ubsec.c revision 1.41.4.1 1 /* $NetBSD: ubsec.c,v 1.41.4.1 2015/06/06 14:40:12 skrll Exp $ */
2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
3 /* $OpenBSD: ubsec.c,v 1.143 2009/03/27 13:31:30 reyk Exp$ */
4
5 /*
6 * Copyright (c) 2000 Jason L. Wright (jason (at) thought.net)
7 * Copyright (c) 2000 Theo de Raadt (deraadt (at) openbsd.org)
8 * Copyright (c) 2001 Patrik Lindergren (patrik (at) ipunplugged.com)
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Effort sponsored in part by the Defense Advanced Research Projects
32 * Agency (DARPA) and Air Force Research Laboratory, Air Force
33 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
34 *
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: ubsec.c,v 1.41.4.1 2015/06/06 14:40:12 skrll Exp $");
39
40 #undef UBSEC_DEBUG
41
42 /*
43 * uBsec 5[56]01, 58xx hardware crypto accelerator
44 */
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/endian.h>
50 #ifdef __NetBSD__
51 #define UBSEC_NO_RNG /* hangs on attach */
52 #define letoh16 htole16
53 #define letoh32 htole32
54 #endif
55 #include <sys/errno.h>
56 #include <sys/malloc.h>
57 #include <sys/kernel.h>
58 #include <sys/mbuf.h>
59 #include <sys/device.h>
60 #include <sys/module.h>
61 #include <sys/queue.h>
62 #include <sys/sysctl.h>
63
64 #include <opencrypto/cryptodev.h>
65 #include <opencrypto/xform.h>
66 #ifdef __OpenBSD__
67 #include <dev/rndvar.h>
68 #include <sys/md5k.h>
69 #else
70 #include <sys/cprng.h>
71 #include <sys/md5.h>
72 #include <sys/rndpool.h>
73 #include <sys/rndsource.h>
74 #endif
75 #include <sys/sha1.h>
76
77 #include <dev/pci/pcireg.h>
78 #include <dev/pci/pcivar.h>
79 #include <dev/pci/pcidevs.h>
80
81 #include <dev/pci/ubsecreg.h>
82 #include <dev/pci/ubsecvar.h>
83
84 /*
85 * Prototypes and count for the pci_device structure
86 */
87 static int ubsec_probe(device_t, cfdata_t, void *);
88 static void ubsec_attach(device_t, device_t, void *);
89 static int ubsec_detach(device_t, int);
90 static int ubsec_sysctl_init(void);
91 static void ubsec_reset_board(struct ubsec_softc *);
92 static void ubsec_init_board(struct ubsec_softc *);
93 static void ubsec_init_pciregs(struct pci_attach_args *pa);
94 static void ubsec_cleanchip(struct ubsec_softc *);
95 static void ubsec_totalreset(struct ubsec_softc *);
96 static int ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
97
98 #ifdef __OpenBSD__
99 struct cfattach ubsec_ca = {
100 sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
101 };
102
103 struct cfdriver ubsec_cd = {
104 0, "ubsec", DV_DULL
105 };
106 #else
107 CFATTACH_DECL_NEW(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
108 ubsec_detach, NULL);
109 extern struct cfdriver ubsec_cd;
110 #endif
111
112 /* patchable */
113 #ifdef UBSEC_DEBUG
114 extern int ubsec_debug;
115 int ubsec_debug=1;
116 #endif
117
118 static int ubsec_intr(void *);
119 static int ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
120 static int ubsec_freesession(void*, u_int64_t);
121 static int ubsec_process(void*, struct cryptop *, int hint);
122 static void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
123 static void ubsec_feed(struct ubsec_softc *);
124 static void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
125 static void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
126 static void ubsec_feed2(struct ubsec_softc *);
127 static void ubsec_feed4(struct ubsec_softc *);
128 #ifndef UBSEC_NO_RNG
129 static void ubsec_rng(void *);
130 static void ubsec_rng_locked(void *);
131 static void ubsec_rng_get(size_t, void *);
132 #endif /* UBSEC_NO_RNG */
133 static int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
134 struct ubsec_dma_alloc *, int);
135 static void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
136 static int ubsec_dmamap_aligned(bus_dmamap_t);
137
138 static int ubsec_kprocess(void*, struct cryptkop *, int);
139 static int ubsec_kprocess_modexp_sw(struct ubsec_softc *,
140 struct cryptkop *, int);
141 static int ubsec_kprocess_modexp_hw(struct ubsec_softc *,
142 struct cryptkop *, int);
143 static int ubsec_kprocess_rsapriv(struct ubsec_softc *,
144 struct cryptkop *, int);
145 static void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
146 static int ubsec_ksigbits(struct crparam *);
147 static void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
148 static void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
149
150 #ifdef UBSEC_DEBUG
151 static void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
152 static void ubsec_dump_mcr(struct ubsec_mcr *);
153 static void ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
154 #endif
155
156 #define READ_REG(sc,r) \
157 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
158
159 #define WRITE_REG(sc,reg,val) \
160 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
161
162 #define SWAP32(x) (x) = htole32(ntohl((x)))
163 #ifndef HTOLE32
164 #define HTOLE32(x) (x) = htole32(x)
165 #endif
166
167 struct ubsec_stats ubsecstats;
168
169 static struct sysctllog *ubsec_sysctllog;
170
171 /*
172 * ubsec_maxbatch controls the number of crypto ops to voluntarily
173 * collect into one submission to the hardware. This batching happens
174 * when ops are dispatched from the crypto subsystem with a hint that
175 * more are to follow immediately. These ops must also not be marked
176 * with a ``no delay'' flag.
177 */
178 static int ubsec_maxbatch = 1;
179
180 /*
181 * ubsec_maxaggr controls the number of crypto ops to submit to the
182 * hardware as a unit. This aggregation reduces the number of interrupts
183 * to the host at the expense of increased latency (for all but the last
184 * operation). For network traffic setting this to one yields the highest
185 * performance but at the expense of more interrupt processing.
186 */
187 static int ubsec_maxaggr = 1;
188
189 static const struct ubsec_product {
190 pci_vendor_id_t ubsec_vendor;
191 pci_product_id_t ubsec_product;
192 int ubsec_flags;
193 int ubsec_statmask;
194 int ubsec_maxaggr;
195 const char *ubsec_name;
196 } ubsec_products[] = {
197 { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5501,
198 0,
199 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
200 UBS_MIN_AGGR,
201 "Bluesteel 5501"
202 },
203 { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5601,
204 UBS_FLAGS_KEY | UBS_FLAGS_RNG,
205 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
206 UBS_MIN_AGGR,
207 "Bluesteel 5601"
208 },
209
210 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5801,
211 0,
212 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
213 UBS_MIN_AGGR,
214 "Broadcom BCM5801"
215 },
216
217 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5802,
218 UBS_FLAGS_KEY | UBS_FLAGS_RNG,
219 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
220 UBS_MIN_AGGR,
221 "Broadcom BCM5802"
222 },
223
224 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5805,
225 UBS_FLAGS_KEY | UBS_FLAGS_RNG,
226 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
227 UBS_MIN_AGGR,
228 "Broadcom BCM5805"
229 },
230
231 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5820,
232 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
233 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
234 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
235 UBS_MIN_AGGR,
236 "Broadcom BCM5820"
237 },
238
239 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5821,
240 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
241 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
242 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
243 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
244 UBS_MIN_AGGR,
245 "Broadcom BCM5821"
246 },
247 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_SCA1K,
248 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
249 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
250 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
251 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
252 UBS_MIN_AGGR,
253 "Sun Crypto Accelerator 1000"
254 },
255 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_5821,
256 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
257 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
258 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
259 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
260 UBS_MIN_AGGR,
261 "Broadcom BCM5821 (Sun)"
262 },
263
264 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5822,
265 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
266 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
267 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
268 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
269 UBS_MIN_AGGR,
270 "Broadcom BCM5822"
271 },
272
273 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5823,
274 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
275 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
276 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
277 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
278 UBS_MIN_AGGR,
279 "Broadcom BCM5823"
280 },
281
282 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5825,
283 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
284 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
285 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
286 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
287 UBS_MIN_AGGR,
288 "Broadcom BCM5825"
289 },
290
291 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5860,
292 UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
293 UBS_FLAGS_LONGCTX |
294 UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
295 UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
296 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
297 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
298 BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
299 UBS_MAX_AGGR,
300 "Broadcom BCM5860"
301 },
302
303 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5861,
304 UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
305 UBS_FLAGS_LONGCTX |
306 UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
307 UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
308 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
309 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
310 BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
311 UBS_MAX_AGGR,
312 "Broadcom BCM5861"
313 },
314
315 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5862,
316 UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
317 UBS_FLAGS_LONGCTX |
318 UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
319 UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
320 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
321 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
322 BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
323 UBS_MAX_AGGR,
324 "Broadcom BCM5862"
325 },
326
327 { 0, 0,
328 0,
329 0,
330 0,
331 NULL
332 }
333 };
334
335 static const struct ubsec_product *
336 ubsec_lookup(const struct pci_attach_args *pa)
337 {
338 const struct ubsec_product *up;
339
340 for (up = ubsec_products; up->ubsec_name != NULL; up++) {
341 if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
342 PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
343 return (up);
344 }
345 return (NULL);
346 }
347
348 static int
349 ubsec_probe(device_t parent, cfdata_t match, void *aux)
350 {
351 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
352
353 if (ubsec_lookup(pa) != NULL)
354 return (1);
355
356 return (0);
357 }
358
359 static void
360 ubsec_attach(device_t parent, device_t self, void *aux)
361 {
362 struct ubsec_softc *sc = device_private(self);
363 struct pci_attach_args *pa = aux;
364 const struct ubsec_product *up;
365 pci_chipset_tag_t pc = pa->pa_pc;
366 pci_intr_handle_t ih;
367 const char *intrstr = NULL;
368 pcireg_t memtype;
369 struct ubsec_dma *dmap;
370 u_int32_t cmd, i;
371 char intrbuf[PCI_INTRSTR_LEN];
372
373 sc->sc_dev = self;
374 sc->sc_pct = pc;
375
376 up = ubsec_lookup(pa);
377 if (up == NULL) {
378 printf("\n");
379 panic("ubsec_attach: impossible");
380 }
381
382 pci_aprint_devinfo_fancy(pa, "Crypto processor", up->ubsec_name, 1);
383
384 SIMPLEQ_INIT(&sc->sc_queue);
385 SIMPLEQ_INIT(&sc->sc_qchip);
386 SIMPLEQ_INIT(&sc->sc_queue2);
387 SIMPLEQ_INIT(&sc->sc_qchip2);
388 SIMPLEQ_INIT(&sc->sc_queue4);
389 SIMPLEQ_INIT(&sc->sc_qchip4);
390 SIMPLEQ_INIT(&sc->sc_q2free);
391
392 sc->sc_flags = up->ubsec_flags;
393 sc->sc_statmask = up->ubsec_statmask;
394 sc->sc_maxaggr = up->ubsec_maxaggr;
395
396 cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
397 cmd |= PCI_COMMAND_MASTER_ENABLE;
398 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
399
400 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BS_BAR);
401 if (pci_mapreg_map(pa, BS_BAR, memtype, 0,
402 &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize)) {
403 aprint_error_dev(self, "can't find mem space");
404 return;
405 }
406
407 sc->sc_dmat = pa->pa_dmat;
