Home | History | Annotate | Line # | Download | only in pci
ubsec.c revision 1.55
      1 /*	$NetBSD: ubsec.c,v 1.55 2022/05/22 11:30:58 riastradh Exp $	*/
      2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
      3 /*	$OpenBSD: ubsec.c,v 1.143 2009/03/27 13:31:30 reyk Exp$	*/
      4 
      5 /*
      6  * Copyright (c) 2000 Jason L. Wright (jason (at) thought.net)
      7  * Copyright (c) 2000 Theo de Raadt (deraadt (at) openbsd.org)
      8  * Copyright (c) 2001 Patrik Lindergren (patrik (at) ipunplugged.com)
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
     23  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     27  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     28  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  *
     31  * Effort sponsored in part by the Defense Advanced Research Projects
     32  * Agency (DARPA) and Air Force Research Laboratory, Air Force
     33  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
     34  *
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: ubsec.c,v 1.55 2022/05/22 11:30:58 riastradh Exp $");
     39 
     40 #undef UBSEC_DEBUG
     41 
     42 /*
     43  * uBsec 5[56]01, 58xx hardware crypto accelerator
     44  */
     45 
     46 #include <sys/param.h>
     47 #include <sys/systm.h>
     48 #include <sys/proc.h>
     49 #include <sys/endian.h>
     50 #include <sys/errno.h>
     51 #include <sys/malloc.h>
     52 #include <sys/kernel.h>
     53 #include <sys/mbuf.h>
     54 #include <sys/device.h>
     55 #include <sys/module.h>
     56 #include <sys/queue.h>
     57 #include <sys/sysctl.h>
     58 
     59 #include <opencrypto/cryptodev.h>
     60 #include <opencrypto/xform.h>
     61 #include <sys/cprng.h>
     62 #include <sys/md5.h>
     63 #include <sys/rndsource.h>
     64 #include <sys/sha1.h>
     65 
     66 #include <dev/pci/pcireg.h>
     67 #include <dev/pci/pcivar.h>
     68 #include <dev/pci/pcidevs.h>
     69 
     70 #include <dev/pci/ubsecreg.h>
     71 #include <dev/pci/ubsecvar.h>
     72 
     73 #define UBSEC_NO_RNG	/* hangs on attach */
     74 #define letoh16 htole16
     75 #define letoh32 htole32
     76 
     77 /*
     78  * Prototypes and count for the pci_device structure
     79  */
     80 static	int  ubsec_probe(device_t, cfdata_t, void *);
     81 static	void ubsec_attach(device_t, device_t, void *);
     82 static	int  ubsec_detach(device_t, int);
     83 static	void ubsec_reset_board(struct ubsec_softc *);
     84 static	void ubsec_init_board(struct ubsec_softc *);
     85 static	void ubsec_init_pciregs(struct pci_attach_args *pa);
     86 static	void ubsec_cleanchip(struct ubsec_softc *);
     87 static	void ubsec_totalreset(struct ubsec_softc *);
     88 static	int  ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
     89 
     90 CFATTACH_DECL_NEW(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
     91 	      ubsec_detach, NULL);
     92 extern struct cfdriver ubsec_cd;
     93 
     94 /* patchable */
     95 #ifdef	UBSEC_DEBUG
     96 extern int ubsec_debug;
     97 int ubsec_debug=1;
     98 #endif
     99 
    100 static	int	ubsec_intr(void *);
    101 static	int	ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
    102 static	int	ubsec_freesession(void*, u_int64_t);
    103 static	int	ubsec_process(void*, struct cryptop *, int hint);
    104 static	void	ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
    105 static	void	ubsec_feed(struct ubsec_softc *);
    106 static	void	ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
    107 static	void	ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
    108 static	void	ubsec_feed2(struct ubsec_softc *);
    109 static	void	ubsec_feed4(struct ubsec_softc *);
    110 #ifndef UBSEC_NO_RNG
    111 static  void	ubsec_rng(void *);
    112 static  void	ubsec_rng_locked(void *);
    113 static  void	ubsec_rng_get(size_t, void *);
    114 #endif /* UBSEC_NO_RNG */
    115 static	int 	ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
    116 				 struct ubsec_dma_alloc *, int);
    117 static	void	ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
    118 static	int	ubsec_dmamap_aligned(bus_dmamap_t);
    119 
    120 static	int	ubsec_kprocess(void*, struct cryptkop *, int);
    121 static	void	ubsec_kprocess_modexp_sw(struct ubsec_softc *,
    122 					 struct cryptkop *, int);
    123 static	void	ubsec_kprocess_modexp_hw(struct ubsec_softc *,
    124 					 struct cryptkop *, int);
    125 static	void	ubsec_kprocess_rsapriv(struct ubsec_softc *,
    126 				       struct cryptkop *, int);
    127 static	void	ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
    128 static	int	ubsec_ksigbits(struct crparam *);
    129 static	void	ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
    130 static	void	ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
    131 
    132 #ifdef UBSEC_DEBUG
    133 static void	ubsec_dump_pb(volatile struct ubsec_pktbuf *);
    134 static void	ubsec_dump_mcr(struct ubsec_mcr *);
    135 static	void	ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
    136 #endif
    137 
    138 #define	READ_REG(sc,r) \
    139 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
    140 
    141 #define WRITE_REG(sc,reg,val) \
    142 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
    143 
    144 #define	SWAP32(x) (x) = htole32(ntohl((x)))
    145 #ifndef HTOLE32
    146  #define	HTOLE32(x) (x) = htole32(x)
    147 #endif
    148 
    149 struct ubsec_stats ubsecstats;
    150 
    151 /*
    152  * ubsec_maxbatch controls the number of crypto ops to voluntarily
    153  * collect into one submission to the hardware.  This batching happens
    154  * when ops are dispatched from the crypto subsystem with a hint that
    155  * more are to follow immediately.  These ops must also not be marked
    156  * with a ``no delay'' flag.
    157  */
    158 static	int ubsec_maxbatch = 1;
    159 
    160 /*
    161  * ubsec_maxaggr controls the number of crypto ops to submit to the
    162  * hardware as a unit.  This aggregation reduces the number of interrupts
    163  * to the host at the expense of increased latency (for all but the last
    164  * operation).  For network traffic setting this to one yields the highest
    165  * performance but at the expense of more interrupt processing.
    166  */
    167 static	int ubsec_maxaggr = 1;
    168 
    169 static const struct ubsec_product {
    170 	pci_vendor_id_t		ubsec_vendor;
    171 	pci_product_id_t	ubsec_product;
    172 	int			ubsec_flags;
    173 	int			ubsec_statmask;
    174 	int			ubsec_maxaggr;
    175 	const char		*ubsec_name;
    176 } ubsec_products[] = {
    177 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5501,
    178 	  0,
    179 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    180 	  UBS_MIN_AGGR,
    181 	  "Bluesteel 5501"
    182 	},
    183 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5601,
    184 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
    185 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    186 	  UBS_MIN_AGGR,
    187 	  "Bluesteel 5601"
    188 	},
    189 
    190 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5801,
    191 	  0,
    192 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    193 	  UBS_MIN_AGGR,
    194 	  "Broadcom BCM5801"
    195 	},
    196 
    197 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5802,
    198 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
    199 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    200 	  UBS_MIN_AGGR,
    201 	  "Broadcom BCM5802"
    202 	},
    203 
    204 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5805,
    205 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
    206 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    207 	  UBS_MIN_AGGR,
    208 	  "Broadcom BCM5805"
    209 	},
    210 
    211 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5820,
    212 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    213 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    214 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    215 	  UBS_MIN_AGGR,
    216 	  "Broadcom BCM5820"
    217 	},
    218 
    219 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5821,
    220 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    221 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    222 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    223 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    224 	  UBS_MIN_AGGR,
    225 	  "Broadcom BCM5821"
    226 	},
    227 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_SCA1K,
    228 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    229 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    230 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    231 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    232 	  UBS_MIN_AGGR,
    233 	  "Sun Crypto Accelerator 1000"
    234 	},
    235 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_5821,
    236 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    237 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    238 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    239 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    240 	  UBS_MIN_AGGR,
    241 	  "Broadcom BCM5821 (Sun)"
    242 	},
    243 
    244 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5822,
    245 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    246 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    247 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    248 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    249 	  UBS_MIN_AGGR,
    250 	  "Broadcom BCM5822"
    251 	},
    252 
    253 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5823,
    254 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    255 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
    256 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    257 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    258 	  UBS_MIN_AGGR,
    259 	  "Broadcom BCM5823"
    260 	},
    261 
    262 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5825,
    263 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    264 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
    265 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    266 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    267 	  UBS_MIN_AGGR,
    268 	  "Broadcom BCM5825"
    269 	},
    270 
    271 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5860,
    272 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
    273 	      UBS_FLAGS_LONGCTX |
    274 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
    275 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
    276 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    277 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
    278 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
    279 	  UBS_MAX_AGGR,
    280 	  "Broadcom BCM5860"
    281 	},
    282 
    283 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5861,
    284 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
    285 	      UBS_FLAGS_LONGCTX |
    286 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
    287 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
    288 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    289 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
    290 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
    291 	  UBS_MAX_AGGR,
    292 	  "Broadcom BCM5861"
    293 	},
    294 
    295 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5862,
    296 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
    297 	      UBS_FLAGS_LONGCTX |
    298 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
    299 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
    300 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    301 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
    302 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
    303 	  UBS_MAX_AGGR,
    304 	  "Broadcom BCM5862"
    305 	},
    306 
    307 	{ 0,			0,
    308 	  0,
    309 	  0,
    310 	  0,
    311 	  NULL
    312 	}
    313 };
    314 
    315 static const struct ubsec_product *
    316 ubsec_lookup(const struct pci_attach_args *pa)
    317 {
    318 	const struct ubsec_product *up;
    319 
    320 	for (up = ubsec_products; up->ubsec_name != NULL; up++) {
    321 		if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
    322 		    PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
    323 			return (up);
    324 	}
    325 	return (NULL);
    326 }
    327 
    328 static int
    329 ubsec_probe(device_t parent, cfdata_t match, void *aux)
    330 {
    331 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    332 
    333 	if (ubsec_lookup(pa) != NULL)
    334 		return (1);
    335 
    336 	return (0);
    337 }
    338 
    339 static void
    340 ubsec_attach(device_t parent, device_t self, void *aux)
    341 {
    342 	struct ubsec_softc *sc = device_private(self);
    343 	struct pci_attach_args *pa = aux;
    344 	const struct ubsec_product *up;
    345 	pci_chipset_tag_t pc = pa->pa_pc;
    346 	pci_intr_handle_t ih;
    347 	const char *intrstr = NULL;
    348 	pcireg_t memtype;
    349 	struct ubsec_dma *dmap;
    350 	u_int32_t cmd, i;
    351 	char intrbuf[PCI_INTRSTR_LEN];
    352 
    353 	sc->sc_dev = self;
    354 	sc->sc_pct = pc;
    355 
    356 	up = ubsec_lookup(pa);
    357 	if (up == NULL) {
    358 		printf("\n");
    359 		panic("ubsec_attach: impossible");
    360 	}
    361 
    362 	pci_aprint_devinfo_fancy(pa, "Crypto processor", up->ubsec_name, 1);
    363 
    364 	SIMPLEQ_INIT(&sc->sc_queue);
    365 	SIMPLEQ_INIT(&sc->sc_qchip);
    366 	SIMPLEQ_INIT(&sc->sc_queue2);
    367 	SIMPLEQ_INIT(&sc->sc_qchip2);
    368 	SIMPLEQ_INIT(&sc->sc_queue4);
    369 	SIMPLEQ_INIT(&sc->sc_qchip4);
    370 	SIMPLEQ_INIT(&sc->sc_q2free);
    371 
    372 	sc->sc_flags = up->ubsec_flags;
    373 	sc->sc_statmask = up->ubsec_statmask;
    374 	sc->sc_maxaggr = up->ubsec_maxaggr;
    375 
    376 	cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    377 	cmd |= PCI_COMMAND_MASTER_ENABLE;
    378 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
    379 
    380 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BS_BAR);
    381 	if (pci_mapreg_map(pa, BS_BAR, memtype, 0,
    382 	    &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize)) {
    383 		aprint_error_dev(self, "can't find mem space");
    384 		return;
    385 	}
    386 
    387 	sc->sc_dmat = pa->pa_dmat;
    388 
    389 	if (pci_intr_map(pa, &ih)) {
    390 		aprint_error_dev(self, "couldn't map interrupt\n");
    391 		return;
    392 	}
