Home | History | Annotate | Line # | Download | only in pci
ubsec.c revision 1.56
      1 /*	$NetBSD: ubsec.c,v 1.56 2022/05/22 11:35:05 riastradh Exp $	*/
      2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
      3 /*	$OpenBSD: ubsec.c,v 1.143 2009/03/27 13:31:30 reyk Exp$	*/
      4 
      5 /*
      6  * Copyright (c) 2000 Jason L. Wright (jason (at) thought.net)
      7  * Copyright (c) 2000 Theo de Raadt (deraadt (at) openbsd.org)
      8  * Copyright (c) 2001 Patrik Lindergren (patrik (at) ipunplugged.com)
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
     23  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     27  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     28  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  *
     31  * Effort sponsored in part by the Defense Advanced Research Projects
     32  * Agency (DARPA) and Air Force Research Laboratory, Air Force
     33  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
     34  *
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: ubsec.c,v 1.56 2022/05/22 11:35:05 riastradh Exp $");
     39 
     40 #undef UBSEC_DEBUG
     41 
     42 /*
     43  * uBsec 5[56]01, 58xx hardware crypto accelerator
     44  */
     45 
     46 #include <sys/param.h>
     47 #include <sys/systm.h>
     48 #include <sys/proc.h>
     49 #include <sys/endian.h>
     50 #include <sys/errno.h>
     51 #include <sys/malloc.h>
     52 #include <sys/kernel.h>
     53 #include <sys/mbuf.h>
     54 #include <sys/device.h>
     55 #include <sys/module.h>
     56 #include <sys/queue.h>
     57 #include <sys/sysctl.h>
     58 
     59 #include <opencrypto/cryptodev.h>
     60 #include <opencrypto/xform.h>
     61 #include <sys/cprng.h>
     62 #include <sys/md5.h>
     63 #include <sys/rndsource.h>
     64 #include <sys/sha1.h>
     65 
     66 #include <dev/pci/pcireg.h>
     67 #include <dev/pci/pcivar.h>
     68 #include <dev/pci/pcidevs.h>
     69 
     70 #include <dev/pci/ubsecreg.h>
     71 #include <dev/pci/ubsecvar.h>
     72 
     73 #define UBSEC_NO_RNG	/* hangs on attach */
     74 #define letoh16 htole16
     75 #define letoh32 htole32
     76 
     77 /*
     78  * Prototypes and count for the pci_device structure
     79  */
     80 static	int  ubsec_probe(device_t, cfdata_t, void *);
     81 static	void ubsec_attach(device_t, device_t, void *);
     82 static	int  ubsec_detach(device_t, int);
     83 static	void ubsec_reset_board(struct ubsec_softc *);
     84 static	void ubsec_init_board(struct ubsec_softc *);
     85 static	void ubsec_init_pciregs(struct pci_attach_args *pa);
     86 static	void ubsec_cleanchip(struct ubsec_softc *);
     87 static	void ubsec_totalreset(struct ubsec_softc *);
     88 static	int  ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
     89 
     90 CFATTACH_DECL_NEW(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
     91 	      ubsec_detach, NULL);
     92 extern struct cfdriver ubsec_cd;
     93 
     94 /* patchable */
     95 #ifdef	UBSEC_DEBUG
     96 extern int ubsec_debug;
     97 int ubsec_debug=1;
     98 #endif
     99 
    100 static	int	ubsec_intr(void *);
    101 static	int	ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
    102 static	int	ubsec_freesession(void*, u_int64_t);
    103 static	int	ubsec_process(void*, struct cryptop *, int hint);
    104 static	void	ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
    105 static	void	ubsec_feed(struct ubsec_softc *);
    106 static	void	ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
    107 static	void	ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
    108 static	void	ubsec_feed2(struct ubsec_softc *);
    109 static	void	ubsec_feed4(struct ubsec_softc *);
    110 #ifndef UBSEC_NO_RNG
    111 static  void	ubsec_rng(void *);
    112 static  void	ubsec_rng_locked(void *);
    113 static  void	ubsec_rng_get(size_t, void *);
    114 #endif /* UBSEC_NO_RNG */
    115 static	int 	ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
    116 				 struct ubsec_dma_alloc *, int);
    117 static	void	ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
    118 static	int	ubsec_dmamap_aligned(bus_dmamap_t);
    119 
    120 static	int	ubsec_kprocess(void*, struct cryptkop *, int);
    121 static	void	ubsec_kprocess_modexp_sw(struct ubsec_softc *,
    122 					 struct cryptkop *, int);
    123 static	void	ubsec_kprocess_modexp_hw(struct ubsec_softc *,
    124 					 struct cryptkop *, int);
    125 static	void	ubsec_kprocess_rsapriv(struct ubsec_softc *,
    126 				       struct cryptkop *, int);
    127 static	void	ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
    128 static	int	ubsec_ksigbits(struct crparam *);
    129 static	void	ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
    130 static	void	ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
    131 
    132 #ifdef UBSEC_DEBUG
    133 static void	ubsec_dump_pb(volatile struct ubsec_pktbuf *);
    134 static void	ubsec_dump_mcr(struct ubsec_mcr *);
    135 static	void	ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
    136 #endif
    137 
    138 #define	READ_REG(sc,r) \
    139 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
    140 
    141 #define WRITE_REG(sc,reg,val) \
    142 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
    143 
    144 #define	SWAP32(x) (x) = htole32(ntohl((x)))
    145 #ifndef HTOLE32
    146  #define	HTOLE32(x) (x) = htole32(x)
    147 #endif
    148 
    149 struct ubsec_stats ubsecstats;
    150 
    151 /*
    152  * ubsec_maxbatch controls the number of crypto ops to voluntarily
    153  * collect into one submission to the hardware.  This batching happens
    154  * when ops are dispatched from the crypto subsystem with a hint that
    155  * more are to follow immediately.  These ops must also not be marked
    156  * with a ``no delay'' flag.
    157  */
    158 static	int ubsec_maxbatch = 1;
    159 
    160 /*
    161  * ubsec_maxaggr controls the number of crypto ops to submit to the
    162  * hardware as a unit.  This aggregation reduces the number of interrupts
    163  * to the host at the expense of increased latency (for all but the last
    164  * operation).  For network traffic setting this to one yields the highest
    165  * performance but at the expense of more interrupt processing.
    166  */
    167 static	int ubsec_maxaggr = 1;
    168 
    169 static const struct ubsec_product {
    170 	pci_vendor_id_t		ubsec_vendor;
    171 	pci_product_id_t	ubsec_product;
    172 	int			ubsec_flags;
    173 	int			ubsec_statmask;
    174 	int			ubsec_maxaggr;
    175 	const char		*ubsec_name;
    176 } ubsec_products[] = {
    177 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5501,
    178 	  0,
    179 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    180 	  UBS_MIN_AGGR,
    181 	  "Bluesteel 5501"
    182 	},
    183 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5601,
    184 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
    185 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    186 	  UBS_MIN_AGGR,
    187 	  "Bluesteel 5601"
    188 	},
    189 
    190 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5801,
    191 	  0,
    192 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    193 	  UBS_MIN_AGGR,
    194 	  "Broadcom BCM5801"
    195 	},
    196 
    197 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5802,
    198 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
    199 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    200 	  UBS_MIN_AGGR,
    201 	  "Broadcom BCM5802"
    202 	},
    203 
    204 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5805,
    205 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
    206 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    207 	  UBS_MIN_AGGR,
    208 	  "Broadcom BCM5805"
    209 	},
    210 
    211 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5820,
    212 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    213 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    214 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
    215 	  UBS_MIN_AGGR,
    216 	  "Broadcom BCM5820"
    217 	},
    218 
    219 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5821,
    220 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    221 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    222 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    223 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    224 	  UBS_MIN_AGGR,
    225 	  "Broadcom BCM5821"
    226 	},
    227 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_SCA1K,
    228 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    229 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    230 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    231 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    232 	  UBS_MIN_AGGR,
    233 	  "Sun Crypto Accelerator 1000"
    234 	},
    235 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_5821,
    236 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    237 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    238 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    239 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    240 	  UBS_MIN_AGGR,
    241 	  "Broadcom BCM5821 (Sun)"
    242 	},
    243 
    244 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5822,
    245 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    246 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
    247 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    248 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    249 	  UBS_MIN_AGGR,
    250 	  "Broadcom BCM5822"
    251 	},
    252 
    253 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5823,
    254 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    255 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
    256 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    257 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    258 	  UBS_MIN_AGGR,
    259 	  "Broadcom BCM5823"
    260 	},
    261 
    262 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5825,
    263 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
    264 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
    265 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    266 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
    267 	  UBS_MIN_AGGR,
    268 	  "Broadcom BCM5825"
    269 	},
    270 
    271 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5860,
    272 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
    273 	      UBS_FLAGS_LONGCTX |
    274 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
    275 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
    276 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    277 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
    278 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
    279 	  UBS_MAX_AGGR,
    280 	  "Broadcom BCM5860"
    281 	},
    282 
    283 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5861,
    284 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
    285 	      UBS_FLAGS_LONGCTX |
    286 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
    287 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
    288 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    289 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
    290 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
    291 	  UBS_MAX_AGGR,
    292 	  "Broadcom BCM5861"
    293 	},
    294 
    295 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5862,
    296 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
    297 	      UBS_FLAGS_LONGCTX |
    298 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
    299 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
    300 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
    301 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
    302 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
    303 	  UBS_MAX_AGGR,
    304 	  "Broadcom BCM5862"
    305 	},
    306 
    307 	{ 0,			0,
    308 	  0,
    309 	  0,
    310 	  0,
    311 	  NULL
    312 	}
    313 };
    314 
    315 static const struct ubsec_product *
    316 ubsec_lookup(const struct pci_attach_args *pa)
    317 {
    318 	const struct ubsec_product *up;
    319 
    320 	for (up = ubsec_products; up->ubsec_name != NULL; up++) {
    321 		if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
    322 		    PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
    323 			return (up);
    324 	}
    325 	return (NULL);
    326 }
    327 
    328 static int
    329 ubsec_probe(device_t parent, cfdata_t match, void *aux)
    330 {
    331 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    332 
    333 	if (ubsec_lookup(pa) != NULL)
    334 		return (1);
    335 
    336 	return (0);
    337 }
    338 
    339 static void
    340 ubsec_attach(device_t parent, device_t self, void *aux)
    341 {
    342 	struct ubsec_softc *sc = device_private(self);
    343 	struct pci_attach_args *pa = aux;
    344 	const struct ubsec_product *up;
    345 	pci_chipset_tag_t pc = pa->pa_pc;
    346 	pci_intr_handle_t ih;
    347 	const char *intrstr = NULL;
    348 	pcireg_t memtype;
    349 	struct ubsec_dma *dmap;
    350 	u_int32_t cmd, i;
    351 	char intrbuf[PCI_INTRSTR_LEN];
    352 
    353 	sc->sc_dev = self;
    354 	sc->sc_pct = pc;
    355 
    356 	up = ubsec_lookup(pa);
    357 	if (up == NULL) {
    358 		printf("\n");
    359 		panic("ubsec_attach: impossible");
    360 	}
    361 
    362 	pci_aprint_devinfo_fancy(pa, "Crypto processor", up->ubsec_name, 1);
    363 
    364 	SIMPLEQ_INIT(&sc->sc_queue);
    365 	SIMPLEQ_INIT(&sc->sc_qchip);
    366 	SIMPLEQ_INIT(&sc->sc_queue2);
    367 	SIMPLEQ_INIT(&sc->sc_qchip2);
    368 	SIMPLEQ_INIT(&sc->sc_queue4);
    369 	SIMPLEQ_INIT(&sc->sc_qchip4);
    370 	SIMPLEQ_INIT(&sc->sc_q2free);
    371 
    372 	sc->sc_flags = up->ubsec_flags;
    373 	sc->sc_statmask = up->ubsec_statmask;
    374 	sc->sc_maxaggr = up->ubsec_maxaggr;
    375 
    376 	cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    377 	cmd |= PCI_COMMAND_MASTER_ENABLE;
    378 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
    379 
    380 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BS_BAR);
    381 	if (pci_mapreg_map(pa, BS_BAR, memtype, 0,
    382 	    &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize)) {
    383 		aprint_error_dev(self, "can't find mem space");
    384 		return;
    385 	}
    386 
    387 	sc->sc_dmat = pa->pa_dmat;
    388 
    389 	if (pci_intr_map(pa, &ih)) {
    390 		aprint_error_dev(self, "couldn't map interrupt\n");
    391 		return;
    392 	}