408
409 if (pci_intr_map(pa, &ih)) {
410 aprint_error_dev(self, "couldn't map interrupt\n");
411 return;
412 }
413 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
414 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc);
415 if (sc->sc_ih == NULL) {
416 aprint_error_dev(self, "couldn't establish interrupt");
417 if (intrstr != NULL)
418 aprint_error(" at %s", intrstr);
419 aprint_error("\n");
420 return;
421 }
422 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
423
424 sc->sc_cid = crypto_get_driverid(0);
425 if (sc->sc_cid < 0) {
426 aprint_error_dev(self, "couldn't get crypto driver id\n");
427 pci_intr_disestablish(pc, sc->sc_ih);
428 return;
429 }
430
431 sc->sc_rng_need = RND_POOLBITS / NBBY;
432 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_VM);
433
434 SIMPLEQ_INIT(&sc->sc_freequeue);
435 dmap = sc->sc_dmaa;
436 for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
437 struct ubsec_q *q;
438
439 q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
440 M_DEVBUF, M_ZERO|M_NOWAIT);
441 if (q == NULL) {
442 aprint_error_dev(self, "can't allocate queue buffers\n");
443 break;
444 }
445
446 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
447 &dmap->d_alloc, 0)) {
448 aprint_error_dev(self, "can't allocate dma buffers\n");
449 free(q, M_DEVBUF);
450 break;
451 }
452 dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
453
454 q->q_dma = dmap;
455 sc->sc_queuea[i] = q;
456
457 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
458 }
459
460 crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
461 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
462 crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
463 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
464 crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0,
465 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
466 crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0,
467 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
468 if (sc->sc_flags & UBS_FLAGS_AES) {
469 crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
470 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
471 }
472
473 /*
474 * Reset Broadcom chip
475 */
476 ubsec_reset_board(sc);
477
478 /*
479 * Init Broadcom specific PCI settings
480 */
481 ubsec_init_pciregs(pa);
482
483 /*
484 * Init Broadcom chip
485 */
486 ubsec_init_board(sc);
487
488 #ifndef UBSEC_NO_RNG
489 if (sc->sc_flags & UBS_FLAGS_RNG) {
490 if (sc->sc_flags & UBS_FLAGS_RNG4)
491 sc->sc_statmask |= BS_STAT_MCR4_DONE;
492 else
493 sc->sc_statmask |= BS_STAT_MCR2_DONE;
494
495 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
496 &sc->sc_rng.rng_q.q_mcr, 0))
497 goto skip_rng;
498
499 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
500 &sc->sc_rng.rng_q.q_ctx, 0)) {
501 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
502 goto skip_rng;
503 }
504
505 if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
506 UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
507 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
508 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
509 goto skip_rng;
510 }
511
512 rndsource_setcb(&sc->sc_rnd_source, ubsec_rng_get, sc);
513 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
514 RND_TYPE_RNG,
515 RND_FLAG_COLLECT_VALUE|RND_FLAG_HASCB);
516 if (hz >= 100)
517 sc->sc_rnghz = hz / 100;
518 else
519 sc->sc_rnghz = 1;
520 #ifdef __OpenBSD__
521 timeout_set(&sc->sc_rngto, ubsec_rng, sc);
522 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
523 #else
524 callout_init(&sc->sc_rngto, 0);
525 callout_setfunc(&sc->sc_rngto, ubsec_rng, sc);
526 callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
527 #endif
528 skip_rng:
529 if (sc->sc_rnghz)
530 aprint_normal_dev(self, "random number generator enabled\n");
531 else
532 aprint_error_dev(self, "WARNING: random number generator "
533 "disabled\n");
534 }
535 #endif /* UBSEC_NO_RNG */
536
537 if (sc->sc_flags & UBS_FLAGS_KEY) {
538 sc->sc_statmask |= BS_STAT_MCR2_DONE;
539
540 crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
541 ubsec_kprocess, sc);
542 #if 0
543 crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
544 ubsec_kprocess, sc);
545 #endif
546 }
547 }
548
549 static int
550 ubsec_detach(device_t self, int flags)
551 {
552 struct ubsec_softc *sc = device_private(self);
553 struct ubsec_q *q, *qtmp;
554 volatile u_int32_t ctrl;
555
556 /* disable interrupts */
557 /* XXX wait/abort current ops? where is DMAERR enabled? */
558 ctrl = READ_REG(sc, BS_CTRL);
559
560 ctrl &= ~(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR);
561 if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
562 ctrl &= ~BS_CTRL_MCR4INT;
563
564 WRITE_REG(sc, BS_CTRL, ctrl);
565
566 #ifndef UBSEC_NO_RNG
567 if (sc->sc_flags & UBS_FLAGS_RNG) {
568 callout_halt(&sc->sc_rngto, NULL);
569 ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
570 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
571 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
572 rnd_detach_source(&sc->sc_rnd_source);
573 }
574 #endif /* UBSEC_NO_RNG */
575
576 crypto_unregister_all(sc->sc_cid);
577
578 mutex_spin_enter(&sc->sc_mtx);
579
580 ubsec_totalreset(sc); /* XXX leaves the chip running */
581
582 SIMPLEQ_FOREACH_SAFE(q, &sc->sc_freequeue, q_next, qtmp) {
583 ubsec_dma_free(sc, &q->q_dma->d_alloc);
584 if (q->q_src_map != NULL)
585 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
586 if (q->q_cached_dst_map != NULL)
587 bus_dmamap_destroy(sc->sc_dmat, q->q_cached_dst_map);
588 free(q, M_DEVBUF);
589 }
590
591 mutex_spin_exit(&sc->sc_mtx);
592
593 if (sc->sc_ih != NULL) {
594 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
595 sc->sc_ih = NULL;
596 }
597
598 if (sc->sc_memsize != 0) {
599 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
600 sc->sc_memsize = 0;
601 }
602
603 return 0;
604 }
605
606 MODULE(MODULE_CLASS_DRIVER, ubsec, "pci,opencrypto");
607
608 #ifdef _MODULE
609 #include "ioconf.c"
610 #endif
611
612 static int
613 ubsec_modcmd(modcmd_t cmd, void *data)
614 {
615 int error = 0;
616
617 switch (cmd) {
618 case MODULE_CMD_INIT:
619 #ifdef _MODULE
620 error = config_init_component(cfdriver_ioconf_ubsec,
621 cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
622 #endif
623 if (error == 0)
624 error = ubsec_sysctl_init();
625 return error;
626 case MODULE_CMD_FINI:
627 if (ubsec_sysctllog != NULL)
628 sysctl_teardown(&ubsec_sysctllog);
629 #ifdef _MODULE
630 error = config_fini_component(cfdriver_ioconf_ubsec,
631 cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
632 #endif
633 return error;
634 default:
635 return ENOTTY;
636 }
637 }
638
639 static int
640 ubsec_sysctl_init(void)
641 {
642 const struct sysctlnode *node = NULL;
643
644 ubsec_sysctllog = NULL;
645
646 sysctl_createv(&ubsec_sysctllog, 0, NULL, &node,
647 CTLFLAG_PERMANENT,
648 CTLTYPE_NODE, "ubsec",
649 SYSCTL_DESCR("ubsec opetions"),
650 NULL, 0, NULL, 0,
651 CTL_HW, CTL_CREATE, CTL_EOL);
652 sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
653 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
654 CTLTYPE_INT, "maxbatch",
655 SYSCTL_DESCR("max ops to batch w/o interrupt"),
656 NULL, 0, &ubsec_maxbatch, 0,
657 CTL_CREATE, CTL_EOL);
658 sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
659 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
660 CTLTYPE_INT, "maxaggr",
661 SYSCTL_DESCR("max ops to aggregate under one interrupt"),
662 NULL, 0, &ubsec_maxaggr, 0,
663 CTL_CREATE, CTL_EOL);
664
665 return 0;
666 }
667
668 /*
669 * UBSEC Interrupt routine
670 */
671 static int
672 ubsec_intr(void *arg)
673 {
674 struct ubsec_softc *sc = arg;
675 volatile u_int32_t stat;
676 struct ubsec_q *q;
677 struct ubsec_dma *dmap;
678 int flags;
679 int npkts = 0, i;
680
681 mutex_spin_enter(&sc->sc_mtx);
682 stat = READ_REG(sc, BS_STAT);
683 stat &= sc->sc_statmask;
684 if (stat == 0) {
685 mutex_spin_exit(&sc->sc_mtx);
686 return (0);
687 }
688
689 WRITE_REG(sc, BS_STAT, stat); /* IACK */
690
691 /*
692 * Check to see if we have any packets waiting for us
693 */
694 if ((stat & BS_STAT_MCR1_DONE)) {
695 while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
696 q = SIMPLEQ_FIRST(&sc->sc_qchip);
697 dmap = q->q_dma;
698
699 if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
700 break;
701
702 q = SIMPLEQ_FIRST(&sc->sc_qchip);
703 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
704
705 npkts = q->q_nstacked_mcrs;
706 sc->sc_nqchip -= 1+npkts;
707 /*
708 * search for further sc_qchip ubsec_q's that share
709 * the same MCR, and complete them too, they must be
710 * at the top.
711 */
712 for (i = 0; i < npkts; i++) {
713 if(q->q_stacked_mcr[i])
714 ubsec_callback(sc, q->q_stacked_mcr[i]);
715 else
716 break;
717 }
718 ubsec_callback(sc, q);
719 }
720
721 /*
722 * Don't send any more packet to chip if there has been
723 * a DMAERR.
724 */
725 if (!(stat & BS_STAT_DMAERR))
726 ubsec_feed(sc);
727 }
728
729 /*
730 * Check to see if we have any key setups/rng's waiting for us
731 */
732 if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
733 (stat & BS_STAT_MCR2_DONE)) {
734 struct ubsec_q2 *q2;
735 struct ubsec_mcr *mcr;
736
737 while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
738 q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
739
740 bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
741 0, q2->q_mcr.dma_map->dm_mapsize,
742 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
743
744 mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
745
746 /* A bug in new devices requires to swap this field */
747 if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
748 flags = htole16(mcr->mcr_flags);
749 else
750 flags = mcr->mcr_flags;
751 if ((flags & htole16(UBS_MCR_DONE)) == 0) {
752 bus_dmamap_sync(sc->sc_dmat,
753 q2->q_mcr.dma_map, 0,
754 q2->q_mcr.dma_map->dm_mapsize,
755 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
756 break;
757 }
758 q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
759 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
760 ubsec_callback2(sc, q2);
761 /*
762 * Don't send any more packet to chip if there has been
763 * a DMAERR.
764 */
765 if (!(stat & BS_STAT_DMAERR))
766 ubsec_feed2(sc);
767 }
768 }
769 if ((sc->sc_flags & UBS_FLAGS_RNG4) && (stat & BS_STAT_MCR4_DONE)) {
770 struct ubsec_q2 *q2;
771 struct ubsec_mcr *mcr;
772
773 while (!SIMPLEQ_EMPTY(&sc->sc_qchip4)) {
774 q2 = SIMPLEQ_FIRST(&sc->sc_qchip4);
775
776 bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
777 0, q2->q_mcr.dma_map->dm_mapsize,
778 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
779
780 mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
781
782 /* A bug in new devices requires to swap this field */
783 flags = htole16(mcr->mcr_flags);
784
785 if ((flags & htole16(UBS_MCR_DONE)) == 0) {
786 bus_dmamap_sync(sc->sc_dmat,
787 q2->q_mcr.dma_map, 0,
788 q2->q_mcr.dma_map->dm_mapsize,
789 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
790 break;
791 }
792 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip4, q_next);
793 ubsec_callback2(sc, q2);
794 /*
795 * Don't send any more packet to chip if there has been
796 * a DMAERR.
797 */
798 if (!(stat & BS_STAT_DMAERR))
799 ubsec_feed4(sc);
800 }
801 }
802
803 /*
804 * Check to see if we got any DMA Error
805 */
806 if (stat & BS_STAT_DMAERR) {
807 #ifdef UBSEC_DEBUG
808 if (ubsec_debug) {
809 volatile u_int32_t a = READ_REG(sc, BS_ERR);
810
811 printf("%s: dmaerr %s@%08x\n", device_xname(sc->sc_dev),
812 (a & BS_ERR_READ) ? "read" : "write",
813 a & BS_ERR_ADDR);
814 }
815 #endif /* UBSEC_DEBUG */
816 ubsecstats.hst_dmaerr++;
817 ubsec_totalreset(sc);
818 ubsec_feed(sc);
819 }
820
821 if (sc->sc_needwakeup) { /* XXX check high watermark */
822 int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
823 #ifdef UBSEC_DEBUG
824 if (ubsec_debug)
825 printf("%s: wakeup crypto (%x)\n", device_xname(sc->sc_dev),
826 sc->sc_needwakeup);
827 #endif /* UBSEC_DEBUG */
828 sc->sc_needwakeup &= ~wkeup;
829 crypto_unblock(sc->sc_cid, wkeup);
830 }
831 mutex_spin_exit(&sc->sc_mtx);
832 return (1);
833 }
834
835 /*
836 * ubsec_feed() - aggregate and post requests to chip
837 * OpenBSD comments:
838 * It is assumed that the caller set splnet()
839 */
840 static void
841 ubsec_feed(struct ubsec_softc *sc)
842 {
843 struct ubsec_q *q, *q2;
844 int npkts, i;
845 void *v;
846 u_int32_t stat;
847 #ifdef UBSEC_DEBUG
848 static int max;
849 #endif /* UBSEC_DEBUG */
850
851 npkts = sc->sc_nqueue;
852 if (npkts > ubsecstats.hst_maxqueue)
853 ubsecstats.hst_maxqueue = npkts;
854 if (npkts < 2)
855 goto feed1;
856
857 /*
858 * Decide how many ops to combine in a single MCR. We cannot
859 * aggregate more than UBS_MAX_AGGR because this is the number
860 * of slots defined in the data structure. Otherwise we clamp
861 * based on the tunable parameter ubsec_maxaggr. Note that
862 * aggregation can happen in two ways: either by batching ops
863 * from above or because the h/w backs up and throttles us.
