Home | History | Annotate | Line # | Download | only in pci
ubsec.c revision 1.39
      1 /*	$NetBSD: ubsec.c,v 1.39 2014/04/18 22:25:58 bad Exp $	*/
      2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
      3 /*	$OpenBSD: ubsec.c,v 1.127 2003/06/04 14:04:58 jason Exp $	*/
      4 
      5 /*
      6  * Copyright (c) 2000 Jason L. Wright (jason (at) thought.net)
      7  * Copyright (c) 2000 Theo de Raadt (deraadt (at) openbsd.org)
      8  * Copyright (c) 2001 Patrik Lindergren (patrik (at) ipunplugged.com)
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
     23  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     27  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     28  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  *
     31  * Effort sponsored in part by the Defense Advanced Research Projects
     32  * Agency (DARPA) and Air Force Research Laboratory, Air Force
     33  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
     34  *
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: ubsec.c,v 1.39 2014/04/18 22:25:58 bad Exp $");
     39 
     40 #undef UBSEC_DEBUG
     41 
     42 /*
     43  * uBsec 5[56]01, bcm580xx, bcm582x hardware crypto accelerator
     44  */
     45 
     46 #include <sys/param.h>
     47 #include <sys/systm.h>
     48 #include <sys/proc.h>
     49 #include <sys/endian.h>
     50 #ifdef __NetBSD__
     51   #define UBSEC_NO_RNG	/* hangs on attach */
     52   #define letoh16 htole16
     53   #define letoh32 htole32
     54 #endif
     55 #include <sys/errno.h>
     56 #include <sys/malloc.h>
     57 #include <sys/kernel.h>
     58 #include <sys/mbuf.h>
     59 #include <sys/device.h>
     60 #include <sys/module.h>
     61 #include <sys/queue.h>
     62 #include <sys/sysctl.h>
     63 
     64 #include <opencrypto/cryptodev.h>
     65 #include <opencrypto/xform.h>
     66 #ifdef __OpenBSD__
     67  #include <dev/rndvar.h>
     68  #include <sys/md5k.h>
     69 #else
     70  #include <sys/cprng.h>
     71  #include <sys/md5.h>
     72 #endif
     73 #include <sys/sha1.h>
     74 
     75 #include <dev/pci/pcireg.h>
     76 #include <dev/pci/pcivar.h>
     77 #include <dev/pci/pcidevs.h>
     78 
     79 #include <dev/pci/ubsecreg.h>
     80 #include <dev/pci/ubsecvar.h>
     81 
     82 /*
     83  * Prototypes and count for the pci_device structure
     84  */
     85 static	int ubsec_probe(device_t, cfdata_t, void *);
     86 static	void ubsec_attach(device_t, device_t, void *);
     87 static	int  ubsec_detach(device_t, int);
     88 static	int  ubsec_sysctl_init(void);
     89 static	void ubsec_reset_board(struct ubsec_softc *);
     90 static	void ubsec_init_board(struct ubsec_softc *);
     91 static	void ubsec_init_pciregs(struct pci_attach_args *pa);
     92 static	void ubsec_cleanchip(struct ubsec_softc *);
     93 static	void ubsec_totalreset(struct ubsec_softc *);
     94 static	int  ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
     95 
     96 #ifdef __OpenBSD__
     97 struct cfattach ubsec_ca = {
     98 	sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
     99 };
    100 
    101 struct cfdriver ubsec_cd = {
    102 	0, "ubsec", DV_DULL
    103 };
    104 #else
    105 CFATTACH_DECL_NEW(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
    106 	      ubsec_detach, NULL);
    107 extern struct cfdriver ubsec_cd;
    108 #endif
    109 
    110 /* patchable */
    111 #ifdef	UBSEC_DEBUG
    112 extern int ubsec_debug;
    113 int ubsec_debug=1;
    114 #endif
    115 
    116 static	int	ubsec_intr(void *);
    117 static	int	ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
    118 static	int	ubsec_freesession(void*, u_int64_t);
    119 static	int	ubsec_process(void*, struct cryptop *, int hint);
    120 static	void	ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
    121 static	void	ubsec_feed(struct ubsec_softc *);
    122 static	void	ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
    123 static	void	ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
    124 static	void	ubsec_feed2(struct ubsec_softc *);
    125 static	void	ubsec_feed4(struct ubsec_softc *);
    126 #ifndef UBSEC_NO_RNG
    127 static  void	ubsec_rng(void *);
    128 static  void	ubsec_rng_locked(void *);
    129 static  void	ubsec_rng_get(size_t, void *);
    130 #endif /* UBSEC_NO_RNG */
    131 static	int 	ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
    132 				 struct ubsec_dma_alloc *, int);
    133 static	void	ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
    134 static	int	ubsec_dmamap_aligned(bus_dmamap_t);
    135 
    136 static	int	ubsec_kprocess(void*, struct cryptkop *, int);
    137 static	int	ubsec_kprocess_modexp_sw(struct ubsec_softc *,
    138 					 struct cryptkop *, int);
    139 static	int	ubsec_kprocess_modexp_hw(struct ubsec_softc *,
    140 					 struct cryptkop *, int);
    141 static	int	ubsec_kprocess_rsapriv(struct ubsec_softc *,
    142 				       struct cryptkop *, int);
    143 static	void	ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
    144 static	int	ubsec_ksigbits(struct crparam *);
    145 static	void	ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
    146 static	void	ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
    147 
    148 #ifdef UBSEC_DEBUG
    149 static void	ubsec_dump_pb(volatile struct ubsec_pktbuf *);
    150 static void	ubsec_dump_mcr(struct ubsec_mcr *);
    151 static	void	ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
    152 #endif
    153 
    154 #define	READ_REG(sc,r) \
    155 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
    156 
    157 #define WRITE_REG(sc,reg,val) \
    158 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
    159 
    160 #define	SWAP32(x) (x) = htole32(ntohl((x)))
    161 #ifndef HTOLE32
    162  #define	HTOLE32(x) (x) = htole32(x)
    163 #endif
    164 
    165 struct ubsec_stats ubsecstats;
    166 
    167 static struct sysctllog *ubsec_sysctllog;
    168 
    169 /*
    170  * ubsec_maxbatch controls the number of crypto ops to voluntarily
    171  * collect into one submission to the hardware.  This batching happens
    172  * when ops are dispatched from the crypto subsystem with a hint that
    173  * more are to follow immediately.  These ops must also not be marked
    174  * with a ``no delay'' flag.
    175  */
    176 static	int ubsec_maxbatch = 1;
    177 
    178 /*
    179  * ubsec_maxaggr controls the number of crypto ops to submit to the
    180  * hardware as a unit.  This aggregation reduces the number of interrupts
    181  * to the host at the expense of increased latency (for all but the last
    182  * operation).  For network traffic setting this to one yields the highest
    183  * performance but at the expense of more interrupt processing.
    184  */
    185 static	int ubsec_maxaggr = 1;
    186 
    187 static const struct ubsec_product {
    188 	pci_vendor_id_t		ubsec_vendor;
    189 	pci_product_id_t	ubsec_product;
    190 	int			ubsec_flags;
    191 	int			ubsec_statmask;
    192 	int			ubsec_maxaggr;
    193 	const char		*ubsec_name;
    194 } ubsec_products[] = {
    195 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5501,
    196 	  0,
    197 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    198 	  UBS_MIN_AGGR,
    199 	  "Bluesteel 5501"
    200 	},
    201 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5601,
    202 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
    203 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    204 	  UBS_MIN_AGGR,
    205 	  "Bluesteel 5601"
    206 	},
    207 
    208 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5801,
    209 	  0,
    210 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    211 	  UBS_MIN_AGGR,
    212 	  "Broadcom BCM5801"
    213 	},
    214 
    215 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5802,
    216 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
    217 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    218 	  UBS_MIN_AGGR,
    219 	  "Broadcom BCM5802"
    220 	},
    221 
    222 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5805,
    223 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
    224 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    225 	  UBS_MIN_AGGR,
    226 	  "Broadcom BCM5805"
    227 	},
    228 
    229 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5820,
    230 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    231 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    232 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    233 	  UBS_MIN_AGGR,
    234 	  "Broadcom BCM5820"
    235 	},
    236 
    237 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5821,
    238 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    239 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    240 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    241 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    242 	  UBS_MIN_AGGR,
    243 	  "Broadcom BCM5821"
    244 	},
    245 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_SCA1K,
    246 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    247 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    248 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    249 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    250 	  UBS_MIN_AGGR,
    251 	  "Sun Crypto Accelerator 1000"
    252 	},
    253 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_5821,
    254 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    255 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    256 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    257 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    258 	  UBS_MIN_AGGR,
    259 	  "Broadcom BCM5821 (Sun)"
    260 	},
    261 
    262 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5822,
    263 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    264 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    265 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    266 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    267 	  UBS_MIN_AGGR,
    268 	  "Broadcom BCM5822"
    269 	},
    270 
    271 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5823,
    272 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    273 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    274 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    275 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    276 	  UBS_MIN_AGGR,
    277 	  "Broadcom BCM5823"
    278 	},
    279 
    280 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5825,
    281 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    282 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    283 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    284 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    285 	  UBS_MIN_AGGR,
    286 	  "Broadcom BCM5825"
    287 	},
    288 
    289 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5860,
    290 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
    291 	      UBS_FLAGS_LONGCTX |
    292 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
    293 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY,
    294 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    295 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
    296 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
    297 	  UBS_MAX_AGGR,
    298 	  "Broadcom BCM5860"
    299 	},
    300 
    301 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5861,
    302 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
    303 	      UBS_FLAGS_LONGCTX |
    304 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
    305 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY,
    306 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    307 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
    308 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
    309 	  UBS_MAX_AGGR,
    310 	  "Broadcom BCM5861"
    311 	},
    312 
    313 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5862,
    314 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
    315 	      UBS_FLAGS_LONGCTX |
    316 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
    317 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY,
    318 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    319 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
    320 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
    321 	  UBS_MAX_AGGR,
    322 	  "Broadcom BCM5862"
    323 	},
    324 
    325 	{ 0,			0,
    326 	  0,
    327 	  0,
    328 	  0,
    329 	  NULL
    330 	}
    331 };
    332 
    333 static const struct ubsec_product *
    334 ubsec_lookup(const struct pci_attach_args *pa)
    335 {
    336 	const struct ubsec_product *up;
    337 
    338 	for (up = ubsec_products; up->ubsec_name != NULL; up++) {
    339 		if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
    340 		    PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
    341 			return (up);
    342 	}
    343 	return (NULL);
    344 }
    345 
    346 static int
    347 ubsec_probe(device_t parent, cfdata_t match, void *aux)
    348 {
    349 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    350 
    351 	if (ubsec_lookup(pa) != NULL)
    352 		return (1);
    353 
    354 	return (0);
    355 }
    356 
    357 static void
    358 ubsec_attach(device_t parent, device_t self, void *aux)
    359 {
    360 	struct ubsec_softc *sc = device_private(self);
    361 	struct pci_attach_args *pa = aux;
    362 	const struct ubsec_product *up;
    363 	pci_chipset_tag_t pc = pa->pa_pc;
    364 	pci_intr_handle_t ih;
    365 	const char *intrstr = NULL;
    366 	pcireg_t memtype;
    367 	struct ubsec_dma *dmap;
    368 	u_int32_t cmd, i;
    369 	char intrbuf[PCI_INTRSTR_LEN];
    370 
    371 	sc->sc_dev = self;
    372 	sc->sc_pct = pc;
    373 
    374 	up = ubsec_lookup(pa);
    375 	if (up == NULL) {
    376 		printf("\n");
    377 		panic("ubsec_attach: impossible");
    378 	}
    379 
