ubsec.c revision 1.4 1 /* $NetBSD: ubsec.c,v 1.4 2003/08/28 19:00:52 thorpej Exp $ */
2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
3 /* $OpenBSD: ubsec.c,v 1.127 2003/06/04 14:04:58 jason Exp $ */
4
5 /*
6 * Copyright (c) 2000 Jason L. Wright (jason (at) thought.net)
7 * Copyright (c) 2000 Theo de Raadt (deraadt (at) openbsd.org)
8 * Copyright (c) 2001 Patrik Lindergren (patrik (at) ipunplugged.com)
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Effort sponsored in part by the Defense Advanced Research Projects
32 * Agency (DARPA) and Air Force Research Laboratory, Air Force
33 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
34 *
35 */
36
37 #undef UBSEC_DEBUG
38
39 /*
40 * uBsec 5[56]01, bcm580xx, bcm582x hardware crypto accelerator
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/proc.h>
46 #include <sys/endian.h>
47 #ifdef __NetBSD__
48 #define letoh16 htole16
49 #define letoh32 htole32
50 #define UBSEC_NO_RNG /* until statistically tested */
51 #endif
52 #include <sys/errno.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/mbuf.h>
56 #include <sys/device.h>
57 #include <sys/queue.h>
58
59 #include <uvm/uvm_extern.h>
60
61 #include <opencrypto/cryptodev.h>
62 #include <opencrypto/cryptosoft.h>
63 #ifdef __OpenBSD__
64 #include <dev/rndvar.h>
65 #include <sys/md5k.h>
66 #else
67 #include <sys/rnd.h>
68 #include <sys/md5.h>
69 #endif
70 #include <sys/sha1.h>
71
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcidevs.h>
75
76 #include <dev/pci/ubsecreg.h>
77 #include <dev/pci/ubsecvar.h>
78
79 /*
80 * Prototypes and count for the pci_device structure
81 */
82 static int ubsec_probe(struct device *, struct cfdata *, void *);
83 static void ubsec_attach(struct device *, struct device *, void *);
84 static void ubsec_reset_board(struct ubsec_softc *);
85 static void ubsec_init_board(struct ubsec_softc *);
86 static void ubsec_init_pciregs(struct pci_attach_args *pa);
87 static void ubsec_cleanchip(struct ubsec_softc *);
88 static void ubsec_totalreset(struct ubsec_softc *);
89 static int ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
90
91 #ifdef __OpenBSD__
92 struct cfattach ubsec_ca = {
93 sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
94 };
95
96 struct cfdriver ubsec_cd = {
97 0, "ubsec", DV_DULL
98 };
99 #else
100 CFATTACH_DECL(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
101 NULL, NULL);
102 extern struct cfdriver ubsec_cd;
103 #endif
104
105 /* patchable */
106 #ifdef UBSEC_DEBUG
107 extern int ubsec_debug;
108 int ubsec_debug=1;
109 #endif
110
111 static int ubsec_intr(void *);
112 static int ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
113 static int ubsec_freesession(void*, u_int64_t);
114 static int ubsec_process(void*, struct cryptop *, int hint);
115 static void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
116 static void ubsec_feed(struct ubsec_softc *);
117 static void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
118 static void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
119 static void ubsec_feed2(struct ubsec_softc *);
120 #ifndef UBSEC_NO_RNG
121 static void ubsec_rng(void *);
122 #endif /* UBSEC_NO_RNG */
123 static int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
124 struct ubsec_dma_alloc *, int);
125 static void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
126 static int ubsec_dmamap_aligned(bus_dmamap_t);
127
128 static int ubsec_kprocess(void*, struct cryptkop *, int);
129 static int ubsec_kprocess_modexp_sw(struct ubsec_softc *,
130 struct cryptkop *, int);
131 static int ubsec_kprocess_modexp_hw(struct ubsec_softc *,
132 struct cryptkop *, int);
133 static int ubsec_kprocess_rsapriv(struct ubsec_softc *,
134 struct cryptkop *, int);
135 static void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
136 static int ubsec_ksigbits(struct crparam *);
137 static void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
138 static void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
139
140 #ifdef UBSEC_DEBUG
141 static void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
142 static void ubsec_dump_mcr(struct ubsec_mcr *);
143 static void ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
144 #endif
145
146 #define READ_REG(sc,r) \
147 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
148
149 #define WRITE_REG(sc,reg,val) \
150 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
151
152 #define SWAP32(x) (x) = htole32(ntohl((x)))
153 #ifndef HTOLE32
154 #define HTOLE32(x) (x) = htole32(x)
155 #endif
156
157 struct ubsec_stats ubsecstats;
158
159 /*
160 * ubsec_maxbatch controls the number of crypto ops to voluntarily
161 * collect into one submission to the hardware. This batching happens
162 * when ops are dispatched from the crypto subsystem with a hint that
163 * more are to follow immediately. These ops must also not be marked
164 * with a ``no delay'' flag.
165 */
166 static int ubsec_maxbatch = 1;
167 #ifdef SYSCTL_INT
168 SYSCTL_INT(_kern, OID_AUTO, ubsec_maxbatch, CTLFLAG_RW, &ubsec_maxbatch,
169 0, "Broadcom driver: max ops to batch w/o interrupt");
170 #endif
171
172 /*
173 * ubsec_maxaggr controls the number of crypto ops to submit to the
174 * hardware as a unit. This aggregation reduces the number of interrupts
175 * to the host at the expense of increased latency (for all but the last
176 * operation). For network traffic setting this to one yields the highest
177 * performance but at the expense of more interrupt processing.
178 */
179 static int ubsec_maxaggr = 1;
180 #ifdef SYSCTL_INT
181 SYSCTL_INT(_kern, OID_AUTO, ubsec_maxaggr, CTLFLAG_RW, &ubsec_maxaggr,
182 0, "Broadcom driver: max ops to aggregate under one interrupt");
183 #endif
184
185 static const struct ubsec_product {
186 pci_vendor_id_t ubsec_vendor;
187 pci_product_id_t ubsec_product;
188 int ubsec_flags;
189 int ubsec_statmask;
190 const char *ubsec_name;
191 } ubsec_products[] = {
192 { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5501,
193 0,
194 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
195 "Bluesteel 5501"
196 },
197 { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5601,
198 UBS_FLAGS_KEY | UBS_FLAGS_RNG,
199 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
200 "Bluesteel 5601"
201 },
202
203 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5801,
204 0,
205 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
206 "Broadcom BCM5801"
207 },
208
209 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5802,
210 UBS_FLAGS_KEY | UBS_FLAGS_RNG,
211 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
212 "Broadcom BCM5802"
213 },
214
215 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5805,
216 UBS_FLAGS_KEY | UBS_FLAGS_RNG,
217 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
218 "Broadcom BCM5805"
219 },
220
221 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5820,
222 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
223 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
224 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
225 "Broadcom BCM5820"
226 },
227
228 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5821,
229 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
230 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
231 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
232 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
233 "Broadcom BCM5821"
234 },
235 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_SCA1K,
236 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
237 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
238 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
239 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
240 "Sun Crypto Accelerator 1000"
241 },
242 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_5821,
243 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
244 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
245 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
246 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
247 "Broadcom BCM5821 (Sun)"
248 },
249
250 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5822,
251 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
252 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
253 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
254 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
255 "Broadcom BCM5822"
256 },
257
258 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5823,
259 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
260 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
261 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
262 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
263 "Broadcom BCM5823"
264 },
265
266 { 0, 0,
267 0,
268 0,
269 NULL
270 }
271 };
272
273 static const struct ubsec_product *
274 ubsec_lookup(const struct pci_attach_args *pa)
275 {
276 const struct ubsec_product *up;
277
278 for (up = ubsec_products; up->ubsec_name != NULL; up++) {
279 if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
280 PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
281 return (up);
282 }
283 return (NULL);
284 }
285
286 static int
287 ubsec_probe(parent, match, aux)
288 struct device *parent;
289 struct cfdata *match;
290 void *aux;
291 {
292 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
293
294 if (ubsec_lookup(pa) != NULL)
295 return (1);
296
297 return (0);
298 }
299
300 void
301 ubsec_attach(parent, self, aux)
302 struct device *parent, *self;
303 void *aux;
304 {
305 struct ubsec_softc *sc = (struct ubsec_softc *)self;
306 struct pci_attach_args *pa = aux;
307 const struct ubsec_product *up;
308 pci_chipset_tag_t pc = pa->pa_pc;
309 pci_intr_handle_t ih;
310 const char *intrstr = NULL;
311 struct ubsec_dma *dmap;
312 u_int32_t cmd, i;
313
314 up = ubsec_lookup(pa);
315 if (up == NULL) {
316 printf("\n");
317 panic("ubsec_attach: impossible");
318 }
319
320 aprint_naive(": Crypto processor\n");
321 aprint_normal(": %s, rev. %d\n", up->ubsec_name,
322 PCI_REVISION(pa->pa_class));
323
324 SIMPLEQ_INIT(&sc->sc_queue);
325 SIMPLEQ_INIT(&sc->sc_qchip);
326 SIMPLEQ_INIT(&sc->sc_queue2);
327 SIMPLEQ_INIT(&sc->sc_qchip2);
328 SIMPLEQ_INIT(&sc->sc_q2free);
329
330 sc->sc_flags = up->ubsec_flags;
331 sc->sc_statmask = up->ubsec_statmask;
332
333 cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
334 cmd |= PCI_COMMAND_MASTER_ENABLE;
335 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
336
337 if (pci_mapreg_map(pa, BS_BAR, PCI_MAPREG_TYPE_MEM, 0,
338 &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
339 aprint_error("%s: can't find mem space",
340 sc->sc_dv.dv_xname);
341 return;
342 }
343
344 sc->sc_dmat = pa->pa_dmat;
345
346 if (pci_intr_map(pa, &ih)) {
347 aprint_error("%s: couldn't map interrupt\n",
348 sc->sc_dv.dv_xname);
349 return;
350 }
351 intrstr = pci_intr_string(pc, ih);
352 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc);
353 if (sc->sc_ih == NULL) {
354 aprint_error("%s: couldn't establish interrupt",
355 sc->sc_dv.dv_xname);
356 if (intrstr != NULL)
357 aprint_normal(" at %s", intrstr);
358 aprint_normal("\n");
359 return;
360 }
361 aprint_normal("%s: interrupting at %s\n", sc->sc_dv.dv_xname, intrstr);
362
363 sc->sc_cid = crypto_get_driverid(0);
364 if (sc->sc_cid < 0) {
365 aprint_error("%s: couldn't get crypto driver id\n",
366 sc->sc_dv.dv_xname);
367 pci_intr_disestablish(pc, sc->sc_ih);
368 return;
