ubsec.c revision 1.50 1 /* $NetBSD: ubsec.c,v 1.50 2020/04/30 03:40:53 riastradh Exp $ */
2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
3 /* $OpenBSD: ubsec.c,v 1.143 2009/03/27 13:31:30 reyk Exp$ */
4
5 /*
6 * Copyright (c) 2000 Jason L. Wright (jason (at) thought.net)
7 * Copyright (c) 2000 Theo de Raadt (deraadt (at) openbsd.org)
8 * Copyright (c) 2001 Patrik Lindergren (patrik (at) ipunplugged.com)
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Effort sponsored in part by the Defense Advanced Research Projects
32 * Agency (DARPA) and Air Force Research Laboratory, Air Force
33 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
34 *
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: ubsec.c,v 1.50 2020/04/30 03:40:53 riastradh Exp $");
39
40 #undef UBSEC_DEBUG
41
42 /*
43 * uBsec 5[56]01, 58xx hardware crypto accelerator
44 */
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/endian.h>
50 #ifdef __NetBSD__
51 #define UBSEC_NO_RNG /* hangs on attach */
52 #define letoh16 htole16
53 #define letoh32 htole32
54 #endif
55 #include <sys/errno.h>
56 #include <sys/malloc.h>
57 #include <sys/kernel.h>
58 #include <sys/mbuf.h>
59 #include <sys/device.h>
60 #include <sys/module.h>
61 #include <sys/queue.h>
62 #include <sys/sysctl.h>
63
64 #include <opencrypto/cryptodev.h>
65 #include <opencrypto/xform.h>
66 #ifdef __OpenBSD__
67 #include <dev/rndvar.h>
68 #include <sys/md5k.h>
69 #else
70 #include <sys/cprng.h>
71 #include <sys/md5.h>
72 #include <sys/rndsource.h>
73 #endif
74 #include <sys/sha1.h>
75
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79
80 #include <dev/pci/ubsecreg.h>
81 #include <dev/pci/ubsecvar.h>
82
83 /*
84 * Prototypes and count for the pci_device structure
85 */
86 static int ubsec_probe(device_t, cfdata_t, void *);
87 static void ubsec_attach(device_t, device_t, void *);
88 static int ubsec_detach(device_t, int);
89 static void ubsec_reset_board(struct ubsec_softc *);
90 static void ubsec_init_board(struct ubsec_softc *);
91 static void ubsec_init_pciregs(struct pci_attach_args *pa);
92 static void ubsec_cleanchip(struct ubsec_softc *);
93 static void ubsec_totalreset(struct ubsec_softc *);
94 static int ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
95
96 #ifdef __OpenBSD__
97 struct cfattach ubsec_ca = {
98 sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
99 };
100
101 struct cfdriver ubsec_cd = {
102 0, "ubsec", DV_DULL
103 };
104 #else
105 CFATTACH_DECL_NEW(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
106 ubsec_detach, NULL);
107 extern struct cfdriver ubsec_cd;
108 #endif
109
110 /* patchable */
111 #ifdef UBSEC_DEBUG
112 extern int ubsec_debug;
113 int ubsec_debug=1;
114 #endif
115
116 static int ubsec_intr(void *);
117 static int ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
118 static int ubsec_freesession(void*, u_int64_t);
119 static int ubsec_process(void*, struct cryptop *, int hint);
120 static void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
121 static void ubsec_feed(struct ubsec_softc *);
122 static void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
123 static void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
124 static void ubsec_feed2(struct ubsec_softc *);
125 static void ubsec_feed4(struct ubsec_softc *);
126 #ifndef UBSEC_NO_RNG
127 static void ubsec_rng(void *);
128 static void ubsec_rng_locked(void *);
129 static void ubsec_rng_get(size_t, void *);
130 #endif /* UBSEC_NO_RNG */
131 static int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
132 struct ubsec_dma_alloc *, int);
133 static void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
134 static int ubsec_dmamap_aligned(bus_dmamap_t);
135
136 static int ubsec_kprocess(void*, struct cryptkop *, int);
137 static int ubsec_kprocess_modexp_sw(struct ubsec_softc *,
138 struct cryptkop *, int);
139 static int ubsec_kprocess_modexp_hw(struct ubsec_softc *,
140 struct cryptkop *, int);
141 static int ubsec_kprocess_rsapriv(struct ubsec_softc *,
142 struct cryptkop *, int);
143 static void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
144 static int ubsec_ksigbits(struct crparam *);
145 static void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
146 static void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
147
148 #ifdef UBSEC_DEBUG
149 static void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
150 static void ubsec_dump_mcr(struct ubsec_mcr *);
151 static void ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
152 #endif
153
154 #define READ_REG(sc,r) \
155 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
156
157 #define WRITE_REG(sc,reg,val) \
158 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
159
160 #define SWAP32(x) (x) = htole32(ntohl((x)))
161 #ifndef HTOLE32
162 #define HTOLE32(x) (x) = htole32(x)
163 #endif
164
165 struct ubsec_stats ubsecstats;
166
167 /*
168 * ubsec_maxbatch controls the number of crypto ops to voluntarily
169 * collect into one submission to the hardware. This batching happens
170 * when ops are dispatched from the crypto subsystem with a hint that
171 * more are to follow immediately. These ops must also not be marked
172 * with a ``no delay'' flag.
173 */
174 static int ubsec_maxbatch = 1;
175
176 /*
177 * ubsec_maxaggr controls the number of crypto ops to submit to the
178 * hardware as a unit. This aggregation reduces the number of interrupts
179 * to the host at the expense of increased latency (for all but the last
180 * operation). For network traffic setting this to one yields the highest
181 * performance but at the expense of more interrupt processing.
182 */
183 static int ubsec_maxaggr = 1;
184
185 static const struct ubsec_product {
186 pci_vendor_id_t ubsec_vendor;
187 pci_product_id_t ubsec_product;
188 int ubsec_flags;
189 int ubsec_statmask;
190 int ubsec_maxaggr;
191 const char *ubsec_name;
192 } ubsec_products[] = {
193 { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5501,
194 0,
195 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
196 UBS_MIN_AGGR,
197 "Bluesteel 5501"
198 },
199 { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5601,
200 UBS_FLAGS_KEY | UBS_FLAGS_RNG,
201 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
202 UBS_MIN_AGGR,
203 "Bluesteel 5601"
204 },
205
206 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5801,
207 0,
208 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
209 UBS_MIN_AGGR,
210 "Broadcom BCM5801"
211 },
212
213 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5802,
214 UBS_FLAGS_KEY | UBS_FLAGS_RNG,
215 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
216 UBS_MIN_AGGR,
217 "Broadcom BCM5802"
218 },
219
220 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5805,
221 UBS_FLAGS_KEY | UBS_FLAGS_RNG,
222 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
223 UBS_MIN_AGGR,
224 "Broadcom BCM5805"
225 },
226
227 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5820,
228 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
229 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
230 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
231 UBS_MIN_AGGR,
232 "Broadcom BCM5820"
233 },
234
235 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5821,
236 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
237 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
238 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
239 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
240 UBS_MIN_AGGR,
241 "Broadcom BCM5821"
242 },
243 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_SCA1K,
244 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
245 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
246 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
247 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
248 UBS_MIN_AGGR,
249 "Sun Crypto Accelerator 1000"
250 },
251 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_5821,
252 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
253 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
254 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
255 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
256 UBS_MIN_AGGR,
257 "Broadcom BCM5821 (Sun)"
258 },
259
260 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5822,
261 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
262 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
263 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
264 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
265 UBS_MIN_AGGR,
266 "Broadcom BCM5822"
267 },
268
269 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5823,
270 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
271 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
272 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
273 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
274 UBS_MIN_AGGR,
275 "Broadcom BCM5823"
276 },
277
278 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5825,
279 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
280 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
281 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
282 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
283 UBS_MIN_AGGR,
284 "Broadcom BCM5825"
285 },
286
287 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5860,
288 UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
289 UBS_FLAGS_LONGCTX |
290 UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
291 UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
292 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
293 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
294 BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
295 UBS_MAX_AGGR,
296 "Broadcom BCM5860"
297 },
298
299 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5861,
300 UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
301 UBS_FLAGS_LONGCTX |
302 UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
303 UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
304 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
305 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
306 BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
307 UBS_MAX_AGGR,
308 "Broadcom BCM5861"
309 },
310
311 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5862,
312 UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
313 UBS_FLAGS_LONGCTX |
314 UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
315 UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
316 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
317 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
318 BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
319 UBS_MAX_AGGR,
320 "Broadcom BCM5862"
321 },
322
323 { 0, 0,
324 0,
325 0,
326 0,
327 NULL
328 }
329 };
330
331 static const struct ubsec_product *
332 ubsec_lookup(const struct pci_attach_args *pa)
333 {
334 const struct ubsec_product *up;
335
336 for (up = ubsec_products; up->ubsec_name != NULL; up++) {
337 if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
338 PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
339 return (up);
340 }
341 return (NULL);
342 }
343
344 static int
345 ubsec_probe(device_t parent, cfdata_t match, void *aux)
346 {
347 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
348
349 if (ubsec_lookup(pa) != NULL)
350 return (1);
351
352 return (0);
353 }
354
355 static void
356 ubsec_attach(device_t parent, device_t self, void *aux)
357 {
358 struct ubsec_softc *sc = device_private(self);
359 struct pci_attach_args *pa = aux;
360 const struct ubsec_product *up;
361 pci_chipset_tag_t pc = pa->pa_pc;
362 pci_intr_handle_t ih;
363 const char *intrstr = NULL;
364 pcireg_t memtype;
365 struct ubsec_dma *dmap;
366 u_int32_t cmd, i;
367 char intrbuf[PCI_INTRSTR_LEN];
368
369 sc->sc_dev = self;
370 sc->sc_pct = pc;
371
372 up = ubsec_lookup(pa);
373 if (up == NULL) {
374 printf("\n");
375 panic("ubsec_attach: impossible");
376 }
377
378 pci_aprint_devinfo_fancy(pa, "Crypto processor", up->ubsec_name, 1);
379
380 SIMPLEQ_INIT(&sc->sc_queue);
381 SIMPLEQ_INIT(&sc->sc_qchip);
382 SIMPLEQ_INIT(&sc->sc_queue2);
383 SIMPLEQ_INIT(&sc->sc_qchip2);
384 SIMPLEQ_INIT(&sc->sc_queue4);
385 SIMPLEQ_INIT(&sc->sc_qchip4);
386 SIMPLEQ_INIT(&sc->sc_q2free);
387
388 sc->sc_flags = up->ubsec_flags;
389 sc->sc_statmask = up->ubsec_statmask;
390 sc->sc_maxaggr = up->ubsec_maxaggr;
391
392 cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
393 cmd |= PCI_COMMAND_MASTER_ENABLE;
394 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
395
396 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BS_BAR);
397 if (pci_mapreg_map(pa, BS_BAR, memtype, 0,
398 &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize)) {
399 aprint_error_dev(self, "can't find mem space");
400 return;
401 }
402
403 sc->sc_dmat = pa->pa_dmat;