    380 	pci_aprint_devinfo_fancy(pa, "Crypto processor", up->ubsec_name, 1);
    381 
    382 	SIMPLEQ_INIT(&sc->sc_queue);
    383 	SIMPLEQ_INIT(&sc->sc_qchip);
    384 	SIMPLEQ_INIT(&sc->sc_queue2);
    385 	SIMPLEQ_INIT(&sc->sc_qchip2);
    386 	SIMPLEQ_INIT(&sc->sc_queue4);
    387 	SIMPLEQ_INIT(&sc->sc_qchip4);
    388 	SIMPLEQ_INIT(&sc->sc_q2free);
    389 
    390 	sc->sc_flags = up->ubsec_flags;
    391 	sc->sc_statmask = up->ubsec_statmask;
    392 	sc->sc_maxaggr = up->ubsec_maxaggr;
    393 
    394 	cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    395 	cmd |= PCI_COMMAND_MASTER_ENABLE;
    396 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
    397 
    398 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BS_BAR);
    399 	if (pci_mapreg_map(pa, BS_BAR, memtype, 0,
    400 	    &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize)) {
    401 		aprint_error_dev(self, "can't find mem space");
    402 		return;
    403 	}
    404 
    405 	sc->sc_dmat = pa->pa_dmat;
    406 
    407 	if (pci_intr_map(pa, &ih)) {
    408 		aprint_error_dev(self, "couldn't map interrupt\n");
    409 		return;
    410 	}
    411 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    412 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc);
    413 	if (sc->sc_ih == NULL) {
    414 		aprint_error_dev(self, "couldn't establish interrupt");
    415 		if (intrstr != NULL)
    416 			aprint_error(" at %s", intrstr);
    417 		aprint_error("\n");
    418 		return;
    419 	}
    420 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    421 
    422 	sc->sc_cid = crypto_get_driverid(0);
    423 	if (sc->sc_cid < 0) {
    424 		aprint_error_dev(self, "couldn't get crypto driver id\n");
    425 		pci_intr_disestablish(pc, sc->sc_ih);
    426 		return;
    427 	}
    428 
    429 	sc->sc_rng_need = RND_POOLBITS / NBBY;
    430 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_VM);
    431 
    432 	SIMPLEQ_INIT(&sc->sc_freequeue);
    433 	dmap = sc->sc_dmaa;
    434 	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
    435 		struct ubsec_q *q;
    436 
    437 		q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
    438 		    M_DEVBUF, M_ZERO|M_NOWAIT);
    439 		if (q == NULL) {
    440 			aprint_error_dev(self, "can't allocate queue buffers\n");
    441 			break;
    442 		}
    443 
    444 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
    445 		    &dmap->d_alloc, 0)) {
    446 			aprint_error_dev(self, "can't allocate dma buffers\n");
    447 			free(q, M_DEVBUF);
    448 			break;
    449 		}
    450 		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
    451 
    452 		q->q_dma = dmap;
    453 		sc->sc_queuea[i] = q;
    454 
    455 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
    456 	}
    457 
    458 	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
    459 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
    460 	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
    461 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
    462 	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0,
    463 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
    464 	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0,
    465 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
    466 
    467 	/*
    468 	 * Reset Broadcom chip
    469 	 */
    470 	ubsec_reset_board(sc);
    471 
    472 	/*
    473 	 * Init Broadcom specific PCI settings
    474 	 */
    475 	ubsec_init_pciregs(pa);
    476 
    477 	/*
    478 	 * Init Broadcom chip
    479 	 */
    480 	ubsec_init_board(sc);
    481 
    482 #ifndef UBSEC_NO_RNG
    483 	if (sc->sc_flags & UBS_FLAGS_RNG) {
    484 		if (sc->sc_flags & UBS_FLAGS_RNG4)
    485 			sc->sc_statmask |= BS_STAT_MCR4_DONE;
    486 		else
    487 			sc->sc_statmask |= BS_STAT_MCR2_DONE;
    488 
    489 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
    490 		    &sc->sc_rng.rng_q.q_mcr, 0))
    491 			goto skip_rng;
    492 
    493 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
    494 		    &sc->sc_rng.rng_q.q_ctx, 0)) {
    495 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
    496 			goto skip_rng;
    497 		}
    498 
    499 		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
    500 		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
    501 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
    502 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
    503 			goto skip_rng;
    504 		}
    505 
    506 		rndsource_setcb(&sc->sc_rnd_source, ubsec_rng_get, sc);
    507 		rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
    508 				  RND_TYPE_RNG,
    509 				  RND_FLAG_NO_ESTIMATE|RND_FLAG_HASCB);
    510 		if (hz >= 100)
    511 			sc->sc_rnghz = hz / 100;
    512 		else
    513 			sc->sc_rnghz = 1;
    514 #ifdef __OpenBSD__
    515 		timeout_set(&sc->sc_rngto, ubsec_rng, sc);
    516 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
    517 #else
    518 		callout_init(&sc->sc_rngto, 0);
    519 		callout_setfunc(&sc->sc_rngto, ubsec_rng, sc);
    520 		callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
    521 #endif
    522  skip_rng:
    523 		if (sc->sc_rnghz)
    524 			aprint_normal_dev(self, "random number generator enabled\n");
    525 		else
    526 			aprint_error_dev(self, "WARNING: random number generator "
    527 			    "disabled\n");
    528 	}
    529 #endif /* UBSEC_NO_RNG */
    530 
    531 	if (sc->sc_flags & UBS_FLAGS_KEY) {
    532 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
    533 
    534 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
    535 				 ubsec_kprocess, sc);
    536 #if 0
    537 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
    538 				 ubsec_kprocess, sc);
    539 #endif
    540 	}
    541 }
    542 
    543 static int
    544 ubsec_detach(device_t self, int flags)
    545 {
    546 	struct ubsec_softc *sc = device_private(self);
    547 	struct ubsec_q *q, *qtmp;
    548 	volatile u_int32_t ctrl;
    549 
    550 	/* disable interrupts */
    551 	/* XXX wait/abort current ops? where is DMAERR enabled? */
    552 	ctrl = READ_REG(sc, BS_CTRL);
    553 
    554 	ctrl &= ~(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR);
    555 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
    556 		ctrl &= ~BS_CTRL_MCR4INT;
    557 
    558 	WRITE_REG(sc, BS_CTRL, ctrl);
    559 
    560 #ifndef UBSEC_NO_RNG
    561 	if (sc->sc_flags & UBS_FLAGS_RNG) {
    562 		callout_halt(&sc->sc_rngto, NULL);
    563 		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
    564 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
    565 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
    566 		rnd_detach_source(&sc->sc_rnd_source);
    567 	}
    568 #endif /* UBSEC_NO_RNG */
    569 
    570 	crypto_unregister_all(sc->sc_cid);
    571 
    572 	mutex_spin_enter(&sc->sc_mtx);
    573 
    574 	ubsec_totalreset(sc);  /* XXX leaves the chip running */
    575 
    576 	SIMPLEQ_FOREACH_SAFE(q, &sc->sc_freequeue, q_next, qtmp) {
    577 		ubsec_dma_free(sc, &q->q_dma->d_alloc);
    578 		if (q->q_src_map != NULL)
    579 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
    580 		if (q->q_cached_dst_map != NULL)
    581 			bus_dmamap_destroy(sc->sc_dmat, q->q_cached_dst_map);
    582 		free(q, M_DEVBUF);
    583 	}
    584 
    585 	mutex_spin_exit(&sc->sc_mtx);
    586 
    587 	if (sc->sc_ih != NULL) {
    588 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    589 		sc->sc_ih = NULL;
    590 	}
    591 
    592 	if (sc->sc_memsize != 0) {
    593 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
    594 		sc->sc_memsize = 0;
    595 	}
    596 
    597 	return 0;
    598 }
    599 
    600 MODULE(MODULE_CLASS_DRIVER, ubsec, "pci,opencrypto");
    601 
    602 #ifdef _MODULE
    603 #include "ioconf.c"
    604 #endif
    605 
    606 static int
    607 ubsec_modcmd(modcmd_t cmd, void *data)
    608 {
    609 	int error = 0;
    610 
    611 	switch (cmd) {
    612 	case MODULE_CMD_INIT:
    613 #ifdef _MODULE
    614 		error = config_init_component(cfdriver_ioconf_ubsec,
    615 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
    616 #endif
    617 		if (error == 0)
    618 			error = ubsec_sysctl_init();
    619 		return error;
    620 	case MODULE_CMD_FINI:
    621 		if (ubsec_sysctllog != NULL)
    622 			sysctl_teardown(&ubsec_sysctllog);
    623 #ifdef _MODULE
    624 		error = config_fini_component(cfdriver_ioconf_ubsec,
    625 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
    626 #endif
    627 		return error;
    628 	default:
    629 		return ENOTTY;
    630 	}
    631 }
    632 
    633 static int
    634 ubsec_sysctl_init(void)
    635 {
    636 	const struct sysctlnode *node = NULL;
    637 
    638 	ubsec_sysctllog = NULL;
    639 
    640 	sysctl_createv(&ubsec_sysctllog, 0, NULL, &node,
    641 		CTLFLAG_PERMANENT,
    642 		CTLTYPE_NODE, "ubsec",
    643 		SYSCTL_DESCR("ubsec opetions"),
    644 		NULL, 0, NULL, 0,
    645 		CTL_HW, CTL_CREATE, CTL_EOL);
    646 	sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
    647 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    648 		CTLTYPE_INT, "maxbatch",
    649 		SYSCTL_DESCR("max ops to batch w/o interrupt"),
    650 		NULL, 0, &ubsec_maxbatch, 0,
    651 		CTL_CREATE, CTL_EOL);
    652 	sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
    653 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    654 		CTLTYPE_INT, "maxaggr",
    655 		SYSCTL_DESCR("max ops to aggregate under one interrupt"),
    656 		NULL, 0, &ubsec_maxaggr, 0,
    657 		CTL_CREATE, CTL_EOL);
    658 
    659 	return 0;
    660 }
    661 
    662 /*
    663  * UBSEC Interrupt routine
    664  */
    665 static int
    666 ubsec_intr(void *arg)
    667 {
    668 	struct ubsec_softc *sc = arg;
    669 	volatile u_int32_t stat;
    670 	struct ubsec_q *q;
    671 	struct ubsec_dma *dmap;
    672 	int flags;
    673 	int npkts = 0, i;
    674 
    675 	mutex_spin_enter(&sc->sc_mtx);
    676 	stat = READ_REG(sc, BS_STAT);
    677 	stat &= sc->sc_statmask;
    678 	if (stat == 0) {
    679 		mutex_spin_exit(&sc->sc_mtx);
    680 		return (0);
    681 	}
    682 
    683 	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
    684 
    685 	/*
    686 	 * Check to see if we have any packets waiting for us
    687 	 */
    688 	if ((stat & BS_STAT_MCR1_DONE)) {
    689 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
    690 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
    691 			dmap = q->q_dma;
    692 
    693 			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
    694 				break;
    695 
    696 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
    697 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
    698 
    699 			npkts = q->q_nstacked_mcrs;
    700 			sc->sc_nqchip -= 1+npkts;
    701 			/*
    702 			 * search for further sc_qchip ubsec_q's that share
    703 			 * the same MCR, and complete them too, they must be
    704 			 * at the top.
    705 			 */
    706 			for (i = 0; i < npkts; i++) {
    707 				if(q->q_stacked_mcr[i])
    708 					ubsec_callback(sc, q->q_stacked_mcr[i]);
    709 				else
    710 					break;
    711 			}
    712 			ubsec_callback(sc, q);
    713 		}
    714 
    715 		/*
    716 		 * Don't send any more packet to chip if there has been
    717 		 * a DMAERR.
    718 		 */
    719 		if (!(stat & BS_STAT_DMAERR))
    720 			ubsec_feed(sc);
    721 	}
    722 
    723 	/*
    724 	 * Check to see if we have any key setups/rng's waiting for us
    725 	 */
    726 	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
    727 	    (stat & BS_STAT_MCR2_DONE)) {
    728 		struct ubsec_q2 *q2;
    729 		struct ubsec_mcr *mcr;
    730 
    731 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
    732 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
    733 
    734 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
    735 			    0, q2->q_mcr.dma_map->dm_mapsize,
    736 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    737 
    738 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
    739 
    740 			/* A bug in new devices requires to swap this field */
    741 			if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
    742 				flags = htole16(mcr->mcr_flags);
    743 			else
    744 				flags = mcr->mcr_flags;
    745 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
    746 				bus_dmamap_sync(sc->sc_dmat,
    747 				    q2->q_mcr.dma_map, 0,
    748 				    q2->q_mcr.dma_map->dm_mapsize,
    749 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    750 				break;
    751 			}
    752 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
    753 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
    754 			ubsec_callback2(sc, q2);
    755 			/*
    756 			 * Don't send any more packet to chip if there has been
    757 			 * a DMAERR.
    758 			 */
    759 			if (!(stat & BS_STAT_DMAERR))
    760 				ubsec_feed2(sc);
    761 		}
    762 	}
    763 	if ((sc->sc_flags & UBS_FLAGS_RNG4) && (stat & BS_STAT_MCR4_DONE)) {
    764 		struct ubsec_q2 *q2;
    765 		struct ubsec_mcr *mcr;
    766 
    767 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip4)) {
    768 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip4);
    769 
    770 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
    771 			    0, q2->q_mcr.dma_map->dm_mapsize,
    772 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    773 
    774 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
    775 
    776 			/* A bug in new devices requires to swap this field */
    777 			flags = htole16(mcr->mcr_flags);
    778 
    779 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
    780 				bus_dmamap_sync(sc->sc_dmat,
    781 				    q2->q_mcr.dma_map, 0,
    782 				    q2->q_mcr.dma_map->dm_mapsize,
    783 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    784 				break;
    785 			}
    786 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip4, q_next);
    787 			ubsec_callback2(sc, q2);
    788 			/*
    789 			 * Don't send any more packet to chip if there has been
    790 			 * a DMAERR.