369 }
370
371 SIMPLEQ_INIT(&sc->sc_freequeue);
372 dmap = sc->sc_dmaa;
373 for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
374 struct ubsec_q *q;
375
376 q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
377 M_DEVBUF, M_NOWAIT);
378 if (q == NULL) {
379 aprint_error("%s: can't allocate queue buffers\n",
380 sc->sc_dv.dv_xname);
381 break;
382 }
383
384 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
385 &dmap->d_alloc, 0)) {
386 aprint_error("%s: can't allocate dma buffers\n",
387 sc->sc_dv.dv_xname);
388 free(q, M_DEVBUF);
389 break;
390 }
391 dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
392
393 q->q_dma = dmap;
394 sc->sc_queuea[i] = q;
395
396 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
397 }
398
399 crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
400 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
401 crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
402 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
403 crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0,
404 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
405 crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0,
406 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
407
408 /*
409 * Reset Broadcom chip
410 */
411 ubsec_reset_board(sc);
412
413 /*
414 * Init Broadcom specific PCI settings
415 */
416 ubsec_init_pciregs(pa);
417
418 /*
419 * Init Broadcom chip
420 */
421 ubsec_init_board(sc);
422
423 #ifndef UBSEC_NO_RNG
424 if (sc->sc_flags & UBS_FLAGS_RNG) {
425 sc->sc_statmask |= BS_STAT_MCR2_DONE;
426
427 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
428 &sc->sc_rng.rng_q.q_mcr, 0))
429 goto skip_rng;
430
431 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
432 &sc->sc_rng.rng_q.q_ctx, 0)) {
433 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
434 goto skip_rng;
435 }
436
437 if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
438 UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
439 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
440 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
441 goto skip_rng;
442 }
443
444 if (hz >= 100)
445 sc->sc_rnghz = hz / 100;
446 else
447 sc->sc_rnghz = 1;
448 #ifdef __OpenBSD__
449 timeout_set(&sc->sc_rngto, ubsec_rng, sc);
450 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
451 #else
452 callout_init(&sc->sc_rngto);
453 callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
454 #endif
455 skip_rng:
456 if (sc->sc_rnghz)
457 aprint_normal("%s: random number generator enabled\n",
458 sc->sc_dv.dv_xname);
459 else
460 aprint_error("%s: WARNING: random number generator "
461 "disabled\n", sc->sc_dv.dv_xname);
462 }
463 #endif /* UBSEC_NO_RNG */
464
465 if (sc->sc_flags & UBS_FLAGS_KEY) {
466 sc->sc_statmask |= BS_STAT_MCR2_DONE;
467
468 crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
469 ubsec_kprocess, sc);
470 #if 0
471 crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
472 ubsec_kprocess, sc);
473 #endif
474 }
475 }
476
477 /*
478 * UBSEC Interrupt routine
479 */
480 int
481 ubsec_intr(void *arg)
482 {
483 struct ubsec_softc *sc = arg;
484 volatile u_int32_t stat;
485 struct ubsec_q *q;
486 struct ubsec_dma *dmap;
487 int npkts = 0, i;
488
489 stat = READ_REG(sc, BS_STAT);
490 stat &= sc->sc_statmask;
491 if (stat == 0) {
492 return (0);
493 }
494
495 WRITE_REG(sc, BS_STAT, stat); /* IACK */
496
497 /*
498 * Check to see if we have any packets waiting for us
499 */
500 if ((stat & BS_STAT_MCR1_DONE)) {
501 while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
502 q = SIMPLEQ_FIRST(&sc->sc_qchip);
503 dmap = q->q_dma;
504
505 if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
506 break;
507
508 q = SIMPLEQ_FIRST(&sc->sc_qchip);
509 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
510
511 npkts = q->q_nstacked_mcrs;
512 sc->sc_nqchip -= 1+npkts;
513 /*
514 * search for further sc_qchip ubsec_q's that share
515 * the same MCR, and complete them too, they must be
516 * at the top.
517 */
518 for (i = 0; i < npkts; i++) {
519 if(q->q_stacked_mcr[i])
520 ubsec_callback(sc, q->q_stacked_mcr[i]);
521 else
522 break;
523 }
524 ubsec_callback(sc, q);
525 }
526
527 /*
528 * Don't send any more packet to chip if there has been
529 * a DMAERR.
530 */
531 if (!(stat & BS_STAT_DMAERR))
532 ubsec_feed(sc);
533 }
534
535 /*
536 * Check to see if we have any key setups/rng's waiting for us
537 */
538 if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
539 (stat & BS_STAT_MCR2_DONE)) {
540 struct ubsec_q2 *q2;
541 struct ubsec_mcr *mcr;
542
543 while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
544 q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
545
546 bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
547 0, q2->q_mcr.dma_map->dm_mapsize,
548 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
549
550 mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
551 if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
552 bus_dmamap_sync(sc->sc_dmat,
553 q2->q_mcr.dma_map, 0,
554 q2->q_mcr.dma_map->dm_mapsize,
555 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
556 break;
557 }
558 q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
559 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
560 ubsec_callback2(sc, q2);
561 /*
562 * Don't send any more packet to chip if there has been
563 * a DMAERR.
564 */
565 if (!(stat & BS_STAT_DMAERR))
566 ubsec_feed2(sc);
567 }
568 }
569
570 /*
571 * Check to see if we got any DMA Error
572 */
573 if (stat & BS_STAT_DMAERR) {
574 #ifdef UBSEC_DEBUG
575 if (ubsec_debug) {
576 volatile u_int32_t a = READ_REG(sc, BS_ERR);
577
578 printf("%s: dmaerr %s@%08x\n", sc->sc_dv.dv_xname,
579 (a & BS_ERR_READ) ? "read" : "write",
580 a & BS_ERR_ADDR);
581 }
582 #endif /* UBSEC_DEBUG */
583 ubsecstats.hst_dmaerr++;
584 ubsec_totalreset(sc);
585 ubsec_feed(sc);
586 }
587
588 if (sc->sc_needwakeup) { /* XXX check high watermark */
589 int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
590 #ifdef UBSEC_DEBUG
591 if (ubsec_debug)
592 printf("%s: wakeup crypto (%x)\n", sc->sc_dv.dv_xname,
593 sc->sc_needwakeup);
594 #endif /* UBSEC_DEBUG */
595 sc->sc_needwakeup &= ~wakeup;
596 crypto_unblock(sc->sc_cid, wakeup);
597 }
598 return (1);
599 }
600
601 /*
602 * ubsec_feed() - aggregate and post requests to chip
603 * OpenBSD comments:
604 * It is assumed that the caller set splnet()
605 */
606 static void
607 ubsec_feed(struct ubsec_softc *sc)
608 {
609 struct ubsec_q *q, *q2;
610 int npkts, i;
611 void *v;
612 u_int32_t stat;
613 #ifdef UBSEC_DEBUG
614 static int max;
615 #endif /* UBSEC_DEBUG */
616
617 npkts = sc->sc_nqueue;
618 if (npkts > ubsecstats.hst_maxqueue)
619 ubsecstats.hst_maxqueue = npkts;
620 if (npkts < 2)
621 goto feed1;
622
623 /*
624 * Decide how many ops to combine in a single MCR. We cannot
625 * aggregate more than UBS_MAX_AGGR because this is the number
626 * of slots defined in the data structure. Otherwise we clamp
627 * based on the tunable parameter ubsec_maxaggr. Note that
628 * aggregation can happen in two ways: either by batching ops
629 * from above or because the h/w backs up and throttles us.
630 * Aggregating ops reduces the number of interrupts to the host
631 * but also (potentially) increases the latency for processing
632 * completed ops as we only get an interrupt when all aggregated
633 * ops have completed.
634 */
635 if (npkts > UBS_MAX_AGGR)
636 npkts = UBS_MAX_AGGR;
637 if (npkts > ubsec_maxaggr)
638 npkts = ubsec_maxaggr;
639 if (npkts > ubsecstats.hst_maxbatch)
640 ubsecstats.hst_maxbatch = npkts;
641 if (npkts < 2)
642 goto feed1;
643 ubsecstats.hst_totbatch += npkts-1;
644
645 if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
646 if (stat & BS_STAT_DMAERR) {
647 ubsec_totalreset(sc);
648 ubsecstats.hst_dmaerr++;
649 } else {
650 ubsecstats.hst_mcr1full++;
651 }
652 return;
653 }
654
655 #ifdef UBSEC_DEBUG
656 if (ubsec_debug)
657 printf("merging %d records\n", npkts);
658 /* XXX temporary aggregation statistics reporting code */
659 if (max < npkts) {
660 max = npkts;
661 printf("%s: new max aggregate %d\n", sc->sc_dv.dv_xname, max);
662 }
663 #endif /* UBSEC_DEBUG */
664
665 q = SIMPLEQ_FIRST(&sc->sc_queue);
666 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
667 --sc->sc_nqueue;
668
669 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
670 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
671 if (q->q_dst_map != NULL)
672 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
673 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
674
675 q->q_nstacked_mcrs = npkts - 1; /* Number of packets stacked */
676
677 for (i = 0; i < q->q_nstacked_mcrs; i++) {
678 q2 = SIMPLEQ_FIRST(&sc->sc_queue);
679 bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
680 0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
681 if (q2->q_dst_map != NULL)
682 bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
683 0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
684 q2= SIMPLEQ_FIRST(&sc->sc_queue);
685 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
686 --sc->sc_nqueue;
687
688 v = ((void *)&q2->q_dma->d_dma->d_mcr);
689 v = (char*)v + (sizeof(struct ubsec_mcr) -
690 sizeof(struct ubsec_mcr_add));
691 bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
692 q->q_stacked_mcr[i] = q2;
693 }
694 q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
695 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
696 sc->sc_nqchip += npkts;
697 if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
698 ubsecstats.hst_maxqchip = sc->sc_nqchip;
699 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
700 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
701 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
702 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
703 offsetof(struct ubsec_dmachunk, d_mcr));
704 return;
705
706 feed1:
707 while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
708 if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
709 if (stat & BS_STAT_DMAERR) {
710 ubsec_totalreset(sc);
711 ubsecstats.hst_dmaerr++;
712 } else {
713 ubsecstats.hst_mcr1full++;
714 }
715 break;
716 }
717
718 q = SIMPLEQ_FIRST(&sc->sc_queue);
719
720 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
721 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
722 if (q->q_dst_map != NULL)
723 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
724 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
725 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
726 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
727 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
728
729 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
730 offsetof(struct ubsec_dmachunk, d_mcr));
731 #ifdef UBSEC_DEBUG
732 if (ubsec_debug)
733 printf("feed: q->chip %p %08x stat %08x\n",
734 q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
735 stat);
736 #endif /* UBSEC_DEBUG */
737 q = SIMPLEQ_FIRST(&sc->sc_queue);
738 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
739 --sc->sc_nqueue;
740 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
741 sc->sc_nqchip++;
742 }
743 if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
744 ubsecstats.hst_maxqchip = sc->sc_nqchip;
745 }
746
747 /*
748 * Allocate a new 'session' and return an encoded session id. 'sidp'
749 * contains our registration id, and should contain an encoded session
750 * id on successful allocation.