404
405 if (pci_intr_map(pa, &ih)) {
406 aprint_error_dev(self, "couldn't map interrupt\n");
407 return;
408 }
409 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
410 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, ubsec_intr, sc,
411 device_xname(self));
412 if (sc->sc_ih == NULL) {
413 aprint_error_dev(self, "couldn't establish interrupt");
414 if (intrstr != NULL)
415 aprint_error(" at %s", intrstr);
416 aprint_error("\n");
417 return;
418 }
419 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
420
421 sc->sc_cid = crypto_get_driverid(0);
422 if (sc->sc_cid < 0) {
423 aprint_error_dev(self, "couldn't get crypto driver id\n");
424 pci_intr_disestablish(pc, sc->sc_ih);
425 return;
426 }
427
428 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_VM);
429
430 SIMPLEQ_INIT(&sc->sc_freequeue);
431 dmap = sc->sc_dmaa;
432 for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
433 struct ubsec_q *q;
434
435 q = malloc(sizeof(struct ubsec_q), M_DEVBUF, M_ZERO|M_WAITOK);
436
437 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
438 &dmap->d_alloc, 0)) {
439 aprint_error_dev(self, "can't allocate dma buffers\n");
440 free(q, M_DEVBUF);
441 break;
442 }
443 dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
444
445 q->q_dma = dmap;
446 sc->sc_queuea[i] = q;
447
448 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
449 }
450
451 crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
452 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
453 crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
454 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
455 crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0,
456 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
457 crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0,
458 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
459 if (sc->sc_flags & UBS_FLAGS_AES) {
460 crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
461 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
462 }
463
464 /*
465 * Reset Broadcom chip
466 */
467 ubsec_reset_board(sc);
468
469 /*
470 * Init Broadcom specific PCI settings
471 */
472 ubsec_init_pciregs(pa);
473
474 /*
475 * Init Broadcom chip
476 */
477 ubsec_init_board(sc);
478
479 #ifndef UBSEC_NO_RNG
480 if (sc->sc_flags & UBS_FLAGS_RNG) {
481 if (sc->sc_flags & UBS_FLAGS_RNG4)
482 sc->sc_statmask |= BS_STAT_MCR4_DONE;
483 else
484 sc->sc_statmask |= BS_STAT_MCR2_DONE;
485
486 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
487 &sc->sc_rng.rng_q.q_mcr, 0))
488 goto skip_rng;
489
490 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
491 &sc->sc_rng.rng_q.q_ctx, 0)) {
492 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
493 goto skip_rng;
494 }
495
496 if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
497 UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
498 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
499 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
500 goto skip_rng;
501 }
502 if (hz >= 100)
503 sc->sc_rnghz = hz / 100;
504 else
505 sc->sc_rnghz = 1;
506 #ifdef __OpenBSD__
507 timeout_set(&sc->sc_rngto, ubsec_rng, sc);
508 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
509 #else
510 callout_init(&sc->sc_rngto, 0);
511 callout_setfunc(&sc->sc_rngto, ubsec_rng, sc);
512 #endif
513 rndsource_setcb(&sc->sc_rnd_source, ubsec_rng_get, sc);
514 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
515 RND_TYPE_RNG,
516 RND_FLAG_COLLECT_VALUE|RND_FLAG_HASCB);
517
518 skip_rng:
519 if (sc->sc_rnghz)
520 aprint_normal_dev(self,
521 "random number generator enabled\n");
522 else
523 aprint_error_dev(self,
524 "WARNING: random number generator disabled\n");
525 }
526 #endif /* UBSEC_NO_RNG */
527
528 if (sc->sc_flags & UBS_FLAGS_KEY) {
529 sc->sc_statmask |= BS_STAT_MCR2_DONE;
530
531 crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
532 ubsec_kprocess, sc);
533 #if 0
534 crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
535 ubsec_kprocess, sc);
536 #endif
537 }
538 }
539
540 static int
541 ubsec_detach(device_t self, int flags)
542 {
543 struct ubsec_softc *sc = device_private(self);
544 struct ubsec_q *q, *qtmp;
545 volatile u_int32_t ctrl;
546
547 /* disable interrupts */
548 /* XXX wait/abort current ops? where is DMAERR enabled? */
549 ctrl = READ_REG(sc, BS_CTRL);
550
551 ctrl &= ~(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR);
552 if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
553 ctrl &= ~BS_CTRL_MCR4INT;
554
555 WRITE_REG(sc, BS_CTRL, ctrl);
556
557 #ifndef UBSEC_NO_RNG
558 if (sc->sc_flags & UBS_FLAGS_RNG) {
559 callout_halt(&sc->sc_rngto, NULL);
560 ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
561 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
562 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
563 rnd_detach_source(&sc->sc_rnd_source);
564 }
565 #endif /* UBSEC_NO_RNG */
566
567 crypto_unregister_all(sc->sc_cid);
568
569 mutex_spin_enter(&sc->sc_mtx);
570
571 ubsec_totalreset(sc); /* XXX leaves the chip running */
572
573 SIMPLEQ_FOREACH_SAFE(q, &sc->sc_freequeue, q_next, qtmp) {
574 ubsec_dma_free(sc, &q->q_dma->d_alloc);
575 if (q->q_src_map != NULL)
576 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
577 if (q->q_cached_dst_map != NULL)
578 bus_dmamap_destroy(sc->sc_dmat, q->q_cached_dst_map);
579 free(q, M_DEVBUF);
580 }
581
582 mutex_spin_exit(&sc->sc_mtx);
583
584 if (sc->sc_ih != NULL) {
585 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
586 sc->sc_ih = NULL;
587 }
588
589 if (sc->sc_memsize != 0) {
590 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
591 sc->sc_memsize = 0;
592 }
593
594 return 0;
595 }
596
597 MODULE(MODULE_CLASS_DRIVER, ubsec, "pci,opencrypto");
598
599 #ifdef _MODULE
600 #include "ioconf.c"
601 #endif
602
603 static int
604 ubsec_modcmd(modcmd_t cmd, void *data)
605 {
606 int error = 0;
607
608 switch (cmd) {
609 case MODULE_CMD_INIT:
610 #ifdef _MODULE
611 error = config_init_component(cfdriver_ioconf_ubsec,
612 cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
613 #endif
614 return error;
615 case MODULE_CMD_FINI:
616 #ifdef _MODULE
617 error = config_fini_component(cfdriver_ioconf_ubsec,
618 cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
619 #endif
620 return error;
621 default:
622 return ENOTTY;
623 }
624 }
625
626 SYSCTL_SETUP(ubsec_sysctl_init, "ubsec sysctl")
627 {
628 const struct sysctlnode *node = NULL;
629
630 sysctl_createv(clog, 0, NULL, &node,
631 CTLFLAG_PERMANENT,
632 CTLTYPE_NODE, "ubsec",
633 SYSCTL_DESCR("ubsec opetions"),
634 NULL, 0, NULL, 0,
635 CTL_HW, CTL_CREATE, CTL_EOL);
636 sysctl_createv(clog, 0, &node, NULL,
637 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
638 CTLTYPE_INT, "maxbatch",
639 SYSCTL_DESCR("max ops to batch w/o interrupt"),
640 NULL, 0, &ubsec_maxbatch, 0,
641 CTL_CREATE, CTL_EOL);
642 sysctl_createv(clog, 0, &node, NULL,
643 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
644 CTLTYPE_INT, "maxaggr",
645 SYSCTL_DESCR("max ops to aggregate under one interrupt"),
646 NULL, 0, &ubsec_maxaggr, 0,
647 CTL_CREATE, CTL_EOL);
648
649 return;
650 }
651
652 /*
653 * UBSEC Interrupt routine
654 */
655 static int
656 ubsec_intr(void *arg)
657 {
658 struct ubsec_softc *sc = arg;
659 volatile u_int32_t stat;
660 struct ubsec_q *q;
661 struct ubsec_dma *dmap;
662 int flags;
663 int npkts = 0, i;
664
665 mutex_spin_enter(&sc->sc_mtx);
666 stat = READ_REG(sc, BS_STAT);
667 stat &= sc->sc_statmask;
668 if (stat == 0) {
669 mutex_spin_exit(&sc->sc_mtx);
670 return (0);
671 }
672
673 WRITE_REG(sc, BS_STAT, stat); /* IACK */
674
675 /*
676 * Check to see if we have any packets waiting for us
677 */
678 if ((stat & BS_STAT_MCR1_DONE)) {
679 while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
680 q = SIMPLEQ_FIRST(&sc->sc_qchip);
681 dmap = q->q_dma;
682
683 if ((dmap->d_dma->d_mcr.mcr_flags
684 & htole16(UBS_MCR_DONE)) == 0)
685 break;
686
687 q = SIMPLEQ_FIRST(&sc->sc_qchip);
688 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
689
690 npkts = q->q_nstacked_mcrs;
691 sc->sc_nqchip -= 1+npkts;
692 /*
693 * search for further sc_qchip ubsec_q's that share
694 * the same MCR, and complete them too, they must be
695 * at the top.
696 */
697 for (i = 0; i < npkts; i++) {
698 if(q->q_stacked_mcr[i])
699 ubsec_callback(sc, q->q_stacked_mcr[i]);
700 else
701 break;
702 }
703 ubsec_callback(sc, q);
704 }
705
706 /*
707 * Don't send any more packet to chip if there has been
708 * a DMAERR.
709 */
710 if (!(stat & BS_STAT_DMAERR))
711 ubsec_feed(sc);
712 }
713
714 /*
715 * Check to see if we have any key setups/rng's waiting for us
716 */
717 if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
718 (stat & BS_STAT_MCR2_DONE)) {
719 struct ubsec_q2 *q2;
720 struct ubsec_mcr *mcr;
721
722 while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
723 q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
724
725 bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
726 0, q2->q_mcr.dma_map->dm_mapsize,
727 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
728
729 mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
730
731 /* A bug in new devices requires to swap this field */
732 if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
733 flags = htole16(mcr->mcr_flags);
734 else
735 flags = mcr->mcr_flags;
736 if ((flags & htole16(UBS_MCR_DONE)) == 0) {
737 bus_dmamap_sync(sc->sc_dmat,
738 q2->q_mcr.dma_map, 0,
739 q2->q_mcr.dma_map->dm_mapsize,
740 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
741 break;
742 }
743 q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
744 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
745 ubsec_callback2(sc, q2);
746 /*
747 * Don't send any more packet to chip if there has been
748 * a DMAERR.
749 */
750 if (!(stat & BS_STAT_DMAERR))
751 ubsec_feed2(sc);
752 }
753 }
754 if ((sc->sc_flags & UBS_FLAGS_RNG4) && (stat & BS_STAT_MCR4_DONE)) {
755 struct ubsec_q2 *q2;
756 struct ubsec_mcr *mcr;
757
758 while (!SIMPLEQ_EMPTY(&sc->sc_qchip4)) {
759 q2 = SIMPLEQ_FIRST(&sc->sc_qchip4);
760
761 bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
762 0, q2->q_mcr.dma_map->dm_mapsize,
763 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
764
765 mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
766
767 /* A bug in new devices requires to swap this field */
768 flags = htole16(mcr->mcr_flags);
769
770 if ((flags & htole16(UBS_MCR_DONE)) == 0) {
771 bus_dmamap_sync(sc->sc_dmat,
772 q2->q_mcr.dma_map, 0,
773 q2->q_mcr.dma_map->dm_mapsize,
774 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
775 break;
776 }
777 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip4, q_next);
778 ubsec_callback2(sc, q2);
779 /*
780 * Don't send any more packet to chip if there has been
781 * a DMAERR.
782 */
783 if (!(stat & BS_STAT_DMAERR))
784 ubsec_feed4(sc);
785 }
786 }
787
788 /*
789 * Check to see if we got any DMA Error
790 */
791 if (stat & BS_STAT_DMAERR) {
792 #ifdef UBSEC_DEBUG
793 if (ubsec_debug) {
794 volatile u_int32_t a = READ_REG(sc, BS_ERR);
795
796 printf("%s: dmaerr %s@%08x\n", device_xname(sc->sc_dev),
797 (a & BS_ERR_READ) ? "read" : "write",
798 a & BS_ERR_ADDR);
799 }
800 #endif /* UBSEC_DEBUG */
801 ubsecstats.hst_dmaerr++;
802 ubsec_totalreset(sc);
803 ubsec_feed(sc);
804 }
805
806 if (sc->sc_needwakeup) { /* XXX check high watermark */
807 int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
808 #ifdef UBSEC_DEBUG
809 if (ubsec_debug)
810 printf("%s: wakeup crypto (%x)\n",
811 device_xname(sc->sc_dev), sc->sc_needwakeup);
812 #endif /* UBSEC_DEBUG */
813 sc->sc_needwakeup &= ~wkeup;
814 crypto_unblock(sc->sc_cid, wkeup);
815 }
816 mutex_spin_exit(&sc->sc_mtx);
817 return (1);
818 }
819
820 /*
821 * ubsec_feed() - aggregate and post requests to chip
822 * OpenBSD comments:
823 * It is assumed that the caller set splnet()
824 */
825 static void
826 ubsec_feed(struct ubsec_softc *sc)
827 {
828 struct ubsec_q *q, *q2;
829 int npkts, i;
830 void *v;
831 u_int32_t stat;
832 #ifdef UBSEC_DEBUG
833 static int max;
834 #endif /* UBSEC_DEBUG */
835
836 npkts = sc->sc_nqueue;
837 if (npkts > ubsecstats.hst_maxqueue)
838 ubsecstats.hst_maxqueue = npkts;
839 if (npkts < 2)
840 goto feed1;
841
842 /*
843 * Decide how many ops to combine in a single MCR. We cannot
844 * aggregate more than UBS_MAX_AGGR because this is the number
845 * of slots defined in the data structure. Otherwise we clamp
846 * based on the tunable parameter ubsec_maxaggr. Note that
847 * aggregation can happen in two ways: either by batching ops
848 * from above or because the h/w backs up and throttles us.
849 * Aggregating ops reduces the number of interrupts to the host
850 * but also (potentially) increases the latency for processing
851 * completed ops as we only get an interrupt when all aggregated
852 * ops have completed.