    393 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    394 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, ubsec_intr, sc,
    395 	    device_xname(self));
    396 	if (sc->sc_ih == NULL) {
    397 		aprint_error_dev(self, "couldn't establish interrupt");
    398 		if (intrstr != NULL)
    399 			aprint_error(" at %s", intrstr);
    400 		aprint_error("\n");
    401 		return;
    402 	}
    403 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    404 
    405 	sc->sc_cid = crypto_get_driverid(0);
    406 	if (sc->sc_cid < 0) {
    407 		aprint_error_dev(self, "couldn't get crypto driver id\n");
    408 		pci_intr_disestablish(pc, sc->sc_ih);
    409 		return;
    410 	}
    411 
    412 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_VM);
    413 
    414 	SIMPLEQ_INIT(&sc->sc_freequeue);
    415 	dmap = sc->sc_dmaa;
    416 	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
    417 		struct ubsec_q *q;
    418 
    419 		q = malloc(sizeof(struct ubsec_q), M_DEVBUF, M_ZERO|M_WAITOK);
    420 
    421 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
    422 		    &dmap->d_alloc, 0)) {
    423 			aprint_error_dev(self, "can't allocate dma buffers\n");
    424 			free(q, M_DEVBUF);
    425 			break;
    426 		}
    427 		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
    428 
    429 		q->q_dma = dmap;
    430 		sc->sc_queuea[i] = q;
    431 
    432 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
    433 	}
    434 
    435 	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
    436 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
    437 	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
    438 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
    439 	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0,
    440 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
    441 	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0,
    442 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
    443 	if (sc->sc_flags & UBS_FLAGS_AES) {
    444 		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
    445 		    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
    446 	}
    447 
    448 	/*
    449 	 * Reset Broadcom chip
    450 	 */
    451 	ubsec_reset_board(sc);
    452 
    453 	/*
    454 	 * Init Broadcom specific PCI settings
    455 	 */
    456 	ubsec_init_pciregs(pa);
    457 
    458 	/*
    459 	 * Init Broadcom chip
    460 	 */
    461 	ubsec_init_board(sc);
    462 
    463 #ifndef UBSEC_NO_RNG
    464 	if (sc->sc_flags & UBS_FLAGS_RNG) {
    465 		if (sc->sc_flags & UBS_FLAGS_RNG4)
    466 			sc->sc_statmask |= BS_STAT_MCR4_DONE;
    467 		else
    468 			sc->sc_statmask |= BS_STAT_MCR2_DONE;
    469 
    470 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
    471 		    &sc->sc_rng.rng_q.q_mcr, 0))
    472 			goto skip_rng;
    473 
    474 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
    475 		    &sc->sc_rng.rng_q.q_ctx, 0)) {
    476 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
    477 			goto skip_rng;
    478 		}
    479 
    480 		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
    481 		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
    482 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
    483 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
    484 			goto skip_rng;
    485 		}
    486 		if (hz >= 100)
    487 			sc->sc_rnghz = hz / 100;
    488 		else
    489 			sc->sc_rnghz = 1;
    490 		callout_init(&sc->sc_rngto, 0);
    491 		callout_setfunc(&sc->sc_rngto, ubsec_rng, sc);
    492 		rndsource_setcb(&sc->sc_rnd_source, ubsec_rng_get, sc);
    493 		rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
    494 				  RND_TYPE_RNG,
    495 				  RND_FLAG_COLLECT_VALUE|RND_FLAG_HASCB);
    496 
    497  skip_rng:
    498 		if (sc->sc_rnghz)
    499 			aprint_normal_dev(self,
    500 			    "random number generator enabled\n");
    501 		else
    502 			aprint_error_dev(self,
    503 			    "WARNING: random number generator disabled\n");
    504 	}
    505 #endif /* UBSEC_NO_RNG */
    506 
    507 	if (sc->sc_flags & UBS_FLAGS_KEY) {
    508 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
    509 
    510 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
    511 				 ubsec_kprocess, sc);
    512 #if 0
    513 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
    514 				 ubsec_kprocess, sc);
    515 #endif
    516 	}
    517 }
    518 
    519 static int
    520 ubsec_detach(device_t self, int flags)
    521 {
    522 	struct ubsec_softc *sc = device_private(self);
    523 	struct ubsec_q *q, *qtmp;
    524 	volatile u_int32_t ctrl;
    525 
    526 	/* disable interrupts */
    527 	/* XXX wait/abort current ops? where is DMAERR enabled? */
    528 	ctrl = READ_REG(sc, BS_CTRL);
    529 
    530 	ctrl &= ~(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR);
    531 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
    532 		ctrl &= ~BS_CTRL_MCR4INT;
    533 
    534 	WRITE_REG(sc, BS_CTRL, ctrl);
    535 
    536 #ifndef UBSEC_NO_RNG
    537 	if (sc->sc_flags & UBS_FLAGS_RNG) {
    538 		callout_halt(&sc->sc_rngto, NULL);
    539 		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
    540 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
    541 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
    542 		rnd_detach_source(&sc->sc_rnd_source);
    543 	}
    544 #endif /* UBSEC_NO_RNG */
    545 
    546 	crypto_unregister_all(sc->sc_cid);
    547 
    548 	mutex_spin_enter(&sc->sc_mtx);
    549 
    550 	ubsec_totalreset(sc);  /* XXX leaves the chip running */
    551 
    552 	SIMPLEQ_FOREACH_SAFE(q, &sc->sc_freequeue, q_next, qtmp) {
    553 		ubsec_dma_free(sc, &q->q_dma->d_alloc);
    554 		if (q->q_src_map != NULL)
    555 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
    556 		if (q->q_cached_dst_map != NULL)
    557 			bus_dmamap_destroy(sc->sc_dmat, q->q_cached_dst_map);
    558 		free(q, M_DEVBUF);
    559 	}
    560 
    561 	mutex_spin_exit(&sc->sc_mtx);
    562 
    563 	if (sc->sc_ih != NULL) {
    564 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    565 		sc->sc_ih = NULL;
    566 	}
    567 
    568 	if (sc->sc_memsize != 0) {
    569 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
    570 		sc->sc_memsize = 0;
    571 	}
    572 
    573 	return 0;
    574 }
    575 
    576 MODULE(MODULE_CLASS_DRIVER, ubsec, "pci,opencrypto");
    577 
    578 #ifdef _MODULE
    579 #include "ioconf.c"
    580 #endif
    581 
    582 static int
    583 ubsec_modcmd(modcmd_t cmd, void *data)
    584 {
    585 	int error = 0;
    586 
    587 	switch (cmd) {
    588 	case MODULE_CMD_INIT:
    589 #ifdef _MODULE
    590 		error = config_init_component(cfdriver_ioconf_ubsec,
    591 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
    592 #endif
    593 		return error;
    594 	case MODULE_CMD_FINI:
    595 #ifdef _MODULE
    596 		error = config_fini_component(cfdriver_ioconf_ubsec,
    597 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
    598 #endif
    599 		return error;
    600 	default:
    601 		return ENOTTY;
    602 	}
    603 }
    604 
    605 SYSCTL_SETUP(ubsec_sysctl_init, "ubsec sysctl")
    606 {
    607 	const struct sysctlnode *node = NULL;
    608 
    609 	sysctl_createv(clog, 0, NULL, &node,
    610 		CTLFLAG_PERMANENT,
    611 		CTLTYPE_NODE, "ubsec",
    612 		SYSCTL_DESCR("ubsec opetions"),
    613 		NULL, 0, NULL, 0,
    614 		CTL_HW, CTL_CREATE, CTL_EOL);
    615 	sysctl_createv(clog, 0, &node, NULL,
    616 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    617 		CTLTYPE_INT, "maxbatch",
    618 		SYSCTL_DESCR("max ops to batch w/o interrupt"),
    619 		NULL, 0, &ubsec_maxbatch, 0,
    620 		CTL_CREATE, CTL_EOL);
    621 	sysctl_createv(clog, 0, &node, NULL,
    622 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    623 		CTLTYPE_INT, "maxaggr",
    624 		SYSCTL_DESCR("max ops to aggregate under one interrupt"),
    625 		NULL, 0, &ubsec_maxaggr, 0,
    626 		CTL_CREATE, CTL_EOL);
    627 
    628 	return;
    629 }
    630 
    631 /*
    632  * UBSEC Interrupt routine
    633  */
    634 static int
    635 ubsec_intr(void *arg)
    636 {
    637 	struct ubsec_softc *sc = arg;
    638 	volatile u_int32_t stat;
    639 	struct ubsec_q *q;
    640 	struct ubsec_dma *dmap;
    641 	int flags;
    642 	int npkts = 0, i;
    643 
    644 	mutex_spin_enter(&sc->sc_mtx);
    645 	stat = READ_REG(sc, BS_STAT);
    646 	stat &= sc->sc_statmask;
    647 	if (stat == 0) {
    648 		mutex_spin_exit(&sc->sc_mtx);
    649 		return (0);
    650 	}
    651 
    652 	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
    653 
    654 	/*
    655 	 * Check to see if we have any packets waiting for us
    656 	 */
    657 	if ((stat & BS_STAT_MCR1_DONE)) {
    658 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
    659 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
    660 			dmap = q->q_dma;
    661 
    662 			if ((dmap->d_dma->d_mcr.mcr_flags
    663 			    & htole16(UBS_MCR_DONE)) == 0)
    664 				break;
    665 
    666 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
    667 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
    668 
    669 			npkts = q->q_nstacked_mcrs;
    670 			sc->sc_nqchip -= 1+npkts;
    671 			/*
    672 			 * search for further sc_qchip ubsec_q's that share
    673 			 * the same MCR, and complete them too, they must be
    674 			 * at the top.
    675 			 */
    676 			for (i = 0; i < npkts; i++) {
    677 				if(q->q_stacked_mcr[i])
    678 					ubsec_callback(sc, q->q_stacked_mcr[i]);
    679 				else
    680 					break;
    681 			}
    682 			ubsec_callback(sc, q);
    683 		}
    684 
    685 		/*
    686 		 * Don't send any more packet to chip if there has been
    687 		 * a DMAERR.
    688 		 */
    689 		if (!(stat & BS_STAT_DMAERR))
    690 			ubsec_feed(sc);
    691 	}
    692 
    693 	/*
    694 	 * Check to see if we have any key setups/rng's waiting for us
    695 	 */
    696 	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
    697 	    (stat & BS_STAT_MCR2_DONE)) {
    698 		struct ubsec_q2 *q2;
    699 		struct ubsec_mcr *mcr;
    700 
    701 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
    702 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
    703 
    704 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
    705 			    0, q2->q_mcr.dma_map->dm_mapsize,
    706 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    707 
    708 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
    709 
    710 			/* A bug in new devices requires to swap this field */
    711 			if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
    712 				flags = htole16(mcr->mcr_flags);
    713 			else
    714 				flags = mcr->mcr_flags;
    715 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
    716 				bus_dmamap_sync(sc->sc_dmat,
    717 				    q2->q_mcr.dma_map, 0,
    718 				    q2->q_mcr.dma_map->dm_mapsize,
    719 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    720 				break;
    721 			}
    722 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
    723 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
    724 			ubsec_callback2(sc, q2);
    725 			/*
    726 			 * Don't send any more packet to chip if there has been
    727 			 * a DMAERR.
    728 			 */
    729 			if (!(stat & BS_STAT_DMAERR))
    730 				ubsec_feed2(sc);
    731 		}
    732 	}
    733 	if ((sc->sc_flags & UBS_FLAGS_RNG4) && (stat & BS_STAT_MCR4_DONE)) {
    734 		struct ubsec_q2 *q2;
    735 		struct ubsec_mcr *mcr;
    736 
    737 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip4)) {
    738 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip4);
    739 
    740 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
    741 			    0, q2->q_mcr.dma_map->dm_mapsize,
    742 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    743 
    744 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
    745 
    746 			/* A bug in new devices requires to swap this field */
    747 			flags = htole16(mcr->mcr_flags);
    748 
    749 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
    750 				bus_dmamap_sync(sc->sc_dmat,
    751 				    q2->q_mcr.dma_map, 0,
    752 				    q2->q_mcr.dma_map->dm_mapsize,
    753 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    754 				break;
    755 			}
    756 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip4, q_next);
    757 			ubsec_callback2(sc, q2);
    758 			/*
    759 			 * Don't send any more packet to chip if there has been
    760 			 * a DMAERR.
    761 			 */
    762 			if (!(stat & BS_STAT_DMAERR))
    763 				ubsec_feed4(sc);
    764 		}
    765 	}
    766 
    767 	/*
    768 	 * Check to see if we got any DMA Error
    769 	 */
    770 	if (stat & BS_STAT_DMAERR) {
    771 #ifdef UBSEC_DEBUG
    772 		if (ubsec_debug) {
    773 			volatile u_int32_t a = READ_REG(sc, BS_ERR);
    774 
    775 			printf("%s: dmaerr %s@%08x\n", device_xname(sc->sc_dev),
    776 			    (a & BS_ERR_READ) ? "read" : "write",
    777 			       a & BS_ERR_ADDR);
    778 		}
    779 #endif /* UBSEC_DEBUG */
    780 		ubsecstats.hst_dmaerr++;
    781 		ubsec_totalreset(sc);
    782 		ubsec_feed(sc);
    783 	}
    784 
    785 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
    786 		int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
    787 #ifdef UBSEC_DEBUG
    788 		if (ubsec_debug)
    789 			printf("%s: wakeup crypto (%x)\n",
    790 			    device_xname(sc->sc_dev), sc->sc_needwakeup);
    791 #endif /* UBSEC_DEBUG */
    792 		sc->sc_needwakeup &= ~wkeup;
    793 		crypto_unblock(sc->sc_cid, wkeup);
    794 	}
    795 	mutex_spin_exit(&sc->sc_mtx);
    796 	return (1);
    797 }
    798 
    799 /*
    800  * ubsec_feed() - aggregate and post requests to chip
    801  * OpenBSD comments:
    802  *		  It is assumed that the caller set splnet()
    803  */
    804 static void
    805 ubsec_feed(struct ubsec_softc *sc)
    806 {
    807 	struct ubsec_q *q, *q2;
    808 	int npkts, i;
    809 	void *v;
    810 	u_int32_t stat;
    811 #ifdef UBSEC_DEBUG
    812 	static int max;
    813 #endif /* UBSEC_DEBUG */
    814 
    815 	npkts = sc->sc_nqueue;
    816 	if (npkts > ubsecstats.hst_maxqueue)
    817 		ubsecstats.hst_maxqueue = npkts;
    818 	if (npkts < 2)
    819 		goto feed1;
    820 
    821 	/*
    822 	 * Decide how many ops to combine in a single MCR.  We cannot
    823 	 * aggregate more than UBS_MAX_AGGR because this is the number
    824 	 * of slots defined in the data structure.  Otherwise we clamp
    825 	 * based on the tunable parameter ubsec_maxaggr.  Note that
    826 	 * aggregation can happen in two ways: either by batching ops
    827 	 * from above or because the h/w backs up and throttles us.