751 */
752 static int
753 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
754 {
755 struct cryptoini *c, *encini = NULL, *macini = NULL;
756 struct ubsec_softc *sc;
757 struct ubsec_session *ses = NULL;
758 MD5_CTX md5ctx;
759 SHA1_CTX sha1ctx;
760 int i, sesn;
761
762 sc = arg;
763 KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
764
765 if (sidp == NULL || cri == NULL || sc == NULL)
766 return (EINVAL);
767
768 for (c = cri; c != NULL; c = c->cri_next) {
769 if (c->cri_alg == CRYPTO_MD5_HMAC ||
770 c->cri_alg == CRYPTO_SHA1_HMAC) {
771 if (macini)
772 return (EINVAL);
773 macini = c;
774 } else if (c->cri_alg == CRYPTO_DES_CBC ||
775 c->cri_alg == CRYPTO_3DES_CBC) {
776 if (encini)
777 return (EINVAL);
778 encini = c;
779 } else
780 return (EINVAL);
781 }
782 if (encini == NULL && macini == NULL)
783 return (EINVAL);
784
785 if (sc->sc_sessions == NULL) {
786 ses = sc->sc_sessions = (struct ubsec_session *)malloc(
787 sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
788 if (ses == NULL)
789 return (ENOMEM);
790 sesn = 0;
791 sc->sc_nsessions = 1;
792 } else {
793 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
794 if (sc->sc_sessions[sesn].ses_used == 0) {
795 ses = &sc->sc_sessions[sesn];
796 break;
797 }
798 }
799
800 if (ses == NULL) {
801 sesn = sc->sc_nsessions;
802 ses = (struct ubsec_session *)malloc((sesn + 1) *
803 sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
804 if (ses == NULL)
805 return (ENOMEM);
806 bcopy(sc->sc_sessions, ses, sesn *
807 sizeof(struct ubsec_session));
808 bzero(sc->sc_sessions, sesn *
809 sizeof(struct ubsec_session));
810 free(sc->sc_sessions, M_DEVBUF);
811 sc->sc_sessions = ses;
812 ses = &sc->sc_sessions[sesn];
813 sc->sc_nsessions++;
814 }
815 }
816
817 bzero(ses, sizeof(struct ubsec_session));
818 ses->ses_used = 1;
819 if (encini) {
820 /* get an IV, network byte order */
821 #ifdef __NetBSD__
822 rnd_extract_data(ses->ses_iv,
823 sizeof(ses->ses_iv), RND_EXTRACT_ANY);
824 #else
825 get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv));
826 #endif
827
828 /* Go ahead and compute key in ubsec's byte order */
829 if (encini->cri_alg == CRYPTO_DES_CBC) {
830 bcopy(encini->cri_key, &ses->ses_deskey[0], 8);
831 bcopy(encini->cri_key, &ses->ses_deskey[2], 8);
832 bcopy(encini->cri_key, &ses->ses_deskey[4], 8);
833 } else
834 bcopy(encini->cri_key, ses->ses_deskey, 24);
835
836 SWAP32(ses->ses_deskey[0]);
837 SWAP32(ses->ses_deskey[1]);
838 SWAP32(ses->ses_deskey[2]);
839 SWAP32(ses->ses_deskey[3]);
840 SWAP32(ses->ses_deskey[4]);
841 SWAP32(ses->ses_deskey[5]);
842 }
843
844 if (macini) {
845 for (i = 0; i < macini->cri_klen / 8; i++)
846 macini->cri_key[i] ^= HMAC_IPAD_VAL;
847
848 if (macini->cri_alg == CRYPTO_MD5_HMAC) {
849 MD5Init(&md5ctx);
850 MD5Update(&md5ctx, macini->cri_key,
851 macini->cri_klen / 8);
852 MD5Update(&md5ctx, hmac_ipad_buffer,
853 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
854 bcopy(md5ctx.state, ses->ses_hminner,
855 sizeof(md5ctx.state));
856 } else {
857 SHA1Init(&sha1ctx);
858 SHA1Update(&sha1ctx, macini->cri_key,
859 macini->cri_klen / 8);
860 SHA1Update(&sha1ctx, hmac_ipad_buffer,
861 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
862 bcopy(sha1ctx.state, ses->ses_hminner,
863 sizeof(sha1ctx.state));
864 }
865
866 for (i = 0; i < macini->cri_klen / 8; i++)
867 macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
868
869 if (macini->cri_alg == CRYPTO_MD5_HMAC) {
870 MD5Init(&md5ctx);
871 MD5Update(&md5ctx, macini->cri_key,
872 macini->cri_klen / 8);
873 MD5Update(&md5ctx, hmac_opad_buffer,
874 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
875 bcopy(md5ctx.state, ses->ses_hmouter,
876 sizeof(md5ctx.state));
877 } else {
878 SHA1Init(&sha1ctx);
879 SHA1Update(&sha1ctx, macini->cri_key,
880 macini->cri_klen / 8);
881 SHA1Update(&sha1ctx, hmac_opad_buffer,
882 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
883 bcopy(sha1ctx.state, ses->ses_hmouter,
884 sizeof(sha1ctx.state));
885 }
886
887 for (i = 0; i < macini->cri_klen / 8; i++)
888 macini->cri_key[i] ^= HMAC_OPAD_VAL;
889 }
890
891 *sidp = UBSEC_SID(sc->sc_dv.dv_unit, sesn);
892 return (0);
893 }
894
895 /*
896 * Deallocate a session.
897 */
898 static int
899 ubsec_freesession(void *arg, u_int64_t tid)
900 {
901 struct ubsec_softc *sc;
902 int session;
903 u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
904
905 sc = arg;
906 KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
907
908 session = UBSEC_SESSION(sid);
909 if (session >= sc->sc_nsessions)
910 return (EINVAL);
911
912 bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
913 return (0);
914 }
915
916 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
917 static void
918 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
919 {
920 struct ubsec_operand *op = arg;
921
922 KASSERT(nsegs <= UBS_MAX_SCATTER
923 /*, ("Too many DMA segments returned when mapping operand")*/);
924 #ifdef UBSEC_DEBUG
925 if (ubsec_debug)
926 printf("ubsec_op_cb: mapsize %u nsegs %d\n",
927 (u_int) mapsize, nsegs);
928 #endif
929 op->mapsize = mapsize;
930 op->nsegs = nsegs;
931 bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
932 }
933 #endif
934
935 static int
936 ubsec_process(void *arg, struct cryptop *crp, int hint)
937 {
938 struct ubsec_q *q = NULL;
939 #ifdef __OpenBSD__
940 int card;
941 #endif
942 int err = 0, i, j, s, nicealign;
943 struct ubsec_softc *sc;
944 struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
945 int encoffset = 0, macoffset = 0, cpskip, cpoffset;
946 int sskip, dskip, stheend, dtheend;
947 int16_t coffset;
948 struct ubsec_session *ses;
949 struct ubsec_pktctx ctx;
950 struct ubsec_dma *dmap = NULL;
951
952 sc = arg;
953 KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/);
954
955 if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
956 ubsecstats.hst_invalid++;
957 return (EINVAL);
958 }
959 if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
960 ubsecstats.hst_badsession++;
961 return (EINVAL);
962 }
963
964 s = splnet();
965
966 if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
967 ubsecstats.hst_queuefull++;
968 sc->sc_needwakeup |= CRYPTO_SYMQ;
969 splx(s);
970 return(ERESTART);
971 }
972
973 q = SIMPLEQ_FIRST(&sc->sc_freequeue);
974 SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
975 splx(s);
976
977 dmap = q->q_dma; /* Save dma pointer */
978 bzero(q, sizeof(struct ubsec_q));
979 bzero(&ctx, sizeof(ctx));
980
981 q->q_sesn = UBSEC_SESSION(crp->crp_sid);
982 q->q_dma = dmap;
983 ses = &sc->sc_sessions[q->q_sesn];
984
985 if (crp->crp_flags & CRYPTO_F_IMBUF) {
986 q->q_src_m = (struct mbuf *)crp->crp_buf;
987 q->q_dst_m = (struct mbuf *)crp->crp_buf;
988 } else if (crp->crp_flags & CRYPTO_F_IOV) {
989 q->q_src_io = (struct uio *)crp->crp_buf;
990 q->q_dst_io = (struct uio *)crp->crp_buf;
991 } else {
992 ubsecstats.hst_badflags++;
993 err = EINVAL;
994 goto errout; /* XXX we don't handle contiguous blocks! */
995 }
996
997 bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
998
999 dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1000 dmap->d_dma->d_mcr.mcr_flags = 0;
1001 q->q_crp = crp;
1002
1003 crd1 = crp->crp_desc;
1004 if (crd1 == NULL) {
1005 ubsecstats.hst_nodesc++;
1006 err = EINVAL;
1007 goto errout;
1008 }
1009 crd2 = crd1->crd_next;
1010
1011 if (crd2 == NULL) {
1012 if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
1013 crd1->crd_alg == CRYPTO_SHA1_HMAC) {
1014 maccrd = crd1;
1015 enccrd = NULL;
1016 } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1017 crd1->crd_alg == CRYPTO_3DES_CBC) {
1018 maccrd = NULL;
1019 enccrd = crd1;
1020 } else {
1021 ubsecstats.hst_badalg++;
1022 err = EINVAL;
1023 goto errout;
1024 }
1025 } else {
1026 if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1027 crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1028 (crd2->crd_alg == CRYPTO_DES_CBC ||
1029 crd2->crd_alg == CRYPTO_3DES_CBC) &&
1030 ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1031 maccrd = crd1;
1032 enccrd = crd2;
1033 } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1034 crd1->crd_alg == CRYPTO_3DES_CBC) &&
1035 (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1036 crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1037 (crd1->crd_flags & CRD_F_ENCRYPT)) {
1038 enccrd = crd1;
1039 maccrd = crd2;
1040 } else {
1041 /*
1042 * We cannot order the ubsec as requested
1043 */
1044 ubsecstats.hst_badalg++;
1045 err = EINVAL;
1046 goto errout;
1047 }
1048 }
1049
1050 if (enccrd) {
1051 encoffset = enccrd->crd_skip;
1052 ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1053
1054 if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1055 q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1056
1057 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1058 bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1059 else {
1060 ctx.pc_iv[0] = ses->ses_iv[0];
1061 ctx.pc_iv[1] = ses->ses_iv[1];
1062 }
1063
1064 if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1065 if (crp->crp_flags & CRYPTO_F_IMBUF)
1066 m_copyback(q->q_src_m,
1067 enccrd->crd_inject,
1068 8, (caddr_t)ctx.pc_iv);
1069 else if (crp->crp_flags & CRYPTO_F_IOV)
1070 cuio_copyback(q->q_src_io,
1071 enccrd->crd_inject,
1072 8, (caddr_t)ctx.pc_iv);
1073 }
1074 } else {
1075 ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1076
1077 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1078 bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1079 else if (crp->crp_flags & CRYPTO_F_IMBUF)
1080 m_copydata(q->q_src_m, enccrd->crd_inject,
1081 8, (caddr_t)ctx.pc_iv);
1082 else if (crp->crp_flags & CRYPTO_F_IOV)
1083 cuio_copydata(q->q_src_io,
1084 enccrd->crd_inject, 8,
1085 (caddr_t)ctx.pc_iv);
1086 }
1087
1088 ctx.pc_deskey[0] = ses->ses_deskey[0];
1089 ctx.pc_deskey[1] = ses->ses_deskey[1];
1090 ctx.pc_deskey[2] = ses->ses_deskey[2];
1091 ctx.pc_deskey[3] = ses->ses_deskey[3];
1092 ctx.pc_deskey[4] = ses->ses_deskey[4];
1093 ctx.pc_deskey[5] = ses->ses_deskey[5];
1094 SWAP32(ctx.pc_iv[0]);
1095 SWAP32(ctx.pc_iv[1]);
1096 }
1097
1098 if (maccrd) {
1099 macoffset = maccrd->crd_skip;
1100
1101 if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1102 ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1103 else
1104 ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1105
1106 for (i = 0; i < 5; i++) {
