_2:
2123 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
2124 fail_1:
2125 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
2126 fail_0:
2127 dma->dma_map = NULL;
2128 return (r);
2129 }
2130
2131 static void
2132 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
2133 {
2134 bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
2135 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
2136 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
2137 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
2138 }
2139
2140 /*
2141 * Resets the board. Values in the regesters are left as is
2142 * from the reset (i.e. initial values are assigned elsewhere).
2143 */
2144 static void
2145 ubsec_reset_board(struct ubsec_softc *sc)
2146 {
2147 volatile u_int32_t ctrl;
2148
2149 ctrl = READ_REG(sc, BS_CTRL);
2150 ctrl |= BS_CTRL_RESET;
2151 WRITE_REG(sc, BS_CTRL, ctrl);
2152
2153 /*
2154 * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
2155 */
2156 DELAY(10);
2157
2158 /* Enable RNG and interrupts on newer devices */
2159 if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
2160 #ifndef UBSEC_NO_RNG
2161 WRITE_REG(sc, BS_CFG, BS_CFG_RNG);
2162 #endif
2163 WRITE_REG(sc, BS_INT, BS_INT_DMAINT);
2164 }
2165 }
2166
2167 /*
2168 * Init Broadcom registers
2169 */
2170 static void
2171 ubsec_init_board(struct ubsec_softc *sc)
2172 {
2173 u_int32_t ctrl;
2174
2175 ctrl = READ_REG(sc, BS_CTRL);
2176 ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
2177 ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
2178
2179 /*
2180 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
2181 * anyone got hw docs?
2182 */
2183 if (sc->sc_flags & UBS_FLAGS_KEY)
2184 ctrl |= BS_CTRL_MCR2INT;
2185 else
2186 ctrl &= ~BS_CTRL_MCR2INT;
2187
2188 if (sc->sc_flags & UBS_FLAGS_HWNORM)
2189 ctrl &= ~BS_CTRL_SWNORM;
2190
2191 if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
2192 ctrl |= BS_CTRL_BSIZE240;
2193 ctrl &= ~BS_CTRL_MCR3INT; /* MCR3 is reserved for SSL */
2194
2195 if (sc->sc_flags & UBS_FLAGS_RNG4)
2196 ctrl |= BS_CTRL_MCR4INT;
2197 else
2198 ctrl &= ~BS_CTRL_MCR4INT;
2199 }
2200
2201 WRITE_REG(sc, BS_CTRL, ctrl);
2202 }
2203
2204 /*
2205 * Init Broadcom PCI registers
2206 */
2207 static void
2208 ubsec_init_pciregs(struct pci_attach_args *pa)
2209 {
2210 pci_chipset_tag_t pc = pa->pa_pc;
2211 u_int32_t misc;
2212
2213 /*
2214 * This will set the cache line size to 1, this will
2215 * force the BCM58xx chip just to do burst read/writes.
2216 * Cache line read/writes are to slow
2217 */
2218 misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
2219 misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
2220 | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
2221 pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
2222 }
2223
2224 /*
2225 * Clean up after a chip crash.
2226 * It is assumed that the caller in splnet()
2227 */
2228 static void
2229 ubsec_cleanchip(struct ubsec_softc *sc)
2230 {
2231 struct ubsec_q *q;
2232
2233 while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
2234 q = SIMPLEQ_FIRST(&sc->sc_qchip);
2235 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
2236 ubsec_free_q(sc, q);
2237 }
2238 sc->sc_nqchip = 0;
2239 }
2240
2241 /*
2242 * free a ubsec_q
2243 * It is assumed that the caller is within splnet()
2244 */
2245 static int
2246 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2247 {
2248 struct ubsec_q *q2;
2249 struct cryptop *crp;
2250 int npkts;
2251 int i;
2252
2253 npkts = q->q_nstacked_mcrs;
2254
2255 for (i = 0; i < npkts; i++) {
2256 if(q->q_stacked_mcr[i]) {
2257 q2 = q->q_stacked_mcr[i];
2258
2259 if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
2260 m_freem(q2->q_dst_m);
2261
2262 crp = (struct cryptop *)q2->q_crp;
2263
2264 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2265
2266 crp->crp_etype = EFAULT;
2267 crypto_done(crp);
2268 } else {
2269 break;
2270 }
2271 }
2272
2273 /*
2274 * Free header MCR
2275 */
2276 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2277 m_freem(q->q_dst_m);
2278
2279 crp = (struct cryptop *)q->q_crp;
2280
2281 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2282
2283 crp->crp_etype = EFAULT;
2284 crypto_done(crp);
2285 return(0);
2286 }
2287
2288 /*
2289 * Routine to reset the chip and clean up.