    828 	 * Aggregating ops reduces the number of interrupts to the host
    829 	 * but also (potentially) increases the latency for processing
    830 	 * completed ops as we only get an interrupt when all aggregated
    831 	 * ops have completed.
    832 	 */
    833 	if (npkts > sc->sc_maxaggr)
    834 		npkts = sc->sc_maxaggr;
    835 	if (npkts > ubsec_maxaggr)
    836 		npkts = ubsec_maxaggr;
    837 	if (npkts > ubsecstats.hst_maxbatch)
    838 		ubsecstats.hst_maxbatch = npkts;
    839 	if (npkts < 2)
    840 		goto feed1;
    841 	ubsecstats.hst_totbatch += npkts-1;
    842 
    843 	if ((stat = READ_REG(sc, BS_STAT))
    844 	    & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
    845 		if (stat & BS_STAT_DMAERR) {
    846 			ubsec_totalreset(sc);
    847 			ubsecstats.hst_dmaerr++;
    848 		} else {
    849 			ubsecstats.hst_mcr1full++;
    850 		}
    851 		return;
    852 	}
    853 
    854 #ifdef UBSEC_DEBUG
    855 	if (ubsec_debug)
    856 	    printf("merging %d records\n", npkts);
    857 	/* XXX temporary aggregation statistics reporting code */
    858 	if (max < npkts) {
    859 		max = npkts;
    860 		printf("%s: new max aggregate %d\n", device_xname(sc->sc_dev),
    861 		    max);
    862 	}
    863 #endif /* UBSEC_DEBUG */
    864 
    865 	q = SIMPLEQ_FIRST(&sc->sc_queue);
    866 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
    867 	--sc->sc_nqueue;
    868 
    869 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
    870 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
    871 	if (q->q_dst_map != NULL)
    872 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
    873 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
    874 
    875 	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
    876 
    877 	for (i = 0; i < q->q_nstacked_mcrs; i++) {
    878 		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
    879 		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
    880 		    0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
    881 		if (q2->q_dst_map != NULL)
    882 			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
    883 			    0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
    884 		q2= SIMPLEQ_FIRST(&sc->sc_queue);
    885 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
    886 		--sc->sc_nqueue;
    887 
    888 		v = ((void *)&q2->q_dma->d_dma->d_mcr);
    889 		v = (char*)v + (sizeof(struct ubsec_mcr) -
    890 				 sizeof(struct ubsec_mcr_add));
    891 		memcpy(&q->q_dma->d_dma->d_mcradd[i], v,
    892 		    sizeof(struct ubsec_mcr_add));
    893 		q->q_stacked_mcr[i] = q2;
    894 	}
    895 	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
    896 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
    897 	sc->sc_nqchip += npkts;
    898 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
    899 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
    900 	bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
    901 	    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
    902 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    903 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
    904 	    offsetof(struct ubsec_dmachunk, d_mcr));
    905 	return;
    906 
    907 feed1:
    908 	while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
    909 		if ((stat = READ_REG(sc, BS_STAT))
    910 		    & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
    911 			if (stat & BS_STAT_DMAERR) {
    912 				ubsec_totalreset(sc);
    913 				ubsecstats.hst_dmaerr++;
    914 			} else {
    915 				ubsecstats.hst_mcr1full++;
    916 			}
    917 			break;
    918 		}
    919 
    920 		q = SIMPLEQ_FIRST(&sc->sc_queue);
    921 
    922 		bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
    923 		    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
    924 		if (q->q_dst_map != NULL)
    925 			bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
    926 			    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
    927 		bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
    928 		    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
    929 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    930 
    931 		WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
    932 		    offsetof(struct ubsec_dmachunk, d_mcr));
    933 #ifdef UBSEC_DEBUG
    934 		if (ubsec_debug)
    935 			printf("feed: q->chip %p %08x stat %08x\n",
    936  		    	       q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
    937 			       stat);
    938 #endif /* UBSEC_DEBUG */
    939 		q = SIMPLEQ_FIRST(&sc->sc_queue);
    940 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
    941 		--sc->sc_nqueue;
    942 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
    943 		sc->sc_nqchip++;
    944 	}
    945 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
    946 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
    947 }
    948 
    949 /*
    950  * Allocate a new 'session' and return an encoded session id.  'sidp'
    951  * contains our registration id, and should contain an encoded session
    952  * id on successful allocation.
    953  */
    954 static int
    955 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
    956 {
    957 	struct cryptoini *c, *encini = NULL, *macini = NULL;
    958 	struct ubsec_softc *sc;
    959 	struct ubsec_session *ses = NULL;
    960 	MD5_CTX md5ctx;
    961 	SHA1_CTX sha1ctx;
    962 	int i, sesn;
    963 
    964 	sc = arg;
    965 	KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
    966 
    967 	if (sidp == NULL || cri == NULL || sc == NULL)
    968 		return (EINVAL);
    969 
    970 	for (c = cri; c != NULL; c = c->cri_next) {
    971 		if (c->cri_alg == CRYPTO_MD5_HMAC_96 ||
    972 		    c->cri_alg == CRYPTO_SHA1_HMAC_96) {
    973 			if (macini)
    974 				return (EINVAL);
    975 			macini = c;
    976 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
    977 		    c->cri_alg == CRYPTO_3DES_CBC ||
    978 		    c->cri_alg == CRYPTO_AES_CBC) {
    979 			if (encini)
    980 				return (EINVAL);
    981 			encini = c;
    982 		} else
    983 			return (EINVAL);
    984 	}
    985 	if (encini == NULL && macini == NULL)
    986 		return (EINVAL);
    987 
    988 	if (encini && encini->cri_alg == CRYPTO_AES_CBC) {
    989 		switch (encini->cri_klen) {
    990 		case 128:
    991 		case 192:
    992 		case 256:
    993 			break;
    994 		default:
    995 			return (EINVAL);
    996 		}
    997 	}
    998 
    999 	if (sc->sc_sessions == NULL) {
   1000 		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
   1001 		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
   1002 		if (ses == NULL)
   1003 			return (ENOMEM);
   1004 		sesn = 0;
   1005 		sc->sc_nsessions = 1;
   1006 	} else {
   1007 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
   1008 			if (sc->sc_sessions[sesn].ses_used == 0) {
   1009 				ses = &sc->sc_sessions[sesn];
   1010 				break;
   1011 			}
   1012 		}
   1013 
   1014 		if (ses == NULL) {
   1015 			sesn = sc->sc_nsessions;
   1016 			ses = (struct ubsec_session *)malloc((sesn + 1) *
   1017 			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
   1018 			if (ses == NULL)
   1019 				return (ENOMEM);
   1020 			memcpy(ses, sc->sc_sessions, sesn *
   1021 			    sizeof(struct ubsec_session));
   1022 			memset(sc->sc_sessions, 0, sesn *
   1023 			    sizeof(struct ubsec_session));
   1024 			free(sc->sc_sessions, M_DEVBUF);
   1025 			sc->sc_sessions = ses;
   1026 			ses = &sc->sc_sessions[sesn];
   1027 			sc->sc_nsessions++;
   1028 		}
   1029 	}
   1030 
   1031 	memset(ses, 0, sizeof(struct ubsec_session));
   1032 	ses->ses_used = 1;
   1033 	if (encini) {
   1034 		/* Go ahead and compute key in ubsec's byte order */
   1035 		if (encini->cri_alg == CRYPTO_AES_CBC) {
   1036 			memcpy(ses->ses_key, encini->cri_key,
   1037 			    encini->cri_klen / 8);
   1038 		}
   1039 		if (encini->cri_alg == CRYPTO_DES_CBC) {
   1040 			memcpy(&ses->ses_key[0], encini->cri_key, 8);
   1041 			memcpy(&ses->ses_key[2], encini->cri_key, 8);
   1042 			memcpy(&ses->ses_key[4], encini->cri_key, 8);
   1043 		} else
   1044 			memcpy(ses->ses_key, encini->cri_key, 24);
   1045 
   1046 		SWAP32(ses->ses_key[0]);
   1047 		SWAP32(ses->ses_key[1]);
   1048 		SWAP32(ses->ses_key[2]);
   1049 		SWAP32(ses->ses_key[3]);
   1050 		SWAP32(ses->ses_key[4]);
   1051 		SWAP32(ses->ses_key[5]);
   1052 	}
   1053 
   1054 	if (macini) {
   1055 		for (i = 0; i < macini->cri_klen / 8; i++)
   1056 			macini->cri_key[i] ^= HMAC_IPAD_VAL;
   1057 
   1058 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
   1059 			MD5Init(&md5ctx);
   1060 			MD5Update(&md5ctx, macini->cri_key,
   1061 			    macini->cri_klen / 8);
   1062 			MD5Update(&md5ctx, hmac_ipad_buffer,
   1063 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
   1064 			memcpy(ses->ses_hminner, md5ctx.state,
   1065 			    sizeof(md5ctx.state));
   1066 		} else {
   1067 			SHA1Init(&sha1ctx);
   1068 			SHA1Update(&sha1ctx, macini->cri_key,
   1069 			    macini->cri_klen / 8);
   1070 			SHA1Update(&sha1ctx, hmac_ipad_buffer,
   1071 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
   1072 			memcpy(ses->ses_hminner, sha1ctx.state,
   1073 			    sizeof(sha1ctx.state));
   1074 		}
   1075 
   1076 		for (i = 0; i < macini->cri_klen / 8; i++)
   1077 			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
   1078 
   1079 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
   1080 			MD5Init(&md5ctx);
   1081 			MD5Update(&md5ctx, macini->cri_key,
   1082 			    macini->cri_klen / 8);
   1083 			MD5Update(&md5ctx, hmac_opad_buffer,
   1084 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
   1085 			memcpy(ses->ses_hmouter, md5ctx.state,
   1086 			    sizeof(md5ctx.state));
   1087 		} else {
   1088 			SHA1Init(&sha1ctx);
   1089 			SHA1Update(&sha1ctx, macini->cri_key,
   1090 			    macini->cri_klen / 8);
   1091 			SHA1Update(&sha1ctx, hmac_opad_buffer,
   1092 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
   1093 			memcpy(ses->ses_hmouter, sha1ctx.state,
   1094 			    sizeof(sha1ctx.state));
   1095 		}
   1096 
   1097 		for (i = 0; i < macini->cri_klen / 8; i++)
   1098 			macini->cri_key[i] ^= HMAC_OPAD_VAL;
   1099 	}
   1100 
   1101 	*sidp = UBSEC_SID(device_unit(sc->sc_dev), sesn);
   1102 	return (0);
   1103 }
   1104 
   1105 /*
   1106  * Deallocate a session.