    393 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    394 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, ubsec_intr, sc,
    395 	    device_xname(self));
    396 	if (sc->sc_ih == NULL) {
    397 		aprint_error_dev(self, "couldn't establish interrupt");
    398 		if (intrstr != NULL)
    399 			aprint_error(" at %s", intrstr);
    400 		aprint_error("\n");
    401 		return;
    402 	}
    403 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    404 
    405 	sc->sc_cid = crypto_get_driverid(0);
    406 	if (sc->sc_cid < 0) {
    407 		aprint_error_dev(self, "couldn't get crypto driver id\n");
    408 		pci_intr_disestablish(pc, sc->sc_ih);
    409 		return;
    410 	}
    411 
    412 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_VM);
    413 
    414 	SIMPLEQ_INIT(&sc->sc_freequeue);
    415 	dmap = sc->sc_dmaa;
    416 	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
    417 		struct ubsec_q *q;
    418 
    419 		q = malloc(sizeof(struct ubsec_q), M_DEVBUF, M_ZERO|M_WAITOK);
    420 
    421 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
    422 		    &dmap->d_alloc, 0)) {
    423 			aprint_error_dev(self, "can't allocate dma buffers\n");
    424 			free(q, M_DEVBUF);
    425 			break;
    426 		}
    427 		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
    428 
    429 		q->q_dma = dmap;
    430 		sc->sc_queuea[i] = q;
    431 
    432 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
    433 	}
    434 
    435 	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
    436 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
    437 	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
    438 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
    439 	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0,
    440 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
    441 	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0,
    442 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
    443 	if (sc->sc_flags & UBS_FLAGS_AES) {
    444 		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
    445 		    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
    446 	}
    447 
    448 	/*
    449 	 * Reset Broadcom chip
    450 	 */
    451 	ubsec_reset_board(sc);
    452 
    453 	/*
    454 	 * Init Broadcom specific PCI settings
    455 	 */
    456 	ubsec_init_pciregs(pa);
    457 
    458 	/*
    459 	 * Init Broadcom chip
    460 	 */
    461 	ubsec_init_board(sc);
    462 
    463 #ifndef UBSEC_NO_RNG
    464 	if (sc->sc_flags & UBS_FLAGS_RNG) {
    465 		if (sc->sc_flags & UBS_FLAGS_RNG4)
    466 			sc->sc_statmask |= BS_STAT_MCR4_DONE;
    467 		else
    468 			sc->sc_statmask |= BS_STAT_MCR2_DONE;
    469 
    470 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
    471 		    &sc->sc_rng.rng_q.q_mcr, 0))
    472 			goto skip_rng;
    473 
    474 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
    475 		    &sc->sc_rng.rng_q.q_ctx, 0)) {
    476 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
    477 			goto skip_rng;
    478 		}
    479 
    480 		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
    481 		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
    482 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
    483 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
    484 			goto skip_rng;
    485 		}
    486 		if (hz >= 100)
    487 			sc->sc_rnghz = hz / 100;
    488 		else
    489 			sc->sc_rnghz = 1;
    490 		callout_init(&sc->sc_rngto, 0);
    491 		callout_setfunc(&sc->sc_rngto, ubsec_rng, sc);
    492 		rndsource_setcb(&sc->sc_rnd_source, ubsec_rng_get, sc);
    493 		rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
    494 				  RND_TYPE_RNG,
    495 				  RND_FLAG_COLLECT_VALUE|RND_FLAG_HASCB);
    496 
    497  skip_rng:
    498 		if (sc->sc_rnghz)
    499 			aprint_normal_dev(self,
    500 			    "random number generator enabled\n");
    501 		else
    502 			aprint_error_dev(self,
    503 			    "WARNING: random number generator disabled\n");
    504 	}
    505 #endif /* UBSEC_NO_RNG */
    506 
    507 	if (sc->sc_flags & UBS_FLAGS_KEY) {
    508 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
    509 
    510 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
    511 				 ubsec_kprocess, sc);
    512 #if 0
    513 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
    514 				 ubsec_kprocess, sc);
    515 #endif
    516 	}
    517 }
    518 
    519 static int
    520 ubsec_detach(device_t self, int flags)
    521 {
    522 	struct ubsec_softc *sc = device_private(self);
    523 	struct ubsec_q *q, *qtmp;
    524 	volatile u_int32_t ctrl;
    525 
    526 	/* disable interrupts */
    527 	/* XXX wait/abort current ops? where is DMAERR enabled? */
    528 	ctrl = READ_REG(sc, BS_CTRL);
    529 
    530 	ctrl &= ~(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR);
    531 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
    532 		ctrl &= ~BS_CTRL_MCR4INT;
    533 
    534 	WRITE_REG(sc, BS_CTRL, ctrl);
    535 
    536 #ifndef UBSEC_NO_RNG
    537 	if (sc->sc_flags & UBS_FLAGS_RNG) {
    538 		callout_halt(&sc->sc_rngto, NULL);
    539 		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
    540 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
    541 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
    542 		rnd_detach_source(&sc->sc_rnd_source);
    543 	}
    544 #endif /* UBSEC_NO_RNG */
    545 
    546 	crypto_unregister_all(sc->sc_cid);
    547 
    548 	mutex_spin_enter(&sc->sc_mtx);
    549 
    550 	ubsec_totalreset(sc);  /* XXX leaves the chip running */
    551 
    552 	SIMPLEQ_FOREACH_SAFE(q, &sc->sc_freequeue, q_next, qtmp) {
    553 		ubsec_dma_free(sc, &q->q_dma->d_alloc);
    554 		if (q->q_src_map != NULL)
    555 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
    556 		if (q->q_cached_dst_map != NULL)
    557 			bus_dmamap_destroy(sc->sc_dmat, q->q_cached_dst_map);
    558 		free(q, M_DEVBUF);
    559 	}
    560 
    561 	mutex_spin_exit(&sc->sc_mtx);
    562 
    563 	if (sc->sc_ih != NULL) {
    564 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    565 		sc->sc_ih = NULL;
    566 	}
    567 
    568 	if (sc->sc_memsize != 0) {
    569 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
    570 		sc->sc_memsize = 0;
    571 	}
    572 
    573 	return 0;
    574 }
    575 
    576 MODULE(MODULE_CLASS_DRIVER, ubsec, "pci,opencrypto");
    577 
    578 #ifdef _MODULE
    579 #include "ioconf.c"
    580 #endif
    581 
    582 static int
    583 ubsec_modcmd(modcmd_t cmd, void *data)
    584 {
    585 	int error = 0;
    586 
    587 	switch (cmd) {
    588 	case MODULE_CMD_INIT:
    589 #ifdef _MODULE
    590 		error = config_init_component(cfdriver_ioconf_ubsec,
    591 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
    592 #endif
    593 		return error;
    594 	case MODULE_CMD_FINI:
    595 #ifdef _MODULE
    596 		error = config_fini_component(cfdriver_ioconf_ubsec,
    597 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
    598 #endif
    599 		return error;
    600 	default:
    601 		return ENOTTY;
    602 	}
    603 }
    604 
    605 SYSCTL_SETUP(ubsec_sysctl_init, "ubsec sysctl")
    606 {
    607 	const struct sysctlnode *node = NULL;
    608 
    609 	sysctl_createv(clog, 0, NULL, &node,
    610 		CTLFLAG_PERMANENT,
    611 		CTLTYPE_NODE, "ubsec",
    612 		SYSCTL_DESCR("ubsec opetions"),
    613 		NULL, 0, NULL, 0,
    614 		CTL_HW, CTL_CREATE, CTL_EOL);
    615 	sysctl_createv(clog, 0, &node, NULL,
    616 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    617 		CTLTYPE_INT, "maxbatch",
    618 		SYSCTL_DESCR("max ops to batch w/o interrupt"),
    619 		NULL, 0, &ubsec_maxbatch, 0,
    620 		CTL_CREATE, CTL_EOL);
    621 	sysctl_createv(clog, 0, &node, NULL,
    622 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    623 		CTLTYPE_INT, "maxaggr",
    624 		SYSCTL_DESCR("max ops to aggregate under one interrupt"),
    625 		NULL, 0, &ubsec_maxaggr, 0,
    626 		CTL_CREATE, CTL_EOL);
    627 
    628 	return;
    629 }
    630 
    631 /*
    632  * UBSEC Interrupt routine
    633  */
    634 static int
    635 ubsec_intr(void *arg)
    636 {
    637 	struct ubsec_softc *sc = arg;
    638 	volatile u_int32_t stat;
    639 	struct ubsec_q *q;
    640 	struct ubsec_dma *dmap;
    641 	int flags;
    642 	int npkts = 0, i;
    643 
    644 	mutex_spin_enter(&sc->sc_mtx);
    645 	stat = READ_REG(sc, BS_STAT);
    646 	stat &= sc->sc_statmask;
    647 	if (stat == 0) {
    648 		mutex_spin_exit(&sc->sc_mtx);
    649 		return (0);
    650 	}
    651 
    652 	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
    653 
    654 	/*
    655 	 * Check to see if we have any packets waiting for us
    656 	 */
    657 	if ((stat & BS_STAT_MCR1_DONE)) {
    658 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
    659 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
    660 			dmap = q->q_dma;
    661 
    662 			if ((dmap->d_dma->d_mcr.mcr_flags
    663 			    & htole16(UBS_MCR_DONE)) == 0)
    664 				break;
    665 
    666 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
    667 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
    668 
    669 			npkts = q->q_nstacked_mcrs;
    670 			sc->sc_nqchip -= 1+npkts;
    671 			/*
    672 			 * search for further sc_qchip ubsec_q's that share
    673 			 * the same MCR, and complete them too, they must be
    674 			 * at the top.
    675 			 */
    676 			for (i = 0; i < npkts; i++) {
    677 				if(q->q_stacked_mcr[i])
    678 					ubsec_callback(sc, q->q_stacked_mcr[i]);
    679 				else
    680 					break;
    681 			}
    682 			ubsec_callback(sc, q);
    683 		}
    684 
    685 		/*
    686 		 * Don't send any more packet to chip if there has been
    687 		 * a DMAERR.
    688 		 */
    689 		if (!(stat & BS_STAT_DMAERR))
    690 			ubsec_feed(sc);
    691 	}
    692 
    693 	/*
    694 	 * Check to see if we have any key setups/rng's waiting for us
    695 	 */
    696 	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
    697 	    (stat & BS_STAT_MCR2_DONE)) {
    698 		struct ubsec_q2 *q2;
    699 		struct ubsec_mcr *mcr;
    700 
    701 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
    702 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
    703 
    704 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
    705 			    0, q2->q_mcr.dma_map->dm_mapsize,
    706 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    707 
    708 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
    709 
    710 			/* A bug in new devices requires to swap this field */
    711 			if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
    712 				flags = htole16(mcr->mcr_flags);
    713 			else
    714 				flags = mcr->mcr_flags;
    715 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
    716 				bus_dmamap_sync(sc->sc_dmat,
    717 				    q2->q_mcr.dma_map, 0,
    718 				    q2->q_mcr.dma_map->dm_mapsize,
    719 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    720 				break;
    721 			}
    722 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
    723 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
    724 			ubsec_callback2(sc, q2);
    725 			/*
    726 			 * Don't send any more packet to chip if there has been
    727 			 * a DMAERR.
    728 			 */
    729 			if (!(stat & BS_STAT_DMAERR))
    730 				ubsec_feed2(sc);
    731 		}
    732 	}
    733 	if ((sc->sc_flags & UBS_FLAGS_RNG4) && (stat & BS_STAT_MCR4_DONE)) {
    734 		struct ubsec_q2 *q2;
    735 		struct ubsec_mcr *mcr;
    736 
    737 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip4)) {
    738 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip4);
    739 
    740 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
    741 			    0, q2->q_mcr.dma_map->dm_mapsize,
    742 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    743 
    744 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
    745 
    746 			/* A bug in new devices requires to swap this field */
    747 			flags = htole16(mcr->mcr_flags);
    748 
    749 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
    750 				bus_dmamap_sync(sc->sc_dmat,
    751 				    q2->q_mcr.dma_map, 0,
    752 				    q2->q_mcr.dma_map->dm_mapsize,
    753 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    754 				break;
    755 			}
    756 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip4, q_next);
    757 			ubsec_callback2(sc, q2);
    758 			/*
    759 			 * Don't send any more packet to chip if there has been
    760 			 * a DMAERR.
    761 			 */
    762 			if (!(stat & BS_STAT_DMAERR))
    763 				ubsec_feed4(sc);
    764 		}
    765 	}
    766 
    767 	/*
    768 	 * Check to see if we got any DMA Error
    769 	 */
    770 	if (stat & BS_STAT_DMAERR) {
    771 #ifdef UBSEC_DEBUG
    772 		if (ubsec_debug) {
    773 			volatile u_int32_t a = READ_REG(sc, BS_ERR);
    774 
    775 			printf("%s: dmaerr %s@%08x\n", device_xname(sc->sc_dev),
    776 			    (a & BS_ERR_READ) ? "read" : "write",
    777 			       a & BS_ERR_ADDR);
    778 		}
    779 #endif /* UBSEC_DEBUG */
    780 		ubsecstats.hst_dmaerr++;
    781 		ubsec_totalreset(sc);
    782 		ubsec_feed(sc);
    783 	}
    784 
    785 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
    786 		int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
    787 #ifdef UBSEC_DEBUG
    788 		if (ubsec_debug)
    789 			printf("%s: wakeup crypto (%x)\n",
    790 			    device_xname(sc->sc_dev), sc->sc_needwakeup);
    791 #endif /* UBSEC_DEBUG */
    792 		sc->sc_needwakeup &= ~wkeup;
    793 		crypto_unblock(sc->sc_cid, wkeup);
    794 	}
    795 	mutex_spin_exit(&sc->sc_mtx);
    796 	return (1);
    797 }
    798 
    799 /*
    800  * ubsec_feed() - aggregate and post requests to chip
    801  * OpenBSD comments:
    802  *		  It is assumed that the caller set splnet()
    803  */
    804 static void
    805 ubsec_feed(struct ubsec_softc *sc)
    806 {
    807 	struct ubsec_q *q, *q2;
    808 	int npkts, i;
    809 	void *v;
    810 	u_int32_t stat;
    811 #ifdef UBSEC_DEBUG
    812 	static int max;
    813 #endif /* UBSEC_DEBUG */
    814 
    815 	npkts = sc->sc_nqueue;
    816 	if (npkts > ubsecstats.hst_maxqueue)
    817 		ubsecstats.hst_maxqueue = npkts;
    818 	if (npkts < 2)
    819 		goto feed1;
    820 
    821 	/*
    822 	 * Decide how many ops to combine in a single MCR.  We cannot
    823 	 * aggregate more than UBS_MAX_AGGR because this is the number
    824 	 * of slots defined in the data structure.  Otherwise we clamp
    825 	 * based on the tunable parameter ubsec_maxaggr.  Note that
    826 	 * aggregation can happen in two ways: either by batching ops
    827 	 * from above or because the h/w backs up and throttles us.