853 */
854 if (npkts > sc->sc_maxaggr)
855 npkts = sc->sc_maxaggr;
856 if (npkts > ubsec_maxaggr)
857 npkts = ubsec_maxaggr;
858 if (npkts > ubsecstats.hst_maxbatch)
859 ubsecstats.hst_maxbatch = npkts;
860 if (npkts < 2)
861 goto feed1;
862 ubsecstats.hst_totbatch += npkts-1;
863
864 if ((stat = READ_REG(sc, BS_STAT))
865 & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
866 if (stat & BS_STAT_DMAERR) {
867 ubsec_totalreset(sc);
868 ubsecstats.hst_dmaerr++;
869 } else {
870 ubsecstats.hst_mcr1full++;
871 }
872 return;
873 }
874
875 #ifdef UBSEC_DEBUG
876 if (ubsec_debug)
877 printf("merging %d records\n", npkts);
878 /* XXX temporary aggregation statistics reporting code */
879 if (max < npkts) {
880 max = npkts;
881 printf("%s: new max aggregate %d\n", device_xname(sc->sc_dev),
882 max);
883 }
884 #endif /* UBSEC_DEBUG */
885
886 q = SIMPLEQ_FIRST(&sc->sc_queue);
887 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
888 --sc->sc_nqueue;
889
890 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
891 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
892 if (q->q_dst_map != NULL)
893 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
894 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
895
896 q->q_nstacked_mcrs = npkts - 1; /* Number of packets stacked */
897
898 for (i = 0; i < q->q_nstacked_mcrs; i++) {
899 q2 = SIMPLEQ_FIRST(&sc->sc_queue);
900 bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
901 0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
902 if (q2->q_dst_map != NULL)
903 bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
904 0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
905 q2= SIMPLEQ_FIRST(&sc->sc_queue);
906 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
907 --sc->sc_nqueue;
908
909 v = ((void *)&q2->q_dma->d_dma->d_mcr);
910 v = (char*)v + (sizeof(struct ubsec_mcr) -
911 sizeof(struct ubsec_mcr_add));
912 memcpy(&q->q_dma->d_dma->d_mcradd[i], v,
913 sizeof(struct ubsec_mcr_add));
914 q->q_stacked_mcr[i] = q2;
915 }
916 q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
917 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
918 sc->sc_nqchip += npkts;
919 if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
920 ubsecstats.hst_maxqchip = sc->sc_nqchip;
921 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
922 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
923 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
924 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
925 offsetof(struct ubsec_dmachunk, d_mcr));
926 return;
927
928 feed1:
929 while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
930 if ((stat = READ_REG(sc, BS_STAT))
931 & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
932 if (stat & BS_STAT_DMAERR) {
933 ubsec_totalreset(sc);
934 ubsecstats.hst_dmaerr++;
935 } else {
936 ubsecstats.hst_mcr1full++;
937 }
938 break;
939 }
940
941 q = SIMPLEQ_FIRST(&sc->sc_queue);
942
943 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
944 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
945 if (q->q_dst_map != NULL)
946 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
947 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
948 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
949 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
950 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
951
952 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
953 offsetof(struct ubsec_dmachunk, d_mcr));
954 #ifdef UBSEC_DEBUG
955 if (ubsec_debug)
956 printf("feed: q->chip %p %08x stat %08x\n",
957 q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
958 stat);
959 #endif /* UBSEC_DEBUG */
960 q = SIMPLEQ_FIRST(&sc->sc_queue);
961 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
962 --sc->sc_nqueue;
963 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
964 sc->sc_nqchip++;
965 }
966 if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
967 ubsecstats.hst_maxqchip = sc->sc_nqchip;
968 }
969
970 /*
971 * Allocate a new 'session' and return an encoded session id. 'sidp'
972 * contains our registration id, and should contain an encoded session
973 * id on successful allocation.
974 */
975 static int
976 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
977 {
978 struct cryptoini *c, *encini = NULL, *macini = NULL;
979 struct ubsec_softc *sc;
980 struct ubsec_session *ses = NULL;
981 MD5_CTX md5ctx;
982 SHA1_CTX sha1ctx;
983 int i, sesn;
984
985 sc = arg;
986 KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
987
988 if (sidp == NULL || cri == NULL || sc == NULL)
989 return (EINVAL);
990
991 for (c = cri; c != NULL; c = c->cri_next) {
992 if (c->cri_alg == CRYPTO_MD5_HMAC_96 ||
993 c->cri_alg == CRYPTO_SHA1_HMAC_96) {
994 if (macini)
995 return (EINVAL);
996 macini = c;
997 } else if (c->cri_alg == CRYPTO_DES_CBC ||
998 c->cri_alg == CRYPTO_3DES_CBC ||
999 c->cri_alg == CRYPTO_AES_CBC) {
1000 if (encini)
1001 return (EINVAL);
1002 encini = c;
1003 } else
1004 return (EINVAL);
1005 }
1006 if (encini == NULL && macini == NULL)
1007 return (EINVAL);
1008
1009 if (encini && encini->cri_alg == CRYPTO_AES_CBC) {
1010 switch (encini->cri_klen) {
1011 case 128:
1012 case 192:
1013 case 256:
1014 break;
1015 default:
1016 return (EINVAL);
1017 }
1018 }
1019
1020 if (sc->sc_sessions == NULL) {
1021 ses = sc->sc_sessions = (struct ubsec_session *)malloc(
1022 sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
1023 if (ses == NULL)
1024 return (ENOMEM);
1025 sesn = 0;
1026 sc->sc_nsessions = 1;
1027 } else {
1028 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
1029 if (sc->sc_sessions[sesn].ses_used == 0) {
1030 ses = &sc->sc_sessions[sesn];
1031 break;
1032 }
1033 }
1034
1035 if (ses == NULL) {
1036 sesn = sc->sc_nsessions;
1037 ses = (struct ubsec_session *)malloc((sesn + 1) *
1038 sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
1039 if (ses == NULL)
1040 return (ENOMEM);
1041 memcpy(ses, sc->sc_sessions, sesn *
1042 sizeof(struct ubsec_session));
1043 memset(sc->sc_sessions, 0, sesn *
1044 sizeof(struct ubsec_session));
1045 free(sc->sc_sessions, M_DEVBUF);
1046 sc->sc_sessions = ses;
1047 ses = &sc->sc_sessions[sesn];
1048 sc->sc_nsessions++;
1049 }
1050 }
1051
1052 memset(ses, 0, sizeof(struct ubsec_session));
1053 ses->ses_used = 1;
1054 if (encini) {
1055 /* get an IV, network byte order */
1056 #ifdef __NetBSD__
1057 cprng_fast(ses->ses_iv, sizeof(ses->ses_iv));
1058 #else
1059 get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv));
1060 #endif
1061
1062 /* Go ahead and compute key in ubsec's byte order */
1063 if (encini->cri_alg == CRYPTO_AES_CBC) {
1064 memcpy(ses->ses_key, encini->cri_key,
1065 encini->cri_klen / 8);
1066 }
1067 if (encini->cri_alg == CRYPTO_DES_CBC) {
1068 memcpy(&ses->ses_key[0], encini->cri_key, 8);
1069 memcpy(&ses->ses_key[2], encini->cri_key, 8);
1070 memcpy(&ses->ses_key[4], encini->cri_key, 8);
1071 } else
1072 memcpy(ses->ses_key, encini->cri_key, 24);
1073
1074 SWAP32(ses->ses_key[0]);
1075 SWAP32(ses->ses_key[1]);
1076 SWAP32(ses->ses_key[2]);
1077 SWAP32(ses->ses_key[3]);
1078 SWAP32(ses->ses_key[4]);
1079 SWAP32(ses->ses_key[5]);
1080 }
1081
1082 if (macini) {
1083 for (i = 0; i < macini->cri_klen / 8; i++)
1084 macini->cri_key[i] ^= HMAC_IPAD_VAL;
1085
1086 if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
1087 MD5Init(&md5ctx);
1088 MD5Update(&md5ctx, macini->cri_key,
1089 macini->cri_klen / 8);
1090 MD5Update(&md5ctx, hmac_ipad_buffer,
1091 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1092 memcpy(ses->ses_hminner, md5ctx.state,
1093 sizeof(md5ctx.state));
1094 } else {
1095 SHA1Init(&sha1ctx);
1096 SHA1Update(&sha1ctx, macini->cri_key,
1097 macini->cri_klen / 8);
1098 SHA1Update(&sha1ctx, hmac_ipad_buffer,
1099 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1100 memcpy(ses->ses_hminner, sha1ctx.state,
1101 sizeof(sha1ctx.state));
1102 }
1103
1104 for (i = 0; i < macini->cri_klen / 8; i++)
1105 macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
1106
1107 if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
1108 MD5Init(&md5ctx);
1109 MD5Update(&md5ctx, macini->cri_key,
1110 macini->cri_klen / 8);
1111 MD5Update(&md5ctx, hmac_opad_buffer,
1112 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1113 memcpy(ses->ses_hmouter, md5ctx.state,
1114 sizeof(md5ctx.state));
1115 } else {
1116 SHA1Init(&sha1ctx);
1117 SHA1Update(&sha1ctx, macini->cri_key,
1118 macini->cri_klen / 8);
1119 SHA1Update(&sha1ctx, hmac_opad_buffer,
1120 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1121 memcpy(ses->ses_hmouter, sha1ctx.state,
1122 sizeof(sha1ctx.state));
1123 }
1124
1125 for (i = 0; i < macini->cri_klen / 8; i++)
1126 macini->cri_key[i] ^= HMAC_OPAD_VAL;
1127 }
1128
1129 *sidp = UBSEC_SID(device_unit(sc->sc_dev), sesn);
1130 return (0);
1131 }
1132
1133 /*
1134 * Deallocate a session.