2290 * It is assumed that the caller is in splnet()
2291 */
2292 static void
2293 ubsec_totalreset(struct ubsec_softc *sc)
2294 {
2295 ubsec_reset_board(sc);
2296 ubsec_init_board(sc);
2297 ubsec_cleanchip(sc);
2298 }
2299
2300 static int
2301 ubsec_dmamap_aligned(bus_dmamap_t map)
2302 {
2303 int i;
2304
2305 for (i = 0; i < map->dm_nsegs; i++) {
2306 if (map->dm_segs[i].ds_addr & 3)
2307 return (0);
2308 if ((i != (map->dm_nsegs - 1)) &&
2309 (map->dm_segs[i].ds_len & 3))
2310 return (0);
2311 }
2312 return (1);
2313 }
2314
2315 #ifdef __OpenBSD__
2316 struct ubsec_softc *
2317 ubsec_kfind(struct cryptkop *krp)
2318 {
2319 struct ubsec_softc *sc;
2320 int i;
2321
2322 for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
2323 sc = ubsec_cd.cd_devs[i];
2324 if (sc == NULL)
2325 continue;
2326 if (sc->sc_cid == krp->krp_hid)
2327 return (sc);
2328 }
2329 return (NULL);
2330 }
2331 #endif
2332
2333 static void
2334 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2335 {
2336 switch (q->q_type) {
2337 case UBS_CTXOP_MODEXP: {
2338 struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2339
2340 ubsec_dma_free(sc, &me->me_q.q_mcr);
2341 ubsec_dma_free(sc, &me->me_q.q_ctx);
2342 ubsec_dma_free(sc, &me->me_M);
2343 ubsec_dma_free(sc, &me->me_E);
2344 ubsec_dma_free(sc, &me->me_C);
2345 ubsec_dma_free(sc, &me->me_epb);
2346 free(me, M_DEVBUF);
2347 break;
2348 }
2349 case UBS_CTXOP_RSAPRIV: {
2350 struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2351
2352 ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2353 ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2354 ubsec_dma_free(sc, &rp->rpr_msgin);
2355 ubsec_dma_free(sc, &rp->rpr_msgout);
2356 free(rp, M_DEVBUF);
2357 break;
2358 }
2359 default:
2360 printf("%s: invalid kfree 0x%x\n", device_xname(sc->sc_dev),
2361 q->q_type);
2362 break;
2363 }
2364 }
2365
2366 static int
2367 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2368 {
2369 struct ubsec_softc *sc;
2370 int r;
2371
2372 if (krp == NULL || krp->krp_callback == NULL)
2373 return (EINVAL);
2374 #ifdef __OpenBSD__
2375 if ((sc = ubsec_kfind(krp)) == NULL)
2376 return (EINVAL);
2377 #else
2378 sc = arg;
2379 KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/);
2380 #endif
2381
2382 while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2383 struct ubsec_q2 *q;
2384
2385 q = SIMPLEQ_FIRST(&sc->sc_q2free);
2386 SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
2387 ubsec_kfree(sc, q);
2388 }
2389
2390 switch (krp->krp_op) {
2391 case CRK_MOD_EXP:
2392 if (sc->sc_flags & UBS_FLAGS_HWNORM)
2393 r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2394 else
2395 r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2396 break;
2397 case CRK_MOD_EXP_CRT:
2398 r = ubsec_kprocess_rsapriv(sc, krp, hint);
2399 break;
2400 default:
2401 printf("%s: kprocess: invalid op 0x%x\n",
2402 device_xname(sc->sc_dev), krp->krp_op);
2403 krp->krp_status = EOPNOTSUPP;
2404 crypto_kdone(krp);
2405 r = 0;
2406 }
2407 return (r);
2408 }
2409
2410 /*
2411 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2412 */
2413 static int
2414 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
2415 int hint)
2416 {
2417 struct ubsec_q2_modexp *me;
2418 struct ubsec_mcr *mcr;
2419 struct ubsec_ctx_modexp *ctx;
2420 struct ubsec_pktbuf *epb;
2421 int err = 0;
2422 u_int nbits, normbits, mbits, shiftbits, ebits;
2423
2424 me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2425 if (me == NULL) {
2426 err = ENOMEM;
2427 goto errout;
2428 }
2429 memset(me, 0, sizeof *me);
2430 me->me_krp = krp;
2431 me->me_q.q_type = UBS_CTXOP_MODEXP;
2432
2433 nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2434 if (nbits <= 512)
2435 normbits = 512;
2436 else if (nbits <= 768)
2437 normbits = 768;
2438 else if (nbits <= 1024)