    828 	 * Aggregating ops reduces the number of interrupts to the host
    829 	 * but also (potentially) increases the latency for processing
    830 	 * completed ops as we only get an interrupt when all aggregated
    831 	 * ops have completed.
    832 	 */
    833 	if (npkts > sc->sc_maxaggr)
    834 		npkts = sc->sc_maxaggr;
    835 	if (npkts > ubsec_maxaggr)
    836 		npkts = ubsec_maxaggr;
    837 	if (npkts > ubsecstats.hst_maxbatch)
    838 		ubsecstats.hst_maxbatch = npkts;
    839 	if (npkts < 2)
    840 		goto feed1;
    841 	ubsecstats.hst_totbatch += npkts-1;
    842 
    843 	if ((stat = READ_REG(sc, BS_STAT))
    844 	    & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
    845 		if (stat & BS_STAT_DMAERR) {
    846 			ubsec_totalreset(sc);
    847 			ubsecstats.hst_dmaerr++;
    848 		} else {
    849 			ubsecstats.hst_mcr1full++;
    850 		}
    851 		return;
    852 	}
    853 
    854 #ifdef UBSEC_DEBUG
    855 	if (ubsec_debug)
    856 	    printf("merging %d records\n", npkts);
    857 	/* XXX temporary aggregation statistics reporting code */
    858 	if (max < npkts) {
    859 		max = npkts;
    860 		printf("%s: new max aggregate %d\n", device_xname(sc->sc_dev),
    861 		    max);
    862 	}
    863 #endif /* UBSEC_DEBUG */
    864 
    865 	q = SIMPLEQ_FIRST(&sc->sc_queue);
    866 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
    867 	--sc->sc_nqueue;
    868 
    869 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
    870 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
    871 	if (q->q_dst_map != NULL)
    872 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
    873 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
    874 
    875 	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
    876 
    877 	for (i = 0; i < q->q_nstacked_mcrs; i++) {
    878 		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
    879 		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
    880 		    0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
    881 		if (q2->q_dst_map != NULL)
    882 			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
    883 			    0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
    884 		q2= SIMPLEQ_FIRST(&sc->sc_queue);
    885 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
    886 		--sc->sc_nqueue;
    887 
    888 		v = ((void *)&q2->q_dma->d_dma->d_mcr);
    889 		v = (char*)v + (sizeof(struct ubsec_mcr) -
    890 				 sizeof(struct ubsec_mcr_add));
    891 		memcpy(&q->q_dma->d_dma->d_mcradd[i], v,
    892 		    sizeof(struct ubsec_mcr_add));
    893 		q->q_stacked_mcr[i] = q2;
    894 	}
    895 	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
    896 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
    897 	sc->sc_nqchip += npkts;
    898 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
    899 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
    900 	bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
    901 	    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
    902 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    903 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
    904 	    offsetof(struct ubsec_dmachunk, d_mcr));
    905 	return;
    906 
    907 feed1:
    908 	while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
    909 		if ((stat = READ_REG(sc, BS_STAT))
    910 		    & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
    911 			if (stat & BS_STAT_DMAERR) {
    912 				ubsec_totalreset(sc);
    913 				ubsecstats.hst_dmaerr++;
    914 			} else {
    915 				ubsecstats.hst_mcr1full++;
    916 			}
    917 			break;
    918 		}
    919 
    920 		q = SIMPLEQ_FIRST(&sc->sc_queue);
    921 
    922 		bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
    923 		    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
    924 		if (q->q_dst_map != NULL)
    925 			bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
    926 			    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
    927 		bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
    928 		    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
    929 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    930 
    931 		WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
    932 		    offsetof(struct ubsec_dmachunk, d_mcr));
    933 #ifdef UBSEC_DEBUG
    934 		if (ubsec_debug)
    935 			printf("feed: q->chip %p %08x stat %08x\n",
    936  		    	       q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
    937 			       stat);
    938 #endif /* UBSEC_DEBUG */
    939 		q = SIMPLEQ_FIRST(&sc->sc_queue);
    940 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
    941 		--sc->sc_nqueue;
    942 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
    943 		sc->sc_nqchip++;
    944 	}
    945 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
    946 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
    947 }
    948 
    949 /*
    950  * Allocate a new 'session' and return an encoded session id.  'sidp'
    951  * contains our registration id, and should contain an encoded session
    952  * id on successful allocation.
    953  */
    954 static int
    955 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
    956 {
    957 	struct cryptoini *c, *encini = NULL, *macini = NULL;
    958 	struct ubsec_softc *sc;
    959 	struct ubsec_session *ses = NULL;
    960 	MD5_CTX md5ctx;
    961 	SHA1_CTX sha1ctx;
    962 	int i, sesn;
    963 
    964 	sc = arg;
    965 	KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
    966 
    967 	if (sidp == NULL || cri == NULL || sc == NULL)
    968 		return (EINVAL);
    969 
    970 	for (c = cri; c != NULL; c = c->cri_next) {
    971 		if (c->cri_alg == CRYPTO_MD5_HMAC_96 ||
    972 		    c->cri_alg == CRYPTO_SHA1_HMAC_96) {
    973 			if (macini)
    974 				return (EINVAL);
    975 			macini = c;
    976 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
    977 		    c->cri_alg == CRYPTO_3DES_CBC ||
    978 		    c->cri_alg == CRYPTO_AES_CBC) {
    979 			if (encini)
    980 				return (EINVAL);
    981 			encini = c;
    982 		} else
    983 			return (EINVAL);
    984 	}
    985 	if (encini == NULL && macini == NULL)
    986 		return (EINVAL);
    987 
    988 	if (encini && encini->cri_alg == CRYPTO_AES_CBC) {
    989 		switch (encini->cri_klen) {
    990 		case 128:
    991 		case 192:
    992 		case 256:
    993 			break;
    994 		default:
    995 			return (EINVAL);
    996 		}
    997 	}
    998 
    999 	if (sc->sc_sessions == NULL) {
   1000 		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
   1001 		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
   1002 		if (ses == NULL)
   1003 			return (ENOMEM);
   1004 		sesn = 0;
   1005 		sc->sc_nsessions = 1;
   1006 	} else {
   1007 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
   1008 			if (sc->sc_sessions[sesn].ses_used == 0) {
   1009 				ses = &sc->sc_sessions[sesn];
   1010 				break;
   1011 			}
   1012 		}
   1013 
   1014 		if (ses == NULL) {
   1015 			sesn = sc->sc_nsessions;
   1016 			ses = (struct ubsec_session *)malloc((sesn + 1) *
   1017 			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
   1018 			if (ses == NULL)
   1019 				return (ENOMEM);
   1020 			memcpy(ses, sc->sc_sessions, sesn *
   1021 			    sizeof(struct ubsec_session));
   1022 			memset(sc->sc_sessions, 0, sesn *
   1023 			    sizeof(struct ubsec_session));
   1024 			free(sc->sc_sessions, M_DEVBUF);
   1025 			sc->sc_sessions = ses;
   1026 			ses = &sc->sc_sessions[sesn];
   1027 			sc->sc_nsessions++;
   1028 		}
   1029 	}
   1030 
   1031 	memset(ses, 0, sizeof(struct ubsec_session));
   1032 	ses->ses_used = 1;
   1033 	if (encini) {
   1034 		/* Go ahead and compute key in ubsec's byte order */
   1035 		if (encini->cri_alg == CRYPTO_AES_CBC) {
   1036 			memcpy(ses->ses_key, encini->cri_key,
   1037 			    encini->cri_klen / 8);
   1038 		}
   1039 		if (encini->cri_alg == CRYPTO_DES_CBC) {
   1040 			memcpy(&ses->ses_key[0], encini->cri_key, 8);
   1041 			memcpy(&ses->ses_key[2], encini->cri_key, 8);
   1042 			memcpy(&ses->ses_key[4], encini->cri_key, 8);
   1043 		} else
   1044 			memcpy(ses->ses_key, encini->cri_key, 24);
   1045 
   1046 		SWAP32(ses->ses_key[0]);
   1047 		SWAP32(ses->ses_key[1]);
   1048 		SWAP32(ses->ses_key[2]);
   1049 		SWAP32(ses->ses_key[3]);
   1050 		SWAP32(ses->ses_key[4]);
   1051 		SWAP32(ses->ses_key[5]);
   1052 	}
   1053 
   1054 	if (macini) {
   1055 		for (i = 0; i < macini->cri_klen / 8; i++)
   1056 			macini->cri_key[i] ^= HMAC_IPAD_VAL;
   1057 
   1058 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
   1059 			MD5Init(&md5ctx);
   1060 			MD5Update(&md5ctx, macini->cri_key,
   1061 			    macini->cri_klen / 8);
   1062 			MD5Update(&md5ctx, hmac_ipad_buffer,
   1063 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
   1064 			memcpy(ses->ses_hminner, md5ctx.state,
   1065 			    sizeof(md5ctx.state));
   1066 		} else {
   1067 			SHA1Init(&sha1ctx);
   1068 			SHA1Update(&sha1ctx, macini->cri_key,
   1069 			    macini->cri_klen / 8);
   1070 			SHA1Update(&sha1ctx, hmac_ipad_buffer,
   1071 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
   1072 			memcpy(ses->ses_hminner, sha1ctx.state,
   1073 			    sizeof(sha1ctx.state));
   1074 		}
   1075 
   1076 		for (i = 0; i < macini->cri_klen / 8; i++)
   1077 			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
   1078 
   1079 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
   1080 			MD5Init(&md5ctx);
   1081 			MD5Update(&md5ctx, macini->cri_key,
   1082 			    macini->cri_klen / 8);
   1083 			MD5Update(&md5ctx, hmac_opad_buffer,
   1084 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
   1085 			memcpy(ses->ses_hmouter, md5ctx.state,
   1086 			    sizeof(md5ctx.state));
   1087 		} else {
   1088 			SHA1Init(&sha1ctx);
   1089 			SHA1Update(&sha1ctx, macini->cri_key,
   1090 			    macini->cri_klen / 8);
   1091 			SHA1Update(&sha1ctx, hmac_opad_buffer,
   1092 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
   1093 			memcpy(ses->ses_hmouter, sha1ctx.state,
   1094 			    sizeof(sha1ctx.state));
   1095 		}
   1096 
   1097 		for (i = 0; i < macini->cri_klen / 8; i++)
   1098 			macini->cri_key[i] ^= HMAC_OPAD_VAL;
   1099 	}
   1100 
   1101 	*sidp = UBSEC_SID(device_unit(sc->sc_dev), sesn);
   1102 	return (0);
   1103 }
   1104 
   1105 /*
   1106  * Deallocate a session.