   1107  */
   1108 static int
   1109 ubsec_freesession(void *arg, u_int64_t tid)
   1110 {
   1111 	struct ubsec_softc *sc;
   1112 	int session;
   1113 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
   1114 
   1115 	sc = arg;
   1116 	KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
   1117 
   1118 	session = UBSEC_SESSION(sid);
   1119 	if (session >= sc->sc_nsessions)
   1120 		return (EINVAL);
   1121 
   1122 	memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session]));
   1123 	return (0);
   1124 }
   1125 
   1126 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
   1127 static void
   1128 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize,
   1129     int error)
   1130 {
   1131 	struct ubsec_operand *op = arg;
   1132 
   1133 	KASSERT(nsegs <= UBS_MAX_SCATTER
   1134 		/*, ("Too many DMA segments returned when mapping operand")*/);
   1135 #ifdef UBSEC_DEBUG
   1136 	if (ubsec_debug)
   1137 		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
   1138 			(u_int) mapsize, nsegs);
   1139 #endif
   1140 	op->mapsize = mapsize;
   1141 	op->nsegs = nsegs;
   1142 	memcpy(op->segs, seg, nsegs * sizeof (seg[0]));
   1143 }
   1144 #endif
   1145 
   1146 static int
   1147 ubsec_process(void *arg, struct cryptop *crp, int hint)
   1148 {
   1149 	struct ubsec_q *q = NULL;
   1150 	int err = 0, i, j, nicealign;
   1151 	struct ubsec_softc *sc = arg;
   1152 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
   1153 	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
   1154 	int sskip, dskip, stheend, dtheend;
   1155 	int16_t coffset;
   1156 	struct ubsec_session *ses, key;
   1157 	struct ubsec_dma *dmap = NULL;
   1158 	u_int16_t flags = 0;
   1159 	int ivlen = 0, keylen = 0;
   1160 
   1161 	KASSERTMSG(UBSEC_SESSION(crp->crp_sid) < sc->sc_nsessions,
   1162 	    "invalid session id 0x%"PRIx64", nsessions=%d",
   1163 	    crp->crp_sid, sc->sc_nsessions);
   1164 
   1165 	mutex_spin_enter(&sc->sc_mtx);
   1166 
   1167 	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
   1168 		ubsecstats.hst_queuefull++;
   1169 		sc->sc_needwakeup |= CRYPTO_SYMQ;
   1170 		mutex_spin_exit(&sc->sc_mtx);
   1171 		return(ERESTART);
   1172 	}
   1173 
   1174 	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
   1175 	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
   1176 	mutex_spin_exit(&sc->sc_mtx);
   1177 
   1178 	dmap = q->q_dma; /* Save dma pointer */
   1179 	/* don't lose the cached dmamaps q_src_map and q_cached_dst_map */
   1180 	memset(q, 0, offsetof(struct ubsec_q, q_src_map));
   1181 	memset(&key, 0, sizeof(key));
   1182 
   1183 	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
   1184 	q->q_dma = dmap;
   1185 	ses = &sc->sc_sessions[q->q_sesn];
   1186 
   1187 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
   1188 		q->q_src_m = (struct mbuf *)crp->crp_buf;
   1189 		q->q_dst_m = (struct mbuf *)crp->crp_buf;
   1190 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
   1191 		q->q_src_io = (struct uio *)crp->crp_buf;
   1192 		q->q_dst_io = (struct uio *)crp->crp_buf;
   1193 	} else {
   1194 		ubsecstats.hst_badflags++;
   1195 		err = EINVAL;
   1196 		goto errout;	/* XXX we don't handle contiguous blocks! */
   1197 	}
   1198 
   1199 	memset(&dmap->d_dma->d_mcr, 0, sizeof(struct ubsec_mcr));
   1200 
   1201 	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
   1202 	dmap->d_dma->d_mcr.mcr_flags = 0;
   1203 	q->q_crp = crp;
   1204 
   1205 	crd1 = crp->crp_desc;
   1206 	if (crd1 == NULL) {
   1207 		ubsecstats.hst_nodesc++;
   1208 		err = EINVAL;
   1209 		goto errout;
   1210 	}
   1211 	crd2 = crd1->crd_next;
   1212 
   1213 	if (crd2 == NULL) {
   1214 		if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
   1215 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) {
   1216 			maccrd = crd1;
   1217 			enccrd = NULL;
   1218 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
   1219 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
   1220 		    crd1->crd_alg == CRYPTO_AES_CBC) {
   1221 			maccrd = NULL;
   1222 			enccrd = crd1;
   1223 		} else {
   1224 			ubsecstats.hst_badalg++;
   1225 			err = EINVAL;
   1226 			goto errout;
   1227 		}
   1228 	} else {
   1229 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
   1230 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) &&
   1231 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
   1232 		    crd2->crd_alg == CRYPTO_3DES_CBC ||
   1233 		    crd2->crd_alg == CRYPTO_AES_CBC) &&
   1234 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
   1235 			maccrd = crd1;
   1236 			enccrd = crd2;
   1237 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
   1238 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
   1239 		    crd1->crd_alg == CRYPTO_AES_CBC) &&
   1240 		    (crd2->crd_alg == CRYPTO_MD5_HMAC_96 ||
   1241 		    crd2->crd_alg == CRYPTO_SHA1_HMAC_96) &&
   1242 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
   1243 			enccrd = crd1;
   1244 			maccrd = crd2;
   1245 		} else {
   1246 			/*
   1247 			 * We cannot order the ubsec as requested
   1248 			 */
   1249 			ubsecstats.hst_badalg++;
   1250 			err = EINVAL;
   1251 			goto errout;
   1252 		}
   1253 	}
   1254 
   1255 	if (enccrd) {
   1256 		if (enccrd->crd_alg == CRYPTO_AES_CBC) {
   1257 			if ((sc->sc_flags & UBS_FLAGS_AES) == 0) {
   1258 				/*
   1259 				 * We cannot order the ubsec as requested
   1260 				 */
   1261 				ubsecstats.hst_badalg++;
   1262 				err = EINVAL;
   1263 				goto errout;
   1264 			}
   1265 			flags |= htole16(UBS_PKTCTX_ENC_AES);
   1266 			switch (enccrd->crd_klen) {
   1267 			case 128:
   1268 			case 192:
   1269 			case 256:
   1270 				keylen = enccrd->crd_klen / 8;
   1271 				break;
   1272 			default:
   1273 				err = EINVAL;
   1274 				goto errout;
   1275 			}
   1276 			ivlen = 16;
   1277 		} else {
   1278 			flags |= htole16(UBS_PKTCTX_ENC_3DES);
   1279 			ivlen = 8;
   1280 			keylen = 24;
   1281 		}
   1282 
   1283 		encoffset = enccrd->crd_skip;
   1284 
   1285 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
   1286 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
   1287 				memcpy(key.ses_iv, enccrd->crd_iv, ivlen);
   1288 			else
   1289 				cprng_fast(key.ses_iv, ivlen);
   1290 
   1291 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
   1292 				if (crp->crp_flags & CRYPTO_F_IMBUF)
   1293 					m_copyback(q->q_src_m,
   1294 					    enccrd->crd_inject,
   1295 					    ivlen, (void *)key.ses_iv);
   1296 				else if (crp->crp_flags & CRYPTO_F_IOV)
   1297 					cuio_copyback(q->q_src_io,
   1298 					    enccrd->crd_inject,
   1299 					    ivlen, (void *)key.ses_iv);
   1300 			}
   1301 		} else {
   1302 			flags |= htole16(UBS_PKTCTX_INBOUND);
   1303 
   1304 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
   1305 				memcpy(key.ses_iv, enccrd->crd_iv, ivlen);
   1306 			else if (crp->crp_flags & CRYPTO_F_IMBUF)
   1307 				m_copydata(q->q_src_m, enccrd->crd_inject,
   1308 				    ivlen, (void *)key.ses_iv);
   1309 			else if (crp->crp_flags & CRYPTO_F_IOV)
   1310 				cuio_copydata(q->q_src_io,
   1311 				    enccrd->crd_inject, 8,
   1312 				    (void *)key.ses_iv);
   1313 		}
   1314 
   1315 		for (i = 0; i < (keylen / 4); i++)
   1316 			key.ses_key[i] = ses->ses_key[i];
   1317 		for (i = 0; i < (ivlen / 4); i++)
   1318 			SWAP32(key.ses_iv[i]);
   1319 	}
   1320 
   1321 	if (maccrd) {
   1322 		macoffset = maccrd->crd_skip;
   1323 
   1324 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC_96)
   1325 			flags |= htole16(UBS_PKTCTX_AUTH_MD5);
   1326 		else
   1327 			flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
   1328 
   1329 		for (i = 0; i < 5; i++) {
   1330 			key.ses_hminner[i] = ses->ses_hminner[i];
   1331 			key.ses_hmouter[i] = ses->ses_hmouter[i];
   1332 
   1333 			HTOLE32(key.ses_hminner[i]);
   1334 			HTOLE32(key.ses_hmouter[i]);
   1335 		}
   1336 	}
   1337 
   1338 	if (enccrd && maccrd) {
   1339 		/*
   1340 		 * ubsec cannot handle packets where the end of encryption
   1341 		 * and authentication are not the same, or where the
   1342 		 * encrypted part begins before the authenticated part.
   1343 		 */
   1344 		if ((encoffset + enccrd->crd_len) !=
   1345 		    (macoffset + maccrd->crd_len)) {
   1346 			ubsecstats.hst_lenmismatch++;
   1347 			err = EINVAL;
   1348 			goto errout;
   1349 		}
   1350 		if (enccrd->crd_skip < maccrd->crd_skip) {
   1351 			ubsecstats.hst_skipmismatch++;
   1352 			err = EINVAL;
   1353 			goto errout;
   1354 		}
   1355 		sskip = maccrd->crd_skip;
   1356 		cpskip = dskip = enccrd->crd_skip;
   1357 		stheend = maccrd->crd_len;
   1358 		dtheend = enccrd->crd_len;
   1359 		coffset = enccrd->crd_skip - maccrd->crd_skip;
   1360 		cpoffset = cpskip + dtheend;
   1361 #ifdef UBSEC_DEBUG
   1362 		if (ubsec_debug) {
   1363 			printf("mac: skip %d, len %d, inject %d\n",
   1364 			    maccrd->crd_skip, maccrd->crd_len,
   1365 			    maccrd->crd_inject);
   1366 			printf("enc: skip %d, len %d, inject %d\n",
   1367 			    enccrd->crd_skip, enccrd->crd_len,
   1368 			    enccrd->crd_inject);
   1369 			printf("src: skip %d, len %d\n", sskip, stheend);
   1370 			printf("dst: skip %d, len %d\n", dskip, dtheend);
   1371 			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
   1372 			       coffset, stheend, cpskip, cpoffset);
   1373 		}
   1374 #endif
   1375 	} else {
   1376 		cpskip = dskip = sskip = macoffset + encoffset;
   1377 		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
   1378 		cpoffset = cpskip + dtheend;
   1379 		coffset = 0;
   1380 	}
   1381 
   1382 	if (q->q_src_map == NULL) {
   1383 		/* XXX FIXME: jonathan asks, what the heck's that 0xfff0?  */
   1384 		if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
   1385 			0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
   1386 			err = ENOMEM;
   1387 			goto errout;
   1388 		}
   1389 	}
   1390 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
   1391 		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
   1392 		    q->q_src_m, BUS_DMA_NOWAIT) != 0) {
   1393 			ubsecstats.hst_noload++;
   1394 			err = ENOMEM;
   1395 			goto errout;
   1396 		}
   1397 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
   1398 		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
   1399 		    q->q_src_io, BUS_DMA_NOWAIT) != 0) {
   1400 			ubsecstats.hst_noload++;
   1401 			err = ENOMEM;
   1402 			goto errout;
   1403 		}
   1404 	}
   1405 	nicealign = ubsec_dmamap_aligned(q->q_src_map);
   1406 
   1407 	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
   1408 
   1409 #ifdef UBSEC_DEBUG
   1410 	if (ubsec_debug)
   1411 		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
   1412 #endif
   1413 	for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
   1414 		struct ubsec_pktbuf *pb;
   1415 		bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
   1416 		bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
   1417 
   1418 		if (sskip >= packl) {
   1419 			sskip -= packl;
   1420 			continue;
   1421 		}
   1422 
   1423 		packl -= sskip;
   1424 		packp += sskip;
   1425 		sskip = 0;
   1426 
   1427 		if (packl > 0xfffc) {
   1428 			err = EIO;
   1429 			goto errout;
   1430 		}
   1431 
   1432 		if (j == 0)
   1433 			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
   1434 		else
   1435 			pb = &dmap->d_dma->d_sbuf[j - 1];
   1436 
   1437 		pb->pb_addr = htole32(packp);
   1438 
   1439 		if (stheend) {
   1440 			if (packl > stheend) {
   1441 				pb->pb_len = htole32(stheend);
   1442 				stheend = 0;
   1443 			} else {
   1444 				pb->pb_len = htole32(packl);
   1445 				stheend -= packl;
   1446 			}
   1447 		} else
   1448 			pb->pb_len = htole32(packl);
   1449 
   1450 		if ((i + 1) == q->q_src_map->dm_nsegs)
   1451 			pb->pb_next = 0;
   1452 		else
   1453 			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
   1454 			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
   1455 		j++;
   1456 	}
   1457 
   1458 	if (enccrd == NULL && maccrd != NULL) {
   1459 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
   1460 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
   1461 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
   1462 		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
   1463 #ifdef UBSEC_DEBUG
   1464 		if (ubsec_debug)
   1465 			printf("opkt: %x %x %x\n",
   1466 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
   1467 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
   1468 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
   1469 
   1470 #endif
   1471 	} else {
   1472 		if (crp->crp_flags & CRYPTO_F_IOV) {
   1473 			if (!nicealign) {
   1474 				ubsecstats.hst_iovmisaligned++;
   1475 				err = EINVAL;
   1476 				goto errout;
   1477 			}
   1478 			if (q->q_dst_map == NULL) {
   1479 				if (q->q_cached_dst_map == NULL) {
   1480 					/*
   1481 					 * XXX: ``what the heck's that''
   1482 					 * 0xfff0?