1107 ctx.pc_hminner[i] = ses->ses_hminner[i];
1108 ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1109
1110 HTOLE32(ctx.pc_hminner[i]);
1111 HTOLE32(ctx.pc_hmouter[i]);
1112 }
1113 }
1114
1115 if (enccrd && maccrd) {
1116 /*
1117 * ubsec cannot handle packets where the end of encryption
1118 * and authentication are not the same, or where the
1119 * encrypted part begins before the authenticated part.
1120 */
1121 if ((encoffset + enccrd->crd_len) !=
1122 (macoffset + maccrd->crd_len)) {
1123 ubsecstats.hst_lenmismatch++;
1124 err = EINVAL;
1125 goto errout;
1126 }
1127 if (enccrd->crd_skip < maccrd->crd_skip) {
1128 ubsecstats.hst_skipmismatch++;
1129 err = EINVAL;
1130 goto errout;
1131 }
1132 sskip = maccrd->crd_skip;
1133 cpskip = dskip = enccrd->crd_skip;
1134 stheend = maccrd->crd_len;
1135 dtheend = enccrd->crd_len;
1136 coffset = enccrd->crd_skip - maccrd->crd_skip;
1137 cpoffset = cpskip + dtheend;
1138 #ifdef UBSEC_DEBUG
1139 if (ubsec_debug) {
1140 printf("mac: skip %d, len %d, inject %d\n",
1141 maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1142 printf("enc: skip %d, len %d, inject %d\n",
1143 enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1144 printf("src: skip %d, len %d\n", sskip, stheend);
1145 printf("dst: skip %d, len %d\n", dskip, dtheend);
1146 printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1147 coffset, stheend, cpskip, cpoffset);
1148 }
1149 #endif
1150 } else {
1151 cpskip = dskip = sskip = macoffset + encoffset;
1152 dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1153 cpoffset = cpskip + dtheend;
1154 coffset = 0;
1155 }
1156 ctx.pc_offset = htole16(coffset >> 2);
1157
1158 /* XXX FIXME: jonathan asks, what the heck's that 0xfff0? */
1159 if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
1160 0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
1161 err = ENOMEM;
1162 goto errout;
1163 }
1164 if (crp->crp_flags & CRYPTO_F_IMBUF) {
1165 if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1166 q->q_src_m, BUS_DMA_NOWAIT) != 0) {
1167 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1168 q->q_src_map = NULL;
1169 ubsecstats.hst_noload++;
1170 err = ENOMEM;
1171 goto errout;
1172 }
1173 } else if (crp->crp_flags & CRYPTO_F_IOV) {
1174 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1175 q->q_src_io, BUS_DMA_NOWAIT) != 0) {
1176 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1177 q->q_src_map = NULL;
1178 ubsecstats.hst_noload++;
1179 err = ENOMEM;
1180 goto errout;
1181 }
1182 }
1183 nicealign = ubsec_dmamap_aligned(q->q_src_map);
1184
1185 dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1186
1187 #ifdef UBSEC_DEBUG
1188 if (ubsec_debug)
1189 printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1190 #endif
1191 for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
1192 struct ubsec_pktbuf *pb;
1193 bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
1194 bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
1195
1196 if (sskip >= packl) {
1197 sskip -= packl;
1198 continue;
1199 }
1200
1201 packl -= sskip;
1202 packp += sskip;
1203 sskip = 0;
1204
1205 if (packl > 0xfffc) {
1206 err = EIO;
1207 goto errout;
1208 }
1209
1210 if (j == 0)
1211 pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1212 else
1213 pb = &dmap->d_dma->d_sbuf[j - 1];
1214
1215 pb->pb_addr = htole32(packp);
1216
1217 if (stheend) {
1218 if (packl > stheend) {
1219 pb->pb_len = htole32(stheend);
1220 stheend = 0;
1221 } else {
1222 pb->pb_len = htole32(packl);
1223 stheend -= packl;
1224 }
1225 } else
1226 pb->pb_len = htole32(packl);
1227
1228 if ((i + 1) == q->q_src_map->dm_nsegs)
1229 pb->pb_next = 0;
1230 else
1231 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1232 offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1233 j++;
1234 }
1235
1236 if (enccrd == NULL && maccrd != NULL) {
1237 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1238 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1239 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1240 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1241 #ifdef UBSEC_DEBUG
1242 if (ubsec_debug)
1243 printf("opkt: %x %x %x\n",
1244 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1245 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1246 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1247
1248 #endif
1249 } else {
1250 if (crp->crp_flags & CRYPTO_F_IOV) {
1251 if (!nicealign) {
1252 ubsecstats.hst_iovmisaligned++;
1253 err = EINVAL;
1254 goto errout;
1255 }
1256 /* XXX: ``what the heck's that'' 0xfff0? */
1257 if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1258 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1259 &q->q_dst_map) != 0) {
1260 ubsecstats.hst_nomap++;
1261 err = ENOMEM;
1262 goto errout;
1263 }
1264 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1265 q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
1266 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1267 q->q_dst_map = NULL;
1268 ubsecstats.hst_noload++;
1269 err = ENOMEM;
1270 goto errout;
1271 }
1272 } else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1273 if (nicealign) {
1274 q->q_dst_m = q->q_src_m;
1275 q->q_dst_map = q->q_src_map;
1276 } else {
1277 int totlen, len;
1278 struct mbuf *m, *top, **mp;
1279
1280 ubsecstats.hst_unaligned++;
1281 totlen = q->q_src_map->dm_mapsize;
1282 if (q->q_src_m->m_flags & M_PKTHDR) {
1283 len = MHLEN;
1284 MGETHDR(m, M_DONTWAIT, MT_DATA);
1285 /*XXX FIXME: m_dup_pkthdr */
1286 if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
1287 m_free(m);
1288 m = NULL;
1289 }
1290 } else {
1291 len = MLEN;
1292 MGET(m, M_DONTWAIT, MT_DATA);
1293 }
1294 if (m == NULL) {
1295 ubsecstats.hst_nombuf++;
1296 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1297 goto errout;
1298 }
1299 if (len == MHLEN)
1300 /*XXX was M_DUP_PKTHDR*/
1301 M_COPY_PKTHDR(m, q->q_src_m);
1302 if (totlen >= MINCLSIZE) {
1303 MCLGET(m, M_DONTWAIT);
1304 if ((m->m_flags & M_EXT) == 0) {
1305 m_free(m);
1306 ubsecstats.hst_nomcl++;
1307 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1308 goto errout;
1309 }
1310 len = MCLBYTES;
1311 }
1312 m->m_len = len;
1313 top = NULL;
1314 mp = ⊤
1315
1316 while (totlen > 0) {
1317 if (top) {
1318 MGET(m, M_DONTWAIT, MT_DATA);
1319 if (m == NULL) {
1320 m_freem(top);
1321 ubsecstats.hst_nombuf++;
1322 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1323 goto errout;
1324 }
1325 len = MLEN;
1326 }
1327 if (top && totlen >= MINCLSIZE) {
1328 MCLGET(m, M_DONTWAIT);
1329 if ((m->m_flags & M_EXT) == 0) {
1330 *mp = m;
1331 m_freem(top);
1332 ubsecstats.hst_nomcl++;
1333 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1334 goto errout;
1335 }
1336 len = MCLBYTES;
1337 }
1338 m->m_len = len = min(totlen, len);
1339 totlen -= len;
1340 *mp = m;
1341 mp = &m->m_next;
1342 }
1343 q->q_dst_m = top;
1344 ubsec_mcopy(q->q_src_m, q->q_dst_m,
1345 cpskip, cpoffset);
1346 /* XXX again, what the heck is that 0xfff0? */
1347 if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1348 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1349 &q->q_dst_map) != 0) {
1350 ubsecstats.hst_nomap++;
1351 err = ENOMEM;
1352 goto errout;
1353 }
1354 if (bus_dmamap_load_mbuf(sc->sc_dmat,
1355 q->q_dst_map, q->q_dst_m,
1356 BUS_DMA_NOWAIT) != 0) {
1357 bus_dmamap_destroy(sc->sc_dmat,
1358 q->q_dst_map);
1359 q->q_dst_map = NULL;
1360 ubsecstats.hst_noload++;
1361 err = ENOMEM;
1362 goto errout;
1363 }
1364 }
1365 } else {
1366 ubsecstats.hst_badflags++;
1367 err = EINVAL;
1368 goto errout;
1369 }
1370
1371 #ifdef UBSEC_DEBUG
1372 if (ubsec_debug)
1373 printf("dst skip: %d\n", dskip);
1374 #endif
1375 for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
1376 struct ubsec_pktbuf *pb;
1377 bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
1378 bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
1379
1380 if (dskip >= packl) {
1381 dskip -= packl;
1382 continue;
1383 }
1384
1385 packl -= dskip;
1386 packp += dskip;
1387 dskip = 0;
1388
1389 if (packl > 0xfffc) {
1390 err = EIO;
1391 goto errout;
1392 }
1393
1394 if (j == 0)
1395 pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1396 else
1397 pb = &dmap->d_dma->d_dbuf[j - 1];
1398
1399 pb->pb_addr = htole32(packp);
1400
1401 if (dtheend) {
1402 if (packl > dtheend) {
1403 pb->pb_len = htole32(dtheend);
1404 dtheend = 0;
1405 } else {
1406 pb->pb_len = htole32(packl);
1407 dtheend -= packl;
1408 }
1409 } else
1410 pb->pb_len = htole32(packl);
1411
1412 if ((i + 1) == q->q_dst_map->dm_nsegs) {
1413 if (maccrd)
1414 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1415 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1416 else
1417 pb->pb_next = 0;
1418 } else
1419 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1420 offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1421 j++;
1422 }
1423 }
1424
1425 dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1426 offsetof(struct ubsec_dmachunk, d_ctx));
1427
1428 if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1429 struct ubsec_pktctx_long *ctxl;
1430
1431 ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr +
1432 offsetof(struct ubsec_dmachunk, d_ctx));
1433
1434 /* transform small context into long context */
1435 ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1436 ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1437 ctxl->pc_flags = ctx.pc_flags;
1438 ctxl->pc_offset = ctx.pc_offset;
1439 for (i = 0; i < 6; i++)
1440 ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1441 for (i = 0; i < 5; i++)
1442 ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1443 for (i = 0; i < 5; i++)
1444 ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1445 ctxl->pc_iv[0] = ctx.pc_iv[0];
1446 ctxl->pc_iv[1] = ctx.pc_iv[1];
1447 } else
1448 bcopy(&ctx, dmap->d_alloc.dma_vaddr +
1449 offsetof(struct ubsec_dmachunk, d_ctx),
1450 sizeof(struct ubsec_pktctx));
1451
1452 s = splnet();
1453 SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1454 sc->sc_nqueue++;
1455 ubsecstats.hst_ipackets++;
1456 ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
1457 if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
1458 ubsec_feed(sc);
1459 splx(s);
1460 return (0);
1461
1462 errout:
1463 if (q != NULL) {
1464 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1465 m_freem(q->q_dst_m);
1466