   1107  */
   1108 static int
   1109 ubsec_freesession(void *arg, u_int64_t tid)
   1110 {
   1111 	struct ubsec_softc *sc;
   1112 	int session;
   1113 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
   1114 
   1115 	sc = arg;
   1116 	KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
   1117 
   1118 	session = UBSEC_SESSION(sid);
   1119 	if (session >= sc->sc_nsessions)
   1120 		return (EINVAL);
   1121 
   1122 	memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session]));
   1123 	return (0);
   1124 }
   1125 
   1126 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
   1127 static void
   1128 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize,
   1129     int error)
   1130 {
   1131 	struct ubsec_operand *op = arg;
   1132 
   1133 	KASSERT(nsegs <= UBS_MAX_SCATTER
   1134 		/*, ("Too many DMA segments returned when mapping operand")*/);
   1135 #ifdef UBSEC_DEBUG
   1136 	if (ubsec_debug)
   1137 		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
   1138 			(u_int) mapsize, nsegs);
   1139 #endif
   1140 	op->mapsize = mapsize;
   1141 	op->nsegs = nsegs;
   1142 	memcpy(op->segs, seg, nsegs * sizeof (seg[0]));
   1143 }
   1144 #endif
   1145 
   1146 static int
   1147 ubsec_process(void *arg, struct cryptop *crp, int hint)
   1148 {
   1149 	struct ubsec_q *q = NULL;
   1150 	int err = 0, i, j, nicealign;
   1151 	struct ubsec_softc *sc = arg;
   1152 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
   1153 	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
   1154 	int sskip, dskip, stheend, dtheend;
   1155 	int16_t coffset;
   1156 	struct ubsec_session *ses, key;
   1157 	struct ubsec_dma *dmap = NULL;
   1158 	u_int16_t flags = 0;
   1159 	int ivlen = 0, keylen = 0;
   1160 
   1161 	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
   1162 		ubsecstats.hst_badsession++;
   1163 		return (EINVAL);
   1164 	}
   1165 
   1166 	mutex_spin_enter(&sc->sc_mtx);
   1167 
   1168 	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
   1169 		ubsecstats.hst_queuefull++;
   1170 		sc->sc_needwakeup |= CRYPTO_SYMQ;
   1171 		mutex_spin_exit(&sc->sc_mtx);
   1172 		return(ERESTART);
   1173 	}
   1174 
   1175 	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
   1176 	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
   1177 	mutex_spin_exit(&sc->sc_mtx);
   1178 
   1179 	dmap = q->q_dma; /* Save dma pointer */
   1180 	/* don't lose the cached dmamaps q_src_map and q_cached_dst_map */
   1181 	memset(q, 0, offsetof(struct ubsec_q, q_src_map));
   1182 	memset(&key, 0, sizeof(key));
   1183 
   1184 	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
   1185 	q->q_dma = dmap;
   1186 	ses = &sc->sc_sessions[q->q_sesn];
   1187 
   1188 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
   1189 		q->q_src_m = (struct mbuf *)crp->crp_buf;
   1190 		q->q_dst_m = (struct mbuf *)crp->crp_buf;
   1191 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
   1192 		q->q_src_io = (struct uio *)crp->crp_buf;
   1193 		q->q_dst_io = (struct uio *)crp->crp_buf;
   1194 	} else {
   1195 		ubsecstats.hst_badflags++;
   1196 		err = EINVAL;
   1197 		goto errout;	/* XXX we don't handle contiguous blocks! */
   1198 	}
   1199 
   1200 	memset(&dmap->d_dma->d_mcr, 0, sizeof(struct ubsec_mcr));
   1201 
   1202 	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
   1203 	dmap->d_dma->d_mcr.mcr_flags = 0;
   1204 	q->q_crp = crp;
   1205 
   1206 	crd1 = crp->crp_desc;
   1207 	if (crd1 == NULL) {
   1208 		ubsecstats.hst_nodesc++;
   1209 		err = EINVAL;
   1210 		goto errout;
   1211 	}
   1212 	crd2 = crd1->crd_next;
   1213 
   1214 	if (crd2 == NULL) {
   1215 		if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
   1216 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) {
   1217 			maccrd = crd1;
   1218 			enccrd = NULL;
   1219 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
   1220 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
   1221 		    crd1->crd_alg == CRYPTO_AES_CBC) {
   1222 			maccrd = NULL;
   1223 			enccrd = crd1;
   1224 		} else {
   1225 			ubsecstats.hst_badalg++;
   1226 			err = EINVAL;
   1227 			goto errout;
   1228 		}
   1229 	} else {
   1230 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
   1231 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) &&
   1232 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
   1233 		    crd2->crd_alg == CRYPTO_3DES_CBC ||
   1234 		    crd2->crd_alg == CRYPTO_AES_CBC) &&
   1235 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
   1236 			maccrd = crd1;
   1237 			enccrd = crd2;
   1238 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
   1239 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
   1240 		    crd1->crd_alg == CRYPTO_AES_CBC) &&
   1241 		    (crd2->crd_alg == CRYPTO_MD5_HMAC_96 ||
   1242 		    crd2->crd_alg == CRYPTO_SHA1_HMAC_96) &&
   1243 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
   1244 			enccrd = crd1;
   1245 			maccrd = crd2;
   1246 		} else {
   1247 			/*
   1248 			 * We cannot order the ubsec as requested
   1249 			 */
   1250 			ubsecstats.hst_badalg++;
   1251 			err = EINVAL;
   1252 			goto errout;
   1253 		}
   1254 	}
   1255 
   1256 	if (enccrd) {
   1257 		if (enccrd->crd_alg == CRYPTO_AES_CBC) {
   1258 			if ((sc->sc_flags & UBS_FLAGS_AES) == 0) {
   1259 				/*
   1260 				 * We cannot order the ubsec as requested
   1261 				 */
   1262 				ubsecstats.hst_badalg++;
   1263 				err = EINVAL;
   1264 				goto errout;
   1265 			}
   1266 			flags |= htole16(UBS_PKTCTX_ENC_AES);
   1267 			switch (enccrd->crd_klen) {
   1268 			case 128:
   1269 			case 192:
   1270 			case 256:
   1271 				keylen = enccrd->crd_klen / 8;
   1272 				break;
   1273 			default:
   1274 				err = EINVAL;
   1275 				goto errout;
   1276 			}
   1277 			ivlen = 16;
   1278 		} else {
   1279 			flags |= htole16(UBS_PKTCTX_ENC_3DES);
   1280 			ivlen = 8;
   1281 			keylen = 24;
   1282 		}
   1283 
   1284 		encoffset = enccrd->crd_skip;
   1285 
   1286 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
   1287 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
   1288 				memcpy(key.ses_iv, enccrd->crd_iv, ivlen);
   1289 			else
   1290 				cprng_fast(key.ses_iv, ivlen);
   1291 
   1292 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
   1293 				if (crp->crp_flags & CRYPTO_F_IMBUF)
   1294 					m_copyback(q->q_src_m,
   1295 					    enccrd->crd_inject,
   1296 					    ivlen, (void *)key.ses_iv);
   1297 				else if (crp->crp_flags & CRYPTO_F_IOV)
   1298 					cuio_copyback(q->q_src_io,
   1299 					    enccrd->crd_inject,
   1300 					    ivlen, (void *)key.ses_iv);
   1301 			}
   1302 		} else {
   1303 			flags |= htole16(UBS_PKTCTX_INBOUND);
   1304 
   1305 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
   1306 				memcpy(key.ses_iv, enccrd->crd_iv, ivlen);
   1307 			else if (crp->crp_flags & CRYPTO_F_IMBUF)
   1308 				m_copydata(q->q_src_m, enccrd->crd_inject,
   1309 				    ivlen, (void *)key.ses_iv);
   1310 			else if (crp->crp_flags & CRYPTO_F_IOV)
   1311 				cuio_copydata(q->q_src_io,
   1312 				    enccrd->crd_inject, 8,
   1313 				    (void *)key.ses_iv);
   1314 		}
   1315 
   1316 		for (i = 0; i < (keylen / 4); i++)
   1317 			key.ses_key[i] = ses->ses_key[i];
   1318 		for (i = 0; i < (ivlen / 4); i++)
   1319 			SWAP32(key.ses_iv[i]);
   1320 	}
   1321 
   1322 	if (maccrd) {
   1323 		macoffset = maccrd->crd_skip;
   1324 
   1325 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC_96)
   1326 			flags |= htole16(UBS_PKTCTX_AUTH_MD5);
   1327 		else
   1328 			flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
   1329 
   1330 		for (i = 0; i < 5; i++) {
   1331 			key.ses_hminner[i] = ses->ses_hminner[i];
   1332 			key.ses_hmouter[i] = ses->ses_hmouter[i];
   1333 
   1334 			HTOLE32(key.ses_hminner[i]);
   1335 			HTOLE32(key.ses_hmouter[i]);
   1336 		}
   1337 	}
   1338 
   1339 	if (enccrd && maccrd) {
   1340 		/*
   1341 		 * ubsec cannot handle packets where the end of encryption
   1342 		 * and authentication are not the same, or where the
   1343 		 * encrypted part begins before the authenticated part.
   1344 		 */
   1345 		if ((encoffset + enccrd->crd_len) !=
   1346 		    (macoffset + maccrd->crd_len)) {
   1347 			ubsecstats.hst_lenmismatch++;
   1348 			err = EINVAL;
   1349 			goto errout;
   1350 		}
   1351 		if (enccrd->crd_skip < maccrd->crd_skip) {
   1352 			ubsecstats.hst_skipmismatch++;
   1353 			err = EINVAL;
   1354 			goto errout;
   1355 		}
   1356 		sskip = maccrd->crd_skip;
   1357 		cpskip = dskip = enccrd->crd_skip;
   1358 		stheend = maccrd->crd_len;
   1359 		dtheend = enccrd->crd_len;
   1360 		coffset = enccrd->crd_skip - maccrd->crd_skip;
   1361 		cpoffset = cpskip + dtheend;
   1362 #ifdef UBSEC_DEBUG
   1363 		if (ubsec_debug) {
   1364 			printf("mac: skip %d, len %d, inject %d\n",
   1365 			    maccrd->crd_skip, maccrd->crd_len,
   1366 			    maccrd->crd_inject);
   1367 			printf("enc: skip %d, len %d, inject %d\n",
   1368 			    enccrd->crd_skip, enccrd->crd_len,
   1369 			    enccrd->crd_inject);
   1370 			printf("src: skip %d, len %d\n", sskip, stheend);
   1371 			printf("dst: skip %d, len %d\n", dskip, dtheend);
   1372 			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
   1373 			       coffset, stheend, cpskip, cpoffset);
   1374 		}
   1375 #endif
   1376 	} else {
   1377 		cpskip = dskip = sskip = macoffset + encoffset;
   1378 		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
   1379 		cpoffset = cpskip + dtheend;
   1380 		coffset = 0;
   1381 	}
   1382 
   1383 	if (q->q_src_map == NULL) {
   1384 		/* XXX FIXME: jonathan asks, what the heck's that 0xfff0?  */
   1385 		if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
   1386 			0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
   1387 			err = ENOMEM;
   1388 			goto errout;
   1389 		}
   1390 	}
   1391 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
   1392 		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
   1393 		    q->q_src_m, BUS_DMA_NOWAIT) != 0) {
   1394 			ubsecstats.hst_noload++;
   1395 			err = ENOMEM;
   1396 			goto errout;
   1397 		}
   1398 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
   1399 		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
   1400 		    q->q_src_io, BUS_DMA_NOWAIT) != 0) {
   1401 			ubsecstats.hst_noload++;
   1402 			err = ENOMEM;
   1403 			goto errout;
   1404 		}
   1405 	}
   1406 	nicealign = ubsec_dmamap_aligned(q->q_src_map);
   1407 
   1408 	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
   1409 
   1410 #ifdef UBSEC_DEBUG
   1411 	if (ubsec_debug)
   1412 		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
   1413 #endif
   1414 	for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
   1415 		struct ubsec_pktbuf *pb;
   1416 		bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
   1417 		bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
   1418 
   1419 		if (sskip >= packl) {
   1420 			sskip -= packl;
   1421 			continue;
   1422 		}
   1423 
   1424 		packl -= sskip;
   1425 		packp += sskip;
   1426 		sskip = 0;
   1427 
   1428 		if (packl > 0xfffc) {
   1429 			err = EIO;
   1430 			goto errout;
   1431 		}
   1432 
   1433 		if (j == 0)
   1434 			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
   1435 		else
   1436 			pb = &dmap->d_dma->d_sbuf[j - 1];
   1437 
   1438 		pb->pb_addr = htole32(packp);
   1439 
   1440 		if (stheend) {
   1441 			if (packl > stheend) {
   1442 				pb->pb_len = htole32(stheend);
   1443 				stheend = 0;
   1444 			} else {
   1445 				pb->pb_len = htole32(packl);
   1446 				stheend -= packl;
   1447 			}
   1448 		} else
   1449 			pb->pb_len = htole32(packl);
   1450 
   1451 		if ((i + 1) == q->q_src_map->dm_nsegs)
   1452 			pb->pb_next = 0;
   1453 		else
   1454 			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
   1455 			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
   1456 		j++;
   1457 	}
   1458 
   1459 	if (enccrd == NULL && maccrd != NULL) {
   1460 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
   1461 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
   1462 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
   1463 		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
   1464 #ifdef UBSEC_DEBUG
   1465 		if (ubsec_debug)
   1466 			printf("opkt: %x %x %x\n",
   1467 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
   1468 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
   1469 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
   1470 
   1471 #endif
   1472 	} else {
   1473 		if (crp->crp_flags & CRYPTO_F_IOV) {
   1474 			if (!nicealign) {
   1475 				ubsecstats.hst_iovmisaligned++;
   1476 				err = EINVAL;
   1477 				goto errout;
   1478 			}
   1479 			if (q->q_dst_map == NULL) {
   1480 				if (q->q_cached_dst_map == NULL) {
   1481 					/*
   1482 					 * XXX: ``what the heck's that''
   1483 					 * 0xfff0?