2439 normbits = 1024;
2440 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2441 normbits = 1536;
2442 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2443 normbits = 2048;
2444 else {
2445 err = E2BIG;
2446 goto errout;
2447 }
2448
2449 shiftbits = normbits - nbits;
2450
2451 me->me_modbits = nbits;
2452 me->me_shiftbits = shiftbits;
2453 me->me_normbits = normbits;
2454
2455 /* Sanity check: result bits must be >= true modulus bits. */
2456 if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2457 err = ERANGE;
2458 goto errout;
2459 }
2460
2461 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2462 &me->me_q.q_mcr, 0)) {
2463 err = ENOMEM;
2464 goto errout;
2465 }
2466 mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2467
2468 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2469 &me->me_q.q_ctx, 0)) {
2470 err = ENOMEM;
2471 goto errout;
2472 }
2473
2474 mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2475 if (mbits > nbits) {
2476 err = E2BIG;
2477 goto errout;
2478 }
2479 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2480 err = ENOMEM;
2481 goto errout;
2482 }
2483 ubsec_kshift_r(shiftbits,
2484 krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2485 me->me_M.dma_vaddr, normbits);
2486
2487 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2488 err = ENOMEM;
2489 goto errout;
2490 }
2491 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2492
2493 ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2494 if (ebits > nbits) {
2495 err = E2BIG;
2496 goto errout;
2497 }
2498 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2499 err = ENOMEM;
2500 goto errout;
2501 }
2502 ubsec_kshift_r(shiftbits,
2503 krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2504 me->me_E.dma_vaddr, normbits);
2505
2506 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2507 &me->me_epb, 0)) {
2508 err = ENOMEM;
2509 goto errout;
2510 }
2511 epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2512 epb->pb_addr = htole32(me->me_E.dma_paddr);
2513 epb->pb_next = 0;
2514 epb->pb_len = htole32(normbits / 8);
2515
2516 #ifdef UBSEC_DEBUG
2517 if (ubsec_debug) {
2518 printf("Epb ");
2519 ubsec_dump_pb(epb);
2520 }
2521 #endif
2522
2523 mcr->mcr_pkts = htole16(1);
2524 mcr->mcr_flags = 0;
2525 mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2526 mcr->mcr_reserved = 0;
2527 mcr->mcr_pktlen = 0;
2528
2529 mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2530 mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2531 mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2532
2533 mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2534 mcr->mcr_opktbuf.pb_next = 0;
2535 mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2536
2537 #ifdef DIAGNOSTIC
2538 /* Misaligned output buffer will hang the chip. */
2539 if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2540 panic("%s: modexp invalid addr 0x%x",
2541 device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr));
2542 if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2543 panic("%s: modexp invalid len 0x%x",
2544 device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len));
2545 #endif
2546
2547 ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2548 memset(ctx, 0, sizeof(*ctx));
2549 ubsec_kshift_r(shiftbits,
2550 krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2551 ctx->me_N, normbits);
2552 ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2553 ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2554 ctx->me_E_len = htole16(nbits);
2555 ctx->me_N_len = htole16(nbits);
2556
2557 #ifdef UBSEC_DEBUG
2558 if (ubsec_debug) {
2559 ubsec_dump_mcr(mcr);
2560 ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2561 }
2562 #endif
2563
2564 /*
2565 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2566 * everything else.