    791 			 */
    792 			if (!(stat & BS_STAT_DMAERR))
    793 				ubsec_feed4(sc);
    794 		}
    795 	}
    796 
    797 	/*
    798 	 * Check to see if we got any DMA Error
    799 	 */
    800 	if (stat & BS_STAT_DMAERR) {
    801 #ifdef UBSEC_DEBUG
    802 		if (ubsec_debug) {
    803 			volatile u_int32_t a = READ_REG(sc, BS_ERR);
    804 
    805 			printf("%s: dmaerr %s@%08x\n", device_xname(sc->sc_dev),
    806 			    (a & BS_ERR_READ) ? "read" : "write",
    807 			       a & BS_ERR_ADDR);
    808 		}
    809 #endif /* UBSEC_DEBUG */
    810 		ubsecstats.hst_dmaerr++;
    811 		ubsec_totalreset(sc);
    812 		ubsec_feed(sc);
    813 	}
    814 
    815 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
    816 		int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
    817 #ifdef UBSEC_DEBUG
    818 		if (ubsec_debug)
    819 			printf("%s: wakeup crypto (%x)\n", device_xname(sc->sc_dev),
    820 				sc->sc_needwakeup);
    821 #endif /* UBSEC_DEBUG */
    822 		sc->sc_needwakeup &= ~wkeup;
    823 		crypto_unblock(sc->sc_cid, wkeup);
    824 	}
    825 	mutex_spin_exit(&sc->sc_mtx);
    826 	return (1);
    827 }
    828 
    829 /*
    830  * ubsec_feed() - aggregate and post requests to chip
    831  * OpenBSD comments:
    832  *		  It is assumed that the caller set splnet()
    833  */
    834 static void
    835 ubsec_feed(struct ubsec_softc *sc)
    836 {
    837 	struct ubsec_q *q, *q2;
    838 	int npkts, i;
    839 	void *v;
    840 	u_int32_t stat;
    841 #ifdef UBSEC_DEBUG
    842 	static int max;
    843 #endif /* UBSEC_DEBUG */
    844 
    845 	npkts = sc->sc_nqueue;
    846 	if (npkts > ubsecstats.hst_maxqueue)
    847 		ubsecstats.hst_maxqueue = npkts;
    848 	if (npkts < 2)
    849 		goto feed1;
    850 
    851 	/*
    852 	 * Decide how many ops to combine in a single MCR.  We cannot
    853 	 * aggregate more than UBS_MAX_AGGR because this is the number
    854 	 * of slots defined in the data structure.  Otherwise we clamp
    855 	 * based on the tunable parameter ubsec_maxaggr.  Note that
    856 	 * aggregation can happen in two ways: either by batching ops
    857 	 * from above or because the h/w backs up and throttles us.
    858 	 * Aggregating ops reduces the number of interrupts to the host
    859 	 * but also (potentially) increases the latency for processing
    860 	 * completed ops as we only get an interrupt when all aggregated
    861 	 * ops have completed.
    862 	 */
    863 	if (npkts > sc->sc_maxaggr)
    864 		npkts = sc->sc_maxaggr;
    865 	if (npkts > ubsec_maxaggr)
    866 		npkts = ubsec_maxaggr;
    867 	if (npkts > ubsecstats.hst_maxbatch)
    868 		ubsecstats.hst_maxbatch = npkts;
    869 	if (npkts < 2)
    870 		goto feed1;
    871 	ubsecstats.hst_totbatch += npkts-1;
    872 
    873 	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
    874 		if (stat & BS_STAT_DMAERR) {
    875 			ubsec_totalreset(sc);
    876 			ubsecstats.hst_dmaerr++;
    877 		} else {
    878 			ubsecstats.hst_mcr1full++;
    879 		}
    880 		return;
    881 	}
    882 
    883 #ifdef UBSEC_DEBUG
    884 	if (ubsec_debug)
    885 	    printf("merging %d records\n", npkts);
    886 	/* XXX temporary aggregation statistics reporting code */
    887 	if (max < npkts) {
    888 		max = npkts;
    889 		printf("%s: new max aggregate %d\n", device_xname(sc->sc_dev), max);
    890 	}
    891 #endif /* UBSEC_DEBUG */
    892 
    893 	q = SIMPLEQ_FIRST(&sc->sc_queue);
    894 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
    895 	--sc->sc_nqueue;
    896 
    897 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
    898 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
    899 	if (q->q_dst_map != NULL)
    900 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
    901 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
    902 
    903 	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
    904 
    905 	for (i = 0; i < q->q_nstacked_mcrs; i++) {
    906 		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
    907 		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
    908 		    0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
    909 		if (q2->q_dst_map != NULL)
    910 			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
    911 			    0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
    912 		q2= SIMPLEQ_FIRST(&sc->sc_queue);
    913 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
    914 		--sc->sc_nqueue;
    915 
    916 		v = ((void *)&q2->q_dma->d_dma->d_mcr);
    917 		v = (char*)v + (sizeof(struct ubsec_mcr) -
    918 				 sizeof(struct ubsec_mcr_add));
    919 		memcpy(&q->q_dma->d_dma->d_mcradd[i], v, sizeof(struct ubsec_mcr_add));
    920 		q->q_stacked_mcr[i] = q2;
    921 	}
    922 	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
    923 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
    924 	sc->sc_nqchip += npkts;
    925 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
    926 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
    927 	bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
    928 	    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
    929 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    930 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
    931 	    offsetof(struct ubsec_dmachunk, d_mcr));
    932 	return;
    933 
    934 feed1:
    935 	while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
    936 		if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
    937 			if (stat & BS_STAT_DMAERR) {
    938 				ubsec_totalreset(sc);
    939 				ubsecstats.hst_dmaerr++;
    940 			} else {
    941 				ubsecstats.hst_mcr1full++;
    942 			}
    943 			break;
    944 		}
    945 
    946 		q = SIMPLEQ_FIRST(&sc->sc_queue);
    947 
    948 		bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
    949 		    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
    950 		if (q->q_dst_map != NULL)
    951 			bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
    952 			    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
    953 		bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
    954 		    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
    955 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    956 
    957 		WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
    958 		    offsetof(struct ubsec_dmachunk, d_mcr));
    959 #ifdef UBSEC_DEBUG
    960 		if (ubsec_debug)
    961 			printf("feed: q->chip %p %08x stat %08x\n",
    962  		    	       q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
    963 			       stat);
    964 #endif /* UBSEC_DEBUG */
    965 		q = SIMPLEQ_FIRST(&sc->sc_queue);
    966 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
    967 		--sc->sc_nqueue;
    968 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
    969 		sc->sc_nqchip++;
    970 	}
    971 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
    972 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
    973 }
    974 
    975 /*
    976  * Allocate a new 'session' and return an encoded session id.  'sidp'
    977  * contains our registration id, and should contain an encoded session
    978  * id on successful allocation.
    979  */
    980 static int
    981 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
    982 {
    983 	struct cryptoini *c, *encini = NULL, *macini = NULL;
    984 	struct ubsec_softc *sc;
    985 	struct ubsec_session *ses = NULL;
    986 	MD5_CTX md5ctx;
    987 	SHA1_CTX sha1ctx;
    988 	int i, sesn;
    989 
    990 	sc = arg;
    991 	KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
    992 
    993 	if (sidp == NULL || cri == NULL || sc == NULL)
    994 		return (EINVAL);
    995 
    996 	for (c = cri; c != NULL; c = c->cri_next) {
    997 		if (c->cri_alg == CRYPTO_MD5_HMAC_96 ||
    998 		    c->cri_alg == CRYPTO_SHA1_HMAC_96) {
    999 			if (macini)
   1000 				return (EINVAL);
   1001 			macini = c;
   1002 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
   1003 		    c->cri_alg == CRYPTO_3DES_CBC) {
   1004 			if (encini)
   1005 				return (EINVAL);
   1006 			encini = c;
   1007 		} else
   1008 			return (EINVAL);
   1009 	}
   1010 	if (encini == NULL && macini == NULL)
   1011 		return (EINVAL);
   1012 
   1013 	if (sc->sc_sessions == NULL) {
   1014 		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
   1015 		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
   1016 		if (ses == NULL)
   1017 			return (ENOMEM);
   1018 		sesn = 0;
   1019 		sc->sc_nsessions = 1;
   1020 	} else {
   1021 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
   1022 			if (sc->sc_sessions[sesn].ses_used == 0) {
   1023 				ses = &sc->sc_sessions[sesn];
   1024 				break;
   1025 			}
   1026 		}
   1027 
   1028 		if (ses == NULL) {
   1029 			sesn = sc->sc_nsessions;
   1030 			ses = (struct ubsec_session *)malloc((sesn + 1) *
   1031 			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
   1032 			if (ses == NULL)
   1033 				return (ENOMEM);
   1034 			memcpy(ses, sc->sc_sessions, sesn *
   1035 			    sizeof(struct ubsec_session));
   1036 			memset(sc->sc_sessions, 0, sesn *
   1037 			    sizeof(struct ubsec_session));
   1038 			free(sc->sc_sessions, M_DEVBUF);
   1039 			sc->sc_sessions = ses;
   1040 			ses = &sc->sc_sessions[sesn];
   1041 			sc->sc_nsessions++;
   1042 		}
   1043 	}
   1044 
   1045 	memset(ses, 0, sizeof(struct ubsec_session));
   1046 	ses->ses_used = 1;
   1047 	if (encini) {
   1048 		/* get an IV, network byte order */
   1049 #ifdef __NetBSD__
   1050 		cprng_fast(ses->ses_iv, sizeof(ses->ses_iv));
   1051 #else
   1052 		get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv));
   1053 #endif
   1054 
   1055 		/* Go ahead and compute key in ubsec's byte order */
   1056 		if (encini->cri_alg == CRYPTO_DES_CBC) {
   1057 			memcpy(&ses->ses_deskey[0], encini->cri_key, 8);
   1058 			memcpy(&ses->ses_deskey[2], encini->cri_key, 8);
   1059 			memcpy(&ses->ses_deskey[4], encini->cri_key, 8);
   1060 		} else
   1061 			memcpy(ses->ses_deskey, encini->cri_key, 24);
   1062 
   1063 		SWAP32(ses->ses_deskey[0]);
   1064 		SWAP32(ses->ses_deskey[1]);
   1065 		SWAP32(ses->ses_deskey[2]);
   1066 		SWAP32(ses->ses_deskey[3]);
   1067 		SWAP32(ses->ses_deskey[4]);
   1068 		SWAP32(ses->ses_deskey[5]);
   1069 	}
   1070 
   1071 	if (macini) {
   1072 		for (i = 0; i < macini->cri_klen / 8; i++)
   1073 			macini->cri_key[i] ^= HMAC_IPAD_VAL;
   1074 
   1075 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
   1076 			MD5Init(&md5ctx);
   1077 			MD5Update(&md5ctx, macini->cri_key,
   1078 			    macini->cri_klen / 8);
   1079 			MD5Update(&md5ctx, hmac_ipad_buffer,
   1080 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
   1081 			memcpy(ses->ses_hminner, md5ctx.state,
   1082 			    sizeof(md5ctx.state));
   1083 		} else {
   1084 			SHA1Init(&sha1ctx);
   1085 			SHA1Update(&sha1ctx, macini->cri_key,
   1086 			    macini->cri_klen / 8);
   1087 			SHA1Update(&sha1ctx, hmac_ipad_buffer,
   1088 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
   1089 			memcpy(ses->ses_hminner, sha1ctx.state,
   1090 			    sizeof(sha1ctx.state));
   1091 		}
   1092 
   1093 		for (i = 0; i < macini->cri_klen / 8; i++)
   1094 			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
   1095 
   1096 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
   1097 			MD5Init(&md5ctx);
   1098 			MD5Update(&md5ctx, macini->cri_key,
   1099 			    macini->cri_klen / 8);
   1100 			MD5Update(&md5ctx, hmac_opad_buffer,
   1101 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
   1102 			memcpy(ses->ses_hmouter, md5ctx.state,
   1103 			    sizeof(md5ctx.state));
   1104 		} else {
   1105 			SHA1Init(&sha1ctx);
   1106 			SHA1Update(&sha1ctx, macini->cri_key,
   1107 			    macini->cri_klen / 8);
   1108 			SHA1Update(&sha1ctx, hmac_opad_buffer,
   1109 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
   1110 			memcpy(ses->ses_hmouter, sha1ctx.state,
   1111 			    sizeof(sha1ctx.state));
   1112 		}
   1113 
   1114 		for (i = 0; i < macini->cri_klen / 8; i++)
   1115 			macini->cri_key[i] ^= HMAC_OPAD_VAL;
   1116 	}
   1117 
   1118 	*sidp = UBSEC_SID(device_unit(sc->sc_dev), sesn);
   1119 	return (0);
   1120 }
   1121 
   1122 /*
   1123  * Deallocate a session.