1135 */
1136 static int
1137 ubsec_freesession(void *arg, u_int64_t tid)
1138 {
1139 struct ubsec_softc *sc;
1140 int session;
1141 u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
1142
1143 sc = arg;
1144 KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
1145
1146 session = UBSEC_SESSION(sid);
1147 if (session >= sc->sc_nsessions)
1148 return (EINVAL);
1149
1150 memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session]));
1151 return (0);
1152 }
1153
1154 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
1155 static void
1156 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize,
1157 int error)
1158 {
1159 struct ubsec_operand *op = arg;
1160
1161 KASSERT(nsegs <= UBS_MAX_SCATTER
1162 /*, ("Too many DMA segments returned when mapping operand")*/);
1163 #ifdef UBSEC_DEBUG
1164 if (ubsec_debug)
1165 printf("ubsec_op_cb: mapsize %u nsegs %d\n",
1166 (u_int) mapsize, nsegs);
1167 #endif
1168 op->mapsize = mapsize;
1169 op->nsegs = nsegs;
1170 memcpy(op->segs, seg, nsegs * sizeof (seg[0]));
1171 }
1172 #endif
1173
1174 static int
1175 ubsec_process(void *arg, struct cryptop *crp, int hint)
1176 {
1177 struct ubsec_q *q = NULL;
1178 #ifdef __OpenBSD__
1179 int card;
1180 #endif
1181 int err = 0, i, j, nicealign;
1182 struct ubsec_softc *sc;
1183 struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1184 int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1185 int sskip, dskip, stheend, dtheend;
1186 int16_t coffset;
1187 struct ubsec_session *ses, key;
1188 struct ubsec_dma *dmap = NULL;
1189 u_int16_t flags = 0;
1190 int ivlen = 0, keylen = 0;
1191
1192 sc = arg;
1193 KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/);
1194
1195 if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1196 ubsecstats.hst_invalid++;
1197 return (EINVAL);
1198 }
1199 if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1200 ubsecstats.hst_badsession++;
1201 return (EINVAL);
1202 }
1203
1204 mutex_spin_enter(&sc->sc_mtx);
1205
1206 if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1207 ubsecstats.hst_queuefull++;
1208 sc->sc_needwakeup |= CRYPTO_SYMQ;
1209 mutex_spin_exit(&sc->sc_mtx);
1210 return(ERESTART);
1211 }
1212
1213 q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1214 SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
1215 mutex_spin_exit(&sc->sc_mtx);
1216
1217 dmap = q->q_dma; /* Save dma pointer */
1218 /* don't lose the cached dmamaps q_src_map and q_cached_dst_map */
1219 memset(q, 0, offsetof(struct ubsec_q, q_src_map));
1220 memset(&key, 0, sizeof(key));
1221
1222 q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1223 q->q_dma = dmap;
1224 ses = &sc->sc_sessions[q->q_sesn];
1225
1226 if (crp->crp_flags & CRYPTO_F_IMBUF) {
1227 q->q_src_m = (struct mbuf *)crp->crp_buf;
1228 q->q_dst_m = (struct mbuf *)crp->crp_buf;
1229 } else if (crp->crp_flags & CRYPTO_F_IOV) {
1230 q->q_src_io = (struct uio *)crp->crp_buf;
1231 q->q_dst_io = (struct uio *)crp->crp_buf;
1232 } else {
1233 ubsecstats.hst_badflags++;
1234 err = EINVAL;
1235 goto errout; /* XXX we don't handle contiguous blocks! */
1236 }
1237
1238 memset(&dmap->d_dma->d_mcr, 0, sizeof(struct ubsec_mcr));
1239
1240 dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1241 dmap->d_dma->d_mcr.mcr_flags = 0;
1242 q->q_crp = crp;
1243
1244 crd1 = crp->crp_desc;
1245 if (crd1 == NULL) {
1246 ubsecstats.hst_nodesc++;
1247 err = EINVAL;
1248 goto errout;
1249 }
1250 crd2 = crd1->crd_next;
1251
1252 if (crd2 == NULL) {
1253 if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1254 crd1->crd_alg == CRYPTO_SHA1_HMAC_96) {
1255 maccrd = crd1;
1256 enccrd = NULL;
1257 } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1258 crd1->crd_alg == CRYPTO_3DES_CBC ||
1259 crd1->crd_alg == CRYPTO_AES_CBC) {
1260 maccrd = NULL;
1261 enccrd = crd1;
1262 } else {
1263 ubsecstats.hst_badalg++;
1264 err = EINVAL;
1265 goto errout;
1266 }
1267 } else {
1268 if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1269 crd1->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1270 (crd2->crd_alg == CRYPTO_DES_CBC ||
1271 crd2->crd_alg == CRYPTO_3DES_CBC ||
1272 crd2->crd_alg == CRYPTO_AES_CBC) &&
1273 ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1274 maccrd = crd1;
1275 enccrd = crd2;
1276 } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1277 crd1->crd_alg == CRYPTO_3DES_CBC ||
1278 crd1->crd_alg == CRYPTO_AES_CBC) &&
1279 (crd2->crd_alg == CRYPTO_MD5_HMAC_96 ||
1280 crd2->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1281 (crd1->crd_flags & CRD_F_ENCRYPT)) {
1282 enccrd = crd1;
1283 maccrd = crd2;
1284 } else {
1285 /*
1286 * We cannot order the ubsec as requested
1287 */
1288 ubsecstats.hst_badalg++;
1289 err = EINVAL;
1290 goto errout;
1291 }
1292 }
1293
1294 if (enccrd) {
1295 if (enccrd->crd_alg == CRYPTO_AES_CBC) {
1296 if ((sc->sc_flags & UBS_FLAGS_AES) == 0) {
1297 /*
1298 * We cannot order the ubsec as requested
1299 */
1300 ubsecstats.hst_badalg++;
1301 err = EINVAL;
1302 goto errout;
1303 }
1304 flags |= htole16(UBS_PKTCTX_ENC_AES);
1305 switch (enccrd->crd_klen) {
1306 case 128:
1307 case 192:
1308 case 256:
1309 keylen = enccrd->crd_klen / 8;
1310 break;
1311 default:
1312 err = EINVAL;
1313 goto errout;
1314 }
1315 ivlen = 16;
1316 } else {
1317 flags |= htole16(UBS_PKTCTX_ENC_3DES);
1318 ivlen = 8;
1319 keylen = 24;
1320 }
1321
1322 encoffset = enccrd->crd_skip;
1323
1324 if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1325 q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1326
1327 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1328 memcpy(key.ses_iv, enccrd->crd_iv, ivlen);
1329 else {
1330 for (i = 0; i < (ivlen / 4); i++)
1331 key.ses_iv[i] = ses->ses_iv[i];
1332 }
1333
1334 if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1335 if (crp->crp_flags & CRYPTO_F_IMBUF)
1336 m_copyback(q->q_src_m,
1337 enccrd->crd_inject,
1338 ivlen, (void *)key.ses_iv);
1339 else if (crp->crp_flags & CRYPTO_F_IOV)
1340 cuio_copyback(q->q_src_io,
1341 enccrd->crd_inject,
1342 ivlen, (void *)key.ses_iv);
1343 }
1344 } else {
1345 flags |= htole16(UBS_PKTCTX_INBOUND);
1346
1347 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1348 memcpy(key.ses_iv, enccrd->crd_iv, ivlen);
1349 else if (crp->crp_flags & CRYPTO_F_IMBUF)
1350 m_copydata(q->q_src_m, enccrd->crd_inject,
1351 ivlen, (void *)key.ses_iv);
1352 else if (crp->crp_flags & CRYPTO_F_IOV)
1353 cuio_copydata(q->q_src_io,
1354 enccrd->crd_inject, 8,
1355 (void *)key.ses_iv);
1356 }
1357
1358 for (i = 0; i < (keylen / 4); i++)
1359 key.ses_key[i] = ses->ses_key[i];
1360 for (i = 0; i < (ivlen / 4); i++)
1361 SWAP32(key.ses_iv[i]);
1362 }
1363
1364 if (maccrd) {
1365 macoffset = maccrd->crd_skip;
1366
1367 if (maccrd->crd_alg == CRYPTO_MD5_HMAC_96)
1368 flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1369 else
1370 flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1371
1372 for (i = 0; i < 5; i++) {
1373 key.ses_hminner[i] = ses->ses_hminner[i];
1374 key.ses_hmouter[i] = ses->ses_hmouter[i];
1375
1376 HTOLE32(key.ses_hminner[i]);
1377 HTOLE32(key.ses_hmouter[i]);
1378 }
1379 }
1380
1381 if (enccrd && maccrd) {
1382 /*
1383 * ubsec cannot handle packets where the end of encryption
1384 * and authentication are not the same, or where the
1385 * encrypted part begins before the authenticated part.
1386 */
1387 if ((encoffset + enccrd->crd_len) !=
1388 (macoffset + maccrd->crd_len)) {
1389 ubsecstats.hst_lenmismatch++;
1390 err = EINVAL;
1391 goto errout;
1392 }
1393 if (enccrd->crd_skip < maccrd->crd_skip) {
1394 ubsecstats.hst_skipmismatch++;
1395 err = EINVAL;
1396 goto errout;
1397 }
1398 sskip = maccrd->crd_skip;
1399 cpskip = dskip = enccrd->crd_skip;
1400 stheend = maccrd->crd_len;
1401 dtheend = enccrd->crd_len;
1402 coffset = enccrd->crd_skip - maccrd->crd_skip;
1403 cpoffset = cpskip + dtheend;
1404 #ifdef UBSEC_DEBUG
1405 if (ubsec_debug) {
1406 printf("mac: skip %d, len %d, inject %d\n",
1407 maccrd->crd_skip, maccrd->crd_len,
1408 maccrd->crd_inject);
1409 printf("enc: skip %d, len %d, inject %d\n",
1410 enccrd->crd_skip, enccrd->crd_len,
1411 enccrd->crd_inject);
1412 printf("src: skip %d, len %d\n", sskip, stheend);
1413 printf("dst: skip %d, len %d\n", dskip, dtheend);
1414 printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1415 coffset, stheend, cpskip, cpoffset);
1416 }
1417 #endif
1418 } else {
1419 cpskip = dskip = sskip = macoffset + encoffset;
1420 dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1421 cpoffset = cpskip + dtheend;
1422 coffset = 0;
1423 }
1424
1425 if (q->q_src_map == NULL) {
1426 /* XXX FIXME: jonathan asks, what the heck's that 0xfff0? */
1427 if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
1428 0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
1429 err = ENOMEM;
1430 goto errout;
1431 }
1432 }
1433 if (crp->crp_flags & CRYPTO_F_IMBUF) {
1434 if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1435 q->q_src_m, BUS_DMA_NOWAIT) != 0) {
1436 ubsecstats.hst_noload++;
1437 err = ENOMEM;
1438 goto errout;
1439 }
1440 } else if (crp->crp_flags & CRYPTO_F_IOV) {
1441 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1442 q->q_src_io, BUS_DMA_NOWAIT) != 0) {
1443 ubsecstats.hst_noload++;
1444 err = ENOMEM;
1445 goto errout;
1446 }
1447 }
1448 nicealign = ubsec_dmamap_aligned(q->q_src_map);
1449
1450 dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1451
1452 #ifdef UBSEC_DEBUG
1453 if (ubsec_debug)
1454 printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1455 #endif
1456 for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
1457 struct ubsec_pktbuf *pb;
1458 bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
1459 bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
1460
1461 if (sskip >= packl) {
1462 sskip -= packl;
1463 continue;
1464 }
1465
1466 packl -= sskip;
1467 packp += sskip;
1468 sskip = 0;
1469
1470 if (packl > 0xfffc) {
1471 err = EIO;
1472 goto errout;
1473 }
1474
1475 if (j == 0)
1476 pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1477 else
1478 pb = &dmap->d_dma->d_sbuf[j - 1];
1479
1480 pb->pb_addr = htole32(packp);
1481
1482 if (stheend) {
1483 if (packl > stheend) {
1484 pb->pb_len = htole32(stheend);
1485 stheend = 0;
1486 } else {
1487 pb->pb_len = htole32(packl);
1488 stheend -= packl;
1489 }
1490 } else
1491 pb->pb_len = htole32(packl);
1492
1493 if ((i + 1) == q->q_src_map->dm_nsegs)
1494 pb->pb_next = 0;
1495 else
1496 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1497 offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1498 j++;
1499 }
1500
1501 if (enccrd == NULL && maccrd != NULL) {
1502 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1503 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1504 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1505 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1506 #ifdef UBSEC_DEBUG
1507 if (ubsec_debug)
1508 printf("opkt: %x %x %x\n",
1509 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1510 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1511 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1512
1513 #endif
1514 } else {
1515 if (crp->crp_flags & CRYPTO_F_IOV) {
1516 if (!nicealign) {
1517 ubsecstats.hst_iovmisaligned++;
1518 err = EINVAL;
1519 goto errout;
1520 }
1521 if (q->q_dst_map == NULL) {
1522 if (q->q_cached_dst_map == NULL) {
1523 /*
1524 * XXX: ``what the heck's that''
1525 * 0xfff0?