2567 */
2568 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2569 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2570 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2571 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2572 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2573 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2574 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2575 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2576
2577 /* Enqueue and we're done... */
2578 mutex_spin_enter(&sc->sc_mtx);
2579 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2580 ubsec_feed2(sc);
2581 ubsecstats.hst_modexp++;
2582 mutex_spin_exit(&sc->sc_mtx);
2583
2584 return (0);
2585
2586 errout:
2587 if (me != NULL) {
2588 if (me->me_q.q_mcr.dma_map != NULL)
2589 ubsec_dma_free(sc, &me->me_q.q_mcr);
2590 if (me->me_q.q_ctx.dma_map != NULL) {
2591 memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
2592 ubsec_dma_free(sc, &me->me_q.q_ctx);
2593 }
2594 if (me->me_M.dma_map != NULL) {
2595 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2596 ubsec_dma_free(sc, &me->me_M);
2597 }
2598 if (me->me_E.dma_map != NULL) {
2599 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2600 ubsec_dma_free(sc, &me->me_E);
2601 }
2602 if (me->me_C.dma_map != NULL) {
2603 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2604 ubsec_dma_free(sc, &me->me_C);
2605 }
2606 if (me->me_epb.dma_map != NULL)
2607 ubsec_dma_free(sc, &me->me_epb);
2608 free(me, M_DEVBUF);
2609 }
2610 krp->krp_status = err;
2611 crypto_kdone(krp);
2612 return (0);
2613 }
2614
2615 /*
2616 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2617 */
2618 static int
2619 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
2620 int hint)
2621 {
2622 struct ubsec_q2_modexp *me;
2623 struct ubsec_mcr *mcr;
2624 struct ubsec_ctx_modexp *ctx;
2625 struct ubsec_pktbuf *epb;
2626 int err = 0;
2627 u_int nbits, normbits, mbits, shiftbits, ebits;
2628
2629 me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2630 if (me == NULL) {
2631 err = ENOMEM;
2632 goto errout;
2633 }
2634 memset(me, 0, sizeof *me);
2635 me->me_krp = krp;
2636 me->me_q.q_type = UBS_CTXOP_MODEXP;
2637
2638 nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2639 if (nbits <= 512)
2640 normbits = 512;
2641 else if (nbits <= 768)
2642 normbits = 768;
2643 else if (nbits <= 1024)
2644 normbits = 1024;
2645 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2646 normbits = 1536;
2647 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2648 normbits = 2048;
2649 else {
2650 err = E2BIG;
2651 goto errout;
2652 }
2653
2654 shiftbits = normbits - nbits;
2655
2656 /* XXX ??? */
2657 me->me_modbits = nbits;
2658 me->me_shiftbits = shiftbits;
2659 me->me_normbits = normbits;
2660
2661 /* Sanity check: result bits must be >= true modulus bits. */
2662 if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2663 err = ERANGE;
2664 goto errout;
2665 }
2666
2667 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2668 &me->me_q.q_mcr, 0)) {
2669 err = ENOMEM;
2670 goto errout;
2671 }
2672 mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2673
2674 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2675 &me->me_q.q_ctx, 0)) {
2676 err = ENOMEM;
2677 goto errout;
2678 }
2679
2680 mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2681 if (mbits > nbits) {
2682 err = E2BIG;
2683 goto errout;
2684 }
2685 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2686 err = ENOMEM;
2687 goto errout;
2688 }
2689 memset(me->me_M.dma_vaddr, 0, normbits / 8);
2690 bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2691 me->me_M.dma_vaddr, (mbits + 7) / 8);
2692
2693 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2694 err = ENOMEM;
2695 goto errout;
2696 }
2697 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2698
2699 ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2700 if (ebits > nbits) {
2701 err = E2BIG;
2702 goto errout;
2703 }
2704 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2705 err = ENOMEM;
2706 goto errout;
2707 }
2708 memset(me->me_E.dma_vaddr, 0, normbits / 8);
2709 bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2710 me->me_E.dma_vaddr, (ebits + 7) / 8);