   1124  */
   1125 static int
   1126 ubsec_freesession(void *arg, u_int64_t tid)
   1127 {
   1128 	struct ubsec_softc *sc;
   1129 	int session;
   1130 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
   1131 
   1132 	sc = arg;
   1133 	KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
   1134 
   1135 	session = UBSEC_SESSION(sid);
   1136 	if (session >= sc->sc_nsessions)
   1137 		return (EINVAL);
   1138 
   1139 	memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session]));
   1140 	return (0);
   1141 }
   1142 
   1143 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
   1144 static void
   1145 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
   1146 {
   1147 	struct ubsec_operand *op = arg;
   1148 
   1149 	KASSERT(nsegs <= UBS_MAX_SCATTER
   1150 		/*, ("Too many DMA segments returned when mapping operand")*/);
   1151 #ifdef UBSEC_DEBUG
   1152 	if (ubsec_debug)
   1153 		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
   1154 			(u_int) mapsize, nsegs);
   1155 #endif
   1156 	op->mapsize = mapsize;
   1157 	op->nsegs = nsegs;
   1158 	memcpy(op->segs, seg, nsegs * sizeof (seg[0]));
   1159 }
   1160 #endif
   1161 
   1162 static int
   1163 ubsec_process(void *arg, struct cryptop *crp, int hint)
   1164 {
   1165 	struct ubsec_q *q = NULL;
   1166 #ifdef	__OpenBSD__
   1167 	int card;
   1168 #endif
   1169 	int err = 0, i, j, nicealign;
   1170 	struct ubsec_softc *sc;
   1171 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
   1172 	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
   1173 	int sskip, dskip, stheend, dtheend;
   1174 	int16_t coffset;
   1175 	struct ubsec_session *ses;
   1176 	struct ubsec_pktctx ctx;
   1177 	struct ubsec_dma *dmap = NULL;
   1178 
   1179 	sc = arg;
   1180 	KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/);
   1181 
   1182 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
   1183 		ubsecstats.hst_invalid++;
   1184 		return (EINVAL);
   1185 	}
   1186 	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
   1187 		ubsecstats.hst_badsession++;
   1188 		return (EINVAL);
   1189 	}
   1190 
   1191 	mutex_spin_enter(&sc->sc_mtx);
   1192 
   1193 	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
   1194 		ubsecstats.hst_queuefull++;
   1195 		sc->sc_needwakeup |= CRYPTO_SYMQ;
   1196 		mutex_spin_exit(&sc->sc_mtx);
   1197 		return(ERESTART);
   1198 	}
   1199 
   1200 	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
   1201 	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
   1202 	mutex_spin_exit(&sc->sc_mtx);
   1203 
   1204 	dmap = q->q_dma; /* Save dma pointer */
   1205 	/* don't lose the cached dmamaps q_src_map and q_cached_dst_map */
   1206 	memset(q, 0, offsetof(struct ubsec_q, q_src_map));
   1207 	memset(&ctx, 0, sizeof(ctx));
   1208 
   1209 	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
   1210 	q->q_dma = dmap;
   1211 	ses = &sc->sc_sessions[q->q_sesn];
   1212 
   1213 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
   1214 		q->q_src_m = (struct mbuf *)crp->crp_buf;
   1215 		q->q_dst_m = (struct mbuf *)crp->crp_buf;
   1216 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
   1217 		q->q_src_io = (struct uio *)crp->crp_buf;
   1218 		q->q_dst_io = (struct uio *)crp->crp_buf;
   1219 	} else {
   1220 		ubsecstats.hst_badflags++;
   1221 		err = EINVAL;
   1222 		goto errout;	/* XXX we don't handle contiguous blocks! */
   1223 	}
   1224 
   1225 	memset(&dmap->d_dma->d_mcr, 0, sizeof(struct ubsec_mcr));
   1226 
   1227 	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
   1228 	dmap->d_dma->d_mcr.mcr_flags = 0;
   1229 	q->q_crp = crp;
   1230 
   1231 	crd1 = crp->crp_desc;
   1232 	if (crd1 == NULL) {
   1233 		ubsecstats.hst_nodesc++;
   1234 		err = EINVAL;
   1235 		goto errout;
   1236 	}
   1237 	crd2 = crd1->crd_next;
   1238 
   1239 	if (crd2 == NULL) {
   1240 		if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
   1241 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) {
   1242 			maccrd = crd1;
   1243 			enccrd = NULL;
   1244 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
   1245 		    crd1->crd_alg == CRYPTO_3DES_CBC) {
   1246 			maccrd = NULL;
   1247 			enccrd = crd1;
   1248 		} else {
   1249 			ubsecstats.hst_badalg++;
   1250 			err = EINVAL;
   1251 			goto errout;
   1252 		}
   1253 	} else {
   1254 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
   1255 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) &&
   1256 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
   1257 			crd2->crd_alg == CRYPTO_3DES_CBC) &&
   1258 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
   1259 			maccrd = crd1;
   1260 			enccrd = crd2;
   1261 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
   1262 		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
   1263 		    (crd2->crd_alg == CRYPTO_MD5_HMAC_96 ||
   1264 			crd2->crd_alg == CRYPTO_SHA1_HMAC_96) &&
   1265 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
   1266 			enccrd = crd1;
   1267 			maccrd = crd2;
   1268 		} else {
   1269 			/*
   1270 			 * We cannot order the ubsec as requested
   1271 			 */
   1272 			ubsecstats.hst_badalg++;
   1273 			err = EINVAL;
   1274 			goto errout;
   1275 		}
   1276 	}
   1277 
   1278 	if (enccrd) {
   1279 		encoffset = enccrd->crd_skip;
   1280 		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
   1281 
   1282 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
   1283 			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
   1284 
   1285 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
   1286 				memcpy(ctx.pc_iv, enccrd->crd_iv, 8);
   1287 			else {
   1288 				ctx.pc_iv[0] = ses->ses_iv[0];
   1289 				ctx.pc_iv[1] = ses->ses_iv[1];
   1290 			}
   1291 
   1292 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
   1293 				if (crp->crp_flags & CRYPTO_F_IMBUF)
   1294 					m_copyback(q->q_src_m,
   1295 					    enccrd->crd_inject,
   1296 					    8, (void *)ctx.pc_iv);
   1297 				else if (crp->crp_flags & CRYPTO_F_IOV)
   1298 					cuio_copyback(q->q_src_io,
   1299 					    enccrd->crd_inject,
   1300 					    8, (void *)ctx.pc_iv);
   1301 			}
   1302 		} else {
   1303 			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
   1304 
   1305 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
   1306 				memcpy(ctx.pc_iv, enccrd->crd_iv, 8);
   1307 			else if (crp->crp_flags & CRYPTO_F_IMBUF)
   1308 				m_copydata(q->q_src_m, enccrd->crd_inject,
   1309 				    8, (void *)ctx.pc_iv);
   1310 			else if (crp->crp_flags & CRYPTO_F_IOV)
   1311 				cuio_copydata(q->q_src_io,
   1312 				    enccrd->crd_inject, 8,
   1313 				    (void *)ctx.pc_iv);
   1314 		}
   1315 
   1316 		ctx.pc_deskey[0] = ses->ses_deskey[0];
   1317 		ctx.pc_deskey[1] = ses->ses_deskey[1];
   1318 		ctx.pc_deskey[2] = ses->ses_deskey[2];
   1319 		ctx.pc_deskey[3] = ses->ses_deskey[3];
   1320 		ctx.pc_deskey[4] = ses->ses_deskey[4];
   1321 		ctx.pc_deskey[5] = ses->ses_deskey[5];
   1322 		SWAP32(ctx.pc_iv[0]);
   1323 		SWAP32(ctx.pc_iv[1]);
   1324 	}
   1325 
   1326 	if (maccrd) {
   1327 		macoffset = maccrd->crd_skip;
   1328 
   1329 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC_96)
   1330 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
   1331 		else
   1332 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
   1333 
   1334 		for (i = 0; i < 5; i++) {
   1335 			ctx.pc_hminner[i] = ses->ses_hminner[i];
   1336 			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
   1337 
   1338 			HTOLE32(ctx.pc_hminner[i]);
   1339 			HTOLE32(ctx.pc_hmouter[i]);
   1340 		}
   1341 	}
   1342 
   1343 	if (enccrd && maccrd) {
   1344 		/*
   1345 		 * ubsec cannot handle packets where the end of encryption
   1346 		 * and authentication are not the same, or where the
   1347 		 * encrypted part begins before the authenticated part.
   1348 		 */
   1349 		if ((encoffset + enccrd->crd_len) !=
   1350 		    (macoffset + maccrd->crd_len)) {
   1351 			ubsecstats.hst_lenmismatch++;
   1352 			err = EINVAL;
   1353 			goto errout;
   1354 		}
   1355 		if (enccrd->crd_skip < maccrd->crd_skip) {
   1356 			ubsecstats.hst_skipmismatch++;
   1357 			err = EINVAL;
   1358 			goto errout;
   1359 		}
   1360 		sskip = maccrd->crd_skip;
   1361 		cpskip = dskip = enccrd->crd_skip;
   1362 		stheend = maccrd->crd_len;
   1363 		dtheend = enccrd->crd_len;
   1364 		coffset = enccrd->crd_skip - maccrd->crd_skip;
   1365 		cpoffset = cpskip + dtheend;
   1366 #ifdef UBSEC_DEBUG
   1367 		if (ubsec_debug) {
   1368 			printf("mac: skip %d, len %d, inject %d\n",
   1369 			       maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
   1370 			printf("enc: skip %d, len %d, inject %d\n",
   1371 			       enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
   1372 			printf("src: skip %d, len %d\n", sskip, stheend);
   1373 			printf("dst: skip %d, len %d\n", dskip, dtheend);
   1374 			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
   1375 			       coffset, stheend, cpskip, cpoffset);
   1376 		}
   1377 #endif
   1378 	} else {
   1379 		cpskip = dskip = sskip = macoffset + encoffset;
   1380 		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
   1381 		cpoffset = cpskip + dtheend;
   1382 		coffset = 0;
   1383 	}
   1384 	ctx.pc_offset = htole16(coffset >> 2);
   1385 
   1386 	if (q->q_src_map == NULL) {
   1387 		/* XXX FIXME: jonathan asks, what the heck's that 0xfff0?  */
   1388 		if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
   1389 			0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
   1390 			err = ENOMEM;
   1391 			goto errout;
   1392 		}
   1393 	}
   1394 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
   1395 		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
   1396 		    q->q_src_m, BUS_DMA_NOWAIT) != 0) {
   1397 			ubsecstats.hst_noload++;
   1398 			err = ENOMEM;
   1399 			goto errout;
   1400 		}
   1401 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
   1402 		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
   1403 		    q->q_src_io, BUS_DMA_NOWAIT) != 0) {
   1404 			ubsecstats.hst_noload++;
   1405 			err = ENOMEM;
   1406 			goto errout;
   1407 		}
   1408 	}
   1409 	nicealign = ubsec_dmamap_aligned(q->q_src_map);
   1410 
   1411 	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
   1412 
   1413 #ifdef UBSEC_DEBUG
   1414 	if (ubsec_debug)
   1415 		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
   1416 #endif
   1417 	for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
   1418 		struct ubsec_pktbuf *pb;
   1419 		bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
   1420 		bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
   1421 
   1422 		if (sskip >= packl) {
   1423 			sskip -= packl;
   1424 			continue;
   1425 		}
   1426 
   1427 		packl -= sskip;
   1428 		packp += sskip;
   1429 		sskip = 0;
   1430 
   1431 		if (packl > 0xfffc) {
   1432 			err = EIO;
   1433 			goto errout;
   1434 		}
   1435 
   1436 		if (j == 0)
   1437 			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
   1438 		else
   1439 			pb = &dmap->d_dma->d_sbuf[j - 1];
   1440 
   1441 		pb->pb_addr = htole32(packp);
   1442 
   1443 		if (stheend) {
   1444 			if (packl > stheend) {
   1445 				pb->pb_len = htole32(stheend);
   1446 				stheend = 0;
   1447 			} else {
   1448 				pb->pb_len = htole32(packl);
   1449 				stheend -= packl;
   1450 			}
   1451 		} else
   1452 			pb->pb_len = htole32(packl);
   1453 
   1454 		if ((i + 1) == q->q_src_map->dm_nsegs)
   1455 			pb->pb_next = 0;
   1456 		else
   1457 			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
   1458 			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
   1459 		j++;
   1460 	}
   1461 
   1462 	if (enccrd == NULL && maccrd != NULL) {
   1463 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
   1464 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
   1465 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
   1466 		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
   1467 #ifdef UBSEC_DEBUG
   1468 		if (ubsec_debug)
   1469 			printf("opkt: %x %x %x\n",