864 * Aggregating ops reduces the number of interrupts to the host
865 * but also (potentially) increases the latency for processing
866 * completed ops as we only get an interrupt when all aggregated
867 * ops have completed.
868 */
869 if (npkts > sc->sc_maxaggr)
870 npkts = sc->sc_maxaggr;
871 if (npkts > ubsec_maxaggr)
872 npkts = ubsec_maxaggr;
873 if (npkts > ubsecstats.hst_maxbatch)
874 ubsecstats.hst_maxbatch = npkts;
875 if (npkts < 2)
876 goto feed1;
877 ubsecstats.hst_totbatch += npkts-1;
878
879 if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
880 if (stat & BS_STAT_DMAERR) {
881 ubsec_totalreset(sc);
882 ubsecstats.hst_dmaerr++;
883 } else {
884 ubsecstats.hst_mcr1full++;
885 }
886 return;
887 }
888
889 #ifdef UBSEC_DEBUG
890 if (ubsec_debug)
891 printf("merging %d records\n", npkts);
892 /* XXX temporary aggregation statistics reporting code */
893 if (max < npkts) {
894 max = npkts;
895 printf("%s: new max aggregate %d\n", device_xname(sc->sc_dev), max);
896 }
897 #endif /* UBSEC_DEBUG */
898
899 q = SIMPLEQ_FIRST(&sc->sc_queue);
900 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
901 --sc->sc_nqueue;
902
903 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
904 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
905 if (q->q_dst_map != NULL)
906 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
907 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
908
909 q->q_nstacked_mcrs = npkts - 1; /* Number of packets stacked */
910
911 for (i = 0; i < q->q_nstacked_mcrs; i++) {
912 q2 = SIMPLEQ_FIRST(&sc->sc_queue);
913 bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
914 0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
915 if (q2->q_dst_map != NULL)
916 bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
917 0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
918 q2= SIMPLEQ_FIRST(&sc->sc_queue);
919 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
920 --sc->sc_nqueue;
921
922 v = ((void *)&q2->q_dma->d_dma->d_mcr);
923 v = (char*)v + (sizeof(struct ubsec_mcr) -
924 sizeof(struct ubsec_mcr_add));
925 memcpy(&q->q_dma->d_dma->d_mcradd[i], v, sizeof(struct ubsec_mcr_add));
926 q->q_stacked_mcr[i] = q2;
927 }
928 q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
929 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
930 sc->sc_nqchip += npkts;
931 if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
932 ubsecstats.hst_maxqchip = sc->sc_nqchip;
933 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
934 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
935 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
936 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
937 offsetof(struct ubsec_dmachunk, d_mcr));
938 return;
939
940 feed1:
941 while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
942 if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
943 if (stat & BS_STAT_DMAERR) {
944 ubsec_totalreset(sc);
945 ubsecstats.hst_dmaerr++;
946 } else {
947 ubsecstats.hst_mcr1full++;
948 }
949 break;
950 }
951
952 q = SIMPLEQ_FIRST(&sc->sc_queue);
953
954 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
955 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
956 if (q->q_dst_map != NULL)
957 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
958 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
959 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
960 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
961 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
962
963 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
964 offsetof(struct ubsec_dmachunk, d_mcr));
965 #ifdef UBSEC_DEBUG
966 if (ubsec_debug)
967 printf("feed: q->chip %p %08x stat %08x\n",
968 q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
969 stat);
970 #endif /* UBSEC_DEBUG */
971 q = SIMPLEQ_FIRST(&sc->sc_queue);
972 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
973 --sc->sc_nqueue;
974 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
975 sc->sc_nqchip++;
976 }
977 if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
978 ubsecstats.hst_maxqchip = sc->sc_nqchip;
979 }
980
981 /*
982 * Allocate a new 'session' and return an encoded session id. 'sidp'
983 * contains our registration id, and should contain an encoded session
984 * id on successful allocation.
985 */
986 static int
987 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
988 {
989 struct cryptoini *c, *encini = NULL, *macini = NULL;
990 struct ubsec_softc *sc;
991 struct ubsec_session *ses = NULL;
992 MD5_CTX md5ctx;
993 SHA1_CTX sha1ctx;
994 int i, sesn;
995
996 sc = arg;
997 KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
998
999 if (sidp == NULL || cri == NULL || sc == NULL)
1000 return (EINVAL);
1001
1002 for (c = cri; c != NULL; c = c->cri_next) {
1003 if (c->cri_alg == CRYPTO_MD5_HMAC_96 ||
1004 c->cri_alg == CRYPTO_SHA1_HMAC_96) {
1005 if (macini)
1006 return (EINVAL);
1007 macini = c;
1008 } else if (c->cri_alg == CRYPTO_DES_CBC ||
1009 c->cri_alg == CRYPTO_3DES_CBC ||
1010 c->cri_alg == CRYPTO_AES_CBC) {
1011 if (encini)
1012 return (EINVAL);
1013 encini = c;
1014 } else
1015 return (EINVAL);
1016 }
1017 if (encini == NULL && macini == NULL)
1018 return (EINVAL);
1019
1020 if (encini && encini->cri_alg == CRYPTO_AES_CBC) {
1021 switch (encini->cri_klen) {
1022 case 128:
1023 case 192:
1024 case 256:
1025 break;
1026 default:
1027 return (EINVAL);
1028 }
1029 }
1030
1031 if (sc->sc_sessions == NULL) {
1032 ses = sc->sc_sessions = (struct ubsec_session *)malloc(
1033 sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
1034 if (ses == NULL)
1035 return (ENOMEM);
1036 sesn = 0;
1037 sc->sc_nsessions = 1;
1038 } else {
1039 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
1040 if (sc->sc_sessions[sesn].ses_used == 0) {
1041 ses = &sc->sc_sessions[sesn];
1042 break;
1043 }
1044 }
1045
1046 if (ses == NULL) {
1047 sesn = sc->sc_nsessions;
1048 ses = (struct ubsec_session *)malloc((sesn + 1) *
1049 sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
1050 if (ses == NULL)
1051 return (ENOMEM);
1052 memcpy(ses, sc->sc_sessions, sesn *
1053 sizeof(struct ubsec_session));
1054 memset(sc->sc_sessions, 0, sesn *
1055 sizeof(struct ubsec_session));
1056 free(sc->sc_sessions, M_DEVBUF);
1057 sc->sc_sessions = ses;
1058 ses = &sc->sc_sessions[sesn];
1059 sc->sc_nsessions++;
1060 }
1061 }
1062
1063 memset(ses, 0, sizeof(struct ubsec_session));
1064 ses->ses_used = 1;
1065 if (encini) {
1066 /* get an IV, network byte order */
1067 #ifdef __NetBSD__
1068 cprng_fast(ses->ses_iv, sizeof(ses->ses_iv));
1069 #else
1070 get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv));
1071 #endif
1072
1073 /* Go ahead and compute key in ubsec's byte order */
1074 if (encini->cri_alg == CRYPTO_AES_CBC) {
1075 memcpy(ses->ses_key, encini->cri_key,
1076 encini->cri_klen / 8);
1077 }
1078 if (encini->cri_alg == CRYPTO_DES_CBC) {
1079 memcpy(&ses->ses_key[0], encini->cri_key, 8);
1080 memcpy(&ses->ses_key[2], encini->cri_key, 8);
1081 memcpy(&ses->ses_key[4], encini->cri_key, 8);
1082 } else
1083 memcpy(ses->ses_key, encini->cri_key, 24);
1084
1085 SWAP32(ses->ses_key[0]);
1086 SWAP32(ses->ses_key[1]);
1087 SWAP32(ses->ses_key[2]);
1088 SWAP32(ses->ses_key[3]);
1089 SWAP32(ses->ses_key[4]);
1090 SWAP32(ses->ses_key[5]);
1091 }
1092
1093 if (macini) {
1094 for (i = 0; i < macini->cri_klen / 8; i++)
1095 macini->cri_key[i] ^= HMAC_IPAD_VAL;
1096
1097 if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
1098 MD5Init(&md5ctx);
1099 MD5Update(&md5ctx, macini->cri_key,
1100 macini->cri_klen / 8);
1101 MD5Update(&md5ctx, hmac_ipad_buffer,
1102 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1103 memcpy(ses->ses_hminner, md5ctx.state,
1104 sizeof(md5ctx.state));
1105 } else {
1106 SHA1Init(&sha1ctx);
1107 SHA1Update(&sha1ctx, macini->cri_key,
1108 macini->cri_klen / 8);
1109 SHA1Update(&sha1ctx, hmac_ipad_buffer,
1110 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1111 memcpy(ses->ses_hminner, sha1ctx.state,
1112 sizeof(sha1ctx.state));
1113 }
1114
1115 for (i = 0; i < macini->cri_klen / 8; i++)
1116 macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
1117
1118 if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
1119 MD5Init(&md5ctx);
1120 MD5Update(&md5ctx, macini->cri_key,
1121 macini->cri_klen / 8);
1122 MD5Update(&md5ctx, hmac_opad_buffer,
1123 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1124 memcpy(ses->ses_hmouter, md5ctx.state,
1125 sizeof(md5ctx.state));
1126 } else {
1127 SHA1Init(&sha1ctx);
1128 SHA1Update(&sha1ctx, macini->cri_key,
1129 macini->cri_klen / 8);
1130 SHA1Update(&sha1ctx, hmac_opad_buffer,
1131 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1132 memcpy(ses->ses_hmouter, sha1ctx.state,
1133 sizeof(sha1ctx.state));
1134 }
1135
1136 for (i = 0; i < macini->cri_klen / 8; i++)
1137 macini->cri_key[i] ^= HMAC_OPAD_VAL;
1138 }
1139
1140 *sidp = UBSEC_SID(device_unit(sc->sc_dev), sesn);
1141 return (0);
1142 }
1143
1144 /*
1145 * Deallocate a session.