2711
2712 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2713 &me->me_epb, 0)) {
2714 err = ENOMEM;
2715 goto errout;
2716 }
2717 epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2718 epb->pb_addr = htole32(me->me_E.dma_paddr);
2719 epb->pb_next = 0;
2720 epb->pb_len = htole32((ebits + 7) / 8);
2721
2722 #ifdef UBSEC_DEBUG
2723 if (ubsec_debug) {
2724 printf("Epb ");
2725 ubsec_dump_pb(epb);
2726 }
2727 #endif
2728
2729 mcr->mcr_pkts = htole16(1);
2730 mcr->mcr_flags = 0;
2731 mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2732 mcr->mcr_reserved = 0;
2733 mcr->mcr_pktlen = 0;
2734
2735 mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2736 mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2737 mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2738
2739 mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2740 mcr->mcr_opktbuf.pb_next = 0;
2741 mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2742
2743 #ifdef DIAGNOSTIC
2744 /* Misaligned output buffer will hang the chip. */
2745 if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2746 panic("%s: modexp invalid addr 0x%x",
2747 device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr));
2748 if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2749 panic("%s: modexp invalid len 0x%x",
2750 device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len));
2751 #endif
2752
2753 ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2754 memset(ctx, 0, sizeof(*ctx));
2755 memcpy(ctx->me_N, krp->krp_param[UBS_MODEXP_PAR_N].crp_p,
2756 (nbits + 7) / 8);
2757 ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2758 ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2759 ctx->me_E_len = htole16(ebits);
2760 ctx->me_N_len = htole16(nbits);
2761
2762 #ifdef UBSEC_DEBUG
2763 if (ubsec_debug) {
2764 ubsec_dump_mcr(mcr);
2765 ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2766 }
2767 #endif
2768
2769 /*
2770 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2771 * everything else.
2772 */
2773 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2774 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2775 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2776 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2777 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2778 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2779 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2780 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2781
2782 /* Enqueue and we're done... */
2783 mutex_spin_enter(&sc->sc_mtx);
2784 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2785 ubsec_feed2(sc);
2786 mutex_spin_exit(&sc->sc_mtx);
2787
2788 return (0);
2789
2790 errout:
2791 if (me != NULL) {
2792 if (me->me_q.q_mcr.dma_map != NULL)
2793 ubsec_dma_free(sc, &me->me_q.q_mcr);
2794 if (me->me_q.q_ctx.dma_map != NULL) {
2795 memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
2796 ubsec_dma_free(sc, &me->me_q.q_ctx);
2797 }
2798 if (me->me_M.dma_map != NULL) {
2799 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2800 ubsec_dma_free(sc, &me->me_M);
2801 }
2802 if (me->me_E.dma_map != NULL) {
2803 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2804 ubsec_dma_free(sc, &me->me_E);
2805 }
2806 if (me->me_C.dma_map != NULL) {
2807 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2808 ubsec_dma_free(sc, &me->me_C);
2809 }
2810 if (me->me_epb.dma_map != NULL)
2811 ubsec_dma_free(sc, &me->me_epb);
2812 free(me, M_DEVBUF);
2813 }
2814 krp->krp_status = err;
2815 crypto_kdone(krp);
2816 return (0);
2817 }
2818
2819 static int
2820 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
2821 int hint)
2822 {
2823 struct ubsec_q2_rsapriv *rp = NULL;
2824 struct ubsec_mcr *mcr;
2825 struct ubsec_ctx_rsapriv *ctx;
2826 int err = 0;
2827 u_int padlen, msglen;
2828
2829 msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2830 padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2831 if (msglen > padlen)
2832 padlen = msglen;
2833
2834 if (padlen <= 256)
2835 padlen = 256;
2836 else if (padlen <= 384)
2837 padlen = 384;
2838 else if (padlen <= 512)
2839 padlen = 512;
2840 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2841 padlen = 768;