1526 */
1527 if (bus_dmamap_create(sc->sc_dmat,
1528 0xfff0, UBS_MAX_SCATTER, 0xfff0, 0,
1529 BUS_DMA_NOWAIT,
1530 &q->q_cached_dst_map) != 0) {
1531 ubsecstats.hst_nomap++;
1532 err = ENOMEM;
1533 goto errout;
1534 }
1535 }
1536 q->q_dst_map = q->q_cached_dst_map;
1537 }
1538 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1539 q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
1540 ubsecstats.hst_noload++;
1541 err = ENOMEM;
1542 goto errout;
1543 }
1544 } else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1545 if (nicealign) {
1546 q->q_dst_m = q->q_src_m;
1547 q->q_dst_map = q->q_src_map;
1548 } else {
1549 int totlen, len;
1550 struct mbuf *m, *top, **mp;
1551
1552 ubsecstats.hst_unaligned++;
1553 totlen = q->q_src_map->dm_mapsize;
1554 if (q->q_src_m->m_flags & M_PKTHDR) {
1555 len = MHLEN;
1556 MGETHDR(m, M_DONTWAIT, MT_DATA);
1557 /*XXX FIXME: m_dup_pkthdr */
1558 if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
1559 m_free(m);
1560 m = NULL;
1561 }
1562 } else {
1563 len = MLEN;
1564 MGET(m, M_DONTWAIT, MT_DATA);
1565 }
1566 if (m == NULL) {
1567 ubsecstats.hst_nombuf++;
1568 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1569 goto errout;
1570 }
1571 if (len == MHLEN)
1572 /*XXX was M_DUP_PKTHDR*/
1573 m_copy_pkthdr(m, q->q_src_m);
1574 if (totlen >= MINCLSIZE) {
1575 MCLGET(m, M_DONTWAIT);
1576 if ((m->m_flags & M_EXT) == 0) {
1577 m_free(m);
1578 ubsecstats.hst_nomcl++;
1579 err = sc->sc_nqueue
1580 ? ERESTART : ENOMEM;
1581 goto errout;
1582 }
1583 len = MCLBYTES;
1584 }
1585 m->m_len = len;
1586 top = NULL;
1587 mp = ⊤
1588
1589 while (totlen > 0) {
1590 if (top) {
1591 MGET(m, M_DONTWAIT, MT_DATA);
1592 if (m == NULL) {
1593 m_freem(top);
1594 ubsecstats.hst_nombuf++;
1595 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1596 goto errout;
1597 }
1598 len = MLEN;
1599 }
1600 if (top && totlen >= MINCLSIZE) {
1601 MCLGET(m, M_DONTWAIT);
1602 if ((m->m_flags & M_EXT) == 0) {
1603 *mp = m;
1604 m_freem(top);
1605 ubsecstats.hst_nomcl++;
1606 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1607 goto errout;
1608 }
1609 len = MCLBYTES;
1610 }
1611 m->m_len = len = uimin(totlen, len);
1612 totlen -= len;
1613 *mp = m;
1614 mp = &m->m_next;
1615 }
1616 q->q_dst_m = top;
1617 ubsec_mcopy(q->q_src_m, q->q_dst_m,
1618 cpskip, cpoffset);
1619 if (q->q_dst_map == NULL) {
1620 if (q->q_cached_dst_map == NULL) {
1621 /* XXX again, what the heck is that 0xfff0? */
1622 if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1623 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1624 &q->q_cached_dst_map) != 0) {
1625 ubsecstats.hst_nomap++;
1626 err = ENOMEM;
1627 goto errout;
1628 }
1629 }
1630 q->q_dst_map = q->q_cached_dst_map;
1631 }
1632 if (bus_dmamap_load_mbuf(sc->sc_dmat,
1633 q->q_dst_map, q->q_dst_m,
1634 BUS_DMA_NOWAIT) != 0) {
1635 ubsecstats.hst_noload++;
1636 err = ENOMEM;
1637 goto errout;
1638 }
1639 }
1640 } else {
1641 ubsecstats.hst_badflags++;
1642 err = EINVAL;
1643 goto errout;
1644 }
1645
1646 #ifdef UBSEC_DEBUG
1647 if (ubsec_debug)
1648 printf("dst skip: %d\n", dskip);
1649 #endif
1650 for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
1651 struct ubsec_pktbuf *pb;
1652 bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
1653 bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
1654
1655 if (dskip >= packl) {
1656 dskip -= packl;
1657 continue;
1658 }
1659
1660 packl -= dskip;
1661 packp += dskip;
1662 dskip = 0;
1663
1664 if (packl > 0xfffc) {
1665 err = EIO;
1666 goto errout;
1667 }
1668
1669 if (j == 0)
1670 pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1671 else
1672 pb = &dmap->d_dma->d_dbuf[j - 1];
1673
1674 pb->pb_addr = htole32(packp);
1675
1676 if (dtheend) {
1677 if (packl > dtheend) {
1678 pb->pb_len = htole32(dtheend);
1679 dtheend = 0;
1680 } else {
1681 pb->pb_len = htole32(packl);
1682 dtheend -= packl;
1683 }
1684 } else
1685 pb->pb_len = htole32(packl);
1686
1687 if ((i + 1) == q->q_dst_map->dm_nsegs) {
1688 if (maccrd)
1689 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1690 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1691 else
1692 pb->pb_next = 0;
1693 } else
1694 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1695 offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1696 j++;
1697 }
1698 }
1699
1700 dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1701 offsetof(struct ubsec_dmachunk, d_ctx));
1702
1703 if (enccrd && enccrd->crd_alg == CRYPTO_AES_CBC) {
1704 struct ubsec_pktctx_aes128 *aes128;
1705 struct ubsec_pktctx_aes192 *aes192;
1706 struct ubsec_pktctx_aes256 *aes256;
1707 struct ubsec_pktctx_hdr *ph;
1708 u_int8_t *ctx;
1709
1710 ctx = (u_int8_t *)(dmap->d_alloc.dma_vaddr) +
1711 offsetof(struct ubsec_dmachunk, d_ctx);
1712
1713 ph = (struct ubsec_pktctx_hdr *)ctx;
1714 ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_AES);
1715 ph->ph_flags = flags;
1716 ph->ph_offset = htole16(coffset >> 2);
1717
1718 switch (enccrd->crd_klen) {
1719 case 128:
1720 aes128 = (struct ubsec_pktctx_aes128 *)ctx;
1721 ph->ph_len = htole16(sizeof(*aes128));
1722 ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_128);
1723 for (i = 0; i < 4; i++)
1724 aes128->pc_aeskey[i] = key.ses_key[i];
1725 for (i = 0; i < 5; i++)
1726 aes128->pc_hminner[i] = key.ses_hminner[i];
1727 for (i = 0; i < 5; i++)
1728 aes128->pc_hmouter[i] = key.ses_hmouter[i];
1729 for (i = 0; i < 4; i++)
1730 aes128->pc_iv[i] = key.ses_iv[i];
1731 break;
1732 case 192:
1733 aes192 = (struct ubsec_pktctx_aes192 *)ctx;
1734 ph->ph_len = htole16(sizeof(*aes192));
1735 ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_192);
1736 for (i = 0; i < 6; i++)
1737 aes192->pc_aeskey[i] = key.ses_key[i];
1738 for (i = 0; i < 5; i++)
1739 aes192->pc_hminner[i] = key.ses_hminner[i];
1740 for (i = 0; i < 5; i++)
1741 aes192->pc_hmouter[i] = key.ses_hmouter[i];
1742 for (i = 0; i < 4; i++)
1743 aes192->pc_iv[i] = key.ses_iv[i];
1744 break;
1745 case 256:
1746 aes256 = (struct ubsec_pktctx_aes256 *)ctx;
1747 ph->ph_len = htole16(sizeof(*aes256));
1748 ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_256);
1749 for (i = 0; i < 8; i++)
1750 aes256->pc_aeskey[i] = key.ses_key[i];
1751 for (i = 0; i < 5; i++)
1752 aes256->pc_hminner[i] = key.ses_hminner[i];
1753 for (i = 0; i < 5; i++)
1754 aes256->pc_hmouter[i] = key.ses_hmouter[i];
1755 for (i = 0; i < 4; i++)
1756 aes256->pc_iv[i] = key.ses_iv[i];
1757 break;
1758 }
1759 } else if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1760 struct ubsec_pktctx_3des *ctx;
1761 struct ubsec_pktctx_hdr *ph;
1762
1763 ctx = (struct ubsec_pktctx_3des *)
1764 ((u_int8_t *)(dmap->d_alloc.dma_vaddr) +
1765 offsetof(struct ubsec_dmachunk, d_ctx));
1766
1767 ph = (struct ubsec_pktctx_hdr *)ctx;
1768 ph->ph_len = htole16(sizeof(*ctx));
1769 ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_3DES);
1770 ph->ph_flags = flags;
1771 ph->ph_offset = htole16(coffset >> 2);
1772
1773 for (i = 0; i < 6; i++)
1774 ctx->pc_deskey[i] = key.ses_key[i];
1775 for (i = 0; i < 5; i++)
1776 ctx->pc_hminner[i] = key.ses_hminner[i];
1777 for (i = 0; i < 5; i++)
1778 ctx->pc_hmouter[i] = key.ses_hmouter[i];
1779 for (i = 0; i < 2; i++)
1780 ctx->pc_iv[i] = key.ses_iv[i];
1781 } else {
1782 struct ubsec_pktctx *ctx = (struct ubsec_pktctx *)
1783 ((u_int8_t *)dmap->d_alloc.dma_vaddr +
1784 offsetof(struct ubsec_dmachunk, d_ctx));
1785
1786 ctx->pc_flags = flags;
1787 ctx->pc_offset = htole16(coffset >> 2);
1788 for (i = 0; i < 6; i++)
1789 ctx->pc_deskey[i] = key.ses_key[i];
1790 for (i = 0; i < 5; i++)
1791 ctx->pc_hminner[i] = key.ses_hminner[i];
1792 for (i = 0; i < 5; i++)
1793 ctx->pc_hmouter[i] = key.ses_hmouter[i];
1794 for (i = 0; i < 2; i++)
1795 ctx->pc_iv[i] = key.ses_iv[i];
1796 }
1797
1798 mutex_spin_enter(&sc->sc_mtx);
1799 SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1800 sc->sc_nqueue++;
1801 ubsecstats.hst_ipackets++;
1802 ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
1803 if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
1804 ubsec_feed(sc);
1805 mutex_spin_exit(&sc->sc_mtx);
1806 return (0);
1807
1808 errout:
1809 if (q != NULL) {
1810 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1811 m_freem(q->q_dst_m);
1812
1813 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1814 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1815 }
1816 if (q->q_src_map != NULL) {
1817 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1818 }
1819
1820 mutex_spin_enter(&sc->sc_mtx);
1821 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1822 mutex_spin_exit(&sc->sc_mtx);
1823 }
1824 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
1825 if (err == EINVAL)
1826 ubsecstats.hst_invalid++;
1827 else
1828 ubsecstats.hst_nomem++;
1829 #endif
1830 if (err != ERESTART) {
1831 crp->crp_etype = err;
1832 crypto_done(crp);
1833 } else {
1834 sc->sc_needwakeup |= CRYPTO_SYMQ;
1835 }
1836 return (err);
1837 }
1838
1839 static void
1840 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1841 {
1842 struct cryptop *crp = (struct cryptop *)q->q_crp;
1843 struct cryptodesc *crd;
1844 struct ubsec_dma *dmap = q->q_dma;
1845
1846 ubsecstats.hst_opackets++;
1847 ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1848
1849 bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
1850 dmap->d_alloc.dma_map->dm_mapsize,
1851 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1852 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1853 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1854 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1855 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1856 }
1857 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
1858 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1859 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1860
1861 if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1862 m_freem(q->q_src_m);
1863 crp->crp_buf = (void *)q->q_dst_m;
1864 }
1865
1866 /* copy out IV for future use */
1867 if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1868 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1869 if (crd->crd_alg != CRYPTO_DES_CBC &&
1870 crd->crd_alg != CRYPTO_3DES_CBC &&
1871 crd->crd_alg != CRYPTO_AES_CBC)
1872 continue;
1873 if (crp->crp_flags & CRYPTO_F_IMBUF)
1874 m_copydata((struct mbuf *)crp->crp_buf,
1875 crd->crd_skip + crd->crd_len - 8, 8,
1876 (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1877 else if (crp->crp_flags & CRYPTO_F_IOV) {
1878 cuio_copydata((struct uio *)crp->crp_buf,
1879 crd->crd_skip + crd->crd_len - 8, 8,
1880 (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1881 }
1882 break;
1883 }
1884 }
1885
1886 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1887 if (crd->crd_alg != CRYPTO_MD5_HMAC_96 &&
1888 crd->crd_alg != CRYPTO_SHA1_HMAC_96)
1889 continue;
1890 if (crp->crp_flags & CRYPTO_F_IMBUF)
1891 m_copyback((struct mbuf *)crp->crp_buf,
1892 crd->crd_inject, 12,
1893 (void *)dmap->d_dma->d_macbuf);
1894 else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1895 bcopy((void *)dmap->d_dma->d_macbuf,
1896 crp->crp_mac, 12);
1897 break;
1898 }
1899 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1900 crypto_done(crp);
1901 }
1902
1903 static void
1904 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1905 {
1906 int i, j, dlen, slen;
1907 char *dptr, *sptr;
1908
1909 j = 0;
1910 sptr = srcm->m_data;
1911 slen = srcm->m_len;
1912 dptr = dstm->m_data;
1913 dlen = dstm->m_len;
1914
1915 while (1) {
1916 for (i = 0; i < uimin(slen, dlen); i++) {
1917 if (j < hoffset || j >= toffset)
1918 *dptr++ = *sptr++;
1919 slen--;
1920 dlen--;
1921 j++;
1922 }
1923 if (slen == 0) {
1924 srcm = srcm->m_next;
1925 if (srcm == NULL)
1926 return;
1927 sptr = srcm->m_data;
1928 slen = srcm->m_len;
1929 }
1930 if (dlen == 0) {
1931 dstm = dstm->m_next;
1932 if (dstm == NULL)
1933 return;
1934 dptr = dstm->m_data;
1935 dlen = dstm->m_len;
1936 }
1937 }
1938 }
1939
1940 /*
1941 * feed the key generator, must be called at splnet() or higher.