1146 */
1147 static int
1148 ubsec_freesession(void *arg, u_int64_t tid)
1149 {
1150 struct ubsec_softc *sc;
1151 int session;
1152 u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
1153
1154 sc = arg;
1155 KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
1156
1157 session = UBSEC_SESSION(sid);
1158 if (session >= sc->sc_nsessions)
1159 return (EINVAL);
1160
1161 memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session]));
1162 return (0);
1163 }
1164
1165 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
1166 static void
1167 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
1168 {
1169 struct ubsec_operand *op = arg;
1170
1171 KASSERT(nsegs <= UBS_MAX_SCATTER
1172 /*, ("Too many DMA segments returned when mapping operand")*/);
1173 #ifdef UBSEC_DEBUG
1174 if (ubsec_debug)
1175 printf("ubsec_op_cb: mapsize %u nsegs %d\n",
1176 (u_int) mapsize, nsegs);
1177 #endif
1178 op->mapsize = mapsize;
1179 op->nsegs = nsegs;
1180 memcpy(op->segs, seg, nsegs * sizeof (seg[0]));
1181 }
1182 #endif
1183
1184 static int
1185 ubsec_process(void *arg, struct cryptop *crp, int hint)
1186 {
1187 struct ubsec_q *q = NULL;
1188 #ifdef __OpenBSD__
1189 int card;
1190 #endif
1191 int err = 0, i, j, nicealign;
1192 struct ubsec_softc *sc;
1193 struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1194 int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1195 int sskip, dskip, stheend, dtheend;
1196 int16_t coffset;
1197 struct ubsec_session *ses, key;
1198 struct ubsec_dma *dmap = NULL;
1199 u_int16_t flags = 0;
1200 int ivlen = 0, keylen = 0;
1201
1202 sc = arg;
1203 KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/);
1204
1205 if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1206 ubsecstats.hst_invalid++;
1207 return (EINVAL);
1208 }
1209 if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1210 ubsecstats.hst_badsession++;
1211 return (EINVAL);
1212 }
1213
1214 mutex_spin_enter(&sc->sc_mtx);
1215
1216 if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1217 ubsecstats.hst_queuefull++;
1218 sc->sc_needwakeup |= CRYPTO_SYMQ;
1219 mutex_spin_exit(&sc->sc_mtx);
1220 return(ERESTART);
1221 }
1222
1223 q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1224 SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
1225 mutex_spin_exit(&sc->sc_mtx);
1226
1227 dmap = q->q_dma; /* Save dma pointer */
1228 /* don't lose the cached dmamaps q_src_map and q_cached_dst_map */
1229 memset(q, 0, offsetof(struct ubsec_q, q_src_map));
1230 memset(&key, 0, sizeof(key));
1231
1232 q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1233 q->q_dma = dmap;
1234 ses = &sc->sc_sessions[q->q_sesn];
1235
1236 if (crp->crp_flags & CRYPTO_F_IMBUF) {
1237 q->q_src_m = (struct mbuf *)crp->crp_buf;
1238 q->q_dst_m = (struct mbuf *)crp->crp_buf;
1239 } else if (crp->crp_flags & CRYPTO_F_IOV) {
1240 q->q_src_io = (struct uio *)crp->crp_buf;
1241 q->q_dst_io = (struct uio *)crp->crp_buf;
1242 } else {
1243 ubsecstats.hst_badflags++;
1244 err = EINVAL;
1245 goto errout; /* XXX we don't handle contiguous blocks! */
1246 }
1247
1248 memset(&dmap->d_dma->d_mcr, 0, sizeof(struct ubsec_mcr));
1249
1250 dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1251 dmap->d_dma->d_mcr.mcr_flags = 0;
1252 q->q_crp = crp;
1253
1254 crd1 = crp->crp_desc;
1255 if (crd1 == NULL) {
1256 ubsecstats.hst_nodesc++;
1257 err = EINVAL;
1258 goto errout;
1259 }
1260 crd2 = crd1->crd_next;
1261
1262 if (crd2 == NULL) {
1263 if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1264 crd1->crd_alg == CRYPTO_SHA1_HMAC_96) {
1265 maccrd = crd1;
1266 enccrd = NULL;
1267 } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1268 crd1->crd_alg == CRYPTO_3DES_CBC ||
1269 crd1->crd_alg == CRYPTO_AES_CBC) {
1270 maccrd = NULL;
1271 enccrd = crd1;
1272 } else {
1273 ubsecstats.hst_badalg++;
1274 err = EINVAL;
1275 goto errout;
1276 }
1277 } else {
1278 if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1279 crd1->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1280 (crd2->crd_alg == CRYPTO_DES_CBC ||
1281 crd2->crd_alg == CRYPTO_3DES_CBC ||
1282 crd2->crd_alg == CRYPTO_AES_CBC) &&
1283 ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1284 maccrd = crd1;
1285 enccrd = crd2;
1286 } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1287 crd1->crd_alg == CRYPTO_3DES_CBC ||
1288 crd1->crd_alg == CRYPTO_AES_CBC) &&
1289 (crd2->crd_alg == CRYPTO_MD5_HMAC_96 ||
1290 crd2->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1291 (crd1->crd_flags & CRD_F_ENCRYPT)) {
1292 enccrd = crd1;
1293 maccrd = crd2;
1294 } else {
1295 /*
1296 * We cannot order the ubsec as requested
1297 */
1298 ubsecstats.hst_badalg++;
1299 err = EINVAL;
1300 goto errout;
1301 }
1302 }
1303
1304 if (enccrd) {
1305 if (enccrd->crd_alg == CRYPTO_AES_CBC) {
1306 if ((sc->sc_flags & UBS_FLAGS_AES) == 0) {
1307 /*
1308 * We cannot order the ubsec as requested
1309 */
1310 ubsecstats.hst_badalg++;
1311 err = EINVAL;
1312 goto errout;
1313 }
1314 flags |= htole16(UBS_PKTCTX_ENC_AES);
1315 switch (enccrd->crd_klen) {
1316 case 128:
1317 case 192:
1318 case 256:
1319 keylen = enccrd->crd_klen / 8;
1320 break;
1321 default:
1322 err = EINVAL;
1323 goto errout;
1324 }
1325 ivlen = 16;
1326 } else {
1327 flags |= htole16(UBS_PKTCTX_ENC_3DES);
1328 ivlen = 8;
1329 keylen = 24;
1330 }
1331
1332 encoffset = enccrd->crd_skip;
1333
1334 if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1335 q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1336
1337 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1338 memcpy(key.ses_iv, enccrd->crd_iv, ivlen);
1339 else {
1340 for (i = 0; i < (ivlen / 4); i++)
1341 key.ses_iv[i] = ses->ses_iv[i];
1342 }
1343
1344 if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1345 if (crp->crp_flags & CRYPTO_F_IMBUF)
1346 m_copyback(q->q_src_m,
1347 enccrd->crd_inject,
1348 ivlen, (void *)key.ses_iv);
1349 else if (crp->crp_flags & CRYPTO_F_IOV)
1350 cuio_copyback(q->q_src_io,
1351 enccrd->crd_inject,
1352 ivlen, (void *)key.ses_iv);
1353 }
1354 } else {
1355 flags |= htole16(UBS_PKTCTX_INBOUND);
1356
1357 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1358 memcpy(key.ses_iv, enccrd->crd_iv, ivlen);
1359 else if (crp->crp_flags & CRYPTO_F_IMBUF)
1360 m_copydata(q->q_src_m, enccrd->crd_inject,
1361 ivlen, (void *)key.ses_iv);
1362 else if (crp->crp_flags & CRYPTO_F_IOV)
1363 cuio_copydata(q->q_src_io,
1364 enccrd->crd_inject, 8,
1365 (void *)key.ses_iv);
1366 }
1367
1368 for (i = 0; i < (keylen / 4); i++)
1369 key.ses_key[i] = ses->ses_key[i];
1370 for (i = 0; i < (ivlen / 4); i++)
1371 SWAP32(key.ses_iv[i]);
1372 }
1373
1374 if (maccrd) {
1375 macoffset = maccrd->crd_skip;
1376
1377 if (maccrd->crd_alg == CRYPTO_MD5_HMAC_96)
1378 flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1379 else
1380 flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1381
1382 for (i = 0; i < 5; i++) {
1383 key.ses_hminner[i] = ses->ses_hminner[i];
1384 key.ses_hmouter[i] = ses->ses_hmouter[i];
1385
1386 HTOLE32(key.ses_hminner[i]);
1387 HTOLE32(key.ses_hmouter[i]);
1388 }
1389 }
1390
1391 if (enccrd && maccrd) {
1392 /*
1393 * ubsec cannot handle packets where the end of encryption
1394 * and authentication are not the same, or where the
1395 * encrypted part begins before the authenticated part.
1396 */
1397 if ((encoffset + enccrd->crd_len) !=
1398 (macoffset + maccrd->crd_len)) {
1399 ubsecstats.hst_lenmismatch++;
1400 err = EINVAL;
1401 goto errout;
1402 }
1403 if (enccrd->crd_skip < maccrd->crd_skip) {
1404 ubsecstats.hst_skipmismatch++;
1405 err = EINVAL;
1406 goto errout;
1407 }
1408 sskip = maccrd->crd_skip;
1409 cpskip = dskip = enccrd->crd_skip;
1410 stheend = maccrd->crd_len;
1411 dtheend = enccrd->crd_len;
1412 coffset = enccrd->crd_skip - maccrd->crd_skip;
1413 cpoffset = cpskip + dtheend;
1414 #ifdef UBSEC_DEBUG
1415 if (ubsec_debug) {
1416 printf("mac: skip %d, len %d, inject %d\n",
1417 maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1418 printf("enc: skip %d, len %d, inject %d\n",
1419 enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1420 printf("src: skip %d, len %d\n", sskip, stheend);
1421 printf("dst: skip %d, len %d\n", dskip, dtheend);
1422 printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1423 coffset, stheend, cpskip, cpoffset);
1424 }
1425 #endif
1426 } else {
1427 cpskip = dskip = sskip = macoffset + encoffset;
1428 dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1429 cpoffset = cpskip + dtheend;
1430 coffset = 0;
1431 }
1432
1433 if (q->q_src_map == NULL) {
1434 /* XXX FIXME: jonathan asks, what the heck's that 0xfff0? */
1435 if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
1436 0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
1437 err = ENOMEM;
1438 goto errout;
1439 }
1440 }
1441 if (crp->crp_flags & CRYPTO_F_IMBUF) {
1442 if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1443 q->q_src_m, BUS_DMA_NOWAIT) != 0) {
1444 ubsecstats.hst_noload++;
1445 err = ENOMEM;
1446 goto errout;
1447 }
1448 } else if (crp->crp_flags & CRYPTO_F_IOV) {
1449 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1450 q->q_src_io, BUS_DMA_NOWAIT) != 0) {
1451 ubsecstats.hst_noload++;
1452 err = ENOMEM;
1453 goto errout;
1454 }
1455 }
1456 nicealign = ubsec_dmamap_aligned(q->q_src_map);
1457
1458 dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1459
1460 #ifdef UBSEC_DEBUG
1461 if (ubsec_debug)
1462 printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1463 #endif
1464 for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
1465 struct ubsec_pktbuf *pb;
1466 bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
1467 bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
1468
1469 if (sskip >= packl) {
1470 sskip -= packl;
1471 continue;
1472 }
1473
1474 packl -= sskip;
1475 packp += sskip;
1476 sskip = 0;
1477
1478 if (packl > 0xfffc) {
1479 err = EIO;
1480 goto errout;
1481 }
1482
1483 if (j == 0)
1484 pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1485 else
1486 pb = &dmap->d_dma->d_sbuf[j - 1];
1487
1488 pb->pb_addr = htole32(packp);
1489
1490 if (stheend) {
1491 if (packl > stheend) {
1492 pb->pb_len = htole32(stheend);
1493 stheend = 0;
1494 } else {
1495 pb->pb_len = htole32(packl);
1496 stheend -= packl;
1497 }
1498 } else
1499 pb->pb_len = htole32(packl);
1500
1501 if ((i + 1) == q->q_src_map->dm_nsegs)
1502 pb->pb_next = 0;
1503 else
1504 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1505 offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1506 j++;
1507 }
1508
1509 if (enccrd == NULL && maccrd != NULL) {
1510 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1511 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1512 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1513 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1514 #ifdef UBSEC_DEBUG
1515 if (ubsec_debug)
1516 printf("opkt: %x %x %x\n",
1517 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1518 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1519 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1520
1521 #endif
1522 } else {
1523 if (crp->crp_flags & CRYPTO_F_IOV) {
1524 if (!nicealign) {
1525 ubsecstats.hst_iovmisaligned++;
1526 err = EINVAL;
1527 goto errout;
1528 }
1529 if (q->q_dst_map == NULL) {
1530 if (q->q_cached_dst_map == NULL) {
1531 /* XXX: ``what the heck's that'' 0xfff0? */
1532 if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1533 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1534 &q->q_cached_dst_map) != 0) {
1535 ubsecstats.hst_nomap++;
1536 err = ENOMEM;
1537 goto errout;
1538 }
1539 }
1540 q->q_dst_map = q->q_cached_dst_map;
1541 }