   1483 					 */
   1484 					if (bus_dmamap_create(sc->sc_dmat,
   1485 					    0xfff0, UBS_MAX_SCATTER, 0xfff0, 0,
   1486 					    BUS_DMA_NOWAIT,
   1487 					    &q->q_cached_dst_map) != 0) {
   1488 						ubsecstats.hst_nomap++;
   1489 						err = ENOMEM;
   1490 						goto errout;
   1491 					}
   1492 				}
   1493 				q->q_dst_map = q->q_cached_dst_map;
   1494 			}
   1495 			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
   1496 			    q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
   1497 				ubsecstats.hst_noload++;
   1498 				err = ENOMEM;
   1499 				goto errout;
   1500 			}
   1501 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
   1502 			if (nicealign) {
   1503 				q->q_dst_m = q->q_src_m;
   1504 				q->q_dst_map = q->q_src_map;
   1505 			} else {
   1506 				int totlen, len;
   1507 				struct mbuf *m, *top, **mp;
   1508 
   1509 				ubsecstats.hst_unaligned++;
   1510 				totlen = q->q_src_map->dm_mapsize;
   1511 				if (q->q_src_m->m_flags & M_PKTHDR) {
   1512 					len = MHLEN;
   1513 					MGETHDR(m, M_DONTWAIT, MT_DATA);
   1514 					/*XXX FIXME: m_dup_pkthdr */
   1515 					if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
   1516 						m_free(m);
   1517 						m = NULL;
   1518 					}
   1519 				} else {
   1520 					len = MLEN;
   1521 					MGET(m, M_DONTWAIT, MT_DATA);
   1522 				}
   1523 				if (m == NULL) {
   1524 					ubsecstats.hst_nombuf++;
   1525 					err = sc->sc_nqueue ? ERESTART : ENOMEM;
   1526 					goto errout;
   1527 				}
   1528 				if (len == MHLEN)
   1529 				  /*XXX was M_DUP_PKTHDR*/
   1530 				  m_copy_pkthdr(m, q->q_src_m);
   1531 				if (totlen >= MINCLSIZE) {
   1532 					MCLGET(m, M_DONTWAIT);
   1533 					if ((m->m_flags & M_EXT) == 0) {
   1534 						m_free(m);
   1535 						ubsecstats.hst_nomcl++;
   1536 						err = sc->sc_nqueue
   1537 						    ? ERESTART : ENOMEM;
   1538 						goto errout;
   1539 					}
   1540 					len = MCLBYTES;
   1541 				}
   1542 				m->m_len = len;
   1543 				top = NULL;
   1544 				mp = &top;
   1545 
   1546 				while (totlen > 0) {
   1547 					if (top) {
   1548 						MGET(m, M_DONTWAIT, MT_DATA);
   1549 						if (m == NULL) {
   1550 							m_freem(top);
   1551 							ubsecstats.hst_nombuf++;
   1552 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
   1553 							goto errout;
   1554 						}
   1555 						len = MLEN;
   1556 					}
   1557 					if (top && totlen >= MINCLSIZE) {
   1558 						MCLGET(m, M_DONTWAIT);
   1559 						if ((m->m_flags & M_EXT) == 0) {
   1560 							*mp = m;
   1561 							m_freem(top);
   1562 							ubsecstats.hst_nomcl++;
   1563 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
   1564 							goto errout;
   1565 						}
   1566 						len = MCLBYTES;
   1567 					}
   1568 					m->m_len = len = uimin(totlen, len);
   1569 					totlen -= len;
   1570 					*mp = m;
   1571 					mp = &m->m_next;
   1572 				}
   1573 				q->q_dst_m = top;
   1574 				ubsec_mcopy(q->q_src_m, q->q_dst_m,
   1575 				    cpskip, cpoffset);
   1576 				if (q->q_dst_map == NULL) {
   1577 					if (q->q_cached_dst_map == NULL) {
   1578 						/* XXX again, what the heck is that 0xfff0? */
   1579 						if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
   1580 						    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
   1581 						    &q->q_cached_dst_map) != 0) {
   1582 							ubsecstats.hst_nomap++;
   1583 							err = ENOMEM;
   1584 							goto errout;
   1585 						}
   1586 					}
   1587 					q->q_dst_map = q->q_cached_dst_map;
   1588 				}
   1589 				if (bus_dmamap_load_mbuf(sc->sc_dmat,
   1590 				    q->q_dst_map, q->q_dst_m,
   1591 				    BUS_DMA_NOWAIT) != 0) {
   1592 					ubsecstats.hst_noload++;
   1593 					err = ENOMEM;
   1594 					goto errout;
   1595 				}
   1596 			}
   1597 		} else {
   1598 			ubsecstats.hst_badflags++;
   1599 			err = EINVAL;
   1600 			goto errout;
   1601 		}
   1602 
   1603 #ifdef UBSEC_DEBUG
   1604 		if (ubsec_debug)
   1605 			printf("dst skip: %d\n", dskip);
   1606 #endif
   1607 		for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
   1608 			struct ubsec_pktbuf *pb;
   1609 			bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
   1610 			bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
   1611 
   1612 			if (dskip >= packl) {
   1613 				dskip -= packl;
   1614 				continue;
   1615 			}
   1616 
   1617 			packl -= dskip;
   1618 			packp += dskip;
   1619 			dskip = 0;
   1620 
   1621 			if (packl > 0xfffc) {
   1622 				err = EIO;
   1623 				goto errout;
   1624 			}
   1625 
   1626 			if (j == 0)
   1627 				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
   1628 			else
   1629 				pb = &dmap->d_dma->d_dbuf[j - 1];
   1630 
   1631 			pb->pb_addr = htole32(packp);
   1632 
   1633 			if (dtheend) {
   1634 				if (packl > dtheend) {
   1635 					pb->pb_len = htole32(dtheend);
   1636 					dtheend = 0;
   1637 				} else {
   1638 					pb->pb_len = htole32(packl);
   1639 					dtheend -= packl;
   1640 				}
   1641 			} else
   1642 				pb->pb_len = htole32(packl);
   1643 
   1644 			if ((i + 1) == q->q_dst_map->dm_nsegs) {
   1645 				if (maccrd)
   1646 					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
   1647 					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
   1648 				else
   1649 					pb->pb_next = 0;
   1650 			} else
   1651 				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
   1652 				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
   1653 			j++;
   1654 		}
   1655 	}
   1656 
   1657 	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
   1658 	    offsetof(struct ubsec_dmachunk, d_ctx));
   1659 
   1660 	if (enccrd && enccrd->crd_alg == CRYPTO_AES_CBC) {
   1661 		struct ubsec_pktctx_aes128	*aes128;
   1662 		struct ubsec_pktctx_aes192	*aes192;
   1663 		struct ubsec_pktctx_aes256	*aes256;
   1664 		struct ubsec_pktctx_hdr		*ph;
   1665 		u_int8_t			*ctx;
   1666 
   1667 		ctx = (u_int8_t *)(dmap->d_alloc.dma_vaddr) +
   1668 		    offsetof(struct ubsec_dmachunk, d_ctx);
   1669 
   1670 		ph = (struct ubsec_pktctx_hdr *)ctx;
   1671 		ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_AES);
   1672 		ph->ph_flags = flags;
   1673 		ph->ph_offset = htole16(coffset >> 2);
   1674 
   1675 		switch (enccrd->crd_klen) {
   1676 		case 128:
   1677 			aes128 = (struct ubsec_pktctx_aes128 *)ctx;
   1678  			ph->ph_len = htole16(sizeof(*aes128));
   1679 			ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_128);
   1680 			for (i = 0; i < 4; i++)
   1681 				aes128->pc_aeskey[i] = key.ses_key[i];
   1682 			for (i = 0; i < 5; i++)
   1683 				aes128->pc_hminner[i] = key.ses_hminner[i];
   1684 			for (i = 0; i < 5; i++)
   1685 				aes128->pc_hmouter[i] = key.ses_hmouter[i];
   1686 			for (i = 0; i < 4; i++)
   1687 				aes128->pc_iv[i] = key.ses_iv[i];
   1688 			break;
   1689 		case 192:
   1690 			aes192 = (struct ubsec_pktctx_aes192 *)ctx;
   1691 			ph->ph_len = htole16(sizeof(*aes192));
   1692 			ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_192);
   1693 			for (i = 0; i < 6; i++)
   1694 				aes192->pc_aeskey[i] = key.ses_key[i];
   1695 			for (i = 0; i < 5; i++)
   1696 				aes192->pc_hminner[i] = key.ses_hminner[i];
   1697 			for (i = 0; i < 5; i++)
   1698 				aes192->pc_hmouter[i] = key.ses_hmouter[i];
   1699 			for (i = 0; i < 4; i++)
   1700 				aes192->pc_iv[i] = key.ses_iv[i];
   1701 			break;
   1702 		case 256:
   1703 			aes256 = (struct ubsec_pktctx_aes256 *)ctx;
   1704 			ph->ph_len = htole16(sizeof(*aes256));
   1705 			ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_256);
   1706 			for (i = 0; i < 8; i++)
   1707 				aes256->pc_aeskey[i] = key.ses_key[i];
   1708 			for (i = 0; i < 5; i++)
   1709 				aes256->pc_hminner[i] = key.ses_hminner[i];
   1710 			for (i = 0; i < 5; i++)
   1711 				aes256->pc_hmouter[i] = key.ses_hmouter[i];
   1712 			for (i = 0; i < 4; i++)
   1713 				aes256->pc_iv[i] = key.ses_iv[i];
   1714 			break;
   1715 		}
   1716 	} else if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
   1717 		struct ubsec_pktctx_3des	*ctx;
   1718 		struct ubsec_pktctx_hdr		*ph;
   1719 
   1720 		ctx = (struct ubsec_pktctx_3des *)
   1721 		    ((u_int8_t *)(dmap->d_alloc.dma_vaddr) +
   1722 		    offsetof(struct ubsec_dmachunk, d_ctx));
   1723 
   1724 		ph = (struct ubsec_pktctx_hdr *)ctx;
   1725 		ph->ph_len = htole16(sizeof(*ctx));
   1726 		ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_3DES);
   1727 		ph->ph_flags = flags;
   1728 		ph->ph_offset = htole16(coffset >> 2);
   1729 
   1730 		for (i = 0; i < 6; i++)
   1731 			ctx->pc_deskey[i] = key.ses_key[i];
   1732 		for (i = 0; i < 5; i++)
   1733 			ctx->pc_hminner[i] = key.ses_hminner[i];
   1734 		for (i = 0; i < 5; i++)
   1735 			ctx->pc_hmouter[i] = key.ses_hmouter[i];
   1736 		for (i = 0; i < 2; i++)
   1737 			ctx->pc_iv[i] = key.ses_iv[i];
   1738 	} else {
   1739 		struct ubsec_pktctx *ctx = (struct ubsec_pktctx *)
   1740 		    ((u_int8_t *)dmap->d_alloc.dma_vaddr +
   1741 		    offsetof(struct ubsec_dmachunk, d_ctx));
   1742 
   1743 		ctx->pc_flags = flags;
   1744 		ctx->pc_offset = htole16(coffset >> 2);
   1745 		for (i = 0; i < 6; i++)
   1746 			ctx->pc_deskey[i] = key.ses_key[i];
   1747 		for (i = 0; i < 5; i++)
   1748 			ctx->pc_hminner[i] = key.ses_hminner[i];
   1749 		for (i = 0; i < 5; i++)
   1750 			ctx->pc_hmouter[i] = key.ses_hmouter[i];
   1751 		for (i = 0; i < 2; i++)
   1752 			ctx->pc_iv[i] = key.ses_iv[i];
   1753 	}
   1754 
   1755 	mutex_spin_enter(&sc->sc_mtx);
   1756 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
   1757 	sc->sc_nqueue++;
   1758 	ubsecstats.hst_ipackets++;
   1759 	ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
   1760 	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
   1761 		ubsec_feed(sc);
   1762 	mutex_spin_exit(&sc->sc_mtx);
   1763 	return (0);
   1764 
   1765 errout:
   1766 	if (q != NULL) {
   1767 		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
   1768 			m_freem(q->q_dst_m);
   1769 
   1770 		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
   1771 			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
   1772 		}
   1773 		if (q->q_src_map != NULL) {
   1774 			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
   1775 		}
   1776 
   1777 		mutex_spin_enter(&sc->sc_mtx);
   1778 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
   1779 		mutex_spin_exit(&sc->sc_mtx);
   1780 	}
   1781 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
   1782 	if (err == EINVAL)
   1783 		ubsecstats.hst_invalid++;
   1784 	else
   1785 		ubsecstats.hst_nomem++;
   1786 #endif
   1787 	if (err != ERESTART) {
   1788 		crp->crp_etype = err;
   1789 		crypto_done(crp);
   1790 	} else {
   1791 		sc->sc_needwakeup |= CRYPTO_SYMQ;
   1792 	}
   1793 	return (err);
   1794 }
   1795 
   1796 static void
   1797 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
   1798 {
   1799 	struct cryptop *crp = (struct cryptop *)q->q_crp;
   1800 	struct cryptodesc *crd;
   1801 	struct ubsec_dma *dmap = q->q_dma;
   1802 
   1803 	ubsecstats.hst_opackets++;
   1804 	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
   1805 
   1806 	bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
   1807 	    dmap->d_alloc.dma_map->dm_mapsize,
   1808 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1809 	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
   1810 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
   1811 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1812 		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
   1813 	}
   1814 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
   1815 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1816 	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
   1817 
   1818 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
   1819 		m_freem(q->q_src_m);
   1820 		crp->crp_buf = (void *)q->q_dst_m;
   1821 	}
   1822 
   1823 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
   1824 		if (crd->crd_alg != CRYPTO_MD5_HMAC_96 &&
   1825 		    crd->crd_alg != CRYPTO_SHA1_HMAC_96)
   1826 			continue;
   1827 		if (crp->crp_flags & CRYPTO_F_IMBUF)
   1828 			m_copyback((struct mbuf *)crp->crp_buf,
   1829 			    crd->crd_inject, 12,
   1830 			    (void *)dmap->d_dma->d_macbuf);
   1831 		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
   1832 			bcopy((void *)dmap->d_dma->d_macbuf,
   1833 			    crp->crp_mac, 12);
   1834 		break;
   1835 	}
   1836 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
   1837 	crypto_done(crp);
   1838 }
   1839 
   1840 static void
   1841 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
   1842 {
   1843 	int i, j, dlen, slen;
   1844 	char *dptr, *sptr;
   1845 
   1846 	j = 0;
   1847 	sptr = srcm->m_data;
   1848 	slen = srcm->m_len;
   1849 	dptr = dstm->m_data;
   1850 	dlen = dstm->m_len;
   1851 
   1852 	while (1) {
   1853 		for (i = 0; i < uimin(slen, dlen); i++) {
   1854 			if (j < hoffset || j >= toffset)
   1855 				*dptr++ = *sptr++;
   1856 			slen--;
   1857 			dlen--;
   1858 			j++;
   1859 		}
   1860 		if (slen == 0) {
   1861 			srcm = srcm->m_next;
   1862 			if (srcm == NULL)
   1863 				return;
   1864 			sptr = srcm->m_data;
   1865 			slen = srcm->m_len;
   1866 		}
   1867 		if (dlen == 0) {
   1868 			dstm = dstm->m_next;
   1869 			if (dstm == NULL)
   1870 				return;
   1871 			dptr = dstm->m_data;
   1872 			dlen = dstm->m_len;
   1873 		}
   1874 	}
   1875 }
   1876 
   1877 /*
   1878  * feed the key generator, must be called at splnet() or higher.