1467 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1468 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1469 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1470 }
1471 if (q->q_src_map != NULL) {
1472 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1473 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1474 }
1475
1476 s = splnet();
1477 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1478 splx(s);
1479 }
1480 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
1481 if (err == EINVAL)
1482 ubsecstats.hst_invalid++;
1483 else
1484 ubsecstats.hst_nomem++;
1485 #endif
1486 if (err != ERESTART) {
1487 crp->crp_etype = err;
1488 crypto_done(crp);
1489 } else {
1490 sc->sc_needwakeup |= CRYPTO_SYMQ;
1491 }
1492 return (err);
1493 }
1494
1495 void
1496 ubsec_callback(sc, q)
1497 struct ubsec_softc *sc;
1498 struct ubsec_q *q;
1499 {
1500 struct cryptop *crp = (struct cryptop *)q->q_crp;
1501 struct cryptodesc *crd;
1502 struct ubsec_dma *dmap = q->q_dma;
1503
1504 ubsecstats.hst_opackets++;
1505 ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1506
1507 bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
1508 dmap->d_alloc.dma_map->dm_mapsize,
1509 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1510 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1511 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1512 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1513 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1514 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1515 }
1516 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
1517 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1518 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1519 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1520
1521 if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1522 m_freem(q->q_src_m);
1523 crp->crp_buf = (caddr_t)q->q_dst_m;
1524 }
1525
1526 /* copy out IV for future use */
1527 if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1528 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1529 if (crd->crd_alg != CRYPTO_DES_CBC &&
1530 crd->crd_alg != CRYPTO_3DES_CBC)
1531 continue;
1532 if (crp->crp_flags & CRYPTO_F_IMBUF)
1533 m_copydata((struct mbuf *)crp->crp_buf,
1534 crd->crd_skip + crd->crd_len - 8, 8,
1535 (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1536 else if (crp->crp_flags & CRYPTO_F_IOV) {
1537 cuio_copydata((struct uio *)crp->crp_buf,
1538 crd->crd_skip + crd->crd_len - 8, 8,
1539 (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1540 }
1541 break;
1542 }
1543 }
1544
1545 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1546 if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1547 crd->crd_alg != CRYPTO_SHA1_HMAC)
1548 continue;
1549 if (crp->crp_flags & CRYPTO_F_IMBUF)
1550 m_copyback((struct mbuf *)crp->crp_buf,
1551 crd->crd_inject, 12,
1552 (caddr_t)dmap->d_dma->d_macbuf);
1553 else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1554 bcopy((caddr_t)dmap->d_dma->d_macbuf,
1555 crp->crp_mac, 12);
1556 break;
1557 }
1558 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1559 crypto_done(crp);
1560 }
1561
1562 static void
1563 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1564 {
1565 int i, j, dlen, slen;
1566 caddr_t dptr, sptr;
1567
1568 j = 0;
1569 sptr = srcm->m_data;
1570 slen = srcm->m_len;
1571 dptr = dstm->m_data;
1572 dlen = dstm->m_len;
1573
1574 while (1) {
1575 for (i = 0; i < min(slen, dlen); i++) {
1576 if (j < hoffset || j >= toffset)
1577 *dptr++ = *sptr++;
1578 slen--;
1579 dlen--;
1580 j++;
1581 }
1582 if (slen == 0) {
1583 srcm = srcm->m_next;
1584 if (srcm == NULL)
1585 return;
1586 sptr = srcm->m_data;
1587 slen = srcm->m_len;
1588 }
1589 if (dlen == 0) {
1590 dstm = dstm->m_next;
1591 if (dstm == NULL)
1592 return;
1593 dptr = dstm->m_data;
1594 dlen = dstm->m_len;
1595 }
1596 }
1597 }
1598
1599 /*
1600 * feed the key generator, must be called at splnet() or higher.
1601 */
1602 static void
1603 ubsec_feed2(struct ubsec_softc *sc)
1604 {
1605 struct ubsec_q2 *q;
1606
1607 while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1608 if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1609 break;
1610 q = SIMPLEQ_FIRST(&sc->sc_queue2);
1611
1612 bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1613 q->q_mcr.dma_map->dm_mapsize,
1614 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1615 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1616 q->q_ctx.dma_map->dm_mapsize,
1617 BUS_DMASYNC_PREWRITE);
1618
1619 WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1620 q = SIMPLEQ_FIRST(&sc->sc_queue2);
1621 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
1622 --sc->sc_nqueue2;
1623 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1624 }
1625 }
1626
1627 /*
1628 * Callback for handling random numbers
1629 */
1630 static void
1631 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1632 {
1633 struct cryptkop *krp;
1634 struct ubsec_ctx_keyop *ctx;
1635
1636 ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1637 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1638 q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1639
1640 switch (q->q_type) {
1641 #ifndef UBSEC_NO_RNG
1642 case UBS_CTXOP_RNGSHA1:
1643 case UBS_CTXOP_RNGBYPASS: {
1644 struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1645 u_int32_t *p;
1646 int i;
1647
1648 bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
1649 rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1650 p = (u_int32_t *)rng->rng_buf.dma_vaddr;
1651 #ifndef __NetBSD__
1652 for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++)
1653 add_true_randomness(letoh32(*p));
1654 rng->rng_used = 0;
1655 #else
1656 /* XXX NetBSD rnd subsystem too weak */
1657 i = 0; (void)i; /* shut off gcc warnings */
1658 #endif
1659 #ifdef __OpenBSD__
1660 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
1661 #else
1662 callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1663 #endif
1664 break;
1665 }
1666 #endif
1667 case UBS_CTXOP_MODEXP: {
1668 struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1669 u_int rlen, clen;
1670
1671 krp = me->me_krp;
1672 rlen = (me->me_modbits + 7) / 8;
1673 clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1674
1675 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
1676 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1677 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
1678 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1679 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
1680 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1681 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
1682 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1683
1684 if (clen < rlen)
1685 krp->krp_status = E2BIG;
1686 else {
1687 if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1688 bzero(krp->krp_param[krp->krp_iparams].crp_p,
1689 (krp->krp_param[krp->krp_iparams].crp_nbits
1690 + 7) / 8);
1691 bcopy(me->me_C.dma_vaddr,
1692 krp->krp_param[krp->krp_iparams].crp_p,
1693 (me->me_modbits + 7) / 8);
1694 } else
1695 ubsec_kshift_l(me->me_shiftbits,
1696 me->me_C.dma_vaddr, me->me_normbits,
1697 krp->krp_param[krp->krp_iparams].crp_p,
1698 krp->krp_param[krp->krp_iparams].crp_nbits);
1699 }
1700
1701 crypto_kdone(krp);
1702
1703 /* bzero all potentially sensitive data */
1704 bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
1705 bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
1706 bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1707 bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
1708
1709 /* Can't free here, so put us on the free list. */
1710 SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1711 break;
1712 }
1713 case UBS_CTXOP_RSAPRIV: {
1714 struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1715 u_int len;
1716
1717 krp = rp->rpr_krp;
1718 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
1719 rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1720 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
1721 rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1722
1723 len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1724 bcopy(rp->rpr_msgout.dma_vaddr,
1725 krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1726
1727 crypto_kdone(krp);
1728
1729 bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
1730 bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
1731 bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size);
1732
1733 /* Can't free here, so put us on the free list. */
1734 SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1735 break;
1736 }
1737 default:
1738 printf("%s: unknown ctx op: %x\n", sc->sc_dv.dv_xname,
1739 letoh16(ctx->ctx_op));
1740 break;
1741 }
1742 }
1743
1744 #ifndef UBSEC_NO_RNG
1745 static void
1746 ubsec_rng(void *vsc)
1747 {
1748 struct ubsec_softc *sc = vsc;
1749 struct ubsec_q2_rng *rng = &sc->sc_rng;
1750 struct ubsec_mcr *mcr;
1751 struct ubsec_ctx_rngbypass *ctx;
1752 int s;
1753
1754 s = splnet();
1755 if (rng->rng_used) {
1756 splx(s);
1757 return;
1758 }
1759 sc->sc_nqueue2++;
1760 if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1761 goto out;
1762
1763 mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1764 ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1765
1766 mcr->mcr_pkts = htole16(1);
1767 mcr->mcr_flags = 0;
1768 mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1769 mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1770 mcr->mcr_ipktbuf.pb_len = 0;
1771 mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1772 mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1773 mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1774 UBS_PKTBUF_LEN);
1775 mcr->mcr_opktbuf.pb_next = 0;
1776
1777 ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1778 ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
1779 rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
1780
1781 bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
1782 rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1783
1784 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1785 rng->rng_used = 1;
1786 ubsec_feed2(sc);
1787 ubsecstats.hst_rng++;
1788 splx(s);
1789
1790 return;
1791
1792 out:
1793 /*
1794 * Something weird happened, generate our own call back.