1942 */
1943 static void
1944 ubsec_feed2(struct ubsec_softc *sc)
1945 {
1946 struct ubsec_q2 *q;
1947
1948 while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1949 if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1950 break;
1951 q = SIMPLEQ_FIRST(&sc->sc_queue2);
1952
1953 bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1954 q->q_mcr.dma_map->dm_mapsize,
1955 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1956 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1957 q->q_ctx.dma_map->dm_mapsize,
1958 BUS_DMASYNC_PREWRITE);
1959
1960 WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1961 q = SIMPLEQ_FIRST(&sc->sc_queue2);
1962 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
1963 --sc->sc_nqueue2;
1964 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1965 }
1966 }
1967
1968 /*
1969 * feed the RNG (used instead of ubsec_feed2() on 5827+ devices)
1970 */
1971 void
1972 ubsec_feed4(struct ubsec_softc *sc)
1973 {
1974 struct ubsec_q2 *q;
1975
1976 while (!SIMPLEQ_EMPTY(&sc->sc_queue4)) {
1977 if (READ_REG(sc, BS_STAT) & BS_STAT_MCR4_FULL)
1978 break;
1979 q = SIMPLEQ_FIRST(&sc->sc_queue4);
1980
1981 bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1982 q->q_mcr.dma_map->dm_mapsize,
1983 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1984 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1985 q->q_ctx.dma_map->dm_mapsize,
1986 BUS_DMASYNC_PREWRITE);
1987
1988 WRITE_REG(sc, BS_MCR4, q->q_mcr.dma_paddr);
1989 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue4, q_next);
1990 --sc->sc_nqueue4;
1991 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip4, q, q_next);
1992 }
1993 }
1994
1995 /*
1996 * Callback for handling random numbers
1997 */
1998 static void
1999 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
2000 {
2001 struct cryptkop *krp;
2002 struct ubsec_ctx_keyop *ctx;
2003
2004 ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
2005 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
2006 q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2007
2008 switch (q->q_type) {
2009 #ifndef UBSEC_NO_RNG
2010 case UBS_CTXOP_RNGSHA1:
2011 case UBS_CTXOP_RNGBYPASS: {
2012 struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
2013 u_int32_t *p;
2014 int i;
2015
2016 bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
2017 rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2018 p = (u_int32_t *)rng->rng_buf.dma_vaddr;
2019 #ifndef __NetBSD__
2020 for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++)
2021 add_true_randomness(letoh32(*p));
2022 #else
2023 i = UBSEC_RNG_BUFSIZ * sizeof(u_int32_t);
2024 rnd_add_data(&sc->sc_rnd_source, (char *)p, i, i * NBBY);
2025 sc->sc_rng_need -= i;
2026 #endif
2027 rng->rng_used = 0;
2028 #ifdef __OpenBSD__
2029 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
2030 #else
2031 if (sc->sc_rng_need > 0) {
2032 callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
2033 }
2034 #endif
2035 break;
2036 }
2037 #endif
2038 case UBS_CTXOP_MODEXP: {
2039 struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2040 u_int rlen, clen;
2041
2042 krp = me->me_krp;
2043 rlen = (me->me_modbits + 7) / 8;
2044 clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
2045
2046 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2047 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2048 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2049 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2050 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2051 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2052 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2053 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2054
2055 if (clen < rlen)
2056 krp->krp_status = E2BIG;
2057 else {
2058 if (sc->sc_flags & UBS_FLAGS_HWNORM) {
2059 memset(krp->krp_param[krp->krp_iparams].crp_p, 0,
2060 (krp->krp_param[krp->krp_iparams].crp_nbits
2061 + 7) / 8);
2062 bcopy(me->me_C.dma_vaddr,
2063 krp->krp_param[krp->krp_iparams].crp_p,
2064 (me->me_modbits + 7) / 8);
2065 } else
2066 ubsec_kshift_l(me->me_shiftbits,
2067 me->me_C.dma_vaddr, me->me_normbits,
2068 krp->krp_param[krp->krp_iparams].crp_p,
2069 krp->krp_param[krp->krp_iparams].crp_nbits);
2070 }
2071
2072 crypto_kdone(krp);
2073
2074 /* bzero all potentially sensitive data */
2075 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2076 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2077 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2078 memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
2079
2080 /* Can't free here, so put us on the free list. */
2081 SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
2082 break;
2083 }
2084 case UBS_CTXOP_RSAPRIV: {
2085 struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2086 u_int len;
2087
2088 krp = rp->rpr_krp;
2089 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
2090 rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2091 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
2092 rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2093
2094 len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7)
2095 / 8;
2096 bcopy(rp->rpr_msgout.dma_vaddr,
2097 krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
2098
2099 crypto_kdone(krp);
2100
2101 memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
2102 memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
2103 memset(rp->rpr_q.q_ctx.dma_vaddr, 0, rp->rpr_q.q_ctx.dma_size);
2104
2105 /* Can't free here, so put us on the free list. */
2106 SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
2107 break;
2108 }
2109 default:
2110 printf("%s: unknown ctx op: %x\n", device_xname(sc->sc_dev),
2111 letoh16(ctx->ctx_op));
2112 break;
2113 }
2114 }
2115
2116 #ifndef UBSEC_NO_RNG
2117
2118 static void
2119 ubsec_rng_get(size_t bytes, void *vsc)
2120 {
2121 struct ubsec_softc *sc = vsc;
2122
2123 mutex_spin_enter(&sc->sc_mtx);
2124 sc->sc_rng_need = bytes;
2125 ubsec_rng_locked(sc);
2126 mutex_spin_exit(&sc->sc_mtx);
2127
2128 }
2129
2130 static void
2131 ubsec_rng(void *vsc)
2132 {
2133 struct ubsec_softc *sc = vsc;
2134 mutex_spin_enter(&sc->sc_mtx);
2135 ubsec_rng_locked(sc);
2136 mutex_spin_exit(&sc->sc_mtx);
2137 }
2138
2139 static void
2140 ubsec_rng_locked(void *vsc)
2141 {
2142 struct ubsec_softc *sc = vsc;
2143 struct ubsec_q2_rng *rng = &sc->sc_rng;
2144 struct ubsec_mcr *mcr;
2145 struct ubsec_ctx_rngbypass *ctx;
2146 int *nqueue;
2147
2148 /* Caller is responsible to lock and release sc_mtx. */
2149 KASSERT(mutex_owned(&sc->sc_mtx));
2150
2151 if (rng->rng_used) {
2152 return;
2153 }
2154
2155 if (sc->sc_rng_need < 1) {
2156 callout_stop(&sc->sc_rngto);
2157 return;
2158 }
2159
2160 if (sc->sc_flags & UBS_FLAGS_RNG4)
2161 nqueue = &sc->sc_nqueue4;
2162 else
2163 nqueue = &sc->sc_nqueue2;
2164
2165 (*nqueue)++;
2166 if (*nqueue >= UBS_MAX_NQUEUE)
2167 goto out;
2168
2169 mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
2170 ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
2171
2172 mcr->mcr_pkts = htole16(1);
2173 mcr->mcr_flags = 0;
2174 mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
2175 mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
2176 mcr->mcr_ipktbuf.pb_len = 0;
2177 mcr->mcr_reserved = mcr->mcr_pktlen = 0;
2178 mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
2179 mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
2180 UBS_PKTBUF_LEN);
2181 mcr->mcr_opktbuf.pb_next = 0;
2182
2183 ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
2184 ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
2185 rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
2186
2187 bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
2188 rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2189
2190 if (sc->sc_flags & UBS_FLAGS_RNG4) {
2191 SIMPLEQ_INSERT_TAIL(&sc->sc_queue4, &rng->rng_q, q_next);
2192 ubsec_feed4(sc);
2193 } else {
2194 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
2195 ubsec_feed2(sc);
2196 }
2197 rng->rng_used = 1;
2198 ubsecstats.hst_rng++;
2199
2200 return;
2201
2202 out:
2203 /*
2204 * Something weird happened, generate our own call back.
2205 */
2206 (*nqueue)--;
2207 #ifdef __OpenBSD__
2208 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
2209 #else
2210 callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
2211 #endif
2212 }
2213 #endif /* UBSEC_NO_RNG */
2214
2215 static int
2216 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
2217 struct ubsec_dma_alloc *dma,int mapflags)
2218 {
2219 int r;
2220
2221 if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
2222 &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
2223 goto fail_0;
2224
2225 if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
2226 size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
2227 goto fail_1;
2228
2229 if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
2230 BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
2231 goto fail_2;
2232
2233 if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
2234 size, NULL, BUS_DMA_NOWAIT)) != 0)
2235 goto fail_3;
2236
2237 dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
2238 dma->dma_size = size;
2239 return (0);
2240
2241 fail_3:
2242 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
2243 fail_2:
2244 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
2245 fail_1:
2246 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
2247 fail_0:
2248 dma->dma_map = NULL;
2249 return (r);
2250 }
2251
2252 static void
2253 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
2254 {
2255 bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
2256 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
2257 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
2258 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
2259 }
2260
2261 /*
2262 * Resets the board. Values in the regesters are left as is
2263 * from the reset (i.e. initial values are assigned elsewhere).
2264 */
2265 static void
2266 ubsec_reset_board(struct ubsec_softc *sc)
2267 {
2268 volatile u_int32_t ctrl;
2269
2270 ctrl = READ_REG(sc, BS_CTRL);
2271 ctrl |= BS_CTRL_RESET;
2272 WRITE_REG(sc, BS_CTRL, ctrl);
2273
2274 /*
2275 * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
2276 */
2277 DELAY(10);
2278
2279 /* Enable RNG and interrupts on newer devices */
2280 if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
2281 #ifndef UBSEC_NO_RNG
2282 WRITE_REG(sc, BS_CFG, BS_CFG_RNG);
2283 #endif
2284 WRITE_REG(sc, BS_INT, BS_INT_DMAINT);
2285 }
2286 }
2287
2288 /*
2289 * Init Broadcom registers
2290 */
2291 static void
2292 ubsec_init_board(struct ubsec_softc *sc)
2293 {
2294 u_int32_t ctrl;
2295
2296 ctrl = READ_REG(sc, BS_CTRL);
2297 ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
2298 ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
2299
2300 /*
2301 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
2302 * anyone got hw docs?
2303 */
2304 if (sc->sc_flags & UBS_FLAGS_KEY)
2305 ctrl |= BS_CTRL_MCR2INT;
2306 else
2307 ctrl &= ~BS_CTRL_MCR2INT;
2308
2309 if (sc->sc_flags & UBS_FLAGS_HWNORM)
2310 ctrl &= ~BS_CTRL_SWNORM;
2311
2312 if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
2313 ctrl |= BS_CTRL_BSIZE240;
2314 ctrl &= ~BS_CTRL_MCR3INT; /* MCR3 is reserved for SSL */
2315
2316 if (sc->sc_flags & UBS_FLAGS_RNG4)
2317 ctrl |= BS_CTRL_MCR4INT;
2318 else
2319 ctrl &= ~BS_CTRL_MCR4INT;
2320 }
2321
2322 WRITE_REG(sc, BS_CTRL, ctrl);
2323 }
2324
2325 /*
2326 * Init Broadcom PCI registers
2327 */
2328 static void
2329 ubsec_init_pciregs(struct pci_attach_args *pa)
2330 {
2331 pci_chipset_tag_t pc = pa->pa_pc;
2332 u_int32_t misc;
2333
2334 /*
2335 * This will set the cache line size to 1, this will
2336 * force the BCM58xx chip just to do burst read/writes.
2337 * Cache line read/writes are to slow
2338 */
2339 misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
2340 misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
2341 | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
2342 pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
2343 }
2344
2345 /*
2346 * Clean up after a chip crash.
2347 * It is assumed that the caller in splnet()
2348 */
2349 static void
2350 ubsec_cleanchip(struct ubsec_softc *sc)
2351 {
2352 struct ubsec_q *q;
2353
2354 while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
2355 q = SIMPLEQ_FIRST(&sc->sc_qchip);
2356 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
2357 ubsec_free_q(sc, q);
2358 }
2359 sc->sc_nqchip = 0;
2360 }
2361
2362 /*
2363 * free a ubsec_q
2364 * It is assumed that the caller is within splnet()
2365 */
2366 static int
2367 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2368 {
2369 struct ubsec_q *q2;
2370 struct cryptop *crp;
2371 int npkts;
2372 int i;
2373
2374 npkts = q->q_nstacked_mcrs;
2375
2376 for (i = 0; i < npkts; i++) {
2377 if(q->q_stacked_mcr[i]) {
2378 q2 = q->q_stacked_mcr[i];
2379
2380 if ((q2->q_dst_m != NULL)
2381 && (q2->q_src_m != q2->q_dst_m))
2382 m_freem(q2->q_dst_m);
2383
2384 crp = (struct cryptop *)q2->q_crp;
2385
2386 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2387
2388 crp->crp_etype = EFAULT;
2389 crypto_done(crp);
2390 } else {
2391 break;
2392 }
2393 }
2394
2395 /*
2396 * Free header MCR
2397 */
2398 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2399 m_freem(q->q_dst_m);
2400
2401 crp = (struct cryptop *)q->q_crp;
2402
2403 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2404
2405 crp->crp_etype = EFAULT;
2406 crypto_done(crp);
2407 return(0);
2408 }
2409
2410 /*
2411 * Routine to reset the chip and clean up.