1542 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1543 q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
1544 ubsecstats.hst_noload++;
1545 err = ENOMEM;
1546 goto errout;
1547 }
1548 } else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1549 if (nicealign) {
1550 q->q_dst_m = q->q_src_m;
1551 q->q_dst_map = q->q_src_map;
1552 } else {
1553 int totlen, len;
1554 struct mbuf *m, *top, **mp;
1555
1556 ubsecstats.hst_unaligned++;
1557 totlen = q->q_src_map->dm_mapsize;
1558 if (q->q_src_m->m_flags & M_PKTHDR) {
1559 len = MHLEN;
1560 MGETHDR(m, M_DONTWAIT, MT_DATA);
1561 /*XXX FIXME: m_dup_pkthdr */
1562 if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
1563 m_free(m);
1564 m = NULL;
1565 }
1566 } else {
1567 len = MLEN;
1568 MGET(m, M_DONTWAIT, MT_DATA);
1569 }
1570 if (m == NULL) {
1571 ubsecstats.hst_nombuf++;
1572 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1573 goto errout;
1574 }
1575 if (len == MHLEN)
1576 /*XXX was M_DUP_PKTHDR*/
1577 M_COPY_PKTHDR(m, q->q_src_m);
1578 if (totlen >= MINCLSIZE) {
1579 MCLGET(m, M_DONTWAIT);
1580 if ((m->m_flags & M_EXT) == 0) {
1581 m_free(m);
1582 ubsecstats.hst_nomcl++;
1583 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1584 goto errout;
1585 }
1586 len = MCLBYTES;
1587 }
1588 m->m_len = len;
1589 top = NULL;
1590 mp = ⊤
1591
1592 while (totlen > 0) {
1593 if (top) {
1594 MGET(m, M_DONTWAIT, MT_DATA);
1595 if (m == NULL) {
1596 m_freem(top);
1597 ubsecstats.hst_nombuf++;
1598 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1599 goto errout;
1600 }
1601 len = MLEN;
1602 }
1603 if (top && totlen >= MINCLSIZE) {
1604 MCLGET(m, M_DONTWAIT);
1605 if ((m->m_flags & M_EXT) == 0) {
1606 *mp = m;
1607 m_freem(top);
1608 ubsecstats.hst_nomcl++;
1609 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1610 goto errout;
1611 }
1612 len = MCLBYTES;
1613 }
1614 m->m_len = len = min(totlen, len);
1615 totlen -= len;
1616 *mp = m;
1617 mp = &m->m_next;
1618 }
1619 q->q_dst_m = top;
1620 ubsec_mcopy(q->q_src_m, q->q_dst_m,
1621 cpskip, cpoffset);
1622 if (q->q_dst_map == NULL) {
1623 if (q->q_cached_dst_map == NULL) {
1624 /* XXX again, what the heck is that 0xfff0? */
1625 if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1626 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1627 &q->q_cached_dst_map) != 0) {
1628 ubsecstats.hst_nomap++;
1629 err = ENOMEM;
1630 goto errout;
1631 }
1632 }
1633 q->q_dst_map = q->q_cached_dst_map;
1634 }
1635 if (bus_dmamap_load_mbuf(sc->sc_dmat,
1636 q->q_dst_map, q->q_dst_m,
1637 BUS_DMA_NOWAIT) != 0) {
1638 ubsecstats.hst_noload++;
1639 err = ENOMEM;
1640 goto errout;
1641 }
1642 }
1643 } else {
1644 ubsecstats.hst_badflags++;
1645 err = EINVAL;
1646 goto errout;
1647 }
1648
1649 #ifdef UBSEC_DEBUG
1650 if (ubsec_debug)
1651 printf("dst skip: %d\n", dskip);
1652 #endif
1653 for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
1654 struct ubsec_pktbuf *pb;
1655 bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
1656 bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
1657
1658 if (dskip >= packl) {
1659 dskip -= packl;
1660 continue;
1661 }
1662
1663 packl -= dskip;
1664 packp += dskip;
1665 dskip = 0;
1666
1667 if (packl > 0xfffc) {
1668 err = EIO;
1669 goto errout;
1670 }
1671
1672 if (j == 0)
1673 pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1674 else
1675 pb = &dmap->d_dma->d_dbuf[j - 1];
1676
1677 pb->pb_addr = htole32(packp);
1678
1679 if (dtheend) {
1680 if (packl > dtheend) {
1681 pb->pb_len = htole32(dtheend);
1682 dtheend = 0;
1683 } else {
1684 pb->pb_len = htole32(packl);
1685 dtheend -= packl;
1686 }
1687 } else
1688 pb->pb_len = htole32(packl);
1689
1690 if ((i + 1) == q->q_dst_map->dm_nsegs) {
1691 if (maccrd)
1692 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1693 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1694 else
1695 pb->pb_next = 0;
1696 } else
1697 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1698 offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1699 j++;
1700 }
1701 }
1702
1703 dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1704 offsetof(struct ubsec_dmachunk, d_ctx));
1705
1706 if (enccrd && enccrd->crd_alg == CRYPTO_AES_CBC) {
1707 struct ubsec_pktctx_aes128 *aes128;
1708 struct ubsec_pktctx_aes192 *aes192;
1709 struct ubsec_pktctx_aes256 *aes256;
1710 struct ubsec_pktctx_hdr *ph;
1711 u_int8_t *ctx;
1712
1713 ctx = (u_int8_t *)(dmap->d_alloc.dma_vaddr) +
1714 offsetof(struct ubsec_dmachunk, d_ctx);
1715
1716 ph = (struct ubsec_pktctx_hdr *)ctx;
1717 ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_AES);
1718 ph->ph_flags = flags;
1719 ph->ph_offset = htole16(coffset >> 2);
1720
1721 switch (enccrd->crd_klen) {
1722 case 128:
1723 aes128 = (struct ubsec_pktctx_aes128 *)ctx;
1724 ph->ph_len = htole16(sizeof(*aes128));
1725 ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_128);
1726 for (i = 0; i < 4; i++)
1727 aes128->pc_aeskey[i] = key.ses_key[i];
1728 for (i = 0; i < 5; i++)
1729 aes128->pc_hminner[i] = key.ses_hminner[i];
1730 for (i = 0; i < 5; i++)
1731 aes128->pc_hmouter[i] = key.ses_hmouter[i];
1732 for (i = 0; i < 4; i++)
1733 aes128->pc_iv[i] = key.ses_iv[i];
1734 break;
1735 case 192:
1736 aes192 = (struct ubsec_pktctx_aes192 *)ctx;
1737 ph->ph_len = htole16(sizeof(*aes192));
1738 ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_192);
1739 for (i = 0; i < 6; i++)
1740 aes192->pc_aeskey[i] = key.ses_key[i];
1741 for (i = 0; i < 5; i++)
1742 aes192->pc_hminner[i] = key.ses_hminner[i];
1743 for (i = 0; i < 5; i++)
1744 aes192->pc_hmouter[i] = key.ses_hmouter[i];
1745 for (i = 0; i < 4; i++)
1746 aes192->pc_iv[i] = key.ses_iv[i];
1747 break;
1748 case 256:
1749 aes256 = (struct ubsec_pktctx_aes256 *)ctx;
1750 ph->ph_len = htole16(sizeof(*aes256));
1751 ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_256);
1752 for (i = 0; i < 8; i++)
1753 aes256->pc_aeskey[i] = key.ses_key[i];
1754 for (i = 0; i < 5; i++)
1755 aes256->pc_hminner[i] = key.ses_hminner[i];
1756 for (i = 0; i < 5; i++)
1757 aes256->pc_hmouter[i] = key.ses_hmouter[i];
1758 for (i = 0; i < 4; i++)
1759 aes256->pc_iv[i] = key.ses_iv[i];
1760 break;
1761 }
1762 } else if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1763 struct ubsec_pktctx_3des *ctx;
1764 struct ubsec_pktctx_hdr *ph;
1765
1766 ctx = (struct ubsec_pktctx_3des *)
1767 ((u_int8_t *)(dmap->d_alloc.dma_vaddr) +
1768 offsetof(struct ubsec_dmachunk, d_ctx));
1769
1770 ph = (struct ubsec_pktctx_hdr *)ctx;
1771 ph->ph_len = htole16(sizeof(*ctx));
1772 ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_3DES);
1773 ph->ph_flags = flags;
1774 ph->ph_offset = htole16(coffset >> 2);
1775
1776 for (i = 0; i < 6; i++)
1777 ctx->pc_deskey[i] = key.ses_key[i];
1778 for (i = 0; i < 5; i++)
1779 ctx->pc_hminner[i] = key.ses_hminner[i];
1780 for (i = 0; i < 5; i++)
1781 ctx->pc_hmouter[i] = key.ses_hmouter[i];
1782 for (i = 0; i < 2; i++)
1783 ctx->pc_iv[i] = key.ses_iv[i];
1784 } else {
1785 struct ubsec_pktctx *ctx = (struct ubsec_pktctx *)
1786 ((u_int8_t *)dmap->d_alloc.dma_vaddr +
1787 offsetof(struct ubsec_dmachunk, d_ctx));
1788
1789 ctx->pc_flags = flags;
1790 ctx->pc_offset = htole16(coffset >> 2);
1791 for (i = 0; i < 6; i++)
1792 ctx->pc_deskey[i] = key.ses_key[i];
1793 for (i = 0; i < 5; i++)
1794 ctx->pc_hminner[i] = key.ses_hminner[i];
1795 for (i = 0; i < 5; i++)
1796 ctx->pc_hmouter[i] = key.ses_hmouter[i];
1797 for (i = 0; i < 2; i++)
1798 ctx->pc_iv[i] = key.ses_iv[i];
1799 }
1800
1801 mutex_spin_enter(&sc->sc_mtx);
1802 SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1803 sc->sc_nqueue++;
1804 ubsecstats.hst_ipackets++;
1805 ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
1806 if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
1807 ubsec_feed(sc);
1808 mutex_spin_exit(&sc->sc_mtx);
1809 return (0);
1810
1811 errout:
1812 if (q != NULL) {
1813 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1814 m_freem(q->q_dst_m);
1815
1816 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1817 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1818 }
1819 if (q->q_src_map != NULL) {
1820 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1821 }
1822
1823 mutex_spin_enter(&sc->sc_mtx);
1824 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1825 mutex_spin_exit(&sc->sc_mtx);
1826 }
1827 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
1828 if (err == EINVAL)
1829 ubsecstats.hst_invalid++;
1830 else
1831 ubsecstats.hst_nomem++;
1832 #endif
1833 if (err != ERESTART) {
1834 crp->crp_etype = err;
1835 crypto_done(crp);
1836 } else {
1837 sc->sc_needwakeup |= CRYPTO_SYMQ;
1838 }
1839 return (err);
1840 }
1841
1842 static void
1843 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1844 {
1845 struct cryptop *crp = (struct cryptop *)q->q_crp;
1846 struct cryptodesc *crd;
1847 struct ubsec_dma *dmap = q->q_dma;
1848
1849 ubsecstats.hst_opackets++;
1850 ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1851
1852 bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
1853 dmap->d_alloc.dma_map->dm_mapsize,
1854 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1855 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1856 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1857 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1858 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1859 }
1860 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
1861 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1862 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1863
1864 if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1865 m_freem(q->q_src_m);
1866 crp->crp_buf = (void *)q->q_dst_m;
1867 }
1868
1869 /* copy out IV for future use */
1870 if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1871 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1872 if (crd->crd_alg != CRYPTO_DES_CBC &&
1873 crd->crd_alg != CRYPTO_3DES_CBC &&
1874 crd->crd_alg != CRYPTO_AES_CBC)
1875 continue;
1876 if (crp->crp_flags & CRYPTO_F_IMBUF)
1877 m_copydata((struct mbuf *)crp->crp_buf,
1878 crd->crd_skip + crd->crd_len - 8, 8,
1879 (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1880 else if (crp->crp_flags & CRYPTO_F_IOV) {
1881 cuio_copydata((struct uio *)crp->crp_buf,
1882 crd->crd_skip + crd->crd_len - 8, 8,
1883 (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1884 }
1885 break;
1886 }
1887 }
1888
1889 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1890 if (crd->crd_alg != CRYPTO_MD5_HMAC_96 &&
1891 crd->crd_alg != CRYPTO_SHA1_HMAC_96)
1892 continue;
1893 if (crp->crp_flags & CRYPTO_F_IMBUF)
1894 m_copyback((struct mbuf *)crp->crp_buf,
1895 crd->crd_inject, 12,
1896 (void *)dmap->d_dma->d_macbuf);
1897 else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1898 bcopy((void *)dmap->d_dma->d_macbuf,
1899 crp->crp_mac, 12);
1900 break;
1901 }
1902 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1903 crypto_done(crp);
1904 }
1905
1906 static void
1907 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1908 {
1909 int i, j, dlen, slen;
1910 char *dptr, *sptr;
1911
1912 j = 0;
1913 sptr = srcm->m_data;
1914 slen = srcm->m_len;
1915 dptr = dstm->m_data;
1916 dlen = dstm->m_len;
1917
1918 while (1) {
1919 for (i = 0; i < min(slen, dlen); i++) {
1920 if (j < hoffset || j >= toffset)
1921 *dptr++ = *sptr++;
1922 slen--;
1923 dlen--;
1924 j++;
1925 }
1926 if (slen == 0) {
1927 srcm = srcm->m_next;
1928 if (srcm == NULL)
1929 return;
1930 sptr = srcm->m_data;
1931 slen = srcm->m_len;
1932 }
1933 if (dlen == 0) {
1934 dstm = dstm->m_next;
1935 if (dstm == NULL)
1936 return;
1937 dptr = dstm->m_data;
1938 dlen = dstm->m_len;
1939 }
1940 }
1941 }
1942
1943 /*
1944 * feed the key generator, must be called at splnet() or higher.