1795 */
1796 sc->sc_nqueue2--;
1797 splx(s);
1798 #ifdef __OpenBSD__
1799 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
1800 #else
1801 callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1802 #endif
1803 }
1804 #endif /* UBSEC_NO_RNG */
1805
1806 static int
1807 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
1808 struct ubsec_dma_alloc *dma,int mapflags)
1809 {
1810 int r;
1811
1812 if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
1813 &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
1814 goto fail_0;
1815
1816 if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
1817 size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
1818 goto fail_1;
1819
1820 if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1821 BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
1822 goto fail_2;
1823
1824 if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
1825 size, NULL, BUS_DMA_NOWAIT)) != 0)
1826 goto fail_3;
1827
1828 dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
1829 dma->dma_size = size;
1830 return (0);
1831
1832 fail_3:
1833 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
1834 fail_2:
1835 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
1836 fail_1:
1837 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
1838 fail_0:
1839 dma->dma_map = NULL;
1840 return (r);
1841 }
1842
1843 static void
1844 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1845 {
1846 bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
1847 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
1848 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
1849 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
1850 }
1851
1852 /*
1853 * Resets the board. Values in the regesters are left as is
1854 * from the reset (i.e. initial values are assigned elsewhere).
1855 */
1856 static void
1857 ubsec_reset_board(struct ubsec_softc *sc)
1858 {
1859 volatile u_int32_t ctrl;
1860
1861 ctrl = READ_REG(sc, BS_CTRL);
1862 ctrl |= BS_CTRL_RESET;
1863 WRITE_REG(sc, BS_CTRL, ctrl);
1864
1865 /*
1866 * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
1867 */
1868 DELAY(10);
1869 }
1870
1871 /*
1872 * Init Broadcom registers
1873 */
1874 static void
1875 ubsec_init_board(struct ubsec_softc *sc)
1876 {
1877 u_int32_t ctrl;
1878
1879 ctrl = READ_REG(sc, BS_CTRL);
1880 ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
1881 ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
1882
1883 /*
1884 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
1885 * anyone got hw docs?
1886 */
1887 if (sc->sc_flags & UBS_FLAGS_KEY)
1888 ctrl |= BS_CTRL_MCR2INT;
1889 else
1890 ctrl &= ~BS_CTRL_MCR2INT;
1891
1892 if (sc->sc_flags & UBS_FLAGS_HWNORM)
1893 ctrl &= ~BS_CTRL_SWNORM;
1894
1895 WRITE_REG(sc, BS_CTRL, ctrl);
1896 }
1897
1898 /*
1899 * Init Broadcom PCI registers
1900 */
1901 static void
1902 ubsec_init_pciregs(pa)
1903 struct pci_attach_args *pa;
1904 {
1905 pci_chipset_tag_t pc = pa->pa_pc;
1906 u_int32_t misc;
1907
1908 /*
1909 * This will set the cache line size to 1, this will
1910 * force the BCM58xx chip just to do burst read/writes.
1911 * Cache line read/writes are to slow
1912 */
1913 misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
1914 misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
1915 | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
1916 pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
1917 }
1918
1919 /*
1920 * Clean up after a chip crash.
1921 * It is assumed that the caller in splnet()
1922 */
1923 static void
1924 ubsec_cleanchip(struct ubsec_softc *sc)
1925 {
1926 struct ubsec_q *q;
1927
1928 while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
1929 q = SIMPLEQ_FIRST(&sc->sc_qchip);
1930 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
1931 ubsec_free_q(sc, q);
1932 }
1933 sc->sc_nqchip = 0;
1934 }
1935
1936 /*
1937 * free a ubsec_q
1938 * It is assumed that the caller is within splnet()
1939 */
1940 static int
1941 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
1942 {
1943 struct ubsec_q *q2;
1944 struct cryptop *crp;
1945 int npkts;
1946 int i;
1947
1948 npkts = q->q_nstacked_mcrs;
1949
1950 for (i = 0; i < npkts; i++) {
1951 if(q->q_stacked_mcr[i]) {
1952 q2 = q->q_stacked_mcr[i];
1953
1954 if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
1955 m_freem(q2->q_dst_m);
1956
1957 crp = (struct cryptop *)q2->q_crp;
1958
1959 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
1960
1961 crp->crp_etype = EFAULT;
1962 crypto_done(crp);
1963 } else {
1964 break;
1965 }
1966 }
1967
1968 /*
1969 * Free header MCR
1970 */
1971 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1972 m_freem(q->q_dst_m);
1973
1974 crp = (struct cryptop *)q->q_crp;
1975
1976 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1977
1978 crp->crp_etype = EFAULT;
1979 crypto_done(crp);
1980 return(0);
1981 }
1982
1983 /*
1984 * Routine to reset the chip and clean up.
1985 * It is assumed that the caller is in splnet()
1986 */
1987 static void
1988 ubsec_totalreset(struct ubsec_softc *sc)
1989 {
1990 ubsec_reset_board(sc);
1991 ubsec_init_board(sc);
1992 ubsec_cleanchip(sc);
1993 }
1994
1995 static int
1996 ubsec_dmamap_aligned(bus_dmamap_t map)
1997 {
1998 int i;
1999
2000 for (i = 0; i < map->dm_nsegs; i++) {
2001 if (map->dm_segs[i].ds_addr & 3)
2002 return (0);
2003 if ((i != (map->dm_nsegs - 1)) &&
2004 (map->dm_segs[i].ds_len & 3))
2005 return (0);
2006 }
2007 return (1);
2008 }
2009
2010 #ifdef __OpenBSD__
2011 struct ubsec_softc *
2012 ubsec_kfind(krp)
2013 struct cryptkop *krp;
2014 {
2015 struct ubsec_softc *sc;
2016 int i;
2017
2018 for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
2019 sc = ubsec_cd.cd_devs[i];
2020 if (sc == NULL)
2021 continue;
2022 if (sc->sc_cid == krp->krp_hid)
2023 return (sc);
2024 }
2025 return (NULL);
2026 }
2027 #endif
2028
2029 static void
2030 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2031 {
2032 switch (q->q_type) {
2033 case UBS_CTXOP_MODEXP: {
2034 struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2035
2036 ubsec_dma_free(sc, &me->me_q.q_mcr);
2037 ubsec_dma_free(sc, &me->me_q.q_ctx);
2038 ubsec_dma_free(sc, &me->me_M);
2039 ubsec_dma_free(sc, &me->me_E);
2040 ubsec_dma_free(sc, &me->me_C);
2041 ubsec_dma_free(sc, &me->me_epb);
2042 free(me, M_DEVBUF);
2043 break;
2044 }
2045 case UBS_CTXOP_RSAPRIV: {
2046 struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2047
2048 ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2049 ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2050 ubsec_dma_free(sc, &rp->rpr_msgin);
2051 ubsec_dma_free(sc, &rp->rpr_msgout);
2052 free(rp, M_DEVBUF);
2053 break;
2054 }
2055 default:
2056 printf("%s: invalid kfree 0x%x\n", sc->sc_dv.dv_xname,
2057 q->q_type);
2058 break;
2059 }
2060 }
2061
2062 static int
2063 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2064 {
2065 struct ubsec_softc *sc;
2066 int r;
2067
2068 if (krp == NULL || krp->krp_callback == NULL)
2069 return (EINVAL);
2070 #ifdef __OpenBSD__
2071 if ((sc = ubsec_kfind(krp)) == NULL)
2072 return (EINVAL);
2073 #else
2074 sc = arg;
2075 KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/);
2076 #endif
2077
2078 while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2079 struct ubsec_q2 *q;
2080
2081 q = SIMPLEQ_FIRST(&sc->sc_q2free);
2082 SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
2083 ubsec_kfree(sc, q);
2084 }
2085
2086 switch (krp->krp_op) {
2087 case CRK_MOD_EXP:
2088 if (sc->sc_flags & UBS_FLAGS_HWNORM)
2089 r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2090 else
2091 r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2092 break;
2093 case CRK_MOD_EXP_CRT:
2094 r = ubsec_kprocess_rsapriv(sc, krp, hint);
2095 break;
2096 default:
2097 printf("%s: kprocess: invalid op 0x%x\n",
2098 sc->sc_dv.dv_xname, krp->krp_op);
2099 krp->krp_status = EOPNOTSUPP;
2100 crypto_kdone(krp);
2101 r = 0;
2102 }
2103 return (r);
2104 }
2105
2106 /*
2107 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2108 */
2109 static int
2110 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
2111 int hint)
2112 {
2113 struct ubsec_q2_modexp *me;
2114 struct ubsec_mcr *mcr;
2115 struct ubsec_ctx_modexp *ctx;
2116 struct ubsec_pktbuf *epb;
2117 int s, err = 0;
2118 u_int nbits, normbits, mbits, shiftbits, ebits;
2119
2120 me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2121 if (me == NULL) {
2122 err = ENOMEM;
2123 goto errout;
2124 }
2125 bzero(me, sizeof *me);
2126 me->me_krp = krp;
2127 me->me_q.q_type = UBS_CTXOP_MODEXP;
2128
2129 nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2130 if (nbits <= 512)
2131 normbits = 512;
2132 else if (nbits <= 768)
2133 normbits = 768;
2134 else if (nbits <= 1024)
2135 normbits = 1024;
2136 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2137 normbits = 1536;
2138 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2139 normbits = 2048;
2140 else {
2141 err = E2BIG;
2142 goto errout;
2143 }
2144
2145 shiftbits = normbits - nbits;
2146
2147 me->me_modbits = nbits;
2148 me->me_shiftbits = shiftbits;
2149 me->me_normbits = normbits;
2150
2151 /* Sanity check: result bits must be >= true modulus bits. */
2152 if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2153 err = ERANGE;
2154 goto errout;
2155 }
2156
2157 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2158 &me->me_q.q_mcr, 0)) {