   1470 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
   1471 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
   1472 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
   1473 
   1474 #endif
   1475 	} else {
   1476 		if (crp->crp_flags & CRYPTO_F_IOV) {
   1477 			if (!nicealign) {
   1478 				ubsecstats.hst_iovmisaligned++;
   1479 				err = EINVAL;
   1480 				goto errout;
   1481 			}
   1482 			if (q->q_dst_map == NULL) {
   1483 				if (q->q_cached_dst_map == NULL) {
   1484 					/* XXX: ``what the heck's that'' 0xfff0? */
   1485 					if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
   1486 					    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
   1487 					    &q->q_cached_dst_map) != 0) {
   1488 						ubsecstats.hst_nomap++;
   1489 						err = ENOMEM;
   1490 						goto errout;
   1491 					}
   1492 				}
   1493 				q->q_dst_map = q->q_cached_dst_map;
   1494 			}
   1495 			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
   1496 			    q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
   1497 				ubsecstats.hst_noload++;
   1498 				err = ENOMEM;
   1499 				goto errout;
   1500 			}
   1501 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
   1502 			if (nicealign) {
   1503 				q->q_dst_m = q->q_src_m;
   1504 				q->q_dst_map = q->q_src_map;
   1505 			} else {
   1506 				int totlen, len;
   1507 				struct mbuf *m, *top, **mp;
   1508 
   1509 				ubsecstats.hst_unaligned++;
   1510 				totlen = q->q_src_map->dm_mapsize;
   1511 				if (q->q_src_m->m_flags & M_PKTHDR) {
   1512 					len = MHLEN;
   1513 					MGETHDR(m, M_DONTWAIT, MT_DATA);
   1514 					/*XXX FIXME: m_dup_pkthdr */
   1515 					if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
   1516 						m_free(m);
   1517 						m = NULL;
   1518 					}
   1519 				} else {
   1520 					len = MLEN;
   1521 					MGET(m, M_DONTWAIT, MT_DATA);
   1522 				}
   1523 				if (m == NULL) {
   1524 					ubsecstats.hst_nombuf++;
   1525 					err = sc->sc_nqueue ? ERESTART : ENOMEM;
   1526 					goto errout;
   1527 				}
   1528 				if (len == MHLEN)
   1529 				  /*XXX was M_DUP_PKTHDR*/
   1530 				  M_COPY_PKTHDR(m, q->q_src_m);
   1531 				if (totlen >= MINCLSIZE) {
   1532 					MCLGET(m, M_DONTWAIT);
   1533 					if ((m->m_flags & M_EXT) == 0) {
   1534 						m_free(m);
   1535 						ubsecstats.hst_nomcl++;
   1536 						err = sc->sc_nqueue ? ERESTART : ENOMEM;
   1537 						goto errout;
   1538 					}
   1539 					len = MCLBYTES;
   1540 				}
   1541 				m->m_len = len;
   1542 				top = NULL;
   1543 				mp = &top;
   1544 
   1545 				while (totlen > 0) {
   1546 					if (top) {
   1547 						MGET(m, M_DONTWAIT, MT_DATA);
   1548 						if (m == NULL) {
   1549 							m_freem(top);
   1550 							ubsecstats.hst_nombuf++;
   1551 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
   1552 							goto errout;
   1553 						}
   1554 						len = MLEN;
   1555 					}
   1556 					if (top && totlen >= MINCLSIZE) {
   1557 						MCLGET(m, M_DONTWAIT);
   1558 						if ((m->m_flags & M_EXT) == 0) {
   1559 							*mp = m;
   1560 							m_freem(top);
   1561 							ubsecstats.hst_nomcl++;
   1562 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
   1563 							goto errout;
   1564 						}
   1565 						len = MCLBYTES;
   1566 					}
   1567 					m->m_len = len = min(totlen, len);
   1568 					totlen -= len;
   1569 					*mp = m;
   1570 					mp = &m->m_next;
   1571 				}
   1572 				q->q_dst_m = top;
   1573 				ubsec_mcopy(q->q_src_m, q->q_dst_m,
   1574 				    cpskip, cpoffset);
   1575 				if (q->q_dst_map == NULL) {
   1576 					if (q->q_cached_dst_map == NULL) {
   1577 						/* XXX again, what the heck is that 0xfff0? */
   1578 						if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
   1579 						    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
   1580 						    &q->q_cached_dst_map) != 0) {
   1581 							ubsecstats.hst_nomap++;
   1582 							err = ENOMEM;
   1583 							goto errout;
   1584 						}
   1585 					}
   1586 					q->q_dst_map = q->q_cached_dst_map;
   1587 				}
   1588 				if (bus_dmamap_load_mbuf(sc->sc_dmat,
   1589 				    q->q_dst_map, q->q_dst_m,
   1590 				    BUS_DMA_NOWAIT) != 0) {
   1591 					ubsecstats.hst_noload++;
   1592 					err = ENOMEM;
   1593 					goto errout;
   1594 				}
   1595 			}
   1596 		} else {
   1597 			ubsecstats.hst_badflags++;
   1598 			err = EINVAL;
   1599 			goto errout;
   1600 		}
   1601 
   1602 #ifdef UBSEC_DEBUG
   1603 		if (ubsec_debug)
   1604 			printf("dst skip: %d\n", dskip);
   1605 #endif
   1606 		for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
   1607 			struct ubsec_pktbuf *pb;
   1608 			bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
   1609 			bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
   1610 
   1611 			if (dskip >= packl) {
   1612 				dskip -= packl;
   1613 				continue;
   1614 			}
   1615 
   1616 			packl -= dskip;
   1617 			packp += dskip;
   1618 			dskip = 0;
   1619 
   1620 			if (packl > 0xfffc) {
   1621 				err = EIO;
   1622 				goto errout;
   1623 			}
   1624 
   1625 			if (j == 0)
   1626 				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
   1627 			else
   1628 				pb = &dmap->d_dma->d_dbuf[j - 1];
   1629 
   1630 			pb->pb_addr = htole32(packp);
   1631 
   1632 			if (dtheend) {
   1633 				if (packl > dtheend) {
   1634 					pb->pb_len = htole32(dtheend);
   1635 					dtheend = 0;
   1636 				} else {
   1637 					pb->pb_len = htole32(packl);
   1638 					dtheend -= packl;
   1639 				}
   1640 			} else
   1641 				pb->pb_len = htole32(packl);
   1642 
   1643 			if ((i + 1) == q->q_dst_map->dm_nsegs) {
   1644 				if (maccrd)
   1645 					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
   1646 					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
   1647 				else
   1648 					pb->pb_next = 0;
   1649 			} else
   1650 				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
   1651 				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
   1652 			j++;
   1653 		}
   1654 	}
   1655 
   1656 	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
   1657 	    offsetof(struct ubsec_dmachunk, d_ctx));
   1658 
   1659 	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
   1660 		struct ubsec_pktctx_long *ctxl;
   1661 
   1662 		ctxl = (struct ubsec_pktctx_long *)((char *)dmap->d_alloc.dma_vaddr +
   1663 		    offsetof(struct ubsec_dmachunk, d_ctx));
   1664 
   1665 		/* transform small context into long context */
   1666 		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
   1667 		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
   1668 		ctxl->pc_flags = ctx.pc_flags;
   1669 		ctxl->pc_offset = ctx.pc_offset;
   1670 		for (i = 0; i < 6; i++)
   1671 			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
   1672 		for (i = 0; i < 5; i++)
   1673 			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
   1674 		for (i = 0; i < 5; i++)
   1675 			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
   1676 		ctxl->pc_iv[0] = ctx.pc_iv[0];
   1677 		ctxl->pc_iv[1] = ctx.pc_iv[1];
   1678 	} else
   1679 		memcpy((char *)dmap->d_alloc.dma_vaddr +
   1680 		    offsetof(struct ubsec_dmachunk, d_ctx), &ctx,
   1681 		    sizeof(struct ubsec_pktctx));
   1682 
   1683 	mutex_spin_enter(&sc->sc_mtx);
   1684 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
   1685 	sc->sc_nqueue++;
   1686 	ubsecstats.hst_ipackets++;
   1687 	ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
   1688 	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
   1689 		ubsec_feed(sc);
   1690 	mutex_spin_exit(&sc->sc_mtx);
   1691 	return (0);
   1692 
   1693 errout:
   1694 	if (q != NULL) {
   1695 		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
   1696 			m_freem(q->q_dst_m);
   1697 
   1698 		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
   1699 			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
   1700 		}
   1701 		if (q->q_src_map != NULL) {
   1702 			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
   1703 		}
   1704 
   1705 		mutex_spin_enter(&sc->sc_mtx);
   1706 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
   1707 		mutex_spin_exit(&sc->sc_mtx);
   1708 	}
   1709 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
   1710 	if (err == EINVAL)
   1711 		ubsecstats.hst_invalid++;
   1712 	else
   1713 		ubsecstats.hst_nomem++;
   1714 #endif
   1715 	if (err != ERESTART) {
   1716 		crp->crp_etype = err;
   1717 		crypto_done(crp);
   1718 	} else {
   1719 		sc->sc_needwakeup |= CRYPTO_SYMQ;
   1720 	}
   1721 	return (err);
   1722 }
   1723 
   1724 static void
   1725 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
   1726 {
   1727 	struct cryptop *crp = (struct cryptop *)q->q_crp;
   1728 	struct cryptodesc *crd;
   1729 	struct ubsec_dma *dmap = q->q_dma;
   1730 
   1731 	ubsecstats.hst_opackets++;
   1732 	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
   1733 
   1734 	bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
   1735 	    dmap->d_alloc.dma_map->dm_mapsize,
   1736 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1737 	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
   1738 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
   1739 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1740 		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
   1741 	}
   1742 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
   1743 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1744 	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
   1745 
   1746 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
   1747 		m_freem(q->q_src_m);
   1748 		crp->crp_buf = (void *)q->q_dst_m;
   1749 	}
   1750 
   1751 	/* copy out IV for future use */
   1752 	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
   1753 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
   1754 			if (crd->crd_alg != CRYPTO_DES_CBC &&
   1755 			    crd->crd_alg != CRYPTO_3DES_CBC)
   1756 				continue;
   1757 			if (crp->crp_flags & CRYPTO_F_IMBUF)
   1758 				m_copydata((struct mbuf *)crp->crp_buf,
   1759 				    crd->crd_skip + crd->crd_len - 8, 8,
   1760 				    (void *)sc->sc_sessions[q->q_sesn].ses_iv);
   1761 			else if (crp->crp_flags & CRYPTO_F_IOV) {
   1762 				cuio_copydata((struct uio *)crp->crp_buf,
   1763 				    crd->crd_skip + crd->crd_len - 8, 8,
   1764 				    (void *)sc->sc_sessions[q->q_sesn].ses_iv);
   1765 			}
   1766 			break;
   1767 		}
   1768 	}
   1769 
   1770 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
   1771 		if (crd->crd_alg != CRYPTO_MD5_HMAC_96 &&
   1772 		    crd->crd_alg != CRYPTO_SHA1_HMAC_96)
   1773 			continue;
   1774 		if (crp->crp_flags & CRYPTO_F_IMBUF)
   1775 			m_copyback((struct mbuf *)crp->crp_buf,
   1776 			    crd->crd_inject, 12,
   1777 			    (void *)dmap->d_dma->d_macbuf);
   1778 		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
   1779 			bcopy((void *)dmap->d_dma->d_macbuf,
   1780 			    crp->crp_mac, 12);
   1781 		break;
   1782 	}
   1783 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
   1784 	crypto_done(crp);
   1785 }
   1786 
   1787 static void
   1788 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
   1789 {
   1790 	int i, j, dlen, slen;
   1791 	char *dptr, *sptr;
   1792 
   1793 	j = 0;
   1794 	sptr = srcm->m_data;
   1795 	slen = srcm->m_len;
   1796 	dptr = dstm->m_data;
   1797 	dlen = dstm->m_len;
   1798 
   1799 	while (1) {
   1800 		for (i = 0; i < min(slen, dlen); i++) {
   1801 			if (j < hoffset || j >= toffset)
   1802 				*dptr++ = *sptr++;
   1803 			slen--;
   1804 			dlen--;
   1805 			j++;
   1806 		}
   1807 		if (slen == 0) {
   1808 			srcm = srcm->m_next;
   1809 			if (srcm == NULL)
   1810 				return;
   1811 			sptr = srcm->m_data;
   1812 			slen = srcm->m_len;
   1813 		}
   1814 		if (dlen == 0) {
   1815 			dstm = dstm->m_next;
   1816 			if (dstm == NULL)
   1817 				return;
   1818 			dptr = dstm->m_data;
   1819 			dlen = dstm->m_len;
   1820 		}
   1821 	}
   1822 }
   1823 
   1824 /*
   1825  * feed the key generator, must be called at splnet() or higher.