2412 * It is assumed that the caller is in splnet()
2413 */
2414 static void
2415 ubsec_totalreset(struct ubsec_softc *sc)
2416 {
2417 ubsec_reset_board(sc);
2418 ubsec_init_board(sc);
2419 ubsec_cleanchip(sc);
2420 }
2421
2422 static int
2423 ubsec_dmamap_aligned(bus_dmamap_t map)
2424 {
2425 int i;
2426
2427 for (i = 0; i < map->dm_nsegs; i++) {
2428 if (map->dm_segs[i].ds_addr & 3)
2429 return (0);
2430 if ((i != (map->dm_nsegs - 1)) &&
2431 (map->dm_segs[i].ds_len & 3))
2432 return (0);
2433 }
2434 return (1);
2435 }
2436
2437 #ifdef __OpenBSD__
2438 struct ubsec_softc *
2439 ubsec_kfind(struct cryptkop *krp)
2440 {
2441 struct ubsec_softc *sc;
2442 int i;
2443
2444 for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
2445 sc = ubsec_cd.cd_devs[i];
2446 if (sc == NULL)
2447 continue;
2448 if (sc->sc_cid == krp->krp_hid)
2449 return (sc);
2450 }
2451 return (NULL);
2452 }
2453 #endif
2454
2455 static void
2456 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2457 {
2458 switch (q->q_type) {
2459 case UBS_CTXOP_MODEXP: {
2460 struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2461
2462 ubsec_dma_free(sc, &me->me_q.q_mcr);
2463 ubsec_dma_free(sc, &me->me_q.q_ctx);
2464 ubsec_dma_free(sc, &me->me_M);
2465 ubsec_dma_free(sc, &me->me_E);
2466 ubsec_dma_free(sc, &me->me_C);
2467 ubsec_dma_free(sc, &me->me_epb);
2468 free(me, M_DEVBUF);
2469 break;
2470 }
2471 case UBS_CTXOP_RSAPRIV: {
2472 struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2473
2474 ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2475 ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2476 ubsec_dma_free(sc, &rp->rpr_msgin);
2477 ubsec_dma_free(sc, &rp->rpr_msgout);
2478 free(rp, M_DEVBUF);
2479 break;
2480 }
2481 default:
2482 printf("%s: invalid kfree 0x%x\n", device_xname(sc->sc_dev),
2483 q->q_type);
2484 break;
2485 }
2486 }
2487
2488 static int
2489 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2490 {
2491 struct ubsec_softc *sc;
2492 int r;
2493
2494 if (krp == NULL || krp->krp_callback == NULL)
2495 return (EINVAL);
2496 #ifdef __OpenBSD__
2497 if ((sc = ubsec_kfind(krp)) == NULL)
2498 return (EINVAL);
2499 #else
2500 sc = arg;
2501 KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/);
2502 #endif
2503
2504 while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2505 struct ubsec_q2 *q;
2506
2507 q = SIMPLEQ_FIRST(&sc->sc_q2free);
2508 SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
2509 ubsec_kfree(sc, q);
2510 }
2511
2512 switch (krp->krp_op) {
2513 case CRK_MOD_EXP:
2514 if (sc->sc_flags & UBS_FLAGS_HWNORM)
2515 r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2516 else
2517 r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2518 break;
2519 case CRK_MOD_EXP_CRT:
2520 r = ubsec_kprocess_rsapriv(sc, krp, hint);
2521 break;
2522 default:
2523 printf("%s: kprocess: invalid op 0x%x\n",
2524 device_xname(sc->sc_dev), krp->krp_op);
2525 krp->krp_status = EOPNOTSUPP;
2526 crypto_kdone(krp);
2527 r = 0;
2528 }
2529 return (r);
2530 }
2531
2532 /*
2533 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2534 */
2535 static int
2536 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
2537 int hint)
2538 {
2539 struct ubsec_q2_modexp *me;
2540 struct ubsec_mcr *mcr;
2541 struct ubsec_ctx_modexp *ctx;
2542 struct ubsec_pktbuf *epb;
2543 int err = 0;
2544 u_int nbits, normbits, mbits, shiftbits, ebits;
2545
2546 me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2547 if (me == NULL) {
2548 err = ENOMEM;
2549 goto errout;
2550 }
2551 memset(me, 0, sizeof *me);
2552 me->me_krp = krp;
2553 me->me_q.q_type = UBS_CTXOP_MODEXP;
2554
2555 nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2556 if (nbits <= 512)
2557 normbits = 512;
2558 else if (nbits <= 768)
2559 normbits = 768;
2560 else if (nbits <= 1024)
2561 normbits = 1024;
2562 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2563 normbits = 1536;
2564 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2565 normbits = 2048;
2566 else {
2567 err = E2BIG;
2568 goto errout;
2569 }
2570
2571 shiftbits = normbits - nbits;
2572
2573 me->me_modbits = nbits;
2574 me->me_shiftbits = shiftbits;
2575 me->me_normbits = normbits;
2576
2577 /* Sanity check: result bits must be >= true modulus bits. */
2578 if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2579 err = ERANGE;
2580 goto errout;
2581 }
2582
2583 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2584 &me->me_q.q_mcr, 0)) {
2585 err = ENOMEM;
2586 goto errout;
2587 }
2588 mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2589
2590 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2591 &me->me_q.q_ctx, 0)) {
2592 err = ENOMEM;
2593 goto errout;
2594 }
2595
2596 mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2597 if (mbits > nbits) {
2598 err = E2BIG;
2599 goto errout;
2600 }
2601 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2602 err = ENOMEM;
2603 goto errout;
2604 }
2605 ubsec_kshift_r(shiftbits,
2606 krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2607 me->me_M.dma_vaddr, normbits);
2608
2609 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2610 err = ENOMEM;
2611 goto errout;
2612 }
2613 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2614
2615 ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2616 if (ebits > nbits) {
2617 err = E2BIG;
2618 goto errout;
2619 }
2620 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2621 err = ENOMEM;
2622 goto errout;
2623 }
2624 ubsec_kshift_r(shiftbits,
2625 krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2626 me->me_E.dma_vaddr, normbits);
2627
2628 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2629 &me->me_epb, 0)) {
2630 err = ENOMEM;
2631 goto errout;
2632 }
2633 epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2634 epb->pb_addr = htole32(me->me_E.dma_paddr);
2635 epb->pb_next = 0;
2636 epb->pb_len = htole32(normbits / 8);
2637
2638 #ifdef UBSEC_DEBUG
2639 if (ubsec_debug) {
2640 printf("Epb ");
2641 ubsec_dump_pb(epb);
2642 }
2643 #endif
2644
2645 mcr->mcr_pkts = htole16(1);
2646 mcr->mcr_flags = 0;
2647 mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2648 mcr->mcr_reserved = 0;
2649 mcr->mcr_pktlen = 0;
2650
2651 mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2652 mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2653 mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2654
2655 mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2656 mcr->mcr_opktbuf.pb_next = 0;
2657 mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2658
2659 #ifdef DIAGNOSTIC
2660 /* Misaligned output buffer will hang the chip. */
2661 if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2662 panic("%s: modexp invalid addr 0x%x", device_xname(sc->sc_dev),
2663 letoh32(mcr->mcr_opktbuf.pb_addr));
2664 if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2665 panic("%s: modexp invalid len 0x%x", device_xname(sc->sc_dev),
2666 letoh32(mcr->mcr_opktbuf.pb_len));
2667 #endif
2668
2669 ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2670 memset(ctx, 0, sizeof(*ctx));
2671 ubsec_kshift_r(shiftbits,
2672 krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2673 ctx->me_N, normbits);
2674 ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2675 ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2676 ctx->me_E_len = htole16(nbits);
2677 ctx->me_N_len = htole16(nbits);
2678
2679 #ifdef UBSEC_DEBUG
2680 if (ubsec_debug) {
2681 ubsec_dump_mcr(mcr);
2682 ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2683 }
2684 #endif
2685
2686 /*
2687 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2688 * everything else.
2689 */
2690 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2691 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2692 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2693 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2694 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2695 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2696 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2697 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2698
2699 /* Enqueue and we're done... */
2700 mutex_spin_enter(&sc->sc_mtx);
2701 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2702 ubsec_feed2(sc);
2703 ubsecstats.hst_modexp++;
2704 mutex_spin_exit(&sc->sc_mtx);
2705
2706 return (0);
2707
2708 errout:
2709 if (me != NULL) {
2710 if (me->me_q.q_mcr.dma_map != NULL)
2711 ubsec_dma_free(sc, &me->me_q.q_mcr);
2712 if (me->me_q.q_ctx.dma_map != NULL) {
2713 memset(me->me_q.q_ctx.dma_vaddr, 0,
2714 me->me_q.q_ctx.dma_size);
2715 ubsec_dma_free(sc, &me->me_q.q_ctx);
2716 }
2717 if (me->me_M.dma_map != NULL) {
2718 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2719 ubsec_dma_free(sc, &me->me_M);
2720 }
2721 if (me->me_E.dma_map != NULL) {
2722 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2723 ubsec_dma_free(sc, &me->me_E);
2724 }
2725 if (me->me_C.dma_map != NULL) {
2726 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2727 ubsec_dma_free(sc, &me->me_C);
2728 }
2729 if (me->me_epb.dma_map != NULL)
2730 ubsec_dma_free(sc, &me->me_epb);
2731 free(me, M_DEVBUF);
2732 }
2733 krp->krp_status = err;
2734 crypto_kdone(krp);
2735 return (0);
2736 }
2737
2738 /*
2739 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2740 */
2741 static int
2742 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
2743 int hint)
2744 {
2745 struct ubsec_q2_modexp *me;
2746 struct ubsec_mcr *mcr;
2747 struct ubsec_ctx_modexp *ctx;
2748 struct ubsec_pktbuf *epb;
2749 int err = 0;
2750 u_int nbits, normbits, mbits, shiftbits, ebits;
2751
2752 me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2753 if (me == NULL) {
2754 err = ENOMEM;
2755 goto errout;
2756 }
2757 memset(me, 0, sizeof *me);
2758 me->me_krp = krp;
2759 me->me_q.q_type = UBS_CTXOP_MODEXP;
2760
2761 nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2762 if (nbits <= 512)
2763 normbits = 512;
2764 else if (nbits <= 768)
2765 normbits = 768;
2766 else if (nbits <= 1024)
2767 normbits = 1024;
2768 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2769 normbits = 1536;
2770 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2771 normbits = 2048;
2772 else {
2773 err = E2BIG;
2774 goto errout;
2775 }
2776
2777 shiftbits = normbits - nbits;
2778
2779 /* XXX ??? */
2780 me->me_modbits = nbits;
2781 me->me_shiftbits = shiftbits;
2782 me->me_normbits = normbits;
2783
2784 /* Sanity check: result bits must be >= true modulus bits. */
2785 if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2786 err = ERANGE;
2787 goto errout;
2788 }
2789
2790 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2791 &me->me_q.q_mcr, 0)) {
2792 err = ENOMEM;
2793 goto errout;
2794 }
2795 mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2796
2797 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2798 &me->me_q.q_ctx, 0)) {
2799 err = ENOMEM;
2800 goto errout;
2801 }
2802
2803 mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2804 if (mbits > nbits) {
2805 err = E2BIG;
2806 goto errout;
2807 }
2808 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2809 err = ENOMEM;
2810 goto errout;
2811 }
2812 memset(me->me_M.dma_vaddr, 0, normbits / 8);
2813 bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2814 me->me_M.dma_vaddr, (mbits + 7) / 8);
2815
2816 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2817 err = ENOMEM;
2818 goto errout;
2819 }
2820 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2821
2822 ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2823 if (ebits > nbits) {
2824 err = E2BIG;
2825 goto errout;
2826 }
2827 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2828 err = ENOMEM;
2829 goto errout;
2830 }
2831 memset(me->me_E.dma_vaddr, 0, normbits / 8);
2832 bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2833 me->me_E.dma_vaddr, (ebits + 7) / 8);
2834
2835 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2836 &me->me_epb, 0)) {
2837 err = ENOMEM;
2838 goto errout;
2839 }
2840 epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2841 epb->pb_addr = htole32(me->me_E.dma_paddr);
2842 epb->pb_next = 0;
2843 epb->pb_len = htole32((ebits + 7) / 8);
2844
2845 #ifdef UBSEC_DEBUG
2846 if (ubsec_debug) {
2847 printf("Epb ");
2848 ubsec_dump_pb(epb);
2849 }
2850 #endif
2851
2852 mcr->mcr_pkts = htole16(1);
2853 mcr->mcr_flags = 0;
2854 mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2855 mcr->mcr_reserved = 0;
2856 mcr->mcr_pktlen = 0;
2857
2858 mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2859 mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2860 mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2861
2862 mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2863 mcr->mcr_opktbuf.pb_next = 0;
2864 mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2865
2866 #ifdef DIAGNOSTIC
2867 /* Misaligned output buffer will hang the chip. */
2868 if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2869 panic("%s: modexp invalid addr 0x%x", device_xname(sc->sc_dev),
2870 letoh32(mcr->mcr_opktbuf.pb_addr));
2871 if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2872 panic("%s: modexp invalid len 0x%x", device_xname(sc->sc_dev),
2873 letoh32(mcr->mcr_opktbuf.pb_len));
2874 #endif
2875
2876 ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2877 memset(ctx, 0, sizeof(*ctx));
2878 memcpy(ctx->me_N, krp->krp_param[UBS_MODEXP_PAR_N].crp_p,
2879 (nbits + 7) / 8);
2880 ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2881 ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2882 ctx->me_E_len = htole16(ebits);
2883 ctx->me_N_len = htole16(nbits);
2884
2885 #ifdef UBSEC_DEBUG
2886 if (ubsec_debug) {
2887 ubsec_dump_mcr(mcr);
2888 ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2889 }
2890 #endif
2891
2892 /*
2893 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2894 * everything else.