2159 err = ENOMEM;
2160 goto errout;
2161 }
2162 mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2163
2164 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2165 &me->me_q.q_ctx, 0)) {
2166 err = ENOMEM;
2167 goto errout;
2168 }
2169
2170 mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2171 if (mbits > nbits) {
2172 err = E2BIG;
2173 goto errout;
2174 }
2175 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2176 err = ENOMEM;
2177 goto errout;
2178 }
2179 ubsec_kshift_r(shiftbits,
2180 krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2181 me->me_M.dma_vaddr, normbits);
2182
2183 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2184 err = ENOMEM;
2185 goto errout;
2186 }
2187 bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2188
2189 ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2190 if (ebits > nbits) {
2191 err = E2BIG;
2192 goto errout;
2193 }
2194 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2195 err = ENOMEM;
2196 goto errout;
2197 }
2198 ubsec_kshift_r(shiftbits,
2199 krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2200 me->me_E.dma_vaddr, normbits);
2201
2202 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2203 &me->me_epb, 0)) {
2204 err = ENOMEM;
2205 goto errout;
2206 }
2207 epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2208 epb->pb_addr = htole32(me->me_E.dma_paddr);
2209 epb->pb_next = 0;
2210 epb->pb_len = htole32(normbits / 8);
2211
2212 #ifdef UBSEC_DEBUG
2213 if (ubsec_debug) {
2214 printf("Epb ");
2215 ubsec_dump_pb(epb);
2216 }
2217 #endif
2218
2219 mcr->mcr_pkts = htole16(1);
2220 mcr->mcr_flags = 0;
2221 mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2222 mcr->mcr_reserved = 0;
2223 mcr->mcr_pktlen = 0;
2224
2225 mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2226 mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2227 mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2228
2229 mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2230 mcr->mcr_opktbuf.pb_next = 0;
2231 mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2232
2233 #ifdef DIAGNOSTIC
2234 /* Misaligned output buffer will hang the chip. */
2235 if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2236 panic("%s: modexp invalid addr 0x%x",
2237 sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_addr));
2238 if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2239 panic("%s: modexp invalid len 0x%x",
2240 sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_len));
2241 #endif
2242
2243 ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2244 bzero(ctx, sizeof(*ctx));
2245 ubsec_kshift_r(shiftbits,
2246 krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2247 ctx->me_N, normbits);
2248 ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2249 ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2250 ctx->me_E_len = htole16(nbits);
2251 ctx->me_N_len = htole16(nbits);
2252
2253 #ifdef UBSEC_DEBUG
2254 if (ubsec_debug) {
2255 ubsec_dump_mcr(mcr);
2256 ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2257 }
2258 #endif
2259
2260 /*
2261 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2262 * everything else.
2263 */
2264 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2265 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2266 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2267 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2268 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2269 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2270 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2271 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2272
2273 /* Enqueue and we're done... */
2274 s = splnet();
2275 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2276 ubsec_feed2(sc);
2277 ubsecstats.hst_modexp++;
2278 splx(s);
2279
2280 return (0);
2281
2282 errout:
2283 if (me != NULL) {
2284 if (me->me_q.q_mcr.dma_map != NULL)
2285 ubsec_dma_free(sc, &me->me_q.q_mcr);
2286 if (me->me_q.q_ctx.dma_map != NULL) {
2287 bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2288 ubsec_dma_free(sc, &me->me_q.q_ctx);
2289 }
2290 if (me->me_M.dma_map != NULL) {
2291 bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2292 ubsec_dma_free(sc, &me->me_M);
2293 }
2294 if (me->me_E.dma_map != NULL) {
2295 bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2296 ubsec_dma_free(sc, &me->me_E);
2297 }
2298 if (me->me_C.dma_map != NULL) {
2299 bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2300 ubsec_dma_free(sc, &me->me_C);
2301 }
2302 if (me->me_epb.dma_map != NULL)
2303 ubsec_dma_free(sc, &me->me_epb);
2304 free(me, M_DEVBUF);
2305 }
2306 krp->krp_status = err;
2307 crypto_kdone(krp);
2308 return (0);
2309 }
2310
2311 /*
2312 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2313 */
2314 static int
2315 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
2316 int hint)
2317 {
2318 struct ubsec_q2_modexp *me;
2319 struct ubsec_mcr *mcr;
2320 struct ubsec_ctx_modexp *ctx;
2321 struct ubsec_pktbuf *epb;
2322 int s, err = 0;
2323 u_int nbits, normbits, mbits, shiftbits, ebits;
2324
2325 me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2326 if (me == NULL) {
2327 err = ENOMEM;
2328 goto errout;
2329 }
2330 bzero(me, sizeof *me);
2331 me->me_krp = krp;
2332 me->me_q.q_type = UBS_CTXOP_MODEXP;
2333
2334 nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2335 if (nbits <= 512)
2336 normbits = 512;
2337 else if (nbits <= 768)
2338 normbits = 768;
2339 else if (nbits <= 1024)
2340 normbits = 1024;
2341 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2342 normbits = 1536;
2343 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2344 normbits = 2048;
2345 else {
2346 err = E2BIG;
2347 goto errout;
2348 }
2349
2350 shiftbits = normbits - nbits;
2351
2352 /* XXX ??? */
2353 me->me_modbits = nbits;
2354 me->me_shiftbits = shiftbits;
2355 me->me_normbits = normbits;
2356
2357 /* Sanity check: result bits must be >= true modulus bits. */
2358 if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2359 err = ERANGE;
2360 goto errout;
2361 }
2362
2363 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2364 &me->me_q.q_mcr, 0)) {
2365 err = ENOMEM;
2366 goto errout;
2367 }
2368 mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2369
2370 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2371 &me->me_q.q_ctx, 0)) {
2372 err = ENOMEM;
2373 goto errout;
2374 }
2375
2376 mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2377 if (mbits > nbits) {
2378 err = E2BIG;
2379 goto errout;
2380 }
2381 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2382 err = ENOMEM;
2383 goto errout;
2384 }
2385 bzero(me->me_M.dma_vaddr, normbits / 8);
2386 bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2387 me->me_M.dma_vaddr, (mbits + 7) / 8);
2388
2389 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2390 err = ENOMEM;
2391 goto errout;
2392 }
2393 bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2394
2395 ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2396 if (ebits > nbits) {
2397 err = E2BIG;
2398 goto errout;
2399 }
2400 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2401 err = ENOMEM;
2402 goto errout;
2403 }
2404 bzero(me->me_E.dma_vaddr, normbits / 8);
2405 bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2406 me->me_E.dma_vaddr, (ebits + 7) / 8);
2407
2408 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2409 &me->me_epb, 0)) {
2410 err = ENOMEM;
2411 goto errout;
2412 }
2413 epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2414 epb->pb_addr = htole32(me->me_E.dma_paddr);
2415 epb->pb_next = 0;
2416 epb->pb_len = htole32((ebits + 7) / 8);
2417
2418 #ifdef UBSEC_DEBUG
2419 if (ubsec_debug) {
2420 printf("Epb ");
2421 ubsec_dump_pb(epb);
2422 }
2423 #endif
2424
2425 mcr->mcr_pkts = htole16(1);
2426 mcr->mcr_flags = 0;
2427 mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2428 mcr->mcr_reserved = 0;
2429 mcr->mcr_pktlen = 0;
2430
2431 mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2432 mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2433 mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2434
2435 mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2436 mcr->mcr_opktbuf.pb_next = 0;
2437 mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2438
2439 #ifdef DIAGNOSTIC
2440 /* Misaligned output buffer will hang the chip. */
2441 if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2442 panic("%s: modexp invalid addr 0x%x",
2443 sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_addr));
2444 if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2445 panic("%s: modexp invalid len 0x%x",
2446 sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_len));
2447 #endif
2448
2449 ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2450 bzero(ctx, sizeof(*ctx));
2451 bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N,
2452 (nbits + 7) / 8);
2453 ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2454 ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2455 ctx->me_E_len = htole16(ebits);
2456 ctx->me_N_len = htole16(nbits);
2457
2458 #ifdef UBSEC_DEBUG
2459 if (ubsec_debug) {
2460 ubsec_dump_mcr(mcr);
2461 ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2462 }
2463 #endif
2464
2465 /*
2466 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2467 * everything else.