   1826  */
   1827 static void
   1828 ubsec_feed2(struct ubsec_softc *sc)
   1829 {
   1830 	struct ubsec_q2 *q;
   1831 
   1832 	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
   1833 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
   1834 			break;
   1835 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
   1836 
   1837 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
   1838 		    q->q_mcr.dma_map->dm_mapsize,
   1839 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1840 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
   1841 		    q->q_ctx.dma_map->dm_mapsize,
   1842 		    BUS_DMASYNC_PREWRITE);
   1843 
   1844 		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
   1845 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
   1846 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
   1847 		--sc->sc_nqueue2;
   1848 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
   1849 	}
   1850 }
   1851 
   1852 /*
   1853  * feed the RNG (used instead of ubsec_feed2() on 5827+ devices)
   1854  */
   1855 void
   1856 ubsec_feed4(struct ubsec_softc *sc)
   1857 {
   1858 	struct ubsec_q2 *q;
   1859 
   1860 	while (!SIMPLEQ_EMPTY(&sc->sc_queue4)) {
   1861 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR4_FULL)
   1862 			break;
   1863 		q = SIMPLEQ_FIRST(&sc->sc_queue4);
   1864 
   1865 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
   1866 		    q->q_mcr.dma_map->dm_mapsize,
   1867 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1868 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
   1869 		    q->q_ctx.dma_map->dm_mapsize,
   1870 		    BUS_DMASYNC_PREWRITE);
   1871 
   1872 		WRITE_REG(sc, BS_MCR4, q->q_mcr.dma_paddr);
   1873 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue4, q_next);
   1874 		--sc->sc_nqueue4;
   1875 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip4, q, q_next);
   1876 	}
   1877 }
   1878 
   1879 /*
   1880  * Callback for handling random numbers
   1881  */
   1882 static void
   1883 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
   1884 {
   1885 	struct cryptkop *krp;
   1886 	struct ubsec_ctx_keyop *ctx;
   1887 
   1888 	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
   1889 	bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
   1890 	    q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1891 
   1892 	switch (q->q_type) {
   1893 #ifndef UBSEC_NO_RNG
   1894 	case UBS_CTXOP_RNGSHA1:
   1895 	case UBS_CTXOP_RNGBYPASS: {
   1896 		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
   1897 		u_int32_t *p;
   1898 		int i;
   1899 
   1900 		bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
   1901 		    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1902 		p = (u_int32_t *)rng->rng_buf.dma_vaddr;
   1903 #ifndef __NetBSD__
   1904 		for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++)
   1905 			add_true_randomness(letoh32(*p));
   1906 #else
   1907 		i = UBSEC_RNG_BUFSIZ * sizeof(u_int32_t);
   1908 		rnd_add_data(&sc->sc_rnd_source, (char *)p, i, i * NBBY);
   1909 		sc->sc_rng_need -= i;
   1910 #endif
   1911 		rng->rng_used = 0;
   1912 #ifdef __OpenBSD__
   1913 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
   1914 #else
   1915 		if (sc->sc_rng_need > 0) {
   1916 			callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
   1917 		}
   1918 #endif
   1919 		break;
   1920 	}
   1921 #endif
   1922 	case UBS_CTXOP_MODEXP: {
   1923 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
   1924 		u_int rlen, clen;
   1925 
   1926 		krp = me->me_krp;
   1927 		rlen = (me->me_modbits + 7) / 8;
   1928 		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
   1929 
   1930 		bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
   1931 		    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1932 		bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
   1933 		    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1934 		bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
   1935 		    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1936 		bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
   1937 		    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1938 
   1939 		if (clen < rlen)
   1940 			krp->krp_status = E2BIG;
   1941 		else {
   1942 			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
   1943 				memset(krp->krp_param[krp->krp_iparams].crp_p, 0,
   1944 				    (krp->krp_param[krp->krp_iparams].crp_nbits
   1945 					+ 7) / 8);
   1946 				bcopy(me->me_C.dma_vaddr,
   1947 				    krp->krp_param[krp->krp_iparams].crp_p,
   1948 				    (me->me_modbits + 7) / 8);
   1949 			} else
   1950 				ubsec_kshift_l(me->me_shiftbits,
   1951 				    me->me_C.dma_vaddr, me->me_normbits,
   1952 				    krp->krp_param[krp->krp_iparams].crp_p,
   1953 				    krp->krp_param[krp->krp_iparams].crp_nbits);
   1954 		}
   1955 
   1956 		crypto_kdone(krp);
   1957 
   1958 		/* bzero all potentially sensitive data */
   1959 		memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
   1960 		memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
   1961 		memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   1962 		memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
   1963 
   1964 		/* Can't free here, so put us on the free list. */
   1965 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
   1966 		break;
   1967 	}
   1968 	case UBS_CTXOP_RSAPRIV: {
   1969 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
   1970 		u_int len;
   1971 
   1972 		krp = rp->rpr_krp;
   1973 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
   1974 		    rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1975 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
   1976 		    rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1977 
   1978 		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
   1979 		bcopy(rp->rpr_msgout.dma_vaddr,
   1980 		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
   1981 
   1982 		crypto_kdone(krp);
   1983 
   1984 		memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
   1985 		memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
   1986 		memset(rp->rpr_q.q_ctx.dma_vaddr, 0, rp->rpr_q.q_ctx.dma_size);
   1987 
   1988 		/* Can't free here, so put us on the free list. */
   1989 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
   1990 		break;
   1991 	}
   1992 	default:
   1993 		printf("%s: unknown ctx op: %x\n", device_xname(sc->sc_dev),
   1994 		    letoh16(ctx->ctx_op));
   1995 		break;
   1996 	}
   1997 }
   1998 
   1999 #ifndef UBSEC_NO_RNG
   2000 
   2001 static void
   2002 ubsec_rng_get(size_t bytes, void *vsc)
   2003 {
   2004 	struct ubsec_softc *sc = vsc;
   2005 
   2006 	mutex_spin_enter(&sc->sc_mtx);
   2007 	sc->sc_rng_need = bytes;
   2008 	ubsec_rng_locked(sc);
   2009 	mutex_spin_exit(&sc->sc_mtx);
   2010 
   2011 }
   2012 
   2013 static void
   2014 ubsec_rng(void *vsc)
   2015 {
   2016 	struct ubsec_softc *sc = vsc;
   2017 	mutex_spin_enter(&sc->sc_mtx);
   2018 	ubsec_rng_locked(sc);
   2019 	mutex_spin_exit(&sc->sc_mtx);
   2020 }
   2021 
   2022 static void
   2023 ubsec_rng_locked(void *vsc)
   2024 {
   2025 	struct ubsec_softc *sc = vsc;
   2026 	struct ubsec_q2_rng *rng = &sc->sc_rng;
   2027 	struct ubsec_mcr *mcr;
   2028 	struct ubsec_ctx_rngbypass *ctx;
   2029 	int *nqueue;
   2030 
   2031 	/* Caller is responsible to lock and release sc_mtx. */
   2032 	KASSERT(mutex_owned(&sc->sc_mtx));
   2033 
   2034 	if (rng->rng_used) {
   2035 		return;
   2036 	}
   2037 
   2038 	if (sc->sc_rng_need < 1) {
   2039 		callout_stop(&sc->sc_rngto);
   2040 		return;
   2041 	}
   2042 
   2043 	if (sc->sc_flags & UBS_FLAGS_RNG4)
   2044 		nqueue = &sc->sc_nqueue4;
   2045 	else
   2046 		nqueue = &sc->sc_nqueue2;
   2047 
   2048 	(*nqueue)++;
   2049 	if (*nqueue >= UBS_MAX_NQUEUE)
   2050  		goto out;
   2051 
   2052 	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
   2053 	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
   2054 
   2055 	mcr->mcr_pkts = htole16(1);
   2056 	mcr->mcr_flags = 0;
   2057 	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
   2058 	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
   2059 	mcr->mcr_ipktbuf.pb_len = 0;
   2060 	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
   2061 	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
   2062 	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
   2063 	    UBS_PKTBUF_LEN);
   2064 	mcr->mcr_opktbuf.pb_next = 0;
   2065 
   2066 	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
   2067 	ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
   2068 	rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
   2069 
   2070 	bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
   2071 	    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2072 
   2073 	if (sc->sc_flags & UBS_FLAGS_RNG4) {
   2074 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue4, &rng->rng_q, q_next);
   2075 		ubsec_feed4(sc);
   2076 	} else {
   2077 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
   2078 		ubsec_feed2(sc);
   2079 	}
   2080 	rng->rng_used = 1;
   2081 	ubsecstats.hst_rng++;
   2082 
   2083 	return;
   2084 
   2085 out:
   2086 	/*
   2087 	 * Something weird happened, generate our own call back.
   2088 	 */
   2089 	(*nqueue)--;
   2090 #ifdef __OpenBSD__
   2091 	timeout_add(&sc->sc_rngto, sc->sc_rnghz);
   2092 #else
   2093 	callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
   2094 #endif
   2095 }
   2096 #endif /* UBSEC_NO_RNG */
   2097 
   2098 static int
   2099 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
   2100 		 struct ubsec_dma_alloc *dma,int mapflags)
   2101 {
   2102 	int r;
   2103 
   2104 	if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
   2105 	    &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
   2106 		goto fail_0;
   2107 
   2108 	if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
   2109 	    size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
   2110 		goto fail_1;
   2111 
   2112 	if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
   2113 	    BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
   2114 		goto fail_2;
   2115 
   2116 	if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
   2117 	    size, NULL, BUS_DMA_NOWAIT)) != 0)
   2118 		goto fail_3;
   2119 
   2120 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
   2121 	dma->dma_size = size;
   2122 	return (0);
   2123 
   2124 fail_3:
   2125 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
   2126 fail_2:
   2127 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
   2128 fail_1:
   2129 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
   2130 fail_0:
   2131 	dma->dma_map = NULL;
   2132 	return (r);
   2133 }
   2134 
   2135 static void
   2136 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
   2137 {
   2138 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
   2139 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
   2140 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
   2141 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
   2142 }
   2143 
   2144 /*
   2145  * Resets the board.  Values in the regesters are left as is
   2146  * from the reset (i.e. initial values are assigned elsewhere).
   2147  */
   2148 static void
   2149 ubsec_reset_board(struct ubsec_softc *sc)
   2150 {
   2151 	volatile u_int32_t ctrl;
   2152 
   2153 	ctrl = READ_REG(sc, BS_CTRL);
   2154 	ctrl |= BS_CTRL_RESET;
   2155 	WRITE_REG(sc, BS_CTRL, ctrl);
   2156 
   2157 	/*
   2158 	* Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
   2159 	*/
   2160 	DELAY(10);
   2161 
   2162 	/* Enable RNG and interrupts on newer devices */
   2163 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
   2164 #ifndef UBSEC_NO_RNG
   2165 		WRITE_REG(sc, BS_CFG, BS_CFG_RNG);
   2166 #endif
   2167 		WRITE_REG(sc, BS_INT, BS_INT_DMAINT);
   2168 	}
   2169 }
   2170 
   2171 /*
   2172  * Init Broadcom registers
   2173  */
   2174 static void
   2175 ubsec_init_board(struct ubsec_softc *sc)
   2176 {
   2177 	u_int32_t ctrl;
   2178 
   2179 	ctrl = READ_REG(sc, BS_CTRL);
   2180 	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
   2181 	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
   2182 
   2183 	/*
   2184 	 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
   2185 	 * anyone got hw docs?
   2186 	 */
   2187 	if (sc->sc_flags & UBS_FLAGS_KEY)
   2188 		ctrl |= BS_CTRL_MCR2INT;
   2189 	else
   2190 		ctrl &= ~BS_CTRL_MCR2INT;
   2191 
   2192 	if (sc->sc_flags & UBS_FLAGS_HWNORM)
   2193 		ctrl &= ~BS_CTRL_SWNORM;
   2194 
   2195 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
   2196 		ctrl |= BS_CTRL_BSIZE240;
   2197 		ctrl &= ~BS_CTRL_MCR3INT; /* MCR3 is reserved for SSL */
   2198 
   2199 		if (sc->sc_flags & UBS_FLAGS_RNG4)
   2200 			ctrl |= BS_CTRL_MCR4INT;
   2201 		else
   2202 			ctrl &= ~BS_CTRL_MCR4INT;
   2203 	}
   2204 
   2205 	WRITE_REG(sc, BS_CTRL, ctrl);
   2206 }
   2207 
   2208 /*
   2209  * Init Broadcom PCI registers
   2210  */
   2211 static void
   2212 ubsec_init_pciregs(struct pci_attach_args *pa)
   2213 {
   2214 	pci_chipset_tag_t pc = pa->pa_pc;
   2215 	u_int32_t misc;
   2216 
   2217 	/*
   2218 	 * This will set the cache line size to 1, this will
   2219 	 * force the BCM58xx chip just to do burst read/writes.
   2220 	 * Cache line read/writes are to slow
   2221 	 */
   2222 	misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
   2223 	misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
   2224 	    | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
   2225 	pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
   2226 }
   2227 
   2228 /*
   2229  * Clean up after a chip crash.
   2230  * It is assumed that the caller in splnet()
   2231  */
   2232 static void
   2233 ubsec_cleanchip(struct ubsec_softc *sc)
   2234 {
   2235 	struct ubsec_q *q;
   2236 
   2237 	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
   2238 		q = SIMPLEQ_FIRST(&sc->sc_qchip);
   2239 		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
   2240 		ubsec_free_q(sc, q);
   2241 	}
   2242 	sc->sc_nqchip = 0;
   2243 }
   2244 
   2245 /*
   2246  * free a ubsec_q
   2247  * It is assumed that the caller is within splnet()
   2248  */
   2249 static int
   2250 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
   2251 {
   2252 	struct ubsec_q *q2;
   2253 	struct cryptop *crp;
   2254 	int npkts;
   2255 	int i;
   2256 
   2257 	npkts = q->q_nstacked_mcrs;
   2258 
   2259 	for (i = 0; i < npkts; i++) {
   2260 		if(q->q_stacked_mcr[i]) {
   2261 			q2 = q->q_stacked_mcr[i];
   2262 
   2263 			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
   2264 				m_freem(q2->q_dst_m);
   2265 
   2266 			crp = (struct cryptop *)q2->q_crp;
   2267 
   2268 			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
   2269 
   2270 			crp->crp_etype = EFAULT;
   2271 			crypto_done(crp);
   2272 		} else {
   2273 			break;
   2274 		}
   2275 	}
   2276 
   2277 	/*
   2278 	 * Free header MCR
   2279 	 */
   2280 	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
   2281 		m_freem(q->q_dst_m);
   2282 
   2283 	crp = (struct cryptop *)q->q_crp;
   2284 
   2285 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
   2286 
   2287 	crp->crp_etype = EFAULT;
   2288 	crypto_done(crp);
   2289 	return(0);
   2290 }
   2291 
   2292 /*
   2293  * Routine to reset the chip and clean up.