   1484 					 */
   1485 					if (bus_dmamap_create(sc->sc_dmat,
   1486 					    0xfff0, UBS_MAX_SCATTER, 0xfff0, 0,
   1487 					    BUS_DMA_NOWAIT,
   1488 					    &q->q_cached_dst_map) != 0) {
   1489 						ubsecstats.hst_nomap++;
   1490 						err = ENOMEM;
   1491 						goto errout;
   1492 					}
   1493 				}
   1494 				q->q_dst_map = q->q_cached_dst_map;
   1495 			}
   1496 			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
   1497 			    q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
   1498 				ubsecstats.hst_noload++;
   1499 				err = ENOMEM;
   1500 				goto errout;
   1501 			}
   1502 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
   1503 			if (nicealign) {
   1504 				q->q_dst_m = q->q_src_m;
   1505 				q->q_dst_map = q->q_src_map;
   1506 			} else {
   1507 				int totlen, len;
   1508 				struct mbuf *m, *top, **mp;
   1509 
   1510 				ubsecstats.hst_unaligned++;
   1511 				totlen = q->q_src_map->dm_mapsize;
   1512 				if (q->q_src_m->m_flags & M_PKTHDR) {
   1513 					len = MHLEN;
   1514 					MGETHDR(m, M_DONTWAIT, MT_DATA);
   1515 					/*XXX FIXME: m_dup_pkthdr */
   1516 					if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
   1517 						m_free(m);
   1518 						m = NULL;
   1519 					}
   1520 				} else {
   1521 					len = MLEN;
   1522 					MGET(m, M_DONTWAIT, MT_DATA);
   1523 				}
   1524 				if (m == NULL) {
   1525 					ubsecstats.hst_nombuf++;
   1526 					err = sc->sc_nqueue ? ERESTART : ENOMEM;
   1527 					goto errout;
   1528 				}
   1529 				if (len == MHLEN)
   1530 				  /*XXX was M_DUP_PKTHDR*/
   1531 				  m_copy_pkthdr(m, q->q_src_m);
   1532 				if (totlen >= MINCLSIZE) {
   1533 					MCLGET(m, M_DONTWAIT);
   1534 					if ((m->m_flags & M_EXT) == 0) {
   1535 						m_free(m);
   1536 						ubsecstats.hst_nomcl++;
   1537 						err = sc->sc_nqueue
   1538 						    ? ERESTART : ENOMEM;
   1539 						goto errout;
   1540 					}
   1541 					len = MCLBYTES;
   1542 				}
   1543 				m->m_len = len;
   1544 				top = NULL;
   1545 				mp = &top;
   1546 
   1547 				while (totlen > 0) {
   1548 					if (top) {
   1549 						MGET(m, M_DONTWAIT, MT_DATA);
   1550 						if (m == NULL) {
   1551 							m_freem(top);
   1552 							ubsecstats.hst_nombuf++;
   1553 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
   1554 							goto errout;
   1555 						}
   1556 						len = MLEN;
   1557 					}
   1558 					if (top && totlen >= MINCLSIZE) {
   1559 						MCLGET(m, M_DONTWAIT);
   1560 						if ((m->m_flags & M_EXT) == 0) {
   1561 							*mp = m;
   1562 							m_freem(top);
   1563 							ubsecstats.hst_nomcl++;
   1564 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
   1565 							goto errout;
   1566 						}
   1567 						len = MCLBYTES;
   1568 					}
   1569 					m->m_len = len = uimin(totlen, len);
   1570 					totlen -= len;
   1571 					*mp = m;
   1572 					mp = &m->m_next;
   1573 				}
   1574 				q->q_dst_m = top;
   1575 				ubsec_mcopy(q->q_src_m, q->q_dst_m,
   1576 				    cpskip, cpoffset);
   1577 				if (q->q_dst_map == NULL) {
   1578 					if (q->q_cached_dst_map == NULL) {
   1579 						/* XXX again, what the heck is that 0xfff0? */
   1580 						if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
   1581 						    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
   1582 						    &q->q_cached_dst_map) != 0) {
   1583 							ubsecstats.hst_nomap++;
   1584 							err = ENOMEM;
   1585 							goto errout;
   1586 						}
   1587 					}
   1588 					q->q_dst_map = q->q_cached_dst_map;
   1589 				}
   1590 				if (bus_dmamap_load_mbuf(sc->sc_dmat,
   1591 				    q->q_dst_map, q->q_dst_m,
   1592 				    BUS_DMA_NOWAIT) != 0) {
   1593 					ubsecstats.hst_noload++;
   1594 					err = ENOMEM;
   1595 					goto errout;
   1596 				}
   1597 			}
   1598 		} else {
   1599 			ubsecstats.hst_badflags++;
   1600 			err = EINVAL;
   1601 			goto errout;
   1602 		}
   1603 
   1604 #ifdef UBSEC_DEBUG
   1605 		if (ubsec_debug)
   1606 			printf("dst skip: %d\n", dskip);
   1607 #endif
   1608 		for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
   1609 			struct ubsec_pktbuf *pb;
   1610 			bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
   1611 			bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
   1612 
   1613 			if (dskip >= packl) {
   1614 				dskip -= packl;
   1615 				continue;
   1616 			}
   1617 
   1618 			packl -= dskip;
   1619 			packp += dskip;
   1620 			dskip = 0;
   1621 
   1622 			if (packl > 0xfffc) {
   1623 				err = EIO;
   1624 				goto errout;
   1625 			}
   1626 
   1627 			if (j == 0)
   1628 				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
   1629 			else
   1630 				pb = &dmap->d_dma->d_dbuf[j - 1];
   1631 
   1632 			pb->pb_addr = htole32(packp);
   1633 
   1634 			if (dtheend) {
   1635 				if (packl > dtheend) {
   1636 					pb->pb_len = htole32(dtheend);
   1637 					dtheend = 0;
   1638 				} else {
   1639 					pb->pb_len = htole32(packl);
   1640 					dtheend -= packl;
   1641 				}
   1642 			} else
   1643 				pb->pb_len = htole32(packl);
   1644 
   1645 			if ((i + 1) == q->q_dst_map->dm_nsegs) {
   1646 				if (maccrd)
   1647 					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
   1648 					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
   1649 				else
   1650 					pb->pb_next = 0;
   1651 			} else
   1652 				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
   1653 				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
   1654 			j++;
   1655 		}
   1656 	}
   1657 
   1658 	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
   1659 	    offsetof(struct ubsec_dmachunk, d_ctx));
   1660 
   1661 	if (enccrd && enccrd->crd_alg == CRYPTO_AES_CBC) {
   1662 		struct ubsec_pktctx_aes128	*aes128;
   1663 		struct ubsec_pktctx_aes192	*aes192;
   1664 		struct ubsec_pktctx_aes256	*aes256;
   1665 		struct ubsec_pktctx_hdr		*ph;
   1666 		u_int8_t			*ctx;
   1667 
   1668 		ctx = (u_int8_t *)(dmap->d_alloc.dma_vaddr) +
   1669 		    offsetof(struct ubsec_dmachunk, d_ctx);
   1670 
   1671 		ph = (struct ubsec_pktctx_hdr *)ctx;
   1672 		ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_AES);
   1673 		ph->ph_flags = flags;
   1674 		ph->ph_offset = htole16(coffset >> 2);
   1675 
   1676 		switch (enccrd->crd_klen) {
   1677 		case 128:
   1678 			aes128 = (struct ubsec_pktctx_aes128 *)ctx;
   1679  			ph->ph_len = htole16(sizeof(*aes128));
   1680 			ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_128);
   1681 			for (i = 0; i < 4; i++)
   1682 				aes128->pc_aeskey[i] = key.ses_key[i];
   1683 			for (i = 0; i < 5; i++)
   1684 				aes128->pc_hminner[i] = key.ses_hminner[i];
   1685 			for (i = 0; i < 5; i++)
   1686 				aes128->pc_hmouter[i] = key.ses_hmouter[i];
   1687 			for (i = 0; i < 4; i++)
   1688 				aes128->pc_iv[i] = key.ses_iv[i];
   1689 			break;
   1690 		case 192:
   1691 			aes192 = (struct ubsec_pktctx_aes192 *)ctx;
   1692 			ph->ph_len = htole16(sizeof(*aes192));
   1693 			ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_192);
   1694 			for (i = 0; i < 6; i++)
   1695 				aes192->pc_aeskey[i] = key.ses_key[i];
   1696 			for (i = 0; i < 5; i++)
   1697 				aes192->pc_hminner[i] = key.ses_hminner[i];
   1698 			for (i = 0; i < 5; i++)
   1699 				aes192->pc_hmouter[i] = key.ses_hmouter[i];
   1700 			for (i = 0; i < 4; i++)
   1701 				aes192->pc_iv[i] = key.ses_iv[i];
   1702 			break;
   1703 		case 256:
   1704 			aes256 = (struct ubsec_pktctx_aes256 *)ctx;
   1705 			ph->ph_len = htole16(sizeof(*aes256));
   1706 			ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_256);
   1707 			for (i = 0; i < 8; i++)
   1708 				aes256->pc_aeskey[i] = key.ses_key[i];
   1709 			for (i = 0; i < 5; i++)
   1710 				aes256->pc_hminner[i] = key.ses_hminner[i];
   1711 			for (i = 0; i < 5; i++)
   1712 				aes256->pc_hmouter[i] = key.ses_hmouter[i];
   1713 			for (i = 0; i < 4; i++)
   1714 				aes256->pc_iv[i] = key.ses_iv[i];
   1715 			break;
   1716 		}
   1717 	} else if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
   1718 		struct ubsec_pktctx_3des	*ctx;
   1719 		struct ubsec_pktctx_hdr		*ph;
   1720 
   1721 		ctx = (struct ubsec_pktctx_3des *)
   1722 		    ((u_int8_t *)(dmap->d_alloc.dma_vaddr) +
   1723 		    offsetof(struct ubsec_dmachunk, d_ctx));
   1724 
   1725 		ph = (struct ubsec_pktctx_hdr *)ctx;
   1726 		ph->ph_len = htole16(sizeof(*ctx));
   1727 		ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_3DES);
   1728 		ph->ph_flags = flags;
   1729 		ph->ph_offset = htole16(coffset >> 2);
   1730 
   1731 		for (i = 0; i < 6; i++)
   1732 			ctx->pc_deskey[i] = key.ses_key[i];
   1733 		for (i = 0; i < 5; i++)
   1734 			ctx->pc_hminner[i] = key.ses_hminner[i];
   1735 		for (i = 0; i < 5; i++)
   1736 			ctx->pc_hmouter[i] = key.ses_hmouter[i];
   1737 		for (i = 0; i < 2; i++)
   1738 			ctx->pc_iv[i] = key.ses_iv[i];
   1739 	} else {
   1740 		struct ubsec_pktctx *ctx = (struct ubsec_pktctx *)
   1741 		    ((u_int8_t *)dmap->d_alloc.dma_vaddr +
   1742 		    offsetof(struct ubsec_dmachunk, d_ctx));
   1743 
   1744 		ctx->pc_flags = flags;
   1745 		ctx->pc_offset = htole16(coffset >> 2);
   1746 		for (i = 0; i < 6; i++)
   1747 			ctx->pc_deskey[i] = key.ses_key[i];
   1748 		for (i = 0; i < 5; i++)
   1749 			ctx->pc_hminner[i] = key.ses_hminner[i];
   1750 		for (i = 0; i < 5; i++)
   1751 			ctx->pc_hmouter[i] = key.ses_hmouter[i];
   1752 		for (i = 0; i < 2; i++)
   1753 			ctx->pc_iv[i] = key.ses_iv[i];
   1754 	}
   1755 
   1756 	mutex_spin_enter(&sc->sc_mtx);
   1757 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
   1758 	sc->sc_nqueue++;
   1759 	ubsecstats.hst_ipackets++;
   1760 	ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
   1761 	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
   1762 		ubsec_feed(sc);
   1763 	mutex_spin_exit(&sc->sc_mtx);
   1764 	return (0);
   1765 
   1766 errout:
   1767 	if (q != NULL) {
   1768 		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
   1769 			m_freem(q->q_dst_m);
   1770 
   1771 		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
   1772 			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
   1773 		}
   1774 		if (q->q_src_map != NULL) {
   1775 			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
   1776 		}
   1777 
   1778 		mutex_spin_enter(&sc->sc_mtx);
   1779 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
   1780 		mutex_spin_exit(&sc->sc_mtx);
   1781 	}
   1782 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
   1783 	if (err == EINVAL)
   1784 		ubsecstats.hst_invalid++;
   1785 	else
   1786 		ubsecstats.hst_nomem++;
   1787 #endif
   1788 	if (err != ERESTART) {
   1789 		crp->crp_etype = err;
   1790 		crypto_done(crp);
   1791 	} else {
   1792 		sc->sc_needwakeup |= CRYPTO_SYMQ;
   1793 	}
   1794 	return (err);
   1795 }
   1796 
   1797 static void
   1798 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
   1799 {
   1800 	struct cryptop *crp = (struct cryptop *)q->q_crp;
   1801 	struct cryptodesc *crd;
   1802 	struct ubsec_dma *dmap = q->q_dma;
   1803 
   1804 	ubsecstats.hst_opackets++;
   1805 	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
   1806 
   1807 	bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
   1808 	    dmap->d_alloc.dma_map->dm_mapsize,
   1809 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1810 	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
   1811 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
   1812 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1813 		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
   1814 	}
   1815 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
   1816 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1817 	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
   1818 
   1819 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
   1820 		m_freem(q->q_src_m);
   1821 		crp->crp_buf = (void *)q->q_dst_m;
   1822 	}
   1823 
   1824 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
   1825 		if (crd->crd_alg != CRYPTO_MD5_HMAC_96 &&
   1826 		    crd->crd_alg != CRYPTO_SHA1_HMAC_96)
   1827 			continue;
   1828 		if (crp->crp_flags & CRYPTO_F_IMBUF)
   1829 			m_copyback((struct mbuf *)crp->crp_buf,
   1830 			    crd->crd_inject, 12,
   1831 			    (void *)dmap->d_dma->d_macbuf);
   1832 		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
   1833 			bcopy((void *)dmap->d_dma->d_macbuf,
   1834 			    crp->crp_mac, 12);
   1835 		break;
   1836 	}
   1837 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
   1838 	crypto_done(crp);
   1839 }
   1840 
   1841 static void
   1842 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
   1843 {
   1844 	int i, j, dlen, slen;
   1845 	char *dptr, *sptr;
   1846 
   1847 	j = 0;
   1848 	sptr = srcm->m_data;
   1849 	slen = srcm->m_len;
   1850 	dptr = dstm->m_data;
   1851 	dlen = dstm->m_len;
   1852 
   1853 	while (1) {
   1854 		for (i = 0; i < uimin(slen, dlen); i++) {
   1855 			if (j < hoffset || j >= toffset)
   1856 				*dptr++ = *sptr++;
   1857 			slen--;
   1858 			dlen--;
   1859 			j++;
   1860 		}
   1861 		if (slen == 0) {
   1862 			srcm = srcm->m_next;
   1863 			if (srcm == NULL)
   1864 				return;
   1865 			sptr = srcm->m_data;
   1866 			slen = srcm->m_len;
   1867 		}
   1868 		if (dlen == 0) {
   1869 			dstm = dstm->m_next;
   1870 			if (dstm == NULL)
   1871 				return;
   1872 			dptr = dstm->m_data;
   1873 			dlen = dstm->m_len;
   1874 		}
   1875 	}
   1876 }
   1877 
   1878 /*
   1879  * feed the key generator, must be called at splnet() or higher.