2468 */
2469 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2470 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2471 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2472 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2473 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2474 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2475 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2476 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2477
2478 /* Enqueue and we're done... */
2479 s = splnet();
2480 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2481 ubsec_feed2(sc);
2482 splx(s);
2483
2484 return (0);
2485
2486 errout:
2487 if (me != NULL) {
2488 if (me->me_q.q_mcr.dma_map != NULL)
2489 ubsec_dma_free(sc, &me->me_q.q_mcr);
2490 if (me->me_q.q_ctx.dma_map != NULL) {
2491 bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2492 ubsec_dma_free(sc, &me->me_q.q_ctx);
2493 }
2494 if (me->me_M.dma_map != NULL) {
2495 bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2496 ubsec_dma_free(sc, &me->me_M);
2497 }
2498 if (me->me_E.dma_map != NULL) {
2499 bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2500 ubsec_dma_free(sc, &me->me_E);
2501 }
2502 if (me->me_C.dma_map != NULL) {
2503 bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2504 ubsec_dma_free(sc, &me->me_C);
2505 }
2506 if (me->me_epb.dma_map != NULL)
2507 ubsec_dma_free(sc, &me->me_epb);
2508 free(me, M_DEVBUF);
2509 }
2510 krp->krp_status = err;
2511 crypto_kdone(krp);
2512 return (0);
2513 }
2514
2515 static int
2516 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
2517 int hint)
2518 {
2519 struct ubsec_q2_rsapriv *rp = NULL;
2520 struct ubsec_mcr *mcr;
2521 struct ubsec_ctx_rsapriv *ctx;
2522 int s, err = 0;
2523 u_int padlen, msglen;
2524
2525 msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2526 padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2527 if (msglen > padlen)
2528 padlen = msglen;
2529
2530 if (padlen <= 256)
2531 padlen = 256;
2532 else if (padlen <= 384)
2533 padlen = 384;
2534 else if (padlen <= 512)
2535 padlen = 512;
2536 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2537 padlen = 768;
2538 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2539 padlen = 1024;
2540 else {
2541 err = E2BIG;
2542 goto errout;
2543 }
2544
2545 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2546 err = E2BIG;
2547 goto errout;
2548 }
2549
2550 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2551 err = E2BIG;
2552 goto errout;
2553 }
2554
2555 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2556 err = E2BIG;
2557 goto errout;
2558 }
2559
2560 rp = (struct ubsec_q2_rsapriv *)malloc(sizeof *rp, M_DEVBUF, M_NOWAIT);
2561 if (rp == NULL)
2562 return (ENOMEM);
2563 bzero(rp, sizeof *rp);
2564 rp->rpr_krp = krp;
2565 rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2566
2567 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2568 &rp->rpr_q.q_mcr, 0)) {
2569 err = ENOMEM;
2570 goto errout;
2571 }
2572 mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2573
2574 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2575 &rp->rpr_q.q_ctx, 0)) {
2576 err = ENOMEM;
2577 goto errout;
2578 }
2579 ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2580 bzero(ctx, sizeof *ctx);
2581
2582 /* Copy in p */
2583 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2584 &ctx->rpr_buf[0 * (padlen / 8)],
2585 (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2586
2587 /* Copy in q */
2588 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2589 &ctx->rpr_buf[1 * (padlen / 8)],
2590 (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2591
2592 /* Copy in dp */
2593 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2594 &ctx->rpr_buf[2 * (padlen / 8)],
2595 (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2596
2597 /* Copy in dq */
2598 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2599 &ctx->rpr_buf[3 * (padlen / 8)],
2600 (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2601
2602 /* Copy in pinv */
2603 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2604 &ctx->rpr_buf[4 * (padlen / 8)],
2605 (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2606
2607 msglen = padlen * 2;
2608
2609 /* Copy in input message (aligned buffer/length). */
2610 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2611 /* Is this likely? */
2612 err = E2BIG;
2613 goto errout;
2614 }
2615 if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2616 err = ENOMEM;
2617 goto errout;
2618 }
2619 bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8);
2620 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2621 rp->rpr_msgin.dma_vaddr,
2622 (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2623
2624 /* Prepare space for output message (aligned buffer/length). */
2625 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2626 /* Is this likely? */
2627 err = E2BIG;
2628 goto errout;
2629 }
2630 if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2631 err = ENOMEM;
2632 goto errout;
2633 }
2634 bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8);
2635
2636 mcr->mcr_pkts = htole16(1);
2637 mcr->mcr_flags = 0;
2638 mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2639 mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2640 mcr->mcr_ipktbuf.pb_next = 0;
2641 mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2642 mcr->mcr_reserved = 0;
2643 mcr->mcr_pktlen = htole16(msglen);
2644 mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2645 mcr->mcr_opktbuf.pb_next = 0;
2646 mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2647
2648 #ifdef DIAGNOSTIC
2649 if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2650 panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
2651 sc->sc_dv.dv_xname, (u_long) rp->rpr_msgin.dma_paddr,
2652 (u_long) rp->rpr_msgin.dma_size);
2653 }
2654 if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2655 panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
2656 sc->sc_dv.dv_xname, (u_long) rp->rpr_msgout.dma_paddr,
2657 (u_long) rp->rpr_msgout.dma_size);
2658 }
2659 #endif
2660
2661 ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2662 ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2663 ctx->rpr_q_len = htole16(padlen);
2664 ctx->rpr_p_len = htole16(padlen);
2665
2666 /*
2667 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2668 * everything else.
2669 */
2670 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
2671 0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2672 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
2673 0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2674
2675 /* Enqueue and we're done... */
2676 s = splnet();
2677 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2678 ubsec_feed2(sc);
2679 ubsecstats.hst_modexpcrt++;
2680 splx(s);
2681 return (0);
2682
2683 errout:
2684 if (rp != NULL) {
2685 if (rp->rpr_q.q_mcr.dma_map != NULL)
2686 ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2687 if (rp->rpr_msgin.dma_map != NULL) {
2688 bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
2689 ubsec_dma_free(sc, &rp->rpr_msgin);
2690 }
2691 if (rp->rpr_msgout.dma_map != NULL) {
2692 bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
2693 ubsec_dma_free(sc, &rp->rpr_msgout);
2694 }
2695 free(rp, M_DEVBUF);
2696 }
2697 krp->krp_status = err;
2698 crypto_kdone(krp);
2699 return (0);
2700 }
2701
2702 #ifdef UBSEC_DEBUG
2703 static void
2704 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
2705 {
2706 printf("addr 0x%x (0x%x) next 0x%x\n",
2707 pb->pb_addr, pb->pb_len, pb->pb_next);
2708 }
2709
2710 static void
2711 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
2712 {
2713 printf("CTX (0x%x):\n", c->ctx_len);
2714 switch (letoh16(c->ctx_op)) {
2715 case UBS_CTXOP_RNGBYPASS:
2716 case UBS_CTXOP_RNGSHA1:
2717 break;
2718 case UBS_CTXOP_MODEXP:
2719 {
2720 struct ubsec_ctx_modexp *cx = (void *)c;
2721 int i, len;
2722
2723 printf(" Elen %u, Nlen %u\n",
2724 letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2725 len = (cx->me_N_len + 7)/8;
2726 for (i = 0; i < len; i++)
2727 printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2728 printf("\n");
2729 break;
2730 }
2731 default:
2732 printf("unknown context: %x\n", c->ctx_op);
2733 }
2734 printf("END CTX\n");
2735 }
2736
2737 static void
2738 ubsec_dump_mcr(struct ubsec_mcr *mcr)
2739 {
2740 volatile struct ubsec_mcr_add *ma;
2741 int i;
2742
2743 printf("MCR:\n");
2744 printf(" pkts: %u, flags 0x%x\n",
2745 letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2746 ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2747 for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2748 printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2749 letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2750 letoh16(ma->mcr_reserved));
2751 printf(" %d: ipkt ", i);
2752 ubsec_dump_pb(&ma->mcr_ipktbuf);
2753 printf(" %d: opkt ", i);
2754 ubsec_dump_pb(&ma->mcr_opktbuf);
2755 ma++;
2756 }
2757 printf("END MCR\n");
2758 }
2759 #endif /* UBSEC_DEBUG */
2760
2761 /*
2762 * Return the number of significant bits of a big number.
2763 */
2764 static int
2765 ubsec_ksigbits(struct crparam *cr)
2766 {
2767 u_int plen = (cr->crp_nbits + 7) / 8;
2768 int i, sig = plen * 8;
2769 u_int8_t c, *p = cr->crp_p;
2770
2771 for (i = plen - 1; i >= 0; i--) {
2772 c = p[i];
2773 if (c != 0) {
2774 while ((c & 0x80) == 0) {
2775 sig--;
2776 c <<= 1;
2777 }
2778 break;
2779 }
2780 sig -= 8;
2781 }
2782 return (sig);
2783 }
2784
2785 static void
2786 ubsec_kshift_r(shiftbits, src, srcbits, dst, dstbits)
2787 u_int shiftbits, srcbits, dstbits;
2788 u_int8_t *src, *dst;
2789 {
2790 u_int slen, dlen;
2791 int i, si, di, n;
2792
2793 slen = (srcbits + 7) / 8;
2794 dlen = (dstbits + 7) / 8;
2795
2796 for (i = 0; i < slen; i++)
2797 dst[i] = src[i];
2798 for (i = 0; i < dlen - slen; i++)
2799 dst[slen + i] = 0;
2800
2801 n = shiftbits / 8;
2802 if (n != 0) {
2803 si = dlen - n - 1;
2804 di = dlen - 1;
2805 while (si >= 0)
2806 dst[di--] = dst[si--];
2807 while (di >= 0)
2808 dst[di--] = 0;
2809 }
2810
2811 n = shiftbits % 8;
2812 if (n != 0) {
2813 for (i = dlen - 1; i > 0; i--)
2814 dst[i] = (dst[i] << n) |
2815 (dst[i - 1] >> (8 - n));
2816 dst[0] = dst[0] << n;
2817 }
2818 }
2819
2820 static void
2821 ubsec_kshift_l(shiftbits, src, srcbits, dst, dstbits)
2822 u_int shiftbits, srcbits, dstbits;
2823 u_int8_t *src, *dst;
2824 {
2825 int slen, dlen, i, n;
2826
2827 slen = (srcbits + 7) / 8;
2828 dlen = (dstbits + 7) / 8;
2829
2830 n = shiftbits / 8;
2831 for (i = 0; i < slen; i++)
2832 dst[i] = src[i + n];
2833 for (i = 0; i < dlen - slen; i++)
2834 dst[slen + i] = 0;
2835
2836 n = shiftbits % 8;
2837 if (n != 0) {
2838 for (i = 0; i < (dlen - 1); i++)
2839 dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2840 dst[dlen - 1] = dst[dlen - 1] >> n;
2841 }
2842 }
2843