   2294  * It is assumed that the caller is in splnet()
   2295  */
   2296 static void
   2297 ubsec_totalreset(struct ubsec_softc *sc)
   2298 {
   2299 	ubsec_reset_board(sc);
   2300 	ubsec_init_board(sc);
   2301 	ubsec_cleanchip(sc);
   2302 }
   2303 
   2304 static int
   2305 ubsec_dmamap_aligned(bus_dmamap_t map)
   2306 {
   2307 	int i;
   2308 
   2309 	for (i = 0; i < map->dm_nsegs; i++) {
   2310 		if (map->dm_segs[i].ds_addr & 3)
   2311 			return (0);
   2312 		if ((i != (map->dm_nsegs - 1)) &&
   2313 		    (map->dm_segs[i].ds_len & 3))
   2314 			return (0);
   2315 	}
   2316 	return (1);
   2317 }
   2318 
   2319 #ifdef __OpenBSD__
   2320 struct ubsec_softc *
   2321 ubsec_kfind(struct cryptkop *krp)
   2322 {
   2323 	struct ubsec_softc *sc;
   2324 	int i;
   2325 
   2326 	for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
   2327 		sc = ubsec_cd.cd_devs[i];
   2328 		if (sc == NULL)
   2329 			continue;
   2330 		if (sc->sc_cid == krp->krp_hid)
   2331 			return (sc);
   2332 	}
   2333 	return (NULL);
   2334 }
   2335 #endif
   2336 
   2337 static void
   2338 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
   2339 {
   2340 	switch (q->q_type) {
   2341 	case UBS_CTXOP_MODEXP: {
   2342 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
   2343 
   2344 		ubsec_dma_free(sc, &me->me_q.q_mcr);
   2345 		ubsec_dma_free(sc, &me->me_q.q_ctx);
   2346 		ubsec_dma_free(sc, &me->me_M);
   2347 		ubsec_dma_free(sc, &me->me_E);
   2348 		ubsec_dma_free(sc, &me->me_C);
   2349 		ubsec_dma_free(sc, &me->me_epb);
   2350 		free(me, M_DEVBUF);
   2351 		break;
   2352 	}
   2353 	case UBS_CTXOP_RSAPRIV: {
   2354 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
   2355 
   2356 		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
   2357 		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
   2358 		ubsec_dma_free(sc, &rp->rpr_msgin);
   2359 		ubsec_dma_free(sc, &rp->rpr_msgout);
   2360 		free(rp, M_DEVBUF);
   2361 		break;
   2362 	}
   2363 	default:
   2364 		printf("%s: invalid kfree 0x%x\n", device_xname(sc->sc_dev),
   2365 		    q->q_type);
   2366 		break;
   2367 	}
   2368 }
   2369 
   2370 static int
   2371 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
   2372 {
   2373 	struct ubsec_softc *sc;
   2374 	int r;
   2375 
   2376 	if (krp == NULL || krp->krp_callback == NULL)
   2377 		return (EINVAL);
   2378 #ifdef __OpenBSD__
   2379 	if ((sc = ubsec_kfind(krp)) == NULL)
   2380 		return (EINVAL);
   2381 #else
   2382 	sc = arg;
   2383 	KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/);
   2384 #endif
   2385 
   2386 	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
   2387 		struct ubsec_q2 *q;
   2388 
   2389 		q = SIMPLEQ_FIRST(&sc->sc_q2free);
   2390 		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
   2391 		ubsec_kfree(sc, q);
   2392 	}
   2393 
   2394 	switch (krp->krp_op) {
   2395 	case CRK_MOD_EXP:
   2396 		if (sc->sc_flags & UBS_FLAGS_HWNORM)
   2397 			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
   2398 		else
   2399 			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
   2400 		break;
   2401 	case CRK_MOD_EXP_CRT:
   2402 		r = ubsec_kprocess_rsapriv(sc, krp, hint);
   2403 		break;
   2404 	default:
   2405 		printf("%s: kprocess: invalid op 0x%x\n",
   2406 		    device_xname(sc->sc_dev), krp->krp_op);
   2407 		krp->krp_status = EOPNOTSUPP;
   2408 		crypto_kdone(krp);
   2409 		r = 0;
   2410 	}
   2411 	return (r);
   2412 }
   2413 
   2414 /*
   2415  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
   2416  */
   2417 static int
   2418 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
   2419 			 int hint)
   2420 {
   2421 	struct ubsec_q2_modexp *me;
   2422 	struct ubsec_mcr *mcr;
   2423 	struct ubsec_ctx_modexp *ctx;
   2424 	struct ubsec_pktbuf *epb;
   2425 	int err = 0;
   2426 	u_int nbits, normbits, mbits, shiftbits, ebits;
   2427 
   2428 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
   2429 	if (me == NULL) {
   2430 		err = ENOMEM;
   2431 		goto errout;
   2432 	}
   2433 	memset(me, 0, sizeof *me);
   2434 	me->me_krp = krp;
   2435 	me->me_q.q_type = UBS_CTXOP_MODEXP;
   2436 
   2437 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
   2438 	if (nbits <= 512)
   2439 		normbits = 512;
   2440 	else if (nbits <= 768)
   2441 		normbits = 768;
   2442 	else if (nbits <= 1024)
   2443 		normbits = 1024;
   2444 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
   2445 		normbits = 1536;
   2446 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
   2447 		normbits = 2048;
   2448 	else {
   2449 		err = E2BIG;
   2450 		goto errout;
   2451 	}
   2452 
   2453 	shiftbits = normbits - nbits;
   2454 
   2455 	me->me_modbits = nbits;
   2456 	me->me_shiftbits = shiftbits;
   2457 	me->me_normbits = normbits;
   2458 
   2459 	/* Sanity check: result bits must be >= true modulus bits. */
   2460 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
   2461 		err = ERANGE;
   2462 		goto errout;
   2463 	}
   2464 
   2465 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
   2466 	    &me->me_q.q_mcr, 0)) {
   2467 		err = ENOMEM;
   2468 		goto errout;
   2469 	}
   2470 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
   2471 
   2472 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
   2473 	    &me->me_q.q_ctx, 0)) {
   2474 		err = ENOMEM;
   2475 		goto errout;
   2476 	}
   2477 
   2478 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
   2479 	if (mbits > nbits) {
   2480 		err = E2BIG;
   2481 		goto errout;
   2482 	}
   2483 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
   2484 		err = ENOMEM;
   2485 		goto errout;
   2486 	}
   2487 	ubsec_kshift_r(shiftbits,
   2488 	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
   2489 	    me->me_M.dma_vaddr, normbits);
   2490 
   2491 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
   2492 		err = ENOMEM;
   2493 		goto errout;
   2494 	}
   2495 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   2496 
   2497 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
   2498 	if (ebits > nbits) {
   2499 		err = E2BIG;
   2500 		goto errout;
   2501 	}
   2502 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
   2503 		err = ENOMEM;
   2504 		goto errout;
   2505 	}
   2506 	ubsec_kshift_r(shiftbits,
   2507 	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
   2508 	    me->me_E.dma_vaddr, normbits);
   2509 
   2510 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
   2511 	    &me->me_epb, 0)) {
   2512 		err = ENOMEM;
   2513 		goto errout;
   2514 	}
   2515 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
   2516 	epb->pb_addr = htole32(me->me_E.dma_paddr);
   2517 	epb->pb_next = 0;
   2518 	epb->pb_len = htole32(normbits / 8);
   2519 
   2520 #ifdef UBSEC_DEBUG
   2521 	if (ubsec_debug) {
   2522 		printf("Epb ");
   2523 		ubsec_dump_pb(epb);
   2524 	}
   2525 #endif
   2526 
   2527 	mcr->mcr_pkts = htole16(1);
   2528 	mcr->mcr_flags = 0;
   2529 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
   2530 	mcr->mcr_reserved = 0;
   2531 	mcr->mcr_pktlen = 0;
   2532 
   2533 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
   2534 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
   2535 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
   2536 
   2537 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
   2538 	mcr->mcr_opktbuf.pb_next = 0;
   2539 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
   2540 
   2541 #ifdef DIAGNOSTIC
   2542 	/* Misaligned output buffer will hang the chip. */
   2543 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
   2544 		panic("%s: modexp invalid addr 0x%x",
   2545 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr));
   2546 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
   2547 		panic("%s: modexp invalid len 0x%x",
   2548 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len));
   2549 #endif
   2550 
   2551 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
   2552 	memset(ctx, 0, sizeof(*ctx));
   2553 	ubsec_kshift_r(shiftbits,
   2554 	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
   2555 	    ctx->me_N, normbits);
   2556 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
   2557 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
   2558 	ctx->me_E_len = htole16(nbits);
   2559 	ctx->me_N_len = htole16(nbits);
   2560 
   2561 #ifdef UBSEC_DEBUG
   2562 	if (ubsec_debug) {
   2563 		ubsec_dump_mcr(mcr);
   2564 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
   2565 	}
   2566 #endif
   2567 
   2568 	/*
   2569 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
   2570 	 * everything else.
   2571 	 */
   2572 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
   2573 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2574 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
   2575 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2576 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
   2577 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2578 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
   2579 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2580 
   2581 	/* Enqueue and we're done... */
   2582 	mutex_spin_enter(&sc->sc_mtx);
   2583 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
   2584 	ubsec_feed2(sc);
   2585 	ubsecstats.hst_modexp++;
   2586 	mutex_spin_exit(&sc->sc_mtx);
   2587 
   2588 	return (0);
   2589 
   2590 errout:
   2591 	if (me != NULL) {
   2592 		if (me->me_q.q_mcr.dma_map != NULL)
   2593 			ubsec_dma_free(sc, &me->me_q.q_mcr);
   2594 		if (me->me_q.q_ctx.dma_map != NULL) {
   2595 			memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
   2596 			ubsec_dma_free(sc, &me->me_q.q_ctx);
   2597 		}
   2598 		if (me->me_M.dma_map != NULL) {
   2599 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
   2600 			ubsec_dma_free(sc, &me->me_M);
   2601 		}
   2602 		if (me->me_E.dma_map != NULL) {
   2603 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
   2604 			ubsec_dma_free(sc, &me->me_E);
   2605 		}
   2606 		if (me->me_C.dma_map != NULL) {
   2607 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   2608 			ubsec_dma_free(sc, &me->me_C);
   2609 		}
   2610 		if (me->me_epb.dma_map != NULL)
   2611 			ubsec_dma_free(sc, &me->me_epb);
   2612 		free(me, M_DEVBUF);
   2613 	}
   2614 	krp->krp_status = err;
   2615 	crypto_kdone(krp);
   2616 	return (0);
   2617 }
   2618 
   2619 /*
   2620  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
   2621  */
   2622 static int
   2623 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
   2624 			 int hint)
   2625 {
   2626 	struct ubsec_q2_modexp *me;
   2627 	struct ubsec_mcr *mcr;
   2628 	struct ubsec_ctx_modexp *ctx;
   2629 	struct ubsec_pktbuf *epb;
   2630 	int err = 0;
   2631 	u_int nbits, normbits, mbits, shiftbits, ebits;
   2632 
   2633 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
   2634 	if (me == NULL) {
   2635 		err = ENOMEM;
   2636 		goto errout;
   2637 	}
   2638 	memset(me, 0, sizeof *me);
   2639 	me->me_krp = krp;
   2640 	me->me_q.q_type = UBS_CTXOP_MODEXP;
   2641 
   2642 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
   2643 	if (nbits <= 512)
   2644 		normbits = 512;
   2645 	else if (nbits <= 768)
   2646 		normbits = 768;
   2647 	else if (nbits <= 1024)
   2648 		normbits = 1024;
   2649 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
   2650 		normbits = 1536;
   2651 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
   2652 		normbits = 2048;
   2653 	else {
   2654 		err = E2BIG;
   2655 		goto errout;
   2656 	}
   2657 
   2658 	shiftbits = normbits - nbits;
   2659 
   2660 	/* XXX ??? */
   2661 	me->me_modbits = nbits;
   2662 	me->me_shiftbits = shiftbits;
   2663 	me->me_normbits = normbits;
   2664 
   2665 	/* Sanity check: result bits must be >= true modulus bits. */
   2666 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
   2667 		err = ERANGE;
   2668 		goto errout;
   2669 	}
   2670 
   2671 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
   2672 	    &me->me_q.q_mcr, 0)) {
   2673 		err = ENOMEM;
   2674 		goto errout;
   2675 	}
   2676 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
   2677 
   2678 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
   2679 	    &me->me_q.q_ctx, 0)) {
   2680 		err = ENOMEM;
   2681 		goto errout;
   2682 	}
   2683 
   2684 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
   2685 	if (mbits > nbits) {
   2686 		err = E2BIG;
   2687 		goto errout;
   2688 	}
   2689 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
   2690 		err = ENOMEM;
   2691 		goto errout;
   2692 	}
   2693 	memset(me->me_M.dma_vaddr, 0, normbits / 8);
   2694 	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
   2695 	    me->me_M.dma_vaddr, (mbits + 7) / 8);
   2696 
   2697 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
   2698 		err = ENOMEM;
   2699 		goto errout;
   2700 	}
   2701 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   2702 
   2703 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
   2704 	if (ebits > nbits) {
   2705 		err = E2BIG;
   2706 		goto errout;
   2707 	}
   2708 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
   2709 		err = ENOMEM;
   2710 		goto errout;
   2711 	}
   2712 	memset(me->me_E.dma_vaddr, 0, normbits / 8);
   2713 	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
   2714 	    me->me_E.dma_vaddr, (ebits + 7) / 8);
   2715 
   2716 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
   2717 	    &me->me_epb, 0)) {
   2718 		err = ENOMEM;
   2719 		goto errout;
   2720 	}
   2721 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
   2722 	epb->pb_addr = htole32(me->me_E.dma_paddr);
   2723 	epb->pb_next = 0;
   2724 	epb->pb_len = htole32((ebits + 7) / 8);
   2725 
   2726 #ifdef UBSEC_DEBUG
   2727 	if (ubsec_debug) {
   2728 		printf("Epb ");
   2729 		ubsec_dump_pb(epb);
   2730 	}
   2731 #endif
   2732 
   2733 	mcr->mcr_pkts = htole16(1);
   2734 	mcr->mcr_flags = 0;
   2735 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
   2736 	mcr->mcr_reserved = 0;
   2737 	mcr->mcr_pktlen = 0;
   2738 
   2739 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
   2740 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
   2741 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
   2742 
   2743 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
   2744 	mcr->mcr_opktbuf.pb_next = 0;
   2745 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
   2746 
   2747 #ifdef DIAGNOSTIC
   2748 	/* Misaligned output buffer will hang the chip. */
   2749 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
   2750 		panic("%s: modexp invalid addr 0x%x",
   2751 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr));
   2752 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
   2753 		panic("%s: modexp invalid len 0x%x",
   2754 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len));
   2755 #endif
   2756 
   2757 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
   2758 	memset(ctx, 0, sizeof(*ctx));
   2759 	memcpy(ctx->me_N, krp->krp_param[UBS_MODEXP_PAR_N].crp_p,
   2760 	    (nbits + 7) / 8);
   2761 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
   2762 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
   2763 	ctx->me_E_len = htole16(ebits);
   2764 	ctx->me_N_len = htole16(nbits);
   2765 
   2766 #ifdef UBSEC_DEBUG
   2767 	if (ubsec_debug) {
   2768 		ubsec_dump_mcr(mcr);
   2769 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
   2770 	}
   2771 #endif
   2772 
   2773 	/*
   2774 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
   2775 	 * everything else.