1945 */
1946 static void
1947 ubsec_feed2(struct ubsec_softc *sc)
1948 {
1949 struct ubsec_q2 *q;
1950
1951 while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1952 if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1953 break;
1954 q = SIMPLEQ_FIRST(&sc->sc_queue2);
1955
1956 bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1957 q->q_mcr.dma_map->dm_mapsize,
1958 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1959 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1960 q->q_ctx.dma_map->dm_mapsize,
1961 BUS_DMASYNC_PREWRITE);
1962
1963 WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1964 q = SIMPLEQ_FIRST(&sc->sc_queue2);
1965 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
1966 --sc->sc_nqueue2;
1967 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1968 }
1969 }
1970
1971 /*
1972 * feed the RNG (used instead of ubsec_feed2() on 5827+ devices)
1973 */
1974 void
1975 ubsec_feed4(struct ubsec_softc *sc)
1976 {
1977 struct ubsec_q2 *q;
1978
1979 while (!SIMPLEQ_EMPTY(&sc->sc_queue4)) {
1980 if (READ_REG(sc, BS_STAT) & BS_STAT_MCR4_FULL)
1981 break;
1982 q = SIMPLEQ_FIRST(&sc->sc_queue4);
1983
1984 bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1985 q->q_mcr.dma_map->dm_mapsize,
1986 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1987 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1988 q->q_ctx.dma_map->dm_mapsize,
1989 BUS_DMASYNC_PREWRITE);
1990
1991 WRITE_REG(sc, BS_MCR4, q->q_mcr.dma_paddr);
1992 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue4, q_next);
1993 --sc->sc_nqueue4;
1994 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip4, q, q_next);
1995 }
1996 }
1997
1998 /*
1999 * Callback for handling random numbers
2000 */
2001 static void
2002 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
2003 {
2004 struct cryptkop *krp;
2005 struct ubsec_ctx_keyop *ctx;
2006
2007 ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
2008 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
2009 q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2010
2011 switch (q->q_type) {
2012 #ifndef UBSEC_NO_RNG
2013 case UBS_CTXOP_RNGSHA1:
2014 case UBS_CTXOP_RNGBYPASS: {
2015 struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
2016 u_int32_t *p;
2017 int i;
2018
2019 bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
2020 rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2021 p = (u_int32_t *)rng->rng_buf.dma_vaddr;
2022 #ifndef __NetBSD__
2023 for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++)
2024 add_true_randomness(letoh32(*p));
2025 #else
2026 i = UBSEC_RNG_BUFSIZ * sizeof(u_int32_t);
2027 rnd_add_data(&sc->sc_rnd_source, (char *)p, i, i * NBBY);
2028 sc->sc_rng_need -= i;
2029 #endif
2030 rng->rng_used = 0;
2031 #ifdef __OpenBSD__
2032 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
2033 #else
2034 if (sc->sc_rng_need > 0) {
2035 callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
2036 }
2037 #endif
2038 break;
2039 }
2040 #endif
2041 case UBS_CTXOP_MODEXP: {
2042 struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2043 u_int rlen, clen;
2044
2045 krp = me->me_krp;
2046 rlen = (me->me_modbits + 7) / 8;
2047 clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
2048
2049 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2050 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2051 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2052 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2053 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2054 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2055 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2056 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2057
2058 if (clen < rlen)
2059 krp->krp_status = E2BIG;
2060 else {
2061 if (sc->sc_flags & UBS_FLAGS_HWNORM) {
2062 memset(krp->krp_param[krp->krp_iparams].crp_p, 0,
2063 (krp->krp_param[krp->krp_iparams].crp_nbits
2064 + 7) / 8);
2065 bcopy(me->me_C.dma_vaddr,
2066 krp->krp_param[krp->krp_iparams].crp_p,
2067 (me->me_modbits + 7) / 8);
2068 } else
2069 ubsec_kshift_l(me->me_shiftbits,
2070 me->me_C.dma_vaddr, me->me_normbits,
2071 krp->krp_param[krp->krp_iparams].crp_p,
2072 krp->krp_param[krp->krp_iparams].crp_nbits);
2073 }
2074
2075 crypto_kdone(krp);
2076
2077 /* bzero all potentially sensitive data */
2078 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2079 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2080 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2081 memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
2082
2083 /* Can't free here, so put us on the free list. */
2084 SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
2085 break;
2086 }
2087 case UBS_CTXOP_RSAPRIV: {
2088 struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2089 u_int len;
2090
2091 krp = rp->rpr_krp;
2092 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
2093 rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2094 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
2095 rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2096
2097 len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
2098 bcopy(rp->rpr_msgout.dma_vaddr,
2099 krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
2100
2101 crypto_kdone(krp);
2102
2103 memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
2104 memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
2105 memset(rp->rpr_q.q_ctx.dma_vaddr, 0, rp->rpr_q.q_ctx.dma_size);
2106
2107 /* Can't free here, so put us on the free list. */
2108 SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
2109 break;
2110 }
2111 default:
2112 printf("%s: unknown ctx op: %x\n", device_xname(sc->sc_dev),
2113 letoh16(ctx->ctx_op));
2114 break;
2115 }
2116 }
2117
2118 #ifndef UBSEC_NO_RNG
2119
2120 static void
2121 ubsec_rng_get(size_t bytes, void *vsc)
2122 {
2123 struct ubsec_softc *sc = vsc;
2124
2125 mutex_spin_enter(&sc->sc_mtx);
2126 sc->sc_rng_need = bytes;
2127 ubsec_rng_locked(sc);
2128 mutex_spin_exit(&sc->sc_mtx);
2129
2130 }
2131
2132 static void
2133 ubsec_rng(void *vsc)
2134 {
2135 struct ubsec_softc *sc = vsc;
2136 mutex_spin_enter(&sc->sc_mtx);
2137 ubsec_rng_locked(sc);
2138 mutex_spin_exit(&sc->sc_mtx);
2139 }
2140
2141 static void
2142 ubsec_rng_locked(void *vsc)
2143 {
2144 struct ubsec_softc *sc = vsc;
2145 struct ubsec_q2_rng *rng = &sc->sc_rng;
2146 struct ubsec_mcr *mcr;
2147 struct ubsec_ctx_rngbypass *ctx;
2148 int *nqueue;
2149
2150 /* Caller is responsible to lock and release sc_mtx. */
2151 KASSERT(mutex_owned(&sc->sc_mtx));
2152
2153 if (rng->rng_used) {
2154 return;
2155 }
2156
2157 if (sc->sc_rng_need < 1) {
2158 callout_stop(&sc->sc_rngto);
2159 return;
2160 }
2161
2162 if (sc->sc_flags & UBS_FLAGS_RNG4)
2163 nqueue = &sc->sc_nqueue4;
2164 else
2165 nqueue = &sc->sc_nqueue2;
2166
2167 (*nqueue)++;
2168 if (*nqueue >= UBS_MAX_NQUEUE)
2169 goto out;
2170
2171 mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
2172 ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
2173
2174 mcr->mcr_pkts = htole16(1);
2175 mcr->mcr_flags = 0;
2176 mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
2177 mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
2178 mcr->mcr_ipktbuf.pb_len = 0;
2179 mcr->mcr_reserved = mcr->mcr_pktlen = 0;
2180 mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
2181 mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
2182 UBS_PKTBUF_LEN);
2183 mcr->mcr_opktbuf.pb_next = 0;
2184
2185 ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
2186 ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
2187 rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
2188
2189 bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
2190 rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2191
2192 if (sc->sc_flags & UBS_FLAGS_RNG4) {
2193 SIMPLEQ_INSERT_TAIL(&sc->sc_queue4, &rng->rng_q, q_next);
2194 ubsec_feed4(sc);
2195 } else {
2196 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
2197 ubsec_feed2(sc);
2198 }
2199 rng->rng_used = 1;
2200 ubsecstats.hst_rng++;
2201
2202 return;
2203
2204 out:
2205 /*
2206 * Something weird happened, generate our own call back.
2207 */
2208 (*nqueue)--;
2209 #ifdef __OpenBSD__
2210 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
2211 #else
2212 callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
2213 #endif
2214 }
2215 #endif /* UBSEC_NO_RNG */
2216
2217 static int
2218 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
2219 struct ubsec_dma_alloc *dma,int mapflags)
2220 {
2221 int r;
2222
2223 if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
2224 &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
2225 goto fail_0;
2226
2227 if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
2228 size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
2229 goto fail_1;
2230
2231 if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
2232 BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
2233 goto fail_2;
2234
2235 if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
2236 size, NULL, BUS_DMA_NOWAIT)) != 0)
2237 goto fail_3;
2238
2239 dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
2240 dma->dma_size = size;
2241 return (0);
2242
2243 fail_3:
2244 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
2245 fail_2:
2246 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
2247 fail_1:
2248 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
2249 fail_0:
2250 dma->dma_map = NULL;
2251 return (r);
2252 }
2253
2254 static void
2255 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
2256 {
2257 bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
2258 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
2259 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
2260 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
2261 }
2262
2263 /*
2264 * Resets the board. Values in the regesters are left as is
2265 * from the reset (i.e. initial values are assigned elsewhere).
2266 */
2267 static void
2268 ubsec_reset_board(struct ubsec_softc *sc)
2269 {
2270 volatile u_int32_t ctrl;
2271
2272 ctrl = READ_REG(sc, BS_CTRL);
2273 ctrl |= BS_CTRL_RESET;
2274 WRITE_REG(sc, BS_CTRL, ctrl);
2275
2276 /*
2277 * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
2278 */
2279 DELAY(10);
2280
2281 /* Enable RNG and interrupts on newer devices */
2282 if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
2283 #ifndef UBSEC_NO_RNG
2284 WRITE_REG(sc, BS_CFG, BS_CFG_RNG);
2285 #endif
2286 WRITE_REG(sc, BS_INT, BS_INT_DMAINT);
2287 }
2288 }
2289
2290 /*
2291 * Init Broadcom registers
2292 */
2293 static void
2294 ubsec_init_board(struct ubsec_softc *sc)
2295 {
2296 u_int32_t ctrl;
2297
2298 ctrl = READ_REG(sc, BS_CTRL);
2299 ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
2300 ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
2301
2302 /*
2303 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
2304 * anyone got hw docs?
2305 */
2306 if (sc->sc_flags & UBS_FLAGS_KEY)
2307 ctrl |= BS_CTRL_MCR2INT;
2308 else
2309 ctrl &= ~BS_CTRL_MCR2INT;
2310
2311 if (sc->sc_flags & UBS_FLAGS_HWNORM)
2312 ctrl &= ~BS_CTRL_SWNORM;
2313
2314 if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
2315 ctrl |= BS_CTRL_BSIZE240;
2316 ctrl &= ~BS_CTRL_MCR3INT; /* MCR3 is reserved for SSL */
2317
2318 if (sc->sc_flags & UBS_FLAGS_RNG4)
2319 ctrl |= BS_CTRL_MCR4INT;
2320 else
2321 ctrl &= ~BS_CTRL_MCR4INT;
2322 }
2323
2324 WRITE_REG(sc, BS_CTRL, ctrl);
2325 }
2326
2327 /*
2328 * Init Broadcom PCI registers
2329 */
2330 static void
2331 ubsec_init_pciregs(struct pci_attach_args *pa)
2332 {
2333 pci_chipset_tag_t pc = pa->pa_pc;
2334 u_int32_t misc;
2335
2336 /*
2337 * This will set the cache line size to 1, this will
2338 * force the BCM58xx chip just to do burst read/writes.
2339 * Cache line read/writes are to slow
2340 */
2341 misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
2342 misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
2343 | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
2344 pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
2345 }
2346
2347 /*
2348 * Clean up after a chip crash.
2349 * It is assumed that the caller in splnet()
2350 */
2351 static void
2352 ubsec_cleanchip(struct ubsec_softc *sc)
2353 {
2354 struct ubsec_q *q;
2355
2356 while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
2357 q = SIMPLEQ_FIRST(&sc->sc_qchip);
2358 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
2359 ubsec_free_q(sc, q);
2360 }
2361 sc->sc_nqchip = 0;
2362 }
2363
2364 /*
2365 * free a ubsec_q
2366 * It is assumed that the caller is within splnet()
2367 */
2368 static int
2369 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2370 {
2371 struct ubsec_q *q2;
2372 struct cryptop *crp;
2373 int npkts;
2374 int i;
2375
2376 npkts = q->q_nstacked_mcrs;
2377
2378 for (i = 0; i < npkts; i++) {
2379 if(q->q_stacked_mcr[i]) {
2380 q2 = q->q_stacked_mcr[i];
2381
2382 if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
2383 m_freem(q2->q_dst_m);
2384
2385 crp = (struct cryptop *)q2->q_crp;
2386
2387 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2388
2389 crp->crp_etype = EFAULT;
2390 crypto_done(crp);
2391 } else {
2392 break;
2393 }
2394 }
2395
2396 /*
2397 * Free header MCR
2398 */
2399 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2400 m_freem(q->q_dst_m);
2401
2402 crp = (struct cryptop *)q->q_crp;
2403
2404 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2405
2406 crp->crp_etype = EFAULT;
2407 crypto_done(crp);
2408 return(0);
2409 }
2410
2411 /*
2412 * Routine to reset the chip and clean up.