2895 */
2896 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2897 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2898 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2899 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2900 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2901 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2902 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2903 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2904
2905 /* Enqueue and we're done... */
2906 mutex_spin_enter(&sc->sc_mtx);
2907 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2908 ubsec_feed2(sc);
2909 mutex_spin_exit(&sc->sc_mtx);
2910
2911 return (0);
2912
2913 errout:
2914 if (me != NULL) {
2915 if (me->me_q.q_mcr.dma_map != NULL)
2916 ubsec_dma_free(sc, &me->me_q.q_mcr);
2917 if (me->me_q.q_ctx.dma_map != NULL) {
2918 memset(me->me_q.q_ctx.dma_vaddr, 0,
2919 me->me_q.q_ctx.dma_size);
2920 ubsec_dma_free(sc, &me->me_q.q_ctx);
2921 }
2922 if (me->me_M.dma_map != NULL) {
2923 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2924 ubsec_dma_free(sc, &me->me_M);
2925 }
2926 if (me->me_E.dma_map != NULL) {
2927 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2928 ubsec_dma_free(sc, &me->me_E);
2929 }
2930 if (me->me_C.dma_map != NULL) {
2931 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2932 ubsec_dma_free(sc, &me->me_C);
2933 }
2934 if (me->me_epb.dma_map != NULL)
2935 ubsec_dma_free(sc, &me->me_epb);
2936 free(me, M_DEVBUF);
2937 }
2938 krp->krp_status = err;
2939 crypto_kdone(krp);
2940 return (0);
2941 }
2942
2943 static int
2944 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
2945 int hint)
2946 {
2947 struct ubsec_q2_rsapriv *rp = NULL;
2948 struct ubsec_mcr *mcr;
2949 struct ubsec_ctx_rsapriv *ctx;
2950 int err = 0;
2951 u_int padlen, msglen;
2952
2953 msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2954 padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2955 if (msglen > padlen)
2956 padlen = msglen;
2957
2958 if (padlen <= 256)
2959 padlen = 256;
2960 else if (padlen <= 384)
2961 padlen = 384;
2962 else if (padlen <= 512)
2963 padlen = 512;
2964 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2965 padlen = 768;
2966 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2967 padlen = 1024;
2968 else {
2969 err = E2BIG;
2970 goto errout;
2971 }
2972
2973 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2974 err = E2BIG;
2975 goto errout;
2976 }
2977
2978 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2979 err = E2BIG;
2980 goto errout;
2981 }
2982
2983 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2984 err = E2BIG;
2985 goto errout;
2986 }
2987
2988 rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT|M_ZERO);
2989 if (rp == NULL)
2990 return (ENOMEM);
2991 rp->rpr_krp = krp;
2992 rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2993
2994 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2995 &rp->rpr_q.q_mcr, 0)) {
2996 err = ENOMEM;
2997 goto errout;
2998 }
2999 mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
3000
3001 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
3002 &rp->rpr_q.q_ctx, 0)) {
3003 err = ENOMEM;
3004 goto errout;
3005 }
3006 ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
3007 memset(ctx, 0, sizeof *ctx);
3008
3009 /* Copy in p */
3010 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
3011 &ctx->rpr_buf[0 * (padlen / 8)],
3012 (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
3013
3014 /* Copy in q */
3015 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
3016 &ctx->rpr_buf[1 * (padlen / 8)],
3017 (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
3018
3019 /* Copy in dp */
3020 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
3021 &ctx->rpr_buf[2 * (padlen / 8)],
3022 (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
3023
3024 /* Copy in dq */
3025 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
3026 &ctx->rpr_buf[3 * (padlen / 8)],
3027 (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
3028
3029 /* Copy in pinv */
3030 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
3031 &ctx->rpr_buf[4 * (padlen / 8)],
3032 (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
3033
3034 msglen = padlen * 2;
3035
3036 /* Copy in input message (aligned buffer/length). */
3037 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
3038 /* Is this likely? */
3039 err = E2BIG;
3040 goto errout;
3041 }
3042 if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
3043 err = ENOMEM;
3044 goto errout;
3045 }
3046 memset(rp->rpr_msgin.dma_vaddr, 0, (msglen + 7) / 8);
3047 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
3048 rp->rpr_msgin.dma_vaddr,
3049 (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
3050
3051 /* Prepare space for output message (aligned buffer/length). */
3052 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
3053 /* Is this likely? */
3054 err = E2BIG;
3055 goto errout;
3056 }
3057 if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
3058 err = ENOMEM;
3059 goto errout;
3060 }
3061 memset(rp->rpr_msgout.dma_vaddr, 0, (msglen + 7) / 8);
3062
3063 mcr->mcr_pkts = htole16(1);
3064 mcr->mcr_flags = 0;
3065 mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
3066 mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
3067 mcr->mcr_ipktbuf.pb_next = 0;
3068 mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
3069 mcr->mcr_reserved = 0;
3070 mcr->mcr_pktlen = htole16(msglen);
3071 mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
3072 mcr->mcr_opktbuf.pb_next = 0;
3073 mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
3074
3075 #ifdef DIAGNOSTIC
3076 if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
3077 panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
3078 device_xname(sc->sc_dev), (u_long) rp->rpr_msgin.dma_paddr,
3079 (u_long) rp->rpr_msgin.dma_size);
3080 }
3081 if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
3082 panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
3083 device_xname(sc->sc_dev), (u_long) rp->rpr_msgout.dma_paddr,
3084 (u_long) rp->rpr_msgout.dma_size);
3085 }
3086 #endif
3087
3088 ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
3089 ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
3090 ctx->rpr_q_len = htole16(padlen);
3091 ctx->rpr_p_len = htole16(padlen);
3092
3093 /*
3094 * ubsec_feed2 will sync mcr and ctx, we just need to sync
3095 * everything else.
3096 */
3097 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
3098 0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3099 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
3100 0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
3101
3102 /* Enqueue and we're done... */
3103 mutex_spin_enter(&sc->sc_mtx);
3104 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
3105 ubsec_feed2(sc);
3106 ubsecstats.hst_modexpcrt++;
3107 mutex_spin_exit(&sc->sc_mtx);
3108 return (0);
3109
3110 errout:
3111 if (rp != NULL) {
3112 if (rp->rpr_q.q_mcr.dma_map != NULL)
3113 ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
3114 if (rp->rpr_msgin.dma_map != NULL) {
3115 memset(rp->rpr_msgin.dma_vaddr, 0,
3116 rp->rpr_msgin.dma_size);
3117 ubsec_dma_free(sc, &rp->rpr_msgin);
3118 }
3119 if (rp->rpr_msgout.dma_map != NULL) {
3120 memset(rp->rpr_msgout.dma_vaddr, 0,
3121 rp->rpr_msgout.dma_size);
3122 ubsec_dma_free(sc, &rp->rpr_msgout);
3123 }
3124 free(rp, M_DEVBUF);
3125 }
3126 krp->krp_status = err;
3127 crypto_kdone(krp);
3128 return (0);
3129 }
3130
3131 #ifdef UBSEC_DEBUG
3132 static void
3133 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
3134 {
3135 printf("addr 0x%x (0x%x) next 0x%x\n",
3136 pb->pb_addr, pb->pb_len, pb->pb_next);
3137 }
3138
3139 static void
3140 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
3141 {
3142 printf("CTX (0x%x):\n", c->ctx_len);
3143 switch (letoh16(c->ctx_op)) {
3144 case UBS_CTXOP_RNGBYPASS:
3145 case UBS_CTXOP_RNGSHA1:
3146 break;
3147 case UBS_CTXOP_MODEXP:
3148 {
3149 struct ubsec_ctx_modexp *cx = (void *)c;
3150 int i, len;
3151
3152 printf(" Elen %u, Nlen %u\n",
3153 letoh16(cx->me_E_len), letoh16(cx->me_N_len));
3154 len = (cx->me_N_len + 7)/8;
3155 for (i = 0; i < len; i++)
3156 printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
3157 printf("\n");
3158 break;
3159 }
3160 default:
3161 printf("unknown context: %x\n", c->ctx_op);
3162 }
3163 printf("END CTX\n");
3164 }
3165
3166 static void
3167 ubsec_dump_mcr(struct ubsec_mcr *mcr)
3168 {
3169 volatile struct ubsec_mcr_add *ma;
3170 int i;
3171
3172 printf("MCR:\n");
3173 printf(" pkts: %u, flags 0x%x\n",
3174 letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
3175 ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
3176 for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
3177 printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
3178 letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
3179 letoh16(ma->mcr_reserved));
3180 printf(" %d: ipkt ", i);
3181 ubsec_dump_pb(&ma->mcr_ipktbuf);
3182 printf(" %d: opkt ", i);
3183 ubsec_dump_pb(&ma->mcr_opktbuf);
3184 ma++;
3185 }
3186 printf("END MCR\n");
3187 }
3188 #endif /* UBSEC_DEBUG */
3189
3190 /*
3191 * Return the number of significant bits of a big number.
3192 */
3193 static int
3194 ubsec_ksigbits(struct crparam *cr)
3195 {
3196 u_int plen = (cr->crp_nbits + 7) / 8;
3197 int i, sig = plen * 8;
3198 u_int8_t c, *p = cr->crp_p;
3199
3200 for (i = plen - 1; i >= 0; i--) {
3201 c = p[i];
3202 if (c != 0) {
3203 while ((c & 0x80) == 0) {
3204 sig--;
3205 c <<= 1;
3206 }
3207 break;
3208 }
3209 sig -= 8;
3210 }
3211 return (sig);
3212 }
3213
3214 static void
3215 ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits,
3216 u_int8_t *dst, u_int dstbits)
3217 {
3218 u_int slen, dlen;
3219 int i, si, di, n;
3220
3221 slen = (srcbits + 7) / 8;
3222 dlen = (dstbits + 7) / 8;
3223
3224 for (i = 0; i < slen; i++)
3225 dst[i] = src[i];
3226 for (i = 0; i < dlen - slen; i++)
3227 dst[slen + i] = 0;
3228
3229 n = shiftbits / 8;
3230 if (n != 0) {
3231 si = dlen - n - 1;
3232 di = dlen - 1;
3233 while (si >= 0)
3234 dst[di--] = dst[si--];
3235 while (di >= 0)
3236 dst[di--] = 0;
3237 }
3238
3239 n = shiftbits % 8;
3240 if (n != 0) {
3241 for (i = dlen - 1; i > 0; i--)
3242 dst[i] = (dst[i] << n) |
3243 (dst[i - 1] >> (8 - n));
3244 dst[0] = dst[0] << n;
3245 }
3246 }
3247
3248 static void
3249 ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits,
3250 u_int8_t *dst, u_int dstbits)
3251 {
3252 int slen, dlen, i, n;
3253
3254 slen = (srcbits + 7) / 8;
3255 dlen = (dstbits + 7) / 8;
3256
3257 n = shiftbits / 8;
3258 for (i = 0; i < slen; i++)
3259 dst[i] = src[i + n];
3260 for (i = 0; i < dlen - slen; i++)
3261 dst[slen + i] = 0;
3262
3263 n = shiftbits % 8;
3264 if (n != 0) {
3265 for (i = 0; i < (dlen - 1); i++)
3266 dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
3267 dst[dlen - 1] = dst[dlen - 1] >> n;
3268 }
3269 }
3270