   2776 	 */
   2777 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
   2778 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2779 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
   2780 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2781 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
   2782 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2783 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
   2784 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2785 
   2786 	/* Enqueue and we're done... */
   2787 	mutex_spin_enter(&sc->sc_mtx);
   2788 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
   2789 	ubsec_feed2(sc);
   2790 	mutex_spin_exit(&sc->sc_mtx);
   2791 
   2792 	return (0);
   2793 
   2794 errout:
   2795 	if (me != NULL) {
   2796 		if (me->me_q.q_mcr.dma_map != NULL)
   2797 			ubsec_dma_free(sc, &me->me_q.q_mcr);
   2798 		if (me->me_q.q_ctx.dma_map != NULL) {
   2799 			memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
   2800 			ubsec_dma_free(sc, &me->me_q.q_ctx);
   2801 		}
   2802 		if (me->me_M.dma_map != NULL) {
   2803 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
   2804 			ubsec_dma_free(sc, &me->me_M);
   2805 		}
   2806 		if (me->me_E.dma_map != NULL) {
   2807 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
   2808 			ubsec_dma_free(sc, &me->me_E);
   2809 		}
   2810 		if (me->me_C.dma_map != NULL) {
   2811 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   2812 			ubsec_dma_free(sc, &me->me_C);
   2813 		}
   2814 		if (me->me_epb.dma_map != NULL)
   2815 			ubsec_dma_free(sc, &me->me_epb);
   2816 		free(me, M_DEVBUF);
   2817 	}
   2818 	krp->krp_status = err;
   2819 	crypto_kdone(krp);
   2820 	return (0);
   2821 }
   2822 
   2823 static int
   2824 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
   2825 		       int hint)
   2826 {
   2827 	struct ubsec_q2_rsapriv *rp = NULL;
   2828 	struct ubsec_mcr *mcr;
   2829 	struct ubsec_ctx_rsapriv *ctx;
   2830 	int err = 0;
   2831 	u_int padlen, msglen;
   2832 
   2833 	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
   2834 	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
   2835 	if (msglen > padlen)
   2836 		padlen = msglen;
   2837 
   2838 	if (padlen <= 256)
   2839 		padlen = 256;
   2840 	else if (padlen <= 384)
   2841 		padlen = 384;
   2842 	else if (padlen <= 512)
   2843 		padlen = 512;
   2844 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
   2845 		padlen = 768;
   2846 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
   2847 		padlen = 1024;
   2848 	else {
   2849 		err = E2BIG;
   2850 		goto errout;
   2851 	}
   2852 
   2853 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
   2854 		err = E2BIG;
   2855 		goto errout;
   2856 	}
   2857 
   2858 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
   2859 		err = E2BIG;
   2860 		goto errout;
   2861 	}
   2862 
   2863 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
   2864 		err = E2BIG;
   2865 		goto errout;
   2866 	}
   2867 
   2868 	rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT|M_ZERO);
   2869 	if (rp == NULL)
   2870 		return (ENOMEM);
   2871 	rp->rpr_krp = krp;
   2872 	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
   2873 
   2874 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
   2875 	    &rp->rpr_q.q_mcr, 0)) {
   2876 		err = ENOMEM;
   2877 		goto errout;
   2878 	}
   2879 	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
   2880 
   2881 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
   2882 	    &rp->rpr_q.q_ctx, 0)) {
   2883 		err = ENOMEM;
   2884 		goto errout;
   2885 	}
   2886 	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
   2887 	memset(ctx, 0, sizeof *ctx);
   2888 
   2889 	/* Copy in p */
   2890 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
   2891 	    &ctx->rpr_buf[0 * (padlen / 8)],
   2892 	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
   2893 
   2894 	/* Copy in q */
   2895 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
   2896 	    &ctx->rpr_buf[1 * (padlen / 8)],
   2897 	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
   2898 
   2899 	/* Copy in dp */
   2900 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
   2901 	    &ctx->rpr_buf[2 * (padlen / 8)],
   2902 	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
   2903 
   2904 	/* Copy in dq */
   2905 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
   2906 	    &ctx->rpr_buf[3 * (padlen / 8)],
   2907 	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
   2908 
   2909 	/* Copy in pinv */
   2910 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
   2911 	    &ctx->rpr_buf[4 * (padlen / 8)],
   2912 	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
   2913 
   2914 	msglen = padlen * 2;
   2915 
   2916 	/* Copy in input message (aligned buffer/length). */
   2917 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
   2918 		/* Is this likely? */
   2919 		err = E2BIG;
   2920 		goto errout;
   2921 	}
   2922 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
   2923 		err = ENOMEM;
   2924 		goto errout;
   2925 	}
   2926 	memset(rp->rpr_msgin.dma_vaddr, 0, (msglen + 7) / 8);
   2927 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
   2928 	    rp->rpr_msgin.dma_vaddr,
   2929 	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
   2930 
   2931 	/* Prepare space for output message (aligned buffer/length). */
   2932 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
   2933 		/* Is this likely? */
   2934 		err = E2BIG;
   2935 		goto errout;
   2936 	}
   2937 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
   2938 		err = ENOMEM;
   2939 		goto errout;
   2940 	}
   2941 	memset(rp->rpr_msgout.dma_vaddr, 0, (msglen + 7) / 8);
   2942 
   2943 	mcr->mcr_pkts = htole16(1);
   2944 	mcr->mcr_flags = 0;
   2945 	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
   2946 	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
   2947 	mcr->mcr_ipktbuf.pb_next = 0;
   2948 	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
   2949 	mcr->mcr_reserved = 0;
   2950 	mcr->mcr_pktlen = htole16(msglen);
   2951 	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
   2952 	mcr->mcr_opktbuf.pb_next = 0;
   2953 	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
   2954 
   2955 #ifdef DIAGNOSTIC
   2956 	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
   2957 		panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
   2958 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgin.dma_paddr,
   2959 		    (u_long) rp->rpr_msgin.dma_size);
   2960 	}
   2961 	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
   2962 		panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
   2963 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgout.dma_paddr,
   2964 		    (u_long) rp->rpr_msgout.dma_size);
   2965 	}
   2966 #endif
   2967 
   2968 	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
   2969 	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
   2970 	ctx->rpr_q_len = htole16(padlen);
   2971 	ctx->rpr_p_len = htole16(padlen);
   2972 
   2973 	/*
   2974 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
   2975 	 * everything else.
   2976 	 */
   2977 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
   2978 	    0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2979 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
   2980 	    0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2981 
   2982 	/* Enqueue and we're done... */
   2983 	mutex_spin_enter(&sc->sc_mtx);
   2984 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
   2985 	ubsec_feed2(sc);
   2986 	ubsecstats.hst_modexpcrt++;
   2987 	mutex_spin_exit(&sc->sc_mtx);
   2988 	return (0);
   2989 
   2990 errout:
   2991 	if (rp != NULL) {
   2992 		if (rp->rpr_q.q_mcr.dma_map != NULL)
   2993 			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
   2994 		if (rp->rpr_msgin.dma_map != NULL) {
   2995 			memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
   2996 			ubsec_dma_free(sc, &rp->rpr_msgin);
   2997 		}
   2998 		if (rp->rpr_msgout.dma_map != NULL) {
   2999 			memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
   3000 			ubsec_dma_free(sc, &rp->rpr_msgout);
   3001 		}
   3002 		free(rp, M_DEVBUF);
   3003 	}
   3004 	krp->krp_status = err;
   3005 	crypto_kdone(krp);
   3006 	return (0);
   3007 }
   3008 
   3009 #ifdef UBSEC_DEBUG
   3010 static void
   3011 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
   3012 {
   3013 	printf("addr 0x%x (0x%x) next 0x%x\n",
   3014 	    pb->pb_addr, pb->pb_len, pb->pb_next);
   3015 }
   3016 
   3017 static void
   3018 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
   3019 {
   3020 	printf("CTX (0x%x):\n", c->ctx_len);
   3021 	switch (letoh16(c->ctx_op)) {
   3022 	case UBS_CTXOP_RNGBYPASS:
   3023 	case UBS_CTXOP_RNGSHA1:
   3024 		break;
   3025 	case UBS_CTXOP_MODEXP:
   3026 	{
   3027 		struct ubsec_ctx_modexp *cx = (void *)c;
   3028 		int i, len;
   3029 
   3030 		printf(" Elen %u, Nlen %u\n",
   3031 		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
   3032 		len = (cx->me_N_len + 7)/8;
   3033 		for (i = 0; i < len; i++)
   3034 			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
   3035 		printf("\n");
   3036 		break;
   3037 	}
   3038 	default:
   3039 		printf("unknown context: %x\n", c->ctx_op);
   3040 	}
   3041 	printf("END CTX\n");
   3042 }
   3043 
   3044 static void
   3045 ubsec_dump_mcr(struct ubsec_mcr *mcr)
   3046 {
   3047 	volatile struct ubsec_mcr_add *ma;
   3048 	int i;
   3049 
   3050 	printf("MCR:\n");
   3051 	printf(" pkts: %u, flags 0x%x\n",
   3052 	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
   3053 	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
   3054 	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
   3055 		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
   3056 		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
   3057 		    letoh16(ma->mcr_reserved));
   3058 		printf(" %d: ipkt ", i);
   3059 		ubsec_dump_pb(&ma->mcr_ipktbuf);
   3060 		printf(" %d: opkt ", i);
   3061 		ubsec_dump_pb(&ma->mcr_opktbuf);
   3062 		ma++;
   3063 	}
   3064 	printf("END MCR\n");
   3065 }
   3066 #endif /* UBSEC_DEBUG */
   3067 
   3068 /*
   3069  * Return the number of significant bits of a big number.
   3070  */
   3071 static int
   3072 ubsec_ksigbits(struct crparam *cr)
   3073 {
   3074 	u_int plen = (cr->crp_nbits + 7) / 8;
   3075 	int i, sig = plen * 8;
   3076 	u_int8_t c, *p = cr->crp_p;
   3077 
   3078 	for (i = plen - 1; i >= 0; i--) {
   3079 		c = p[i];
   3080 		if (c != 0) {
   3081 			while ((c & 0x80) == 0) {
   3082 				sig--;
   3083 				c <<= 1;
   3084 			}
   3085 			break;
   3086 		}
   3087 		sig -= 8;
   3088 	}
   3089 	return (sig);
   3090 }
   3091 
   3092 static void
   3093 ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits,
   3094     u_int8_t *dst, u_int dstbits)
   3095 {
   3096 	u_int slen, dlen;
   3097 	int i, si, di, n;
   3098 
   3099 	slen = (srcbits + 7) / 8;
   3100 	dlen = (dstbits + 7) / 8;
   3101 
   3102 	for (i = 0; i < slen; i++)
   3103 		dst[i] = src[i];
   3104 	for (i = 0; i < dlen - slen; i++)
   3105 		dst[slen + i] = 0;
   3106 
   3107 	n = shiftbits / 8;
   3108 	if (n != 0) {
   3109 		si = dlen - n - 1;
   3110 		di = dlen - 1;
   3111 		while (si >= 0)
   3112 			dst[di--] = dst[si--];
   3113 		while (di >= 0)
   3114 			dst[di--] = 0;
   3115 	}
   3116 
   3117 	n = shiftbits % 8;
   3118 	if (n != 0) {
   3119 		for (i = dlen - 1; i > 0; i--)
   3120 			dst[i] = (dst[i] << n) |
   3121 			    (dst[i - 1] >> (8 - n));
   3122 		dst[0] = dst[0] << n;
   3123 	}
   3124 }
   3125 
   3126 static void
   3127 ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits,
   3128     u_int8_t *dst, u_int dstbits)
   3129 {
   3130 	int slen, dlen, i, n;
   3131 
   3132 	slen = (srcbits + 7) / 8;
   3133 	dlen = (dstbits + 7) / 8;
   3134 
   3135 	n = shiftbits / 8;
   3136 	for (i = 0; i < slen; i++)
   3137 		dst[i] = src[i + n];
   3138 	for (i = 0; i < dlen - slen; i++)
   3139 		dst[slen + i] = 0;
   3140 
   3141 	n = shiftbits % 8;
   3142 	if (n != 0) {
   3143 		for (i = 0; i < (dlen - 1); i++)
   3144 			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
   3145 		dst[dlen - 1] = dst[dlen - 1] >> n;
   3146 	}
   3147 }
   3148