   1879  */
   1880 static void
   1881 ubsec_feed2(struct ubsec_softc *sc)
   1882 {
   1883 	struct ubsec_q2 *q;
   1884 
   1885 	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
   1886 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
   1887 			break;
   1888 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
   1889 
   1890 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
   1891 		    q->q_mcr.dma_map->dm_mapsize,
   1892 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1893 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
   1894 		    q->q_ctx.dma_map->dm_mapsize,
   1895 		    BUS_DMASYNC_PREWRITE);
   1896 
   1897 		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
   1898 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
   1899 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
   1900 		--sc->sc_nqueue2;
   1901 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
   1902 	}
   1903 }
   1904 
   1905 /*
   1906  * feed the RNG (used instead of ubsec_feed2() on 5827+ devices)
   1907  */
   1908 void
   1909 ubsec_feed4(struct ubsec_softc *sc)
   1910 {
   1911 	struct ubsec_q2 *q;
   1912 
   1913 	while (!SIMPLEQ_EMPTY(&sc->sc_queue4)) {
   1914 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR4_FULL)
   1915 			break;
   1916 		q = SIMPLEQ_FIRST(&sc->sc_queue4);
   1917 
   1918 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
   1919 		    q->q_mcr.dma_map->dm_mapsize,
   1920 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1921 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
   1922 		    q->q_ctx.dma_map->dm_mapsize,
   1923 		    BUS_DMASYNC_PREWRITE);
   1924 
   1925 		WRITE_REG(sc, BS_MCR4, q->q_mcr.dma_paddr);
   1926 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue4, q_next);
   1927 		--sc->sc_nqueue4;
   1928 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip4, q, q_next);
   1929 	}
   1930 }
   1931 
   1932 /*
   1933  * Callback for handling random numbers
   1934  */
   1935 static void
   1936 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
   1937 {
   1938 	struct cryptkop *krp;
   1939 	struct ubsec_ctx_keyop *ctx;
   1940 
   1941 	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
   1942 	bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
   1943 	    q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1944 
   1945 	switch (q->q_type) {
   1946 #ifndef UBSEC_NO_RNG
   1947 	case UBS_CTXOP_RNGSHA1:
   1948 	case UBS_CTXOP_RNGBYPASS: {
   1949 		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
   1950 		u_int32_t *p;
   1951 		int i;
   1952 
   1953 		bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
   1954 		    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1955 		p = (u_int32_t *)rng->rng_buf.dma_vaddr;
   1956 		i = UBSEC_RNG_BUFSIZ * sizeof(u_int32_t);
   1957 		rnd_add_data(&sc->sc_rnd_source, (char *)p, i, i * NBBY);
   1958 		sc->sc_rng_need -= i;
   1959 		rng->rng_used = 0;
   1960 		if (sc->sc_rng_need > 0) {
   1961 			callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
   1962 		}
   1963 		break;
   1964 	}
   1965 #endif
   1966 	case UBS_CTXOP_MODEXP: {
   1967 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
   1968 		u_int rlen, clen;
   1969 
   1970 		krp = me->me_krp;
   1971 		rlen = (me->me_modbits + 7) / 8;
   1972 		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
   1973 
   1974 		bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
   1975 		    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1976 		bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
   1977 		    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1978 		bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
   1979 		    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1980 		bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
   1981 		    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1982 
   1983 		if (clen < rlen)
   1984 			krp->krp_status = E2BIG;
   1985 		else {
   1986 			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
   1987 				memset(krp->krp_param[krp->krp_iparams].crp_p, 0,
   1988 				    (krp->krp_param[krp->krp_iparams].crp_nbits
   1989 					+ 7) / 8);
   1990 				bcopy(me->me_C.dma_vaddr,
   1991 				    krp->krp_param[krp->krp_iparams].crp_p,
   1992 				    (me->me_modbits + 7) / 8);
   1993 			} else
   1994 				ubsec_kshift_l(me->me_shiftbits,
   1995 				    me->me_C.dma_vaddr, me->me_normbits,
   1996 				    krp->krp_param[krp->krp_iparams].crp_p,
   1997 				    krp->krp_param[krp->krp_iparams].crp_nbits);
   1998 		}
   1999 
   2000 		crypto_kdone(krp);
   2001 
   2002 		/* bzero all potentially sensitive data */
   2003 		memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
   2004 		memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
   2005 		memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   2006 		memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
   2007 
   2008 		/* Can't free here, so put us on the free list. */
   2009 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
   2010 		break;
   2011 	}
   2012 	case UBS_CTXOP_RSAPRIV: {
   2013 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
   2014 		u_int len;
   2015 
   2016 		krp = rp->rpr_krp;
   2017 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
   2018 		    rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2019 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
   2020 		    rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2021 
   2022 		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7)
   2023 		    / 8;
   2024 		bcopy(rp->rpr_msgout.dma_vaddr,
   2025 		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
   2026 
   2027 		crypto_kdone(krp);
   2028 
   2029 		memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
   2030 		memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
   2031 		memset(rp->rpr_q.q_ctx.dma_vaddr, 0, rp->rpr_q.q_ctx.dma_size);
   2032 
   2033 		/* Can't free here, so put us on the free list. */
   2034 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
   2035 		break;
   2036 	}
   2037 	default:
   2038 		printf("%s: unknown ctx op: %x\n", device_xname(sc->sc_dev),
   2039 		    letoh16(ctx->ctx_op));
   2040 		break;
   2041 	}
   2042 }
   2043 
   2044 #ifndef UBSEC_NO_RNG
   2045 
   2046 static void
   2047 ubsec_rng_get(size_t bytes, void *vsc)
   2048 {
   2049 	struct ubsec_softc *sc = vsc;
   2050 
   2051 	mutex_spin_enter(&sc->sc_mtx);
   2052 	sc->sc_rng_need = bytes;
   2053 	ubsec_rng_locked(sc);
   2054 	mutex_spin_exit(&sc->sc_mtx);
   2055 
   2056 }
   2057 
   2058 static void
   2059 ubsec_rng(void *vsc)
   2060 {
   2061 	struct ubsec_softc *sc = vsc;
   2062 	mutex_spin_enter(&sc->sc_mtx);
   2063 	ubsec_rng_locked(sc);
   2064 	mutex_spin_exit(&sc->sc_mtx);
   2065 }
   2066 
   2067 static void
   2068 ubsec_rng_locked(void *vsc)
   2069 {
   2070 	struct ubsec_softc *sc = vsc;
   2071 	struct ubsec_q2_rng *rng = &sc->sc_rng;
   2072 	struct ubsec_mcr *mcr;
   2073 	struct ubsec_ctx_rngbypass *ctx;
   2074 	int *nqueue;
   2075 
   2076 	/* Caller is responsible to lock and release sc_mtx. */
   2077 	KASSERT(mutex_owned(&sc->sc_mtx));
   2078 
   2079 	if (rng->rng_used) {
   2080 		return;
   2081 	}
   2082 
   2083 	if (sc->sc_rng_need < 1) {
   2084 		callout_stop(&sc->sc_rngto);
   2085 		return;
   2086 	}
   2087 
   2088 	if (sc->sc_flags & UBS_FLAGS_RNG4)
   2089 		nqueue = &sc->sc_nqueue4;
   2090 	else
   2091 		nqueue = &sc->sc_nqueue2;
   2092 
   2093 	(*nqueue)++;
   2094 	if (*nqueue >= UBS_MAX_NQUEUE)
   2095  		goto out;
   2096 
   2097 	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
   2098 	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
   2099 
   2100 	mcr->mcr_pkts = htole16(1);
   2101 	mcr->mcr_flags = 0;
   2102 	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
   2103 	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
   2104 	mcr->mcr_ipktbuf.pb_len = 0;
   2105 	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
   2106 	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
   2107 	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
   2108 	    UBS_PKTBUF_LEN);
   2109 	mcr->mcr_opktbuf.pb_next = 0;
   2110 
   2111 	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
   2112 	ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
   2113 	rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
   2114 
   2115 	bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
   2116 	    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2117 
   2118 	if (sc->sc_flags & UBS_FLAGS_RNG4) {
   2119 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue4, &rng->rng_q, q_next);
   2120 		ubsec_feed4(sc);
   2121 	} else {
   2122 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
   2123 		ubsec_feed2(sc);
   2124 	}
   2125 	rng->rng_used = 1;
   2126 	ubsecstats.hst_rng++;
   2127 
   2128 	return;
   2129 
   2130 out:
   2131 	/*
   2132 	 * Something weird happened, generate our own call back.
   2133 	 */
   2134 	(*nqueue)--;
   2135 	callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
   2136 }
   2137 #endif /* UBSEC_NO_RNG */
   2138 
   2139 static int
   2140 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
   2141 		 struct ubsec_dma_alloc *dma,int mapflags)
   2142 {
   2143 	int r;
   2144 
   2145 	if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
   2146 	    &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
   2147 		goto fail_0;
   2148 
   2149 	if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
   2150 	    size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
   2151 		goto fail_1;
   2152 
   2153 	if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
   2154 	    BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
   2155 		goto fail_2;
   2156 
   2157 	if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
   2158 	    size, NULL, BUS_DMA_NOWAIT)) != 0)
   2159 		goto fail_3;
   2160 
   2161 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
   2162 	dma->dma_size = size;
   2163 	return (0);
   2164 
   2165 fail_3:
   2166 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
   2167 fail_2:
   2168 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
   2169 fail_1:
   2170 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
   2171 fail_0:
   2172 	dma->dma_map = NULL;
   2173 	return (r);
   2174 }
   2175 
   2176 static void
   2177 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
   2178 {
   2179 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
   2180 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
   2181 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
   2182 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
   2183 }
   2184 
   2185 /*
   2186  * Resets the board.  Values in the regesters are left as is
   2187  * from the reset (i.e. initial values are assigned elsewhere).
   2188  */
   2189 static void
   2190 ubsec_reset_board(struct ubsec_softc *sc)
   2191 {
   2192 	volatile u_int32_t ctrl;
   2193 
   2194 	ctrl = READ_REG(sc, BS_CTRL);
   2195 	ctrl |= BS_CTRL_RESET;
   2196 	WRITE_REG(sc, BS_CTRL, ctrl);
   2197 
   2198 	/*
   2199 	* Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
   2200 	*/
   2201 	DELAY(10);
   2202 
   2203 	/* Enable RNG and interrupts on newer devices */
   2204 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
   2205 #ifndef UBSEC_NO_RNG
   2206 		WRITE_REG(sc, BS_CFG, BS_CFG_RNG);
   2207 #endif
   2208 		WRITE_REG(sc, BS_INT, BS_INT_DMAINT);
   2209 	}
   2210 }
   2211 
   2212 /*
   2213  * Init Broadcom registers
   2214  */
   2215 static void
   2216 ubsec_init_board(struct ubsec_softc *sc)
   2217 {
   2218 	u_int32_t ctrl;
   2219 
   2220 	ctrl = READ_REG(sc, BS_CTRL);
   2221 	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
   2222 	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
   2223 
   2224 	/*
   2225 	 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
   2226 	 * anyone got hw docs?
   2227 	 */
   2228 	if (sc->sc_flags & UBS_FLAGS_KEY)
   2229 		ctrl |= BS_CTRL_MCR2INT;
   2230 	else
   2231 		ctrl &= ~BS_CTRL_MCR2INT;
   2232 
   2233 	if (sc->sc_flags & UBS_FLAGS_HWNORM)
   2234 		ctrl &= ~BS_CTRL_SWNORM;
   2235 
   2236 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
   2237 		ctrl |= BS_CTRL_BSIZE240;
   2238 		ctrl &= ~BS_CTRL_MCR3INT; /* MCR3 is reserved for SSL */
   2239 
   2240 		if (sc->sc_flags & UBS_FLAGS_RNG4)
   2241 			ctrl |= BS_CTRL_MCR4INT;
   2242 		else
   2243 			ctrl &= ~BS_CTRL_MCR4INT;
   2244 	}
   2245 
   2246 	WRITE_REG(sc, BS_CTRL, ctrl);
   2247 }
   2248 
   2249 /*
   2250  * Init Broadcom PCI registers
   2251  */
   2252 static void
   2253 ubsec_init_pciregs(struct pci_attach_args *pa)
   2254 {
   2255 	pci_chipset_tag_t pc = pa->pa_pc;
   2256 	u_int32_t misc;
   2257 
   2258 	/*
   2259 	 * This will set the cache line size to 1, this will
   2260 	 * force the BCM58xx chip just to do burst read/writes.
   2261 	 * Cache line read/writes are to slow
   2262 	 */
   2263 	misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
   2264 	misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
   2265 	    | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
   2266 	pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
   2267 }
   2268 
   2269 /*
   2270  * Clean up after a chip crash.
   2271  * It is assumed that the caller in splnet()
   2272  */
   2273 static void
   2274 ubsec_cleanchip(struct ubsec_softc *sc)
   2275 {
   2276 	struct ubsec_q *q;
   2277 
   2278 	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
   2279 		q = SIMPLEQ_FIRST(&sc->sc_qchip);
   2280 		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
   2281 		ubsec_free_q(sc, q);
   2282 	}
   2283 	sc->sc_nqchip = 0;
   2284 }
   2285 
   2286 /*
   2287  * free a ubsec_q
   2288  * It is assumed that the caller is within splnet()
   2289  */
   2290 static int
   2291 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
   2292 {
   2293 	struct ubsec_q *q2;
   2294 	struct cryptop *crp;
   2295 	int npkts;
   2296 	int i;
   2297 
   2298 	npkts = q->q_nstacked_mcrs;
   2299 
   2300 	for (i = 0; i < npkts; i++) {
   2301 		if(q->q_stacked_mcr[i]) {
   2302 			q2 = q->q_stacked_mcr[i];
   2303 
   2304 			if ((q2->q_dst_m != NULL)
   2305 			    && (q2->q_src_m != q2->q_dst_m))
   2306 				m_freem(q2->q_dst_m);
   2307 
   2308 			crp = (struct cryptop *)q2->q_crp;
   2309 
   2310 			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
   2311 
   2312 			crp->crp_etype = EFAULT;
   2313 			crypto_done(crp);
   2314 		} else {
   2315 			break;
   2316 		}
   2317 	}
   2318 
   2319 	/*
   2320 	 * Free header MCR
   2321 	 */
   2322 	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
   2323 		m_freem(q->q_dst_m);
   2324 
   2325 	crp = (struct cryptop *)q->q_crp;
   2326 
   2327 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
   2328 
   2329 	crp->crp_etype = EFAULT;
   2330 	crypto_done(crp);
   2331 	return(0);
   2332 }
   2333 
   2334 /*
   2335  * Routine to reset the chip and clean up.