   1880  */
   1881 static void
   1882 ubsec_feed2(struct ubsec_softc *sc)
   1883 {
   1884 	struct ubsec_q2 *q;
   1885 
   1886 	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
   1887 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
   1888 			break;
   1889 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
   1890 
   1891 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
   1892 		    q->q_mcr.dma_map->dm_mapsize,
   1893 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1894 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
   1895 		    q->q_ctx.dma_map->dm_mapsize,
   1896 		    BUS_DMASYNC_PREWRITE);
   1897 
   1898 		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
   1899 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
   1900 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
   1901 		--sc->sc_nqueue2;
   1902 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
   1903 	}
   1904 }
   1905 
   1906 /*
   1907  * feed the RNG (used instead of ubsec_feed2() on 5827+ devices)
   1908  */
   1909 void
   1910 ubsec_feed4(struct ubsec_softc *sc)
   1911 {
   1912 	struct ubsec_q2 *q;
   1913 
   1914 	while (!SIMPLEQ_EMPTY(&sc->sc_queue4)) {
   1915 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR4_FULL)
   1916 			break;
   1917 		q = SIMPLEQ_FIRST(&sc->sc_queue4);
   1918 
   1919 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
   1920 		    q->q_mcr.dma_map->dm_mapsize,
   1921 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1922 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
   1923 		    q->q_ctx.dma_map->dm_mapsize,
   1924 		    BUS_DMASYNC_PREWRITE);
   1925 
   1926 		WRITE_REG(sc, BS_MCR4, q->q_mcr.dma_paddr);
   1927 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue4, q_next);
   1928 		--sc->sc_nqueue4;
   1929 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip4, q, q_next);
   1930 	}
   1931 }
   1932 
   1933 /*
   1934  * Callback for handling random numbers
   1935  */
   1936 static void
   1937 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
   1938 {
   1939 	struct cryptkop *krp;
   1940 	struct ubsec_ctx_keyop *ctx;
   1941 
   1942 	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
   1943 	bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
   1944 	    q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1945 
   1946 	switch (q->q_type) {
   1947 #ifndef UBSEC_NO_RNG
   1948 	case UBS_CTXOP_RNGSHA1:
   1949 	case UBS_CTXOP_RNGBYPASS: {
   1950 		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
   1951 		u_int32_t *p;
   1952 		int i;
   1953 
   1954 		bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
   1955 		    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1956 		p = (u_int32_t *)rng->rng_buf.dma_vaddr;
   1957 		i = UBSEC_RNG_BUFSIZ * sizeof(u_int32_t);
   1958 		rnd_add_data(&sc->sc_rnd_source, (char *)p, i, i * NBBY);
   1959 		sc->sc_rng_need -= i;
   1960 		rng->rng_used = 0;
   1961 		if (sc->sc_rng_need > 0) {
   1962 			callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
   1963 		}
   1964 		break;
   1965 	}
   1966 #endif
   1967 	case UBS_CTXOP_MODEXP: {
   1968 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
   1969 		u_int rlen, clen;
   1970 
   1971 		krp = me->me_krp;
   1972 		rlen = (me->me_modbits + 7) / 8;
   1973 		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
   1974 
   1975 		bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
   1976 		    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1977 		bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
   1978 		    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1979 		bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
   1980 		    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1981 		bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
   1982 		    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1983 
   1984 		if (clen < rlen)
   1985 			krp->krp_status = E2BIG;
   1986 		else {
   1987 			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
   1988 				memset(krp->krp_param[krp->krp_iparams].crp_p, 0,
   1989 				    (krp->krp_param[krp->krp_iparams].crp_nbits
   1990 					+ 7) / 8);
   1991 				bcopy(me->me_C.dma_vaddr,
   1992 				    krp->krp_param[krp->krp_iparams].crp_p,
   1993 				    (me->me_modbits + 7) / 8);
   1994 			} else
   1995 				ubsec_kshift_l(me->me_shiftbits,
   1996 				    me->me_C.dma_vaddr, me->me_normbits,
   1997 				    krp->krp_param[krp->krp_iparams].crp_p,
   1998 				    krp->krp_param[krp->krp_iparams].crp_nbits);
   1999 		}
   2000 
   2001 		crypto_kdone(krp);
   2002 
   2003 		/* bzero all potentially sensitive data */
   2004 		memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
   2005 		memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
   2006 		memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   2007 		memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
   2008 
   2009 		/* Can't free here, so put us on the free list. */
   2010 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
   2011 		break;
   2012 	}
   2013 	case UBS_CTXOP_RSAPRIV: {
   2014 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
   2015 		u_int len;
   2016 
   2017 		krp = rp->rpr_krp;
   2018 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
   2019 		    rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2020 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
   2021 		    rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2022 
   2023 		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7)
   2024 		    / 8;
   2025 		bcopy(rp->rpr_msgout.dma_vaddr,
   2026 		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
   2027 
   2028 		crypto_kdone(krp);
   2029 
   2030 		memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
   2031 		memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
   2032 		memset(rp->rpr_q.q_ctx.dma_vaddr, 0, rp->rpr_q.q_ctx.dma_size);
   2033 
   2034 		/* Can't free here, so put us on the free list. */
   2035 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
   2036 		break;
   2037 	}
   2038 	default:
   2039 		printf("%s: unknown ctx op: %x\n", device_xname(sc->sc_dev),
   2040 		    letoh16(ctx->ctx_op));
   2041 		break;
   2042 	}
   2043 }
   2044 
   2045 #ifndef UBSEC_NO_RNG
   2046 
   2047 static void
   2048 ubsec_rng_get(size_t bytes, void *vsc)
   2049 {
   2050 	struct ubsec_softc *sc = vsc;
   2051 
   2052 	mutex_spin_enter(&sc->sc_mtx);
   2053 	sc->sc_rng_need = bytes;
   2054 	ubsec_rng_locked(sc);
   2055 	mutex_spin_exit(&sc->sc_mtx);
   2056 
   2057 }
   2058 
   2059 static void
   2060 ubsec_rng(void *vsc)
   2061 {
   2062 	struct ubsec_softc *sc = vsc;
   2063 	mutex_spin_enter(&sc->sc_mtx);
   2064 	ubsec_rng_locked(sc);
   2065 	mutex_spin_exit(&sc->sc_mtx);
   2066 }
   2067 
   2068 static void
   2069 ubsec_rng_locked(void *vsc)
   2070 {
   2071 	struct ubsec_softc *sc = vsc;
   2072 	struct ubsec_q2_rng *rng = &sc->sc_rng;
   2073 	struct ubsec_mcr *mcr;
   2074 	struct ubsec_ctx_rngbypass *ctx;
   2075 	int *nqueue;
   2076 
   2077 	/* Caller is responsible to lock and release sc_mtx. */
   2078 	KASSERT(mutex_owned(&sc->sc_mtx));
   2079 
   2080 	if (rng->rng_used) {
   2081 		return;
   2082 	}
   2083 
   2084 	if (sc->sc_rng_need < 1) {
   2085 		callout_stop(&sc->sc_rngto);
   2086 		return;
   2087 	}
   2088 
   2089 	if (sc->sc_flags & UBS_FLAGS_RNG4)
   2090 		nqueue = &sc->sc_nqueue4;
   2091 	else
   2092 		nqueue = &sc->sc_nqueue2;
   2093 
   2094 	(*nqueue)++;
   2095 	if (*nqueue >= UBS_MAX_NQUEUE)
   2096  		goto out;
   2097 
   2098 	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
   2099 	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
   2100 
   2101 	mcr->mcr_pkts = htole16(1);
   2102 	mcr->mcr_flags = 0;
   2103 	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
   2104 	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
   2105 	mcr->mcr_ipktbuf.pb_len = 0;
   2106 	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
   2107 	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
   2108 	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
   2109 	    UBS_PKTBUF_LEN);
   2110 	mcr->mcr_opktbuf.pb_next = 0;
   2111 
   2112 	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
   2113 	ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
   2114 	rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
   2115 
   2116 	bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
   2117 	    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2118 
   2119 	if (sc->sc_flags & UBS_FLAGS_RNG4) {
   2120 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue4, &rng->rng_q, q_next);
   2121 		ubsec_feed4(sc);
   2122 	} else {
   2123 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
   2124 		ubsec_feed2(sc);
   2125 	}
   2126 	rng->rng_used = 1;
   2127 	ubsecstats.hst_rng++;
   2128 
   2129 	return;
   2130 
   2131 out:
   2132 	/*
   2133 	 * Something weird happened, generate our own call back.
   2134 	 */
   2135 	(*nqueue)--;
   2136 	callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
   2137 }
   2138 #endif /* UBSEC_NO_RNG */
   2139 
   2140 static int
   2141 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
   2142 		 struct ubsec_dma_alloc *dma,int mapflags)
   2143 {
   2144 	int r;
   2145 
   2146 	if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
   2147 	    &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
   2148 		goto fail_0;
   2149 
   2150 	if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
   2151 	    size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
   2152 		goto fail_1;
   2153 
   2154 	if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
   2155 	    BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
   2156 		goto fail_2;
   2157 
   2158 	if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
   2159 	    size, NULL, BUS_DMA_NOWAIT)) != 0)
   2160 		goto fail_3;
   2161 
   2162 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
   2163 	dma->dma_size = size;
   2164 	return (0);
   2165 
   2166 fail_3:
   2167 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
   2168 fail_2:
   2169 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
   2170 fail_1:
   2171 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
   2172 fail_0:
   2173 	dma->dma_map = NULL;
   2174 	return (r);
   2175 }
   2176 
   2177 static void
   2178 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
   2179 {
   2180 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
   2181 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
   2182 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
   2183 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
   2184 }
   2185 
   2186 /*
   2187  * Resets the board.  Values in the regesters are left as is
   2188  * from the reset (i.e. initial values are assigned elsewhere).
   2189  */
   2190 static void
   2191 ubsec_reset_board(struct ubsec_softc *sc)
   2192 {
   2193 	volatile u_int32_t ctrl;
   2194 
   2195 	ctrl = READ_REG(sc, BS_CTRL);
   2196 	ctrl |= BS_CTRL_RESET;
   2197 	WRITE_REG(sc, BS_CTRL, ctrl);
   2198 
   2199 	/*
   2200 	* Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
   2201 	*/
   2202 	DELAY(10);
   2203 
   2204 	/* Enable RNG and interrupts on newer devices */
   2205 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
   2206 #ifndef UBSEC_NO_RNG
   2207 		WRITE_REG(sc, BS_CFG, BS_CFG_RNG);
   2208 #endif
   2209 		WRITE_REG(sc, BS_INT, BS_INT_DMAINT);
   2210 	}
   2211 }
   2212 
   2213 /*
   2214  * Init Broadcom registers
   2215  */
   2216 static void
   2217 ubsec_init_board(struct ubsec_softc *sc)
   2218 {
   2219 	u_int32_t ctrl;
   2220 
   2221 	ctrl = READ_REG(sc, BS_CTRL);
   2222 	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
   2223 	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
   2224 
   2225 	/*
   2226 	 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
   2227 	 * anyone got hw docs?
   2228 	 */
   2229 	if (sc->sc_flags & UBS_FLAGS_KEY)
   2230 		ctrl |= BS_CTRL_MCR2INT;
   2231 	else
   2232 		ctrl &= ~BS_CTRL_MCR2INT;
   2233 
   2234 	if (sc->sc_flags & UBS_FLAGS_HWNORM)
   2235 		ctrl &= ~BS_CTRL_SWNORM;
   2236 
   2237 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
   2238 		ctrl |= BS_CTRL_BSIZE240;
   2239 		ctrl &= ~BS_CTRL_MCR3INT; /* MCR3 is reserved for SSL */
   2240 
   2241 		if (sc->sc_flags & UBS_FLAGS_RNG4)
   2242 			ctrl |= BS_CTRL_MCR4INT;
   2243 		else
   2244 			ctrl &= ~BS_CTRL_MCR4INT;
   2245 	}
   2246 
   2247 	WRITE_REG(sc, BS_CTRL, ctrl);
   2248 }
   2249 
   2250 /*
   2251  * Init Broadcom PCI registers
   2252  */
   2253 static void
   2254 ubsec_init_pciregs(struct pci_attach_args *pa)
   2255 {
   2256 	pci_chipset_tag_t pc = pa->pa_pc;
   2257 	u_int32_t misc;
   2258 
   2259 	/*
   2260 	 * This will set the cache line size to 1, this will
   2261 	 * force the BCM58xx chip just to do burst read/writes.
   2262 	 * Cache line read/writes are to slow
   2263 	 */
   2264 	misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
   2265 	misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
   2266 	    | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
   2267 	pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
   2268 }
   2269 
   2270 /*
   2271  * Clean up after a chip crash.
   2272  * It is assumed that the caller in splnet()
   2273  */
   2274 static void
   2275 ubsec_cleanchip(struct ubsec_softc *sc)
   2276 {
   2277 	struct ubsec_q *q;
   2278 
   2279 	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
   2280 		q = SIMPLEQ_FIRST(&sc->sc_qchip);
   2281 		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
   2282 		ubsec_free_q(sc, q);
   2283 	}
   2284 	sc->sc_nqchip = 0;
   2285 }
   2286 
   2287 /*
   2288  * free a ubsec_q
   2289  * It is assumed that the caller is within splnet()
   2290  */
   2291 static int
   2292 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
   2293 {
   2294 	struct ubsec_q *q2;
   2295 	struct cryptop *crp;
   2296 	int npkts;
   2297 	int i;
   2298 
   2299 	npkts = q->q_nstacked_mcrs;
   2300 
   2301 	for (i = 0; i < npkts; i++) {
   2302 		if(q->q_stacked_mcr[i]) {
   2303 			q2 = q->q_stacked_mcr[i];
   2304 
   2305 			if ((q2->q_dst_m != NULL)
   2306 			    && (q2->q_src_m != q2->q_dst_m))
   2307 				m_freem(q2->q_dst_m);
   2308 
   2309 			crp = (struct cryptop *)q2->q_crp;
   2310 
   2311 			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
   2312 
   2313 			crp->crp_etype = EFAULT;
   2314 			crypto_done(crp);
   2315 		} else {
   2316 			break;
   2317 		}
   2318 	}
   2319 
   2320 	/*
   2321 	 * Free header MCR
   2322 	 */
   2323 	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
   2324 		m_freem(q->q_dst_m);
   2325 
   2326 	crp = (struct cryptop *)q->q_crp;
   2327 
   2328 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
   2329 
   2330 	crp->crp_etype = EFAULT;
   2331 	crypto_done(crp);
   2332 	return(0);
   2333 }
   2334 
   2335 /*
   2336  * Routine to reset the chip and clean up.