2842 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2843 padlen = 1024;
2844 else {
2845 err = E2BIG;
2846 goto errout;
2847 }
2848
2849 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2850 err = E2BIG;
2851 goto errout;
2852 }
2853
2854 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2855 err = E2BIG;
2856 goto errout;
2857 }
2858
2859 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2860 err = E2BIG;
2861 goto errout;
2862 }
2863
2864 rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT|M_ZERO);
2865 if (rp == NULL)
2866 return (ENOMEM);
2867 rp->rpr_krp = krp;
2868 rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2869
2870 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2871 &rp->rpr_q.q_mcr, 0)) {
2872 err = ENOMEM;
2873 goto errout;
2874 }
2875 mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2876
2877 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2878 &rp->rpr_q.q_ctx, 0)) {
2879 err = ENOMEM;
2880 goto errout;
2881 }
2882 ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2883 memset(ctx, 0, sizeof *ctx);
2884
2885 /* Copy in p */
2886 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2887 &ctx->rpr_buf[0 * (padlen / 8)],
2888 (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2889
2890 /* Copy in q */
2891 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2892 &ctx->rpr_buf[1 * (padlen / 8)],
2893 (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2894
2895 /* Copy in dp */
2896 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2897 &ctx->rpr_buf[2 * (padlen / 8)],
2898 (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2899
2900 /* Copy in dq */
2901 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2902 &ctx->rpr_buf[3 * (padlen / 8)],
2903 (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2904
2905 /* Copy in pinv */
2906 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2907 &ctx->rpr_buf[4 * (padlen / 8)],
2908 (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2909
2910 msglen = padlen * 2;
2911
2912 /* Copy in input message (aligned buffer/length). */
2913 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2914 /* Is this likely? */
2915 err = E2BIG;
2916 goto errout;
2917 }
2918 if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2919 err = ENOMEM;
2920 goto errout;
2921 }
2922 memset(rp->rpr_msgin.dma_vaddr, 0, (msglen + 7) / 8);
2923 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2924 rp->rpr_msgin.dma_vaddr,
2925 (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2926
2927 /* Prepare space for output message (aligned buffer/length). */
2928 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2929 /* Is this likely? */
2930 err = E2BIG;
2931 goto errout;
2932 }
2933 if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2934 err = ENOMEM;
2935 goto errout;
2936 }
2937 memset(rp->rpr_msgout.dma_vaddr, 0, (msglen + 7) / 8);
2938
2939 mcr->mcr_pkts = htole16(1);
2940 mcr->mcr_flags = 0;
2941 mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2942 mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2943 mcr->mcr_ipktbuf.pb_next = 0;
2944 mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2945 mcr->mcr_reserved = 0;
2946 mcr->mcr_pktlen = htole16(msglen);
2947 mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2948 mcr->mcr_opktbuf.pb_next = 0;
2949 mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2950
2951 #ifdef DIAGNOSTIC
2952 if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2953 panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
2954 device_xname(sc->sc_dev), (u_long) rp->rpr_msgin.dma_paddr,
2955 (u_long) rp->rpr_msgin.dma_size);
2956 }
2957 if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2958 panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
2959 device_xname(sc->sc_dev), (u_long) rp->rpr_msgout.dma_paddr,
2960 (u_long) rp->rpr_msgout.dma_size);
2961 }
2962 #endif
2963
2964 ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2965 ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2966 ctx->rpr_q_len = htole16(padlen);
2967 ctx->rpr_p_len = htole16(padlen);
2968
2969 /*
2970 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2971 * everything else.