2413 * It is assumed that the caller is in splnet()
2414 */
2415 static void
2416 ubsec_totalreset(struct ubsec_softc *sc)
2417 {
2418 ubsec_reset_board(sc);
2419 ubsec_init_board(sc);
2420 ubsec_cleanchip(sc);
2421 }
2422
2423 static int
2424 ubsec_dmamap_aligned(bus_dmamap_t map)
2425 {
2426 int i;
2427
2428 for (i = 0; i < map->dm_nsegs; i++) {
2429 if (map->dm_segs[i].ds_addr & 3)
2430 return (0);
2431 if ((i != (map->dm_nsegs - 1)) &&
2432 (map->dm_segs[i].ds_len & 3))
2433 return (0);
2434 }
2435 return (1);
2436 }
2437
2438 #ifdef __OpenBSD__
2439 struct ubsec_softc *
2440 ubsec_kfind(struct cryptkop *krp)
2441 {
2442 struct ubsec_softc *sc;
2443 int i;
2444
2445 for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
2446 sc = ubsec_cd.cd_devs[i];
2447 if (sc == NULL)
2448 continue;
2449 if (sc->sc_cid == krp->krp_hid)
2450 return (sc);
2451 }
2452 return (NULL);
2453 }
2454 #endif
2455
2456 static void
2457 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2458 {
2459 switch (q->q_type) {
2460 case UBS_CTXOP_MODEXP: {
2461 struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2462
2463 ubsec_dma_free(sc, &me->me_q.q_mcr);
2464 ubsec_dma_free(sc, &me->me_q.q_ctx);
2465 ubsec_dma_free(sc, &me->me_M);
2466 ubsec_dma_free(sc, &me->me_E);
2467 ubsec_dma_free(sc, &me->me_C);
2468 ubsec_dma_free(sc, &me->me_epb);
2469 free(me, M_DEVBUF);
2470 break;
2471 }
2472 case UBS_CTXOP_RSAPRIV: {
2473 struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2474
2475 ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2476 ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2477 ubsec_dma_free(sc, &rp->rpr_msgin);
2478 ubsec_dma_free(sc, &rp->rpr_msgout);
2479 free(rp, M_DEVBUF);
2480 break;
2481 }
2482 default:
2483 printf("%s: invalid kfree 0x%x\n", device_xname(sc->sc_dev),
2484 q->q_type);
2485 break;
2486 }
2487 }
2488
2489 static int
2490 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2491 {
2492 struct ubsec_softc *sc;
2493 int r;
2494
2495 if (krp == NULL || krp->krp_callback == NULL)
2496 return (EINVAL);
2497 #ifdef __OpenBSD__
2498 if ((sc = ubsec_kfind(krp)) == NULL)
2499 return (EINVAL);
2500 #else
2501 sc = arg;
2502 KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/);
2503 #endif
2504
2505 while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2506 struct ubsec_q2 *q;
2507
2508 q = SIMPLEQ_FIRST(&sc->sc_q2free);
2509 SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
2510 ubsec_kfree(sc, q);
2511 }
2512
2513 switch (krp->krp_op) {
2514 case CRK_MOD_EXP:
2515 if (sc->sc_flags & UBS_FLAGS_HWNORM)
2516 r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2517 else
2518 r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2519 break;
2520 case CRK_MOD_EXP_CRT:
2521 r = ubsec_kprocess_rsapriv(sc, krp, hint);
2522 break;
2523 default:
2524 printf("%s: kprocess: invalid op 0x%x\n",
2525 device_xname(sc->sc_dev), krp->krp_op);
2526 krp->krp_status = EOPNOTSUPP;
2527 crypto_kdone(krp);
2528 r = 0;
2529 }
2530 return (r);
2531 }
2532
2533 /*
2534 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2535 */
2536 static int
2537 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
2538 int hint)
2539 {
2540 struct ubsec_q2_modexp *me;
2541 struct ubsec_mcr *mcr;
2542 struct ubsec_ctx_modexp *ctx;
2543 struct ubsec_pktbuf *epb;
2544 int err = 0;
2545 u_int nbits, normbits, mbits, shiftbits, ebits;
2546
2547 me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2548 if (me == NULL) {
2549 err = ENOMEM;
2550 goto errout;
2551 }
2552 memset(me, 0, sizeof *me);
2553 me->me_krp = krp;
2554 me->me_q.q_type = UBS_CTXOP_MODEXP;
2555
2556 nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2557 if (nbits <= 512)
2558 normbits = 512;
2559 else if (nbits <= 768)
2560 normbits = 768;
2561 else if (nbits <= 1024)
2562 normbits = 1024;
2563 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2564 normbits = 1536;
2565 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2566 normbits = 2048;
2567 else {
2568 err = E2BIG;
2569 goto errout;
2570 }
2571
2572 shiftbits = normbits - nbits;
2573
2574 me->me_modbits = nbits;
2575 me->me_shiftbits = shiftbits;
2576 me->me_normbits = normbits;
2577
2578 /* Sanity check: result bits must be >= true modulus bits. */
2579 if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2580 err = ERANGE;
2581 goto errout;
2582 }
2583
2584 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2585 &me->me_q.q_mcr, 0)) {
2586 err = ENOMEM;
2587 goto errout;
2588 }
2589 mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2590
2591 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2592 &me->me_q.q_ctx, 0)) {
2593 err = ENOMEM;
2594 goto errout;
2595 }
2596
2597 mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2598 if (mbits > nbits) {
2599 err = E2BIG;
2600 goto errout;
2601 }
2602 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2603 err = ENOMEM;
2604 goto errout;
2605 }
2606 ubsec_kshift_r(shiftbits,
2607 krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2608 me->me_M.dma_vaddr, normbits);
2609
2610 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2611 err = ENOMEM;
2612 goto errout;
2613 }
2614 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2615
2616 ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2617 if (ebits > nbits) {
2618 err = E2BIG;
2619 goto errout;
2620 }
2621 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2622 err = ENOMEM;
2623 goto errout;
2624 }
2625 ubsec_kshift_r(shiftbits,
2626 krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2627 me->me_E.dma_vaddr, normbits);
2628
2629 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2630 &me->me_epb, 0)) {
2631 err = ENOMEM;
2632 goto errout;
2633 }
2634 epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2635 epb->pb_addr = htole32(me->me_E.dma_paddr);
2636 epb->pb_next = 0;
2637 epb->pb_len = htole32(normbits / 8);
2638
2639 #ifdef UBSEC_DEBUG
2640 if (ubsec_debug) {
2641 printf("Epb ");
2642 ubsec_dump_pb(epb);
2643 }
2644 #endif
2645
2646 mcr->mcr_pkts = htole16(1);
2647 mcr->mcr_flags = 0;
2648 mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2649 mcr->mcr_reserved = 0;
2650 mcr->mcr_pktlen = 0;
2651
2652 mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2653 mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2654 mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2655
2656 mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2657 mcr->mcr_opktbuf.pb_next = 0;
2658 mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2659
2660 #ifdef DIAGNOSTIC
2661 /* Misaligned output buffer will hang the chip. */
2662 if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2663 panic("%s: modexp invalid addr 0x%x",
2664 device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr));
2665 if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2666 panic("%s: modexp invalid len 0x%x",
2667 device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len));
2668 #endif
2669
2670 ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2671 memset(ctx, 0, sizeof(*ctx));
2672 ubsec_kshift_r(shiftbits,
2673 krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2674 ctx->me_N, normbits);
2675 ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2676 ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2677 ctx->me_E_len = htole16(nbits);
2678 ctx->me_N_len = htole16(nbits);
2679
2680 #ifdef UBSEC_DEBUG
2681 if (ubsec_debug) {
2682 ubsec_dump_mcr(mcr);
2683 ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2684 }
2685 #endif
2686
2687 /*
2688 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2689 * everything else.
2690 */
2691 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2692 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2693 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2694 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2695 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2696 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2697 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2698 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2699
2700 /* Enqueue and we're done... */
2701 mutex_spin_enter(&sc->sc_mtx);
2702 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2703 ubsec_feed2(sc);
2704 ubsecstats.hst_modexp++;
2705 mutex_spin_exit(&sc->sc_mtx);
2706
2707 return (0);
2708
2709 errout:
2710 if (me != NULL) {
2711 if (me->me_q.q_mcr.dma_map != NULL)
2712 ubsec_dma_free(sc, &me->me_q.q_mcr);
2713 if (me->me_q.q_ctx.dma_map != NULL) {
2714 memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
2715 ubsec_dma_free(sc, &me->me_q.q_ctx);
2716 }
2717 if (me->me_M.dma_map != NULL) {
2718 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2719 ubsec_dma_free(sc, &me->me_M);
2720 }
2721 if (me->me_E.dma_map != NULL) {
2722 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2723 ubsec_dma_free(sc, &me->me_E);
2724 }
2725 if (me->me_C.dma_map != NULL) {
2726 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2727 ubsec_dma_free(sc, &me->me_C);
2728 }
2729 if (me->me_epb.dma_map != NULL)
2730 ubsec_dma_free(sc, &me->me_epb);
2731 free(me, M_DEVBUF);
2732 }
2733 krp->krp_status = err;
2734 crypto_kdone(krp);
2735 return (0);
2736 }
2737
2738 /*
2739 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2740 */
2741 static int
2742 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
2743 int hint)
2744 {
2745 struct ubsec_q2_modexp *me;
2746 struct ubsec_mcr *mcr;
2747 struct ubsec_ctx_modexp *ctx;
2748 struct ubsec_pktbuf *epb;
2749 int err = 0;
2750 u_int nbits, normbits, mbits, shiftbits, ebits;
2751
2752 me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2753 if (me == NULL) {
2754 err = ENOMEM;
2755 goto errout;
2756 }
2757 memset(me, 0, sizeof *me);
2758 me->me_krp = krp;
2759 me->me_q.q_type = UBS_CTXOP_MODEXP;
2760
2761 nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2762 if (nbits <= 512)
2763 normbits = 512;
2764 else if (nbits <= 768)
2765 normbits = 768;
2766 else if (nbits <= 1024)
2767 normbits = 1024;
2768 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2769 normbits = 1536;
2770 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2771 normbits = 2048;
2772 else {
2773 err = E2BIG;
2774 goto errout;
2775 }
2776
2777 shiftbits = normbits - nbits;
2778
2779 /* XXX ??? */
2780 me->me_modbits = nbits;
2781 me->me_shiftbits = shiftbits;
2782 me->me_normbits = normbits;
2783
2784 /* Sanity check: result bits must be >= true modulus bits. */
2785 if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2786 err = ERANGE;
2787 goto errout;
2788 }
2789
2790 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2791 &me->me_q.q_mcr, 0)) {
2792 err = ENOMEM;
2793 goto errout;
2794 }
2795 mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2796
2797 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2798 &me->me_q.q_ctx, 0)) {
2799 err = ENOMEM;
2800 goto errout;
2801 }
2802
2803 mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2804 if (mbits > nbits) {
2805 err = E2BIG;
2806 goto errout;
2807 }
2808 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2809 err = ENOMEM;
2810 goto errout;
2811 }
2812 memset(me->me_M.dma_vaddr, 0, normbits / 8);
2813 bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2814 me->me_M.dma_vaddr, (mbits + 7) / 8);
2815
2816 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2817 err = ENOMEM;
2818 goto errout;
2819 }
2820 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2821
2822 ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2823 if (ebits > nbits) {
2824 err = E2BIG;
2825 goto errout;
2826 }
2827 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2828 err = ENOMEM;
2829 goto errout;
2830 }
2831 memset(me->me_E.dma_vaddr, 0, normbits / 8);
2832 bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2833 me->me_E.dma_vaddr, (ebits + 7) / 8);
2834
2835 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2836 &me->me_epb, 0)) {
2837 err = ENOMEM;
2838 goto errout;
2839 }
2840 epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2841 epb->pb_addr = htole32(me->me_E.dma_paddr);
2842 epb->pb_next = 0;
2843 epb->pb_len = htole32((ebits + 7) / 8);
2844
2845 #ifdef UBSEC_DEBUG
2846 if (ubsec_debug) {
2847 printf("Epb ");
2848 ubsec_dump_pb(epb);
2849 }
2850 #endif
2851
2852 mcr->mcr_pkts = htole16(1);
2853 mcr->mcr_flags = 0;
2854 mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2855 mcr->mcr_reserved = 0;
2856 mcr->mcr_pktlen = 0;
2857
2858 mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2859 mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2860 mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2861
2862 mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2863 mcr->mcr_opktbuf.pb_next = 0;
2864 mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2865
2866 #ifdef DIAGNOSTIC
2867 /* Misaligned output buffer will hang the chip. */
2868 if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2869 panic("%s: modexp invalid addr 0x%x",
2870 device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr));
2871 if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2872 panic("%s: modexp invalid len 0x%x",
2873 device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len));
2874 #endif
2875
2876 ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2877 memset(ctx, 0, sizeof(*ctx));
2878 memcpy(ctx->me_N, krp->krp_param[UBS_MODEXP_PAR_N].crp_p,
2879 (nbits + 7) / 8);
2880 ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2881 ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2882 ctx->me_E_len = htole16(ebits);
2883 ctx->me_N_len = htole16(nbits);
2884
2885 #ifdef UBSEC_DEBUG
2886 if (ubsec_debug) {
2887 ubsec_dump_mcr(mcr);
2888 ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2889 }
2890 #endif
2891
2892 /*
2893 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2894 * everything else.