   2336  * It is assumed that the caller is in splnet()
   2337  */
   2338 static void
   2339 ubsec_totalreset(struct ubsec_softc *sc)
   2340 {
   2341 	ubsec_reset_board(sc);
   2342 	ubsec_init_board(sc);
   2343 	ubsec_cleanchip(sc);
   2344 }
   2345 
   2346 static int
   2347 ubsec_dmamap_aligned(bus_dmamap_t map)
   2348 {
   2349 	int i;
   2350 
   2351 	for (i = 0; i < map->dm_nsegs; i++) {
   2352 		if (map->dm_segs[i].ds_addr & 3)
   2353 			return (0);
   2354 		if ((i != (map->dm_nsegs - 1)) &&
   2355 		    (map->dm_segs[i].ds_len & 3))
   2356 			return (0);
   2357 	}
   2358 	return (1);
   2359 }
   2360 
   2361 static void
   2362 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
   2363 {
   2364 	switch (q->q_type) {
   2365 	case UBS_CTXOP_MODEXP: {
   2366 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
   2367 
   2368 		ubsec_dma_free(sc, &me->me_q.q_mcr);
   2369 		ubsec_dma_free(sc, &me->me_q.q_ctx);
   2370 		ubsec_dma_free(sc, &me->me_M);
   2371 		ubsec_dma_free(sc, &me->me_E);
   2372 		ubsec_dma_free(sc, &me->me_C);
   2373 		ubsec_dma_free(sc, &me->me_epb);
   2374 		free(me, M_DEVBUF);
   2375 		break;
   2376 	}
   2377 	case UBS_CTXOP_RSAPRIV: {
   2378 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
   2379 
   2380 		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
   2381 		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
   2382 		ubsec_dma_free(sc, &rp->rpr_msgin);
   2383 		ubsec_dma_free(sc, &rp->rpr_msgout);
   2384 		free(rp, M_DEVBUF);
   2385 		break;
   2386 	}
   2387 	default:
   2388 		printf("%s: invalid kfree 0x%x\n", device_xname(sc->sc_dev),
   2389 		    q->q_type);
   2390 		break;
   2391 	}
   2392 }
   2393 
   2394 static int
   2395 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
   2396 {
   2397 	struct ubsec_softc *sc = arg;
   2398 
   2399 	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
   2400 		struct ubsec_q2 *q;
   2401 
   2402 		q = SIMPLEQ_FIRST(&sc->sc_q2free);
   2403 		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
   2404 		ubsec_kfree(sc, q);
   2405 	}
   2406 
   2407 	switch (krp->krp_op) {
   2408 	case CRK_MOD_EXP:
   2409 		if (sc->sc_flags & UBS_FLAGS_HWNORM)
   2410 			ubsec_kprocess_modexp_hw(sc, krp, hint);
   2411 		else
   2412 			ubsec_kprocess_modexp_sw(sc, krp, hint);
   2413 		break;
   2414 	case CRK_MOD_EXP_CRT:
   2415 		ubsec_kprocess_rsapriv(sc, krp, hint);
   2416 		break;
   2417 	default:
   2418 		printf("%s: kprocess: invalid op 0x%x\n",
   2419 		    device_xname(sc->sc_dev), krp->krp_op);
   2420 		krp->krp_status = EOPNOTSUPP;
   2421 		crypto_kdone(krp);
   2422 	}
   2423 	return 0;
   2424 }
   2425 
   2426 /*
   2427  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
   2428  */
   2429 static void
   2430 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
   2431 			 int hint)
   2432 {
   2433 	struct ubsec_q2_modexp *me;
   2434 	struct ubsec_mcr *mcr;
   2435 	struct ubsec_ctx_modexp *ctx;
   2436 	struct ubsec_pktbuf *epb;
   2437 	int err = 0;
   2438 	u_int nbits, normbits, mbits, shiftbits, ebits;
   2439 
   2440 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
   2441 	if (me == NULL) {
   2442 		err = ENOMEM;
   2443 		goto errout;
   2444 	}
   2445 	memset(me, 0, sizeof *me);
   2446 	me->me_krp = krp;
   2447 	me->me_q.q_type = UBS_CTXOP_MODEXP;
   2448 
   2449 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
   2450 	if (nbits <= 512)
   2451 		normbits = 512;
   2452 	else if (nbits <= 768)
   2453 		normbits = 768;
   2454 	else if (nbits <= 1024)
   2455 		normbits = 1024;
   2456 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
   2457 		normbits = 1536;
   2458 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
   2459 		normbits = 2048;
   2460 	else {
   2461 		err = E2BIG;
   2462 		goto errout;
   2463 	}
   2464 
   2465 	shiftbits = normbits - nbits;
   2466 
   2467 	me->me_modbits = nbits;
   2468 	me->me_shiftbits = shiftbits;
   2469 	me->me_normbits = normbits;
   2470 
   2471 	/* Sanity check: result bits must be >= true modulus bits. */
   2472 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
   2473 		err = ERANGE;
   2474 		goto errout;
   2475 	}
   2476 
   2477 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
   2478 	    &me->me_q.q_mcr, 0)) {
   2479 		err = ENOMEM;
   2480 		goto errout;
   2481 	}
   2482 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
   2483 
   2484 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
   2485 	    &me->me_q.q_ctx, 0)) {
   2486 		err = ENOMEM;
   2487 		goto errout;
   2488 	}
   2489 
   2490 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
   2491 	if (mbits > nbits) {
   2492 		err = E2BIG;
   2493 		goto errout;
   2494 	}
   2495 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
   2496 		err = ENOMEM;
   2497 		goto errout;
   2498 	}
   2499 	ubsec_kshift_r(shiftbits,
   2500 	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
   2501 	    me->me_M.dma_vaddr, normbits);
   2502 
   2503 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
   2504 		err = ENOMEM;
   2505 		goto errout;
   2506 	}
   2507 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   2508 
   2509 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
   2510 	if (ebits > nbits) {
   2511 		err = E2BIG;
   2512 		goto errout;
   2513 	}
   2514 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
   2515 		err = ENOMEM;
   2516 		goto errout;
   2517 	}
   2518 	ubsec_kshift_r(shiftbits,
   2519 	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
   2520 	    me->me_E.dma_vaddr, normbits);
   2521 
   2522 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
   2523 	    &me->me_epb, 0)) {
   2524 		err = ENOMEM;
   2525 		goto errout;
   2526 	}
   2527 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
   2528 	epb->pb_addr = htole32(me->me_E.dma_paddr);
   2529 	epb->pb_next = 0;
   2530 	epb->pb_len = htole32(normbits / 8);
   2531 
   2532 #ifdef UBSEC_DEBUG
   2533 	if (ubsec_debug) {
   2534 		printf("Epb ");
   2535 		ubsec_dump_pb(epb);
   2536 	}
   2537 #endif
   2538 
   2539 	mcr->mcr_pkts = htole16(1);
   2540 	mcr->mcr_flags = 0;
   2541 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
   2542 	mcr->mcr_reserved = 0;
   2543 	mcr->mcr_pktlen = 0;
   2544 
   2545 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
   2546 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
   2547 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
   2548 
   2549 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
   2550 	mcr->mcr_opktbuf.pb_next = 0;
   2551 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
   2552 
   2553 #ifdef DIAGNOSTIC
   2554 	/* Misaligned output buffer will hang the chip. */
   2555 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
   2556 		panic("%s: modexp invalid addr 0x%x", device_xname(sc->sc_dev),
   2557 		    letoh32(mcr->mcr_opktbuf.pb_addr));
   2558 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
   2559 		panic("%s: modexp invalid len 0x%x",  device_xname(sc->sc_dev),
   2560 		    letoh32(mcr->mcr_opktbuf.pb_len));
   2561 #endif
   2562 
   2563 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
   2564 	memset(ctx, 0, sizeof(*ctx));
   2565 	ubsec_kshift_r(shiftbits,
   2566 	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
   2567 	    ctx->me_N, normbits);
   2568 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
   2569 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
   2570 	ctx->me_E_len = htole16(nbits);
   2571 	ctx->me_N_len = htole16(nbits);
   2572 
   2573 #ifdef UBSEC_DEBUG
   2574 	if (ubsec_debug) {
   2575 		ubsec_dump_mcr(mcr);
   2576 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
   2577 	}
   2578 #endif
   2579 
   2580 	/*
   2581 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
   2582 	 * everything else.
   2583 	 */
   2584 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
   2585 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2586 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
   2587 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2588 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
   2589 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2590 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
   2591 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2592 
   2593 	/* Enqueue and we're done... */
   2594 	mutex_spin_enter(&sc->sc_mtx);
   2595 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
   2596 	ubsec_feed2(sc);
   2597 	ubsecstats.hst_modexp++;
   2598 	mutex_spin_exit(&sc->sc_mtx);
   2599 
   2600 	return;
   2601 
   2602 errout:
   2603 	if (me != NULL) {
   2604 		if (me->me_q.q_mcr.dma_map != NULL)
   2605 			ubsec_dma_free(sc, &me->me_q.q_mcr);
   2606 		if (me->me_q.q_ctx.dma_map != NULL) {
   2607 			memset(me->me_q.q_ctx.dma_vaddr, 0,
   2608 			    me->me_q.q_ctx.dma_size);
   2609 			ubsec_dma_free(sc, &me->me_q.q_ctx);
   2610 		}
   2611 		if (me->me_M.dma_map != NULL) {
   2612 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
   2613 			ubsec_dma_free(sc, &me->me_M);
   2614 		}
   2615 		if (me->me_E.dma_map != NULL) {
   2616 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
   2617 			ubsec_dma_free(sc, &me->me_E);
   2618 		}
   2619 		if (me->me_C.dma_map != NULL) {
   2620 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   2621 			ubsec_dma_free(sc, &me->me_C);
   2622 		}
   2623 		if (me->me_epb.dma_map != NULL)
   2624 			ubsec_dma_free(sc, &me->me_epb);
   2625 		free(me, M_DEVBUF);
   2626 	}
   2627 	krp->krp_status = err;
   2628 	crypto_kdone(krp);
   2629 }
   2630 
   2631 /*
   2632  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
   2633  */
   2634 static void
   2635 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
   2636 			 int hint)
   2637 {
   2638 	struct ubsec_q2_modexp *me;
   2639 	struct ubsec_mcr *mcr;
   2640 	struct ubsec_ctx_modexp *ctx;
   2641 	struct ubsec_pktbuf *epb;
   2642 	int err = 0;
   2643 	u_int nbits, normbits, mbits, shiftbits, ebits;
   2644 
   2645 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
   2646 	if (me == NULL) {
   2647 		err = ENOMEM;
   2648 		goto errout;
   2649 	}
   2650 	memset(me, 0, sizeof *me);
   2651 	me->me_krp = krp;
   2652 	me->me_q.q_type = UBS_CTXOP_MODEXP;
   2653 
   2654 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
   2655 	if (nbits <= 512)
   2656 		normbits = 512;
   2657 	else if (nbits <= 768)
   2658 		normbits = 768;
   2659 	else if (nbits <= 1024)
   2660 		normbits = 1024;
   2661 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
   2662 		normbits = 1536;
   2663 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
   2664 		normbits = 2048;
   2665 	else {
   2666 		err = E2BIG;
   2667 		goto errout;
   2668 	}
   2669 
   2670 	shiftbits = normbits - nbits;
   2671 
   2672 	/* XXX ??? */
   2673 	me->me_modbits = nbits;
   2674 	me->me_shiftbits = shiftbits;
   2675 	me->me_normbits = normbits;
   2676 
   2677 	/* Sanity check: result bits must be >= true modulus bits. */
   2678 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
   2679 		err = ERANGE;
   2680 		goto errout;
   2681 	}
   2682 
   2683 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
   2684 	    &me->me_q.q_mcr, 0)) {
   2685 		err = ENOMEM;
   2686 		goto errout;
   2687 	}
   2688 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
   2689 
   2690 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
   2691 	    &me->me_q.q_ctx, 0)) {
   2692 		err = ENOMEM;
   2693 		goto errout;
   2694 	}
   2695 
   2696 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
   2697 	if (mbits > nbits) {
   2698 		err = E2BIG;
   2699 		goto errout;
   2700 	}
   2701 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
   2702 		err = ENOMEM;
   2703 		goto errout;
   2704 	}
   2705 	memset(me->me_M.dma_vaddr, 0, normbits / 8);
   2706 	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
   2707 	    me->me_M.dma_vaddr, (mbits + 7) / 8);
   2708 
   2709 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
   2710 		err = ENOMEM;
   2711 		goto errout;
   2712 	}
   2713 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   2714 
   2715 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
   2716 	if (ebits > nbits) {
   2717 		err = E2BIG;
   2718 		goto errout;
   2719 	}
   2720 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
   2721 		err = ENOMEM;
   2722 		goto errout;
   2723 	}
   2724 	memset(me->me_E.dma_vaddr, 0, normbits / 8);
   2725 	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
   2726 	    me->me_E.dma_vaddr, (ebits + 7) / 8);
   2727 
   2728 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
   2729 	    &me->me_epb, 0)) {
   2730 		err = ENOMEM;
   2731 		goto errout;
   2732 	}
   2733 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
   2734 	epb->pb_addr = htole32(me->me_E.dma_paddr);
   2735 	epb->pb_next = 0;
   2736 	epb->pb_len = htole32((ebits + 7) / 8);
   2737 
   2738 #ifdef UBSEC_DEBUG
   2739 	if (ubsec_debug) {
   2740 		printf("Epb ");
   2741 		ubsec_dump_pb(epb);
   2742 	}
   2743 #endif
   2744 
   2745 	mcr->mcr_pkts = htole16(1);
   2746 	mcr->mcr_flags = 0;
   2747 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
   2748 	mcr->mcr_reserved = 0;
   2749 	mcr->mcr_pktlen = 0;
   2750 
   2751 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
   2752 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
   2753 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
   2754 
   2755 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
   2756 	mcr->mcr_opktbuf.pb_next = 0;
   2757 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
   2758 
   2759 #ifdef DIAGNOSTIC
   2760 	/* Misaligned output buffer will hang the chip. */
   2761 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
   2762 		panic("%s: modexp invalid addr 0x%x", device_xname(sc->sc_dev),
   2763 		    letoh32(mcr->mcr_opktbuf.pb_addr));
   2764 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
   2765 		panic("%s: modexp invalid len 0x%x", device_xname(sc->sc_dev),
   2766 		    letoh32(mcr->mcr_opktbuf.pb_len));
   2767 #endif
   2768 
   2769 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
   2770 	memset(ctx, 0, sizeof(*ctx));
   2771 	memcpy(ctx->me_N, krp->krp_param[UBS_MODEXP_PAR_N].crp_p,
   2772 	    (nbits + 7) / 8);
   2773 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
   2774 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
   2775 	ctx->me_E_len = htole16(ebits);
   2776 	ctx->me_N_len = htole16(nbits);
   2777 
   2778 #ifdef UBSEC_DEBUG
   2779 	if (ubsec_debug) {
   2780 		ubsec_dump_mcr(mcr);
   2781 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
   2782 	}
   2783 #endif
   2784 
   2785 	/*
   2786 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
   2787 	 * everything else.