   2337  * It is assumed that the caller is in splnet()
   2338  */
   2339 static void
   2340 ubsec_totalreset(struct ubsec_softc *sc)
   2341 {
   2342 	ubsec_reset_board(sc);
   2343 	ubsec_init_board(sc);
   2344 	ubsec_cleanchip(sc);
   2345 }
   2346 
   2347 static int
   2348 ubsec_dmamap_aligned(bus_dmamap_t map)
   2349 {
   2350 	int i;
   2351 
   2352 	for (i = 0; i < map->dm_nsegs; i++) {
   2353 		if (map->dm_segs[i].ds_addr & 3)
   2354 			return (0);
   2355 		if ((i != (map->dm_nsegs - 1)) &&
   2356 		    (map->dm_segs[i].ds_len & 3))
   2357 			return (0);
   2358 	}
   2359 	return (1);
   2360 }
   2361 
   2362 static void
   2363 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
   2364 {
   2365 	switch (q->q_type) {
   2366 	case UBS_CTXOP_MODEXP: {
   2367 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
   2368 
   2369 		ubsec_dma_free(sc, &me->me_q.q_mcr);
   2370 		ubsec_dma_free(sc, &me->me_q.q_ctx);
   2371 		ubsec_dma_free(sc, &me->me_M);
   2372 		ubsec_dma_free(sc, &me->me_E);
   2373 		ubsec_dma_free(sc, &me->me_C);
   2374 		ubsec_dma_free(sc, &me->me_epb);
   2375 		free(me, M_DEVBUF);
   2376 		break;
   2377 	}
   2378 	case UBS_CTXOP_RSAPRIV: {
   2379 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
   2380 
   2381 		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
   2382 		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
   2383 		ubsec_dma_free(sc, &rp->rpr_msgin);
   2384 		ubsec_dma_free(sc, &rp->rpr_msgout);
   2385 		free(rp, M_DEVBUF);
   2386 		break;
   2387 	}
   2388 	default:
   2389 		printf("%s: invalid kfree 0x%x\n", device_xname(sc->sc_dev),
   2390 		    q->q_type);
   2391 		break;
   2392 	}
   2393 }
   2394 
   2395 static int
   2396 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
   2397 {
   2398 	struct ubsec_softc *sc = arg;
   2399 
   2400 	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
   2401 		struct ubsec_q2 *q;
   2402 
   2403 		q = SIMPLEQ_FIRST(&sc->sc_q2free);
   2404 		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
   2405 		ubsec_kfree(sc, q);
   2406 	}
   2407 
   2408 	switch (krp->krp_op) {
   2409 	case CRK_MOD_EXP:
   2410 		if (sc->sc_flags & UBS_FLAGS_HWNORM)
   2411 			ubsec_kprocess_modexp_hw(sc, krp, hint);
   2412 		else
   2413 			ubsec_kprocess_modexp_sw(sc, krp, hint);
   2414 		break;
   2415 	case CRK_MOD_EXP_CRT:
   2416 		ubsec_kprocess_rsapriv(sc, krp, hint);
   2417 		break;
   2418 	default:
   2419 		printf("%s: kprocess: invalid op 0x%x\n",
   2420 		    device_xname(sc->sc_dev), krp->krp_op);
   2421 		krp->krp_status = EOPNOTSUPP;
   2422 		crypto_kdone(krp);
   2423 	}
   2424 	return 0;
   2425 }
   2426 
   2427 /*
   2428  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
   2429  */
   2430 static void
   2431 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
   2432 			 int hint)
   2433 {
   2434 	struct ubsec_q2_modexp *me;
   2435 	struct ubsec_mcr *mcr;
   2436 	struct ubsec_ctx_modexp *ctx;
   2437 	struct ubsec_pktbuf *epb;
   2438 	int err = 0;
   2439 	u_int nbits, normbits, mbits, shiftbits, ebits;
   2440 
   2441 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
   2442 	if (me == NULL) {
   2443 		err = ENOMEM;
   2444 		goto errout;
   2445 	}
   2446 	memset(me, 0, sizeof *me);
   2447 	me->me_krp = krp;
   2448 	me->me_q.q_type = UBS_CTXOP_MODEXP;
   2449 
   2450 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
   2451 	if (nbits <= 512)
   2452 		normbits = 512;
   2453 	else if (nbits <= 768)
   2454 		normbits = 768;
   2455 	else if (nbits <= 1024)
   2456 		normbits = 1024;
   2457 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
   2458 		normbits = 1536;
   2459 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
   2460 		normbits = 2048;
   2461 	else {
   2462 		err = E2BIG;
   2463 		goto errout;
   2464 	}
   2465 
   2466 	shiftbits = normbits - nbits;
   2467 
   2468 	me->me_modbits = nbits;
   2469 	me->me_shiftbits = shiftbits;
   2470 	me->me_normbits = normbits;
   2471 
   2472 	/* Sanity check: result bits must be >= true modulus bits. */
   2473 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
   2474 		err = ERANGE;
   2475 		goto errout;
   2476 	}
   2477 
   2478 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
   2479 	    &me->me_q.q_mcr, 0)) {
   2480 		err = ENOMEM;
   2481 		goto errout;
   2482 	}
   2483 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
   2484 
   2485 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
   2486 	    &me->me_q.q_ctx, 0)) {
   2487 		err = ENOMEM;
   2488 		goto errout;
   2489 	}
   2490 
   2491 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
   2492 	if (mbits > nbits) {
   2493 		err = E2BIG;
   2494 		goto errout;
   2495 	}
   2496 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
   2497 		err = ENOMEM;
   2498 		goto errout;
   2499 	}
   2500 	ubsec_kshift_r(shiftbits,
   2501 	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
   2502 	    me->me_M.dma_vaddr, normbits);
   2503 
   2504 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
   2505 		err = ENOMEM;
   2506 		goto errout;
   2507 	}
   2508 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   2509 
   2510 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
   2511 	if (ebits > nbits) {
   2512 		err = E2BIG;
   2513 		goto errout;
   2514 	}
   2515 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
   2516 		err = ENOMEM;
   2517 		goto errout;
   2518 	}
   2519 	ubsec_kshift_r(shiftbits,
   2520 	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
   2521 	    me->me_E.dma_vaddr, normbits);
   2522 
   2523 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
   2524 	    &me->me_epb, 0)) {
   2525 		err = ENOMEM;
   2526 		goto errout;
   2527 	}
   2528 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
   2529 	epb->pb_addr = htole32(me->me_E.dma_paddr);
   2530 	epb->pb_next = 0;
   2531 	epb->pb_len = htole32(normbits / 8);
   2532 
   2533 #ifdef UBSEC_DEBUG
   2534 	if (ubsec_debug) {
   2535 		printf("Epb ");
   2536 		ubsec_dump_pb(epb);
   2537 	}
   2538 #endif
   2539 
   2540 	mcr->mcr_pkts = htole16(1);
   2541 	mcr->mcr_flags = 0;
   2542 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
   2543 	mcr->mcr_reserved = 0;
   2544 	mcr->mcr_pktlen = 0;
   2545 
   2546 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
   2547 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
   2548 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
   2549 
   2550 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
   2551 	mcr->mcr_opktbuf.pb_next = 0;
   2552 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
   2553 
   2554 #ifdef DIAGNOSTIC
   2555 	/* Misaligned output buffer will hang the chip. */
   2556 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
   2557 		panic("%s: modexp invalid addr 0x%x", device_xname(sc->sc_dev),
   2558 		    letoh32(mcr->mcr_opktbuf.pb_addr));
   2559 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
   2560 		panic("%s: modexp invalid len 0x%x",  device_xname(sc->sc_dev),
   2561 		    letoh32(mcr->mcr_opktbuf.pb_len));
   2562 #endif
   2563 
   2564 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
   2565 	memset(ctx, 0, sizeof(*ctx));
   2566 	ubsec_kshift_r(shiftbits,
   2567 	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
   2568 	    ctx->me_N, normbits);
   2569 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
   2570 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
   2571 	ctx->me_E_len = htole16(nbits);
   2572 	ctx->me_N_len = htole16(nbits);
   2573 
   2574 #ifdef UBSEC_DEBUG
   2575 	if (ubsec_debug) {
   2576 		ubsec_dump_mcr(mcr);
   2577 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
   2578 	}
   2579 #endif
   2580 
   2581 	/*
   2582 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
   2583 	 * everything else.
   2584 	 */
   2585 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
   2586 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2587 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
   2588 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2589 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
   2590 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2591 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
   2592 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2593 
   2594 	/* Enqueue and we're done... */
   2595 	mutex_spin_enter(&sc->sc_mtx);
   2596 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
   2597 	ubsec_feed2(sc);
   2598 	ubsecstats.hst_modexp++;
   2599 	mutex_spin_exit(&sc->sc_mtx);
   2600 
   2601 	return;
   2602 
   2603 errout:
   2604 	if (me != NULL) {
   2605 		if (me->me_q.q_mcr.dma_map != NULL)
   2606 			ubsec_dma_free(sc, &me->me_q.q_mcr);
   2607 		if (me->me_q.q_ctx.dma_map != NULL) {
   2608 			memset(me->me_q.q_ctx.dma_vaddr, 0,
   2609 			    me->me_q.q_ctx.dma_size);
   2610 			ubsec_dma_free(sc, &me->me_q.q_ctx);
   2611 		}
   2612 		if (me->me_M.dma_map != NULL) {
   2613 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
   2614 			ubsec_dma_free(sc, &me->me_M);
   2615 		}
   2616 		if (me->me_E.dma_map != NULL) {
   2617 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
   2618 			ubsec_dma_free(sc, &me->me_E);
   2619 		}
   2620 		if (me->me_C.dma_map != NULL) {
   2621 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   2622 			ubsec_dma_free(sc, &me->me_C);
   2623 		}
   2624 		if (me->me_epb.dma_map != NULL)
   2625 			ubsec_dma_free(sc, &me->me_epb);
   2626 		free(me, M_DEVBUF);
   2627 	}
   2628 	krp->krp_status = err;
   2629 	crypto_kdone(krp);
   2630 }
   2631 
   2632 /*
   2633  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
   2634  */
   2635 static void
   2636 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
   2637 			 int hint)
   2638 {
   2639 	struct ubsec_q2_modexp *me;
   2640 	struct ubsec_mcr *mcr;
   2641 	struct ubsec_ctx_modexp *ctx;
   2642 	struct ubsec_pktbuf *epb;
   2643 	int err = 0;
   2644 	u_int nbits, normbits, mbits, shiftbits, ebits;
   2645 
   2646 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
   2647 	if (me == NULL) {
   2648 		err = ENOMEM;
   2649 		goto errout;
   2650 	}
   2651 	memset(me, 0, sizeof *me);
   2652 	me->me_krp = krp;
   2653 	me->me_q.q_type = UBS_CTXOP_MODEXP;
   2654 
   2655 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
   2656 	if (nbits <= 512)
   2657 		normbits = 512;
   2658 	else if (nbits <= 768)
   2659 		normbits = 768;
   2660 	else if (nbits <= 1024)
   2661 		normbits = 1024;
   2662 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
   2663 		normbits = 1536;
   2664 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
   2665 		normbits = 2048;
   2666 	else {
   2667 		err = E2BIG;
   2668 		goto errout;
   2669 	}
   2670 
   2671 	shiftbits = normbits - nbits;
   2672 
   2673 	/* XXX ??? */
   2674 	me->me_modbits = nbits;
   2675 	me->me_shiftbits = shiftbits;
   2676 	me->me_normbits = normbits;
   2677 
   2678 	/* Sanity check: result bits must be >= true modulus bits. */
   2679 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
   2680 		err = ERANGE;
   2681 		goto errout;
   2682 	}
   2683 
   2684 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
   2685 	    &me->me_q.q_mcr, 0)) {
   2686 		err = ENOMEM;
   2687 		goto errout;
   2688 	}
   2689 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
   2690 
   2691 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
   2692 	    &me->me_q.q_ctx, 0)) {
   2693 		err = ENOMEM;
   2694 		goto errout;
   2695 	}
   2696 
   2697 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
   2698 	if (mbits > nbits) {
   2699 		err = E2BIG;
   2700 		goto errout;
   2701 	}
   2702 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
   2703 		err = ENOMEM;
   2704 		goto errout;
   2705 	}
   2706 	memset(me->me_M.dma_vaddr, 0, normbits / 8);
   2707 	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
   2708 	    me->me_M.dma_vaddr, (mbits + 7) / 8);
   2709 
   2710 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
   2711 		err = ENOMEM;
   2712 		goto errout;
   2713 	}
   2714 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   2715 
   2716 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
   2717 	if (ebits > nbits) {
   2718 		err = E2BIG;
   2719 		goto errout;
   2720 	}
   2721 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
   2722 		err = ENOMEM;
   2723 		goto errout;
   2724 	}
   2725 	memset(me->me_E.dma_vaddr, 0, normbits / 8);
   2726 	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
   2727 	    me->me_E.dma_vaddr, (ebits + 7) / 8);
   2728 
   2729 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
   2730 	    &me->me_epb, 0)) {
   2731 		err = ENOMEM;
   2732 		goto errout;
   2733 	}
   2734 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
   2735 	epb->pb_addr = htole32(me->me_E.dma_paddr);
   2736 	epb->pb_next = 0;
   2737 	epb->pb_len = htole32((ebits + 7) / 8);
   2738 
   2739 #ifdef UBSEC_DEBUG
   2740 	if (ubsec_debug) {
   2741 		printf("Epb ");
   2742 		ubsec_dump_pb(epb);
   2743 	}
   2744 #endif
   2745 
   2746 	mcr->mcr_pkts = htole16(1);
   2747 	mcr->mcr_flags = 0;
   2748 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
   2749 	mcr->mcr_reserved = 0;
   2750 	mcr->mcr_pktlen = 0;
   2751 
   2752 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
   2753 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
   2754 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
   2755 
   2756 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
   2757 	mcr->mcr_opktbuf.pb_next = 0;
   2758 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
   2759 
   2760 #ifdef DIAGNOSTIC
   2761 	/* Misaligned output buffer will hang the chip. */
   2762 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
   2763 		panic("%s: modexp invalid addr 0x%x", device_xname(sc->sc_dev),
   2764 		    letoh32(mcr->mcr_opktbuf.pb_addr));
   2765 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
   2766 		panic("%s: modexp invalid len 0x%x", device_xname(sc->sc_dev),
   2767 		    letoh32(mcr->mcr_opktbuf.pb_len));
   2768 #endif
   2769 
   2770 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
   2771 	memset(ctx, 0, sizeof(*ctx));
   2772 	memcpy(ctx->me_N, krp->krp_param[UBS_MODEXP_PAR_N].crp_p,
   2773 	    (nbits + 7) / 8);
   2774 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
   2775 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
   2776 	ctx->me_E_len = htole16(ebits);
   2777 	ctx->me_N_len = htole16(nbits);
   2778 
   2779 #ifdef UBSEC_DEBUG
   2780 	if (ubsec_debug) {
   2781 		ubsec_dump_mcr(mcr);
   2782 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
   2783 	}
   2784 #endif
   2785 
   2786 	/*
   2787 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
   2788 	 * everything else.