2895 */
2896 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2897 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2898 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2899 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2900 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2901 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2902 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2903 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2904
2905 /* Enqueue and we're done... */
2906 mutex_spin_enter(&sc->sc_mtx);
2907 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2908 ubsec_feed2(sc);
2909 mutex_spin_exit(&sc->sc_mtx);
2910
2911 return (0);
2912
2913 errout:
2914 if (me != NULL) {
2915 if (me->me_q.q_mcr.dma_map != NULL)
2916 ubsec_dma_free(sc, &me->me_q.q_mcr);
2917 if (me->me_q.q_ctx.dma_map != NULL) {
2918 memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
2919 ubsec_dma_free(sc, &me->me_q.q_ctx);
2920 }
2921 if (me->me_M.dma_map != NULL) {
2922 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2923 ubsec_dma_free(sc, &me->me_M);
2924 }
2925 if (me->me_E.dma_map != NULL) {
2926 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2927 ubsec_dma_free(sc, &me->me_E);
2928 }
2929 if (me->me_C.dma_map != NULL) {
2930 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2931 ubsec_dma_free(sc, &me->me_C);
2932 }
2933 if (me->me_epb.dma_map != NULL)
2934 ubsec_dma_free(sc, &me->me_epb);
2935 free(me, M_DEVBUF);
2936 }
2937 krp->krp_status = err;
2938 crypto_kdone(krp);
2939 return (0);
2940 }
2941
2942 static int
2943 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
2944 int hint)
2945 {
2946 struct ubsec_q2_rsapriv *rp = NULL;
2947 struct ubsec_mcr *mcr;
2948 struct ubsec_ctx_rsapriv *ctx;
2949 int err = 0;
2950 u_int padlen, msglen;
2951
2952 msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2953 padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2954 if (msglen > padlen)
2955 padlen = msglen;
2956
2957 if (padlen <= 256)
2958 padlen = 256;
2959 else if (padlen <= 384)
2960 padlen = 384;
2961 else if (padlen <= 512)
2962 padlen = 512;
2963 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2964 padlen = 768;
2965 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2966 padlen = 1024;
2967 else {
2968 err = E2BIG;
2969 goto errout;
2970 }
2971
2972 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2973 err = E2BIG;
2974 goto errout;
2975 }
2976
2977 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2978 err = E2BIG;
2979 goto errout;
2980 }
2981
2982 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2983 err = E2BIG;
2984 goto errout;
2985 }
2986
2987 rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT|M_ZERO);
2988 if (rp == NULL)
2989 return (ENOMEM);
2990 rp->rpr_krp = krp;
2991 rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2992
2993 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2994 &rp->rpr_q.q_mcr, 0)) {
2995 err = ENOMEM;
2996 goto errout;
2997 }
2998 mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2999
3000 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
3001 &rp->rpr_q.q_ctx, 0)) {
3002 err = ENOMEM;
3003 goto errout;
3004 }
3005 ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
3006 memset(ctx, 0, sizeof *ctx);
3007
3008 /* Copy in p */
3009 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
3010 &ctx->rpr_buf[0 * (padlen / 8)],
3011 (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
3012
3013 /* Copy in q */
3014 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
3015 &ctx->rpr_buf[1 * (padlen / 8)],
3016 (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
3017
3018 /* Copy in dp */
3019 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
3020 &ctx->rpr_buf[2 * (padlen / 8)],
3021 (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
3022
3023 /* Copy in dq */
3024 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
3025 &ctx->rpr_buf[3 * (padlen / 8)],
3026 (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
3027
3028 /* Copy in pinv */
3029 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
3030 &ctx->rpr_buf[4 * (padlen / 8)],
3031 (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
3032
3033 msglen = padlen * 2;
3034
3035 /* Copy in input message (aligned buffer/length). */
3036 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
3037 /* Is this likely? */
3038 err = E2BIG;
3039 goto errout;
3040 }
3041 if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
3042 err = ENOMEM;
3043 goto errout;
3044 }
3045 memset(rp->rpr_msgin.dma_vaddr, 0, (msglen + 7) / 8);
3046 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
3047 rp->rpr_msgin.dma_vaddr,
3048 (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
3049
3050 /* Prepare space for output message (aligned buffer/length). */
3051 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
3052 /* Is this likely? */
3053 err = E2BIG;
3054 goto errout;
3055 }
3056 if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
3057 err = ENOMEM;
3058 goto errout;
3059 }
3060 memset(rp->rpr_msgout.dma_vaddr, 0, (msglen + 7) / 8);
3061
3062 mcr->mcr_pkts = htole16(1);
3063 mcr->mcr_flags = 0;
3064 mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
3065 mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
3066 mcr->mcr_ipktbuf.pb_next = 0;
3067 mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
3068 mcr->mcr_reserved = 0;
3069 mcr->mcr_pktlen = htole16(msglen);
3070 mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
3071 mcr->mcr_opktbuf.pb_next = 0;
3072 mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
3073
3074 #ifdef DIAGNOSTIC
3075 if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
3076 panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
3077 device_xname(sc->sc_dev), (u_long) rp->rpr_msgin.dma_paddr,
3078 (u_long) rp->rpr_msgin.dma_size);
3079 }
3080 if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
3081 panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
3082 device_xname(sc->sc_dev), (u_long) rp->rpr_msgout.dma_paddr,
3083 (u_long) rp->rpr_msgout.dma_size);
3084 }
3085 #endif
3086
3087 ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
3088 ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
3089 ctx->rpr_q_len = htole16(padlen);
3090 ctx->rpr_p_len = htole16(padlen);
3091
3092 /*
3093 * ubsec_feed2 will sync mcr and ctx, we just need to sync
3094 * everything else.
3095 */
3096 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
3097 0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3098 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
3099 0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
3100
3101 /* Enqueue and we're done... */
3102 mutex_spin_enter(&sc->sc_mtx);
3103 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
3104 ubsec_feed2(sc);
3105 ubsecstats.hst_modexpcrt++;
3106 mutex_spin_exit(&sc->sc_mtx);
3107 return (0);
3108
3109 errout:
3110 if (rp != NULL) {
3111 if (rp->rpr_q.q_mcr.dma_map != NULL)
3112 ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
3113 if (rp->rpr_msgin.dma_map != NULL) {
3114 memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
3115 ubsec_dma_free(sc, &rp->rpr_msgin);
3116 }
3117 if (rp->rpr_msgout.dma_map != NULL) {
3118 memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
3119 ubsec_dma_free(sc, &rp->rpr_msgout);
3120 }
3121 free(rp, M_DEVBUF);
3122 }
3123 krp->krp_status = err;
3124 crypto_kdone(krp);
3125 return (0);
3126 }
3127
3128 #ifdef UBSEC_DEBUG
3129 static void
3130 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
3131 {
3132 printf("addr 0x%x (0x%x) next 0x%x\n",
3133 pb->pb_addr, pb->pb_len, pb->pb_next);
3134 }
3135
3136 static void
3137 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
3138 {
3139 printf("CTX (0x%x):\n", c->ctx_len);
3140 switch (letoh16(c->ctx_op)) {
3141 case UBS_CTXOP_RNGBYPASS:
3142 case UBS_CTXOP_RNGSHA1:
3143 break;
3144 case UBS_CTXOP_MODEXP:
3145 {
3146 struct ubsec_ctx_modexp *cx = (void *)c;
3147 int i, len;
3148
3149 printf(" Elen %u, Nlen %u\n",
3150 letoh16(cx->me_E_len), letoh16(cx->me_N_len));
3151 len = (cx->me_N_len + 7)/8;
3152 for (i = 0; i < len; i++)
3153 printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
3154 printf("\n");
3155 break;
3156 }
3157 default:
3158 printf("unknown context: %x\n", c->ctx_op);
3159 }
3160 printf("END CTX\n");
3161 }
3162
3163 static void
3164 ubsec_dump_mcr(struct ubsec_mcr *mcr)
3165 {
3166 volatile struct ubsec_mcr_add *ma;
3167 int i;
3168
3169 printf("MCR:\n");
3170 printf(" pkts: %u, flags 0x%x\n",
3171 letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
3172 ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
3173 for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
3174 printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
3175 letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
3176 letoh16(ma->mcr_reserved));
3177 printf(" %d: ipkt ", i);
3178 ubsec_dump_pb(&ma->mcr_ipktbuf);
3179 printf(" %d: opkt ", i);
3180 ubsec_dump_pb(&ma->mcr_opktbuf);
3181 ma++;
3182 }
3183 printf("END MCR\n");
3184 }
3185 #endif /* UBSEC_DEBUG */
3186
3187 /*
3188 * Return the number of significant bits of a big number.
3189 */
3190 static int
3191 ubsec_ksigbits(struct crparam *cr)
3192 {
3193 u_int plen = (cr->crp_nbits + 7) / 8;
3194 int i, sig = plen * 8;
3195 u_int8_t c, *p = cr->crp_p;
3196
3197 for (i = plen - 1; i >= 0; i--) {
3198 c = p[i];
3199 if (c != 0) {
3200 while ((c & 0x80) == 0) {
3201 sig--;
3202 c <<= 1;
3203 }
3204 break;
3205 }
3206 sig -= 8;
3207 }
3208 return (sig);
3209 }
3210
3211 static void
3212 ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits,
3213 u_int8_t *dst, u_int dstbits)
3214 {
3215 u_int slen, dlen;
3216 int i, si, di, n;
3217
3218 slen = (srcbits + 7) / 8;
3219 dlen = (dstbits + 7) / 8;
3220
3221 for (i = 0; i < slen; i++)
3222 dst[i] = src[i];
3223 for (i = 0; i < dlen - slen; i++)
3224 dst[slen + i] = 0;
3225
3226 n = shiftbits / 8;
3227 if (n != 0) {
3228 si = dlen - n - 1;
3229 di = dlen - 1;
3230 while (si >= 0)
3231 dst[di--] = dst[si--];
3232 while (di >= 0)
3233 dst[di--] = 0;
3234 }
3235
3236 n = shiftbits % 8;
3237 if (n != 0) {
3238 for (i = dlen - 1; i > 0; i--)
3239 dst[i] = (dst[i] << n) |
3240 (dst[i - 1] >> (8 - n));
3241 dst[0] = dst[0] << n;
3242 }
3243 }
3244
3245 static void
3246 ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits,
3247 u_int8_t *dst, u_int dstbits)
3248 {
3249 int slen, dlen, i, n;
3250
3251 slen = (srcbits + 7) / 8;
3252 dlen = (dstbits + 7) / 8;
3253
3254 n = shiftbits / 8;
3255 for (i = 0; i < slen; i++)
3256 dst[i] = src[i + n];
3257 for (i = 0; i < dlen - slen; i++)
3258 dst[slen + i] = 0;
3259
3260 n = shiftbits % 8;
3261 if (n != 0) {
3262 for (i = 0; i < (dlen - 1); i++)
3263 dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
3264 dst[dlen - 1] = dst[dlen - 1] >> n;
3265 }
3266 }
3267