   2788 	 */
   2789 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
   2790 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2791 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
   2792 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2793 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
   2794 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2795 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
   2796 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2797 
   2798 	/* Enqueue and we're done... */
   2799 	mutex_spin_enter(&sc->sc_mtx);
   2800 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
   2801 	ubsec_feed2(sc);
   2802 	mutex_spin_exit(&sc->sc_mtx);
   2803 
   2804 	return;
   2805 
   2806 errout:
   2807 	if (me != NULL) {
   2808 		if (me->me_q.q_mcr.dma_map != NULL)
   2809 			ubsec_dma_free(sc, &me->me_q.q_mcr);
   2810 		if (me->me_q.q_ctx.dma_map != NULL) {
   2811 			memset(me->me_q.q_ctx.dma_vaddr, 0,
   2812 			    me->me_q.q_ctx.dma_size);
   2813 			ubsec_dma_free(sc, &me->me_q.q_ctx);
   2814 		}
   2815 		if (me->me_M.dma_map != NULL) {
   2816 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
   2817 			ubsec_dma_free(sc, &me->me_M);
   2818 		}
   2819 		if (me->me_E.dma_map != NULL) {
   2820 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
   2821 			ubsec_dma_free(sc, &me->me_E);
   2822 		}
   2823 		if (me->me_C.dma_map != NULL) {
   2824 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
   2825 			ubsec_dma_free(sc, &me->me_C);
   2826 		}
   2827 		if (me->me_epb.dma_map != NULL)
   2828 			ubsec_dma_free(sc, &me->me_epb);
   2829 		free(me, M_DEVBUF);
   2830 	}
   2831 	krp->krp_status = err;
   2832 	crypto_kdone(krp);
   2833 }
   2834 
   2835 static void
   2836 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
   2837 		       int hint)
   2838 {
   2839 	struct ubsec_q2_rsapriv *rp = NULL;
   2840 	struct ubsec_mcr *mcr;
   2841 	struct ubsec_ctx_rsapriv *ctx;
   2842 	int err = 0;
   2843 	u_int padlen, msglen;
   2844 
   2845 	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
   2846 	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
   2847 	if (msglen > padlen)
   2848 		padlen = msglen;
   2849 
   2850 	if (padlen <= 256)
   2851 		padlen = 256;
   2852 	else if (padlen <= 384)
   2853 		padlen = 384;
   2854 	else if (padlen <= 512)
   2855 		padlen = 512;
   2856 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
   2857 		padlen = 768;
   2858 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
   2859 		padlen = 1024;
   2860 	else {
   2861 		err = E2BIG;
   2862 		goto errout;
   2863 	}
   2864 
   2865 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
   2866 		err = E2BIG;
   2867 		goto errout;
   2868 	}
   2869 
   2870 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
   2871 		err = E2BIG;
   2872 		goto errout;
   2873 	}
   2874 
   2875 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
   2876 		err = E2BIG;
   2877 		goto errout;
   2878 	}
   2879 
   2880 	rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT|M_ZERO);
   2881 	if (rp == NULL) {
   2882 		err = ENOMEM;
   2883 		goto errout;
   2884 	}
   2885 	rp->rpr_krp = krp;
   2886 	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
   2887 
   2888 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
   2889 	    &rp->rpr_q.q_mcr, 0)) {
   2890 		err = ENOMEM;
   2891 		goto errout;
   2892 	}
   2893 	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
   2894 
   2895 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
   2896 	    &rp->rpr_q.q_ctx, 0)) {
   2897 		err = ENOMEM;
   2898 		goto errout;
   2899 	}
   2900 	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
   2901 	memset(ctx, 0, sizeof *ctx);
   2902 
   2903 	/* Copy in p */
   2904 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
   2905 	    &ctx->rpr_buf[0 * (padlen / 8)],
   2906 	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
   2907 
   2908 	/* Copy in q */
   2909 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
   2910 	    &ctx->rpr_buf[1 * (padlen / 8)],
   2911 	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
   2912 
   2913 	/* Copy in dp */
   2914 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
   2915 	    &ctx->rpr_buf[2 * (padlen / 8)],
   2916 	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
   2917 
   2918 	/* Copy in dq */
   2919 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
   2920 	    &ctx->rpr_buf[3 * (padlen / 8)],
   2921 	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
   2922 
   2923 	/* Copy in pinv */
   2924 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
   2925 	    &ctx->rpr_buf[4 * (padlen / 8)],
   2926 	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
   2927 
   2928 	msglen = padlen * 2;
   2929 
   2930 	/* Copy in input message (aligned buffer/length). */
   2931 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
   2932 		/* Is this likely? */
   2933 		err = E2BIG;
   2934 		goto errout;
   2935 	}
   2936 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
   2937 		err = ENOMEM;
   2938 		goto errout;
   2939 	}
   2940 	memset(rp->rpr_msgin.dma_vaddr, 0, (msglen + 7) / 8);
   2941 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
   2942 	    rp->rpr_msgin.dma_vaddr,
   2943 	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
   2944 
   2945 	/* Prepare space for output message (aligned buffer/length). */
   2946 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
   2947 		/* Is this likely? */
   2948 		err = E2BIG;
   2949 		goto errout;
   2950 	}
   2951 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
   2952 		err = ENOMEM;
   2953 		goto errout;
   2954 	}
   2955 	memset(rp->rpr_msgout.dma_vaddr, 0, (msglen + 7) / 8);
   2956 
   2957 	mcr->mcr_pkts = htole16(1);
   2958 	mcr->mcr_flags = 0;
   2959 	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
   2960 	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
   2961 	mcr->mcr_ipktbuf.pb_next = 0;
   2962 	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
   2963 	mcr->mcr_reserved = 0;
   2964 	mcr->mcr_pktlen = htole16(msglen);
   2965 	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
   2966 	mcr->mcr_opktbuf.pb_next = 0;
   2967 	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
   2968 
   2969 #ifdef DIAGNOSTIC
   2970 	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
   2971 		panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
   2972 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgin.dma_paddr,
   2973 		    (u_long) rp->rpr_msgin.dma_size);
   2974 	}
   2975 	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
   2976 		panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
   2977 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgout.dma_paddr,
   2978 		    (u_long) rp->rpr_msgout.dma_size);
   2979 	}
   2980 #endif
   2981 
   2982 	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
   2983 	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
   2984 	ctx->rpr_q_len = htole16(padlen);
   2985 	ctx->rpr_p_len = htole16(padlen);
   2986 
   2987 	/*
   2988 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
   2989 	 * everything else.
   2990 	 */
   2991 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
   2992 	    0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2993 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
   2994 	    0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2995 
   2996 	/* Enqueue and we're done... */
   2997 	mutex_spin_enter(&sc->sc_mtx);
   2998 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
   2999 	ubsec_feed2(sc);
   3000 	ubsecstats.hst_modexpcrt++;
   3001 	mutex_spin_exit(&sc->sc_mtx);
   3002 	return;
   3003 
   3004 errout:
   3005 	if (rp != NULL) {
   3006 		if (rp->rpr_q.q_mcr.dma_map != NULL)
   3007 			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
   3008 		if (rp->rpr_msgin.dma_map != NULL) {
   3009 			memset(rp->rpr_msgin.dma_vaddr, 0,
   3010 			    rp->rpr_msgin.dma_size);
   3011 			ubsec_dma_free(sc, &rp->rpr_msgin);
   3012 		}
   3013 		if (rp->rpr_msgout.dma_map != NULL) {
   3014 			memset(rp->rpr_msgout.dma_vaddr, 0,
   3015 			    rp->rpr_msgout.dma_size);
   3016 			ubsec_dma_free(sc, &rp->rpr_msgout);
   3017 		}
   3018 		free(rp, M_DEVBUF);
   3019 	}
   3020 	krp->krp_status = err;
   3021 	crypto_kdone(krp);
   3022 }
   3023 
   3024 #ifdef UBSEC_DEBUG
   3025 static void
   3026 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
   3027 {
   3028 	printf("addr 0x%x (0x%x) next 0x%x\n",
   3029 	    pb->pb_addr, pb->pb_len, pb->pb_next);
   3030 }
   3031 
   3032 static void
   3033 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
   3034 {
   3035 	printf("CTX (0x%x):\n", c->ctx_len);
   3036 	switch (letoh16(c->ctx_op)) {
   3037 	case UBS_CTXOP_RNGBYPASS:
   3038 	case UBS_CTXOP_RNGSHA1:
   3039 		break;
   3040 	case UBS_CTXOP_MODEXP:
   3041 	{
   3042 		struct ubsec_ctx_modexp *cx = (void *)c;
   3043 		int i, len;
   3044 
   3045 		printf(" Elen %u, Nlen %u\n",
   3046 		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
   3047 		len = (cx->me_N_len + 7)/8;
   3048 		for (i = 0; i < len; i++)
   3049 			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
   3050 		printf("\n");
   3051 		break;
   3052 	}
   3053 	default:
   3054 		printf("unknown context: %x\n", c->ctx_op);
   3055 	}
   3056 	printf("END CTX\n");
   3057 }
   3058 
   3059 static void
   3060 ubsec_dump_mcr(struct ubsec_mcr *mcr)
   3061 {
   3062 	volatile struct ubsec_mcr_add *ma;
   3063 	int i;
   3064 
   3065 	printf("MCR:\n");
   3066 	printf(" pkts: %u, flags 0x%x\n",
   3067 	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
   3068 	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
   3069 	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
   3070 		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
   3071 		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
   3072 		    letoh16(ma->mcr_reserved));
   3073 		printf(" %d: ipkt ", i);
   3074 		ubsec_dump_pb(&ma->mcr_ipktbuf);
   3075 		printf(" %d: opkt ", i);
   3076 		ubsec_dump_pb(&ma->mcr_opktbuf);
   3077 		ma++;
   3078 	}
   3079 	printf("END MCR\n");
   3080 }
   3081 #endif /* UBSEC_DEBUG */
   3082 
   3083 /*
   3084  * Return the number of significant bits of a big number.
   3085  */
   3086 static int
   3087 ubsec_ksigbits(struct crparam *cr)
   3088 {
   3089 	u_int plen = (cr->crp_nbits + 7) / 8;
   3090 	int i, sig = plen * 8;
   3091 	u_int8_t c, *p = cr->crp_p;
   3092 
   3093 	for (i = plen - 1; i >= 0; i--) {
   3094 		c = p[i];
   3095 		if (c != 0) {
   3096 			while ((c & 0x80) == 0) {
   3097 				sig--;
   3098 				c <<= 1;
   3099 			}
   3100 			break;
   3101 		}
   3102 		sig -= 8;
   3103 	}
   3104 	return (sig);
   3105 }
   3106 
   3107 static void
   3108 ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits,
   3109     u_int8_t *dst, u_int dstbits)
   3110 {
   3111 	u_int slen, dlen;
   3112 	int i, si, di, n;
   3113 
   3114 	slen = (srcbits + 7) / 8;
   3115 	dlen = (dstbits + 7) / 8;
   3116 
   3117 	for (i = 0; i < slen; i++)
   3118 		dst[i] = src[i];
   3119 	for (i = 0; i < dlen - slen; i++)
   3120 		dst[slen + i] = 0;
   3121 
   3122 	n = shiftbits / 8;
   3123 	if (n != 0) {
   3124 		si = dlen - n - 1;
   3125 		di = dlen - 1;
   3126 		while (si >= 0)
   3127 			dst[di--] = dst[si--];
   3128 		while (di >= 0)
   3129 			dst[di--] = 0;
   3130 	}
   3131 
   3132 	n = shiftbits % 8;
   3133 	if (n != 0) {
   3134 		for (i = dlen - 1; i > 0; i--)
   3135 			dst[i] = (dst[i] << n) |
   3136 			    (dst[i - 1] >> (8 - n));
   3137 		dst[0] = dst[0] << n;
   3138 	}
   3139 }
   3140 
   3141 static void
   3142 ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits,
   3143     u_int8_t *dst, u_int dstbits)
   3144 {
   3145 	int slen, dlen, i, n;
   3146 
   3147 	slen = (srcbits + 7) / 8;
   3148 	dlen = (dstbits + 7) / 8;
   3149 
   3150 	n = shiftbits / 8;
   3151 	for (i = 0; i < slen; i++)
   3152 		dst[i] = src[i + n];
   3153 	for (i = 0; i < dlen - slen; i++)
   3154 		dst[slen + i] = 0;
   3155 
   3156 	n = shiftbits % 8;
   3157 	if (n != 0) {
   3158 		for (i = 0; i < (dlen - 1); i++)
   3159 			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
   3160 		dst[dlen - 1] = dst[dlen - 1] >> n;
   3161 	}
   3162 }
   3163