   2789 	 */
   2790 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
   2791 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2792 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
   2793 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2794 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
   2795 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2796 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
   2797 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2798 
   2799 	/* Enqueue and we're done... */
   2800 	mutex_spin_enter(&sc->sc_mtx);
   2801 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
   2802 	ubsec_feed2(sc);
   2803 	mutex_spin_exit(&sc->sc_mtx);
   2804 
   2805 	return;
   2806 
   2807 errout:
   2808 	if (me != NULL) {
   2809 		if (me->me_q.q_mcr.dma_map != NULL)
   2810 			ubsec_dma_free(sc, &me->me_q.q_mcr);
   2811 		if (me->me_q.q_ctx.dma_map != NULL) {
   2812 			memset(me->me_q.q_ctx.dma_vaddr, 0,
   2813 			    me->me_q.q_ctx.dma_size);
   2814 			ubsec_dma_free(sc, &me->me_q.q_ctx);
   2815 		}
   2816 		if (me->me_M.dma_map != NULL) {
   2817 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
   2818 			ubsec_dma_free(sc, &me->me_M);
   2819 		}
   2820 		if (me->me_E.dma_map != NULL) {
   2821 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
   2822 			ubsec_dma_free(sc, &me->me_E);
   2823 		}
   2824 		if (me->me_C.dma_map != NULL) {
   2825 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   2826 			ubsec_dma_free(sc, &me->me_C);
   2827 		}
   2828 		if (me->me_epb.dma_map != NULL)
   2829 			ubsec_dma_free(sc, &me->me_epb);
   2830 		free(me, M_DEVBUF);
   2831 	}
   2832 	krp->krp_status = err;
   2833 	crypto_kdone(krp);
   2834 }
   2835 
   2836 static void
   2837 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
   2838 		       int hint)
   2839 {
   2840 	struct ubsec_q2_rsapriv *rp = NULL;
   2841 	struct ubsec_mcr *mcr;
   2842 	struct ubsec_ctx_rsapriv *ctx;
   2843 	int err = 0;
   2844 	u_int padlen, msglen;
   2845 
   2846 	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
   2847 	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
   2848 	if (msglen > padlen)
   2849 		padlen = msglen;
   2850 
   2851 	if (padlen <= 256)
   2852 		padlen = 256;
   2853 	else if (padlen <= 384)
   2854 		padlen = 384;
   2855 	else if (padlen <= 512)
   2856 		padlen = 512;
   2857 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
   2858 		padlen = 768;
   2859 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
   2860 		padlen = 1024;
   2861 	else {
   2862 		err = E2BIG;
   2863 		goto errout;
   2864 	}
   2865 
   2866 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
   2867 		err = E2BIG;
   2868 		goto errout;
   2869 	}
   2870 
   2871 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
   2872 		err = E2BIG;
   2873 		goto errout;
   2874 	}
   2875 
   2876 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
   2877 		err = E2BIG;
   2878 		goto errout;
   2879 	}
   2880 
   2881 	rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT|M_ZERO);
   2882 	if (rp == NULL) {
   2883 		err = ENOMEM;
   2884 		goto errout;
   2885 	}
   2886 	rp->rpr_krp = krp;
   2887 	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
   2888 
   2889 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
   2890 	    &rp->rpr_q.q_mcr, 0)) {
   2891 		err = ENOMEM;
   2892 		goto errout;
   2893 	}
   2894 	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
   2895 
   2896 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
   2897 	    &rp->rpr_q.q_ctx, 0)) {
   2898 		err = ENOMEM;
   2899 		goto errout;
   2900 	}
   2901 	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
   2902 	memset(ctx, 0, sizeof *ctx);
   2903 
   2904 	/* Copy in p */
   2905 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
   2906 	    &ctx->rpr_buf[0 * (padlen / 8)],
   2907 	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
   2908 
   2909 	/* Copy in q */
   2910 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
   2911 	    &ctx->rpr_buf[1 * (padlen / 8)],
   2912 	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
   2913 
   2914 	/* Copy in dp */
   2915 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
   2916 	    &ctx->rpr_buf[2 * (padlen / 8)],
   2917 	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
   2918 
   2919 	/* Copy in dq */
   2920 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
   2921 	    &ctx->rpr_buf[3 * (padlen / 8)],
   2922 	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
   2923 
   2924 	/* Copy in pinv */
   2925 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
   2926 	    &ctx->rpr_buf[4 * (padlen / 8)],
   2927 	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
   2928 
   2929 	msglen = padlen * 2;
   2930 
   2931 	/* Copy in input message (aligned buffer/length). */
   2932 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
   2933 		/* Is this likely? */
   2934 		err = E2BIG;
   2935 		goto errout;
   2936 	}
   2937 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
   2938 		err = ENOMEM;
   2939 		goto errout;
   2940 	}
   2941 	memset(rp->rpr_msgin.dma_vaddr, 0, (msglen + 7) / 8);
   2942 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
   2943 	    rp->rpr_msgin.dma_vaddr,
   2944 	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
   2945 
   2946 	/* Prepare space for output message (aligned buffer/length). */
   2947 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
   2948 		/* Is this likely? */
   2949 		err = E2BIG;
   2950 		goto errout;
   2951 	}
   2952 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
   2953 		err = ENOMEM;
   2954 		goto errout;
   2955 	}
   2956 	memset(rp->rpr_msgout.dma_vaddr, 0, (msglen + 7) / 8);
   2957 
   2958 	mcr->mcr_pkts = htole16(1);
   2959 	mcr->mcr_flags = 0;
   2960 	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
   2961 	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
   2962 	mcr->mcr_ipktbuf.pb_next = 0;
   2963 	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
   2964 	mcr->mcr_reserved = 0;
   2965 	mcr->mcr_pktlen = htole16(msglen);
   2966 	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
   2967 	mcr->mcr_opktbuf.pb_next = 0;
   2968 	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
   2969 
   2970 #ifdef DIAGNOSTIC
   2971 	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
   2972 		panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
   2973 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgin.dma_paddr,
   2974 		    (u_long) rp->rpr_msgin.dma_size);
   2975 	}
   2976 	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
   2977 		panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
   2978 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgout.dma_paddr,
   2979 		    (u_long) rp->rpr_msgout.dma_size);
   2980 	}
   2981 #endif
   2982 
   2983 	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
   2984 	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
   2985 	ctx->rpr_q_len = htole16(padlen);
   2986 	ctx->rpr_p_len = htole16(padlen);
   2987 
   2988 	/*
   2989 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
   2990 	 * everything else.
   2991 	 */
   2992 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
   2993 	    0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2994 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
   2995 	    0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2996 
   2997 	/* Enqueue and we're done... */
   2998 	mutex_spin_enter(&sc->sc_mtx);
   2999 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
   3000 	ubsec_feed2(sc);
   3001 	ubsecstats.hst_modexpcrt++;
   3002 	mutex_spin_exit(&sc->sc_mtx);
   3003 	return;
   3004 
   3005 errout:
   3006 	if (rp != NULL) {
   3007 		if (rp->rpr_q.q_mcr.dma_map != NULL)
   3008 			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
   3009 		if (rp->rpr_msgin.dma_map != NULL) {
   3010 			memset(rp->rpr_msgin.dma_vaddr, 0,
   3011 			    rp->rpr_msgin.dma_size);
   3012 			ubsec_dma_free(sc, &rp->rpr_msgin);
   3013 		}
   3014 		if (rp->rpr_msgout.dma_map != NULL) {
   3015 			memset(rp->rpr_msgout.dma_vaddr, 0,
   3016 			    rp->rpr_msgout.dma_size);
   3017 			ubsec_dma_free(sc, &rp->rpr_msgout);
   3018 		}
   3019 		free(rp, M_DEVBUF);
   3020 	}
   3021 	krp->krp_status = err;
   3022 	crypto_kdone(krp);
   3023 }
   3024 
   3025 #ifdef UBSEC_DEBUG
   3026 static void
   3027 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
   3028 {
   3029 	printf("addr 0x%x (0x%x) next 0x%x\n",
   3030 	    pb->pb_addr, pb->pb_len, pb->pb_next);
   3031 }
   3032 
   3033 static void
   3034 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
   3035 {
   3036 	printf("CTX (0x%x):\n", c->ctx_len);
   3037 	switch (letoh16(c->ctx_op)) {
   3038 	case UBS_CTXOP_RNGBYPASS:
   3039 	case UBS_CTXOP_RNGSHA1:
   3040 		break;
   3041 	case UBS_CTXOP_MODEXP:
   3042 	{
   3043 		struct ubsec_ctx_modexp *cx = (void *)c;
   3044 		int i, len;
   3045 
   3046 		printf(" Elen %u, Nlen %u\n",
   3047 		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
   3048 		len = (cx->me_N_len + 7)/8;
   3049 		for (i = 0; i < len; i++)
   3050 			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
   3051 		printf("\n");
   3052 		break;
   3053 	}
   3054 	default:
   3055 		printf("unknown context: %x\n", c->ctx_op);
   3056 	}
   3057 	printf("END CTX\n");
   3058 }
   3059 
   3060 static void
   3061 ubsec_dump_mcr(struct ubsec_mcr *mcr)
   3062 {
   3063 	volatile struct ubsec_mcr_add *ma;
   3064 	int i;
   3065 
   3066 	printf("MCR:\n");
   3067 	printf(" pkts: %u, flags 0x%x\n",
   3068 	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
   3069 	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
   3070 	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
   3071 		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
   3072 		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
   3073 		    letoh16(ma->mcr_reserved));
   3074 		printf(" %d: ipkt ", i);
   3075 		ubsec_dump_pb(&ma->mcr_ipktbuf);
   3076 		printf(" %d: opkt ", i);
   3077 		ubsec_dump_pb(&ma->mcr_opktbuf);
   3078 		ma++;
   3079 	}
   3080 	printf("END MCR\n");
   3081 }
   3082 #endif /* UBSEC_DEBUG */
   3083 
   3084 /*
   3085  * Return the number of significant bits of a big number.
   3086  */
   3087 static int
   3088 ubsec_ksigbits(struct crparam *cr)
   3089 {
   3090 	u_int plen = (cr->crp_nbits + 7) / 8;
   3091 	int i, sig = plen * 8;
   3092 	u_int8_t c, *p = cr->crp_p;
   3093 
   3094 	for (i = plen - 1; i >= 0; i--) {
   3095 		c = p[i];
   3096 		if (c != 0) {
   3097 			while ((c & 0x80) == 0) {
   3098 				sig--;
   3099 				c <<= 1;
   3100 			}
   3101 			break;
   3102 		}
   3103 		sig -= 8;
   3104 	}
   3105 	return (sig);
   3106 }
   3107 
   3108 static void
   3109 ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits,
   3110     u_int8_t *dst, u_int dstbits)
   3111 {
   3112 	u_int slen, dlen;
   3113 	int i, si, di, n;
   3114 
   3115 	slen = (srcbits + 7) / 8;
   3116 	dlen = (dstbits + 7) / 8;
   3117 
   3118 	for (i = 0; i < slen; i++)
   3119 		dst[i] = src[i];
   3120 	for (i = 0; i < dlen - slen; i++)
   3121 		dst[slen + i] = 0;
   3122 
   3123 	n = shiftbits / 8;
   3124 	if (n != 0) {
   3125 		si = dlen - n - 1;
   3126 		di = dlen - 1;
   3127 		while (si >= 0)
   3128 			dst[di--] = dst[si--];
   3129 		while (di >= 0)
   3130 			dst[di--] = 0;
   3131 	}
   3132 
   3133 	n = shiftbits % 8;
   3134 	if (n != 0) {
   3135 		for (i = dlen - 1; i > 0; i--)
   3136 			dst[i] = (dst[i] << n) |
   3137 			    (dst[i - 1] >> (8 - n));
   3138 		dst[0] = dst[0] << n;
   3139 	}
   3140 }
   3141 
   3142 static void
   3143 ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits,
   3144     u_int8_t *dst, u_int dstbits)
   3145 {
   3146 	int slen, dlen, i, n;
   3147 
   3148 	slen = (srcbits + 7) / 8;
   3149 	dlen = (dstbits + 7) / 8;
   3150 
   3151 	n = shiftbits / 8;
   3152 	for (i = 0; i < slen; i++)
   3153 		dst[i] = src[i + n];
   3154 	for (i = 0; i < dlen - slen; i++)
   3155 		dst[slen + i] = 0;
   3156 
   3157 	n = shiftbits % 8;
   3158 	if (n != 0) {
   3159 		for (i = 0; i < (dlen - 1); i++)
   3160 			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
   3161 		dst[dlen - 1] = dst[dlen - 1] >> n;
   3162 	}
   3163 }
   3164