2972 */
2973 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
2974 0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2975 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
2976 0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2977
2978 /* Enqueue and we're done... */
2979 mutex_spin_enter(&sc->sc_mtx);
2980 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2981 ubsec_feed2(sc);
2982 ubsecstats.hst_modexpcrt++;
2983 mutex_spin_exit(&sc->sc_mtx);
2984 return (0);
2985
2986 errout:
2987 if (rp != NULL) {
2988 if (rp->rpr_q.q_mcr.dma_map != NULL)
2989 ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2990 if (rp->rpr_msgin.dma_map != NULL) {
2991 memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
2992 ubsec_dma_free(sc, &rp->rpr_msgin);
2993 }
2994 if (rp->rpr_msgout.dma_map != NULL) {
2995 memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
2996 ubsec_dma_free(sc, &rp->rpr_msgout);
2997 }
2998 free(rp, M_DEVBUF);
2999 }
3000 krp->krp_status = err;
3001 crypto_kdone(krp);
3002 return (0);
3003 }
3004
3005 #ifdef UBSEC_DEBUG
3006 static void
3007 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
3008 {
3009 printf("addr 0x%x (0x%x) next 0x%x\n",
3010 pb->pb_addr, pb->pb_len, pb->pb_next);
3011 }
3012
3013 static void
3014 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
3015 {
3016 printf("CTX (0x%x):\n", c->ctx_len);
3017 switch (letoh16(c->ctx_op)) {
3018 case UBS_CTXOP_RNGBYPASS:
3019 case UBS_CTXOP_RNGSHA1:
3020 break;
3021 case UBS_CTXOP_MODEXP:
3022 {
3023 struct ubsec_ctx_modexp *cx = (void *)c;
3024 int i, len;
3025
3026 printf(" Elen %u, Nlen %u\n",
3027 letoh16(cx->me_E_len), letoh16(cx->me_N_len));
3028 len = (cx->me_N_len + 7)/8;
3029 for (i = 0; i < len; i++)
3030 printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
3031 printf("\n");
3032 break;
3033 }
3034 default:
3035 printf("unknown context: %x\n", c->ctx_op);
3036 }
3037 printf("END CTX\n");
3038 }
3039
3040 static void
3041 ubsec_dump_mcr(struct ubsec_mcr *mcr)
3042 {
3043 volatile struct ubsec_mcr_add *ma;
3044 int i;
3045
3046 printf("MCR:\n");
3047 printf(" pkts: %u, flags 0x%x\n",
3048 letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
3049 ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
3050 for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
3051 printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
3052 letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
3053 letoh16(ma->mcr_reserved));
3054 printf(" %d: ipkt ", i);
3055 ubsec_dump_pb(&ma->mcr_ipktbuf);
3056 printf(" %d: opkt ", i);
3057 ubsec_dump_pb(&ma->mcr_opktbuf);
3058 ma++;
3059 }
3060 printf("END MCR\n");
3061 }
3062 #endif /* UBSEC_DEBUG */
3063
3064 /*
3065 * Return the number of significant bits of a big number.
3066 */
3067 static int
3068 ubsec_ksigbits(struct crparam *cr)
3069 {
3070 u_int plen = (cr->crp_nbits + 7) / 8;
3071 int i, sig = plen * 8;
3072 u_int8_t c, *p = cr->crp_p;
3073
3074 for (i = plen - 1; i >= 0; i--) {
3075 c = p[i];
3076 if (c != 0) {
3077 while ((c & 0x80) == 0) {
3078 sig--;
3079 c <<= 1;
3080 }
3081 break;
3082 }
3083 sig -= 8;
3084 }
3085 return (sig);
3086 }
3087
3088 static void
3089 ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits,
3090 u_int8_t *dst, u_int dstbits)
3091 {
3092 u_int slen, dlen;
3093 int i, si, di, n;
3094
3095 slen = (srcbits + 7) / 8;
3096 dlen = (dstbits + 7) / 8;
3097
3098 for (i = 0; i < slen; i++)
3099 dst[i] = src[i];
3100 for (i = 0; i < dlen - slen; i++)
3101 dst[slen + i] = 0;
3102
3103 n = shiftbits / 8;
3104 if (n != 0) {
3105 si = dlen - n - 1;
3106 di = dlen - 1;
3107 while (si >= 0)
3108 dst[di--] = dst[si--];
3109 while (di >= 0)
3110 dst[di--] = 0;
3111 }
3112
3113 n = shiftbits % 8;
3114 if (n != 0) {
3115 for (i = dlen - 1; i > 0; i--)
3116 dst[i] = (dst[i] << n) |
3117 (dst[i - 1] >> (8 - n));
3118 dst[0] = dst[0] << n;
3119 }
3120 }
3121
3122 static void
3123 ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits,
3124 u_int8_t *dst, u_int dstbits)
3125 {
3126 int slen, dlen, i, n;
3127
3128 slen = (srcbits + 7) / 8;
3129 dlen = (dstbits + 7) / 8;
3130
3131 n = shiftbits / 8;
3132 for (i = 0; i < slen; i++)
3133 dst[i] = src[i + n];
3134 for (i = 0; i < dlen - slen; i++)
3135 dst[slen + i] = 0;
3136
3137 n = shiftbits % 8;
3138 if (n != 0) {
3139 for (i = 0; i < (dlen - 1); i++)
3140 dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
3141 dst[dlen - 1] = dst[dlen - 1] >> n;
3142 }
3143 }
3144