universe_pci.c revision 1.2 1 /* $NetBSD: universe_pci.c,v 1.2 2000/03/12 11:21:02 drochner Exp $ */
2
3 /*
4 * Copyright (c) 1999
5 * Matthias Drochner. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Common functions for PCI-VME-interfaces using the
31 * Newbridge/Tundra Universe II chip (CA91C142).
32 */
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/device.h>
37
38 #include <dev/pci/pcireg.h>
39 #include <dev/pci/pcivar.h>
40 /*#include <dev/pci/pcidevs.h>*/
41
42 #include <machine/bus.h>
43
44 #include <dev/vme/vmereg.h>
45 #include <dev/vme/vmevar.h>
46
47 #include <dev/ic/universereg.h>
48 #include <dev/pci/universe_pci_var.h>
49
50 int univ_pci_intr __P((void *));
51
52 #define read_csr_4(d, reg) \
53 bus_space_read_4(d->csrt, d->csrh, offsetof(struct universereg, reg))
54 #define write_csr_4(d, reg, val) \
55 bus_space_write_4(d->csrt, d->csrh, offsetof(struct universereg, reg), val)
56
57 #define _pso(i) offsetof(struct universereg, __CONCAT(pcislv, i))
58 static int pcislvoffsets[8] = {
59 _pso(0), _pso(1), _pso(2), _pso(3),
60 _pso(4), _pso(5), _pso(6), _pso(7)
61 };
62 #undef _pso
63
64 #define read_pcislv(d, idx, reg) \
65 bus_space_read_4(d->csrt, d->csrh, \
66 pcislvoffsets[idx] + offsetof(struct universe_pcislvimg, reg))
67 #define write_pcislv(d, idx, reg, val) \
68 bus_space_write_4(d->csrt, d->csrh, \
69 pcislvoffsets[idx] + offsetof(struct universe_pcislvimg, reg), val)
70
71
72 #define _vso(i) offsetof(struct universereg, __CONCAT(vmeslv, i))
73 static int vmeslvoffsets[8] = {
74 _vso(0), _vso(1), _vso(2), _vso(3),
75 _vso(4), _vso(5), _vso(6), _vso(7)
76 };
77 #undef _vso
78
79 #define read_vmeslv(d, idx, reg) \
80 bus_space_read_4(d->csrt, d->csrh, \
81 vmeslvoffsets[idx] + offsetof(struct universe_vmeslvimg, reg))
82 #define write_vmeslv(d, idx, reg, val) \
83 bus_space_write_4(d->csrt, d->csrh, \
84 vmeslvoffsets[idx] + offsetof(struct universe_vmeslvimg, reg), val)
85
86 int
87 univ_pci_attach(d, pa, name, inthdl, intcookie)
88 struct univ_pci_data *d;
89 struct pci_attach_args *pa;
90 const char *name;
91 void (*inthdl) __P((void *, int, int));
92 void *intcookie;
93 {
94 pci_chipset_tag_t pc = pa->pa_pc;
95 pci_intr_handle_t ih;
96 const char *intrstr = NULL;
97 u_int32_t reg;
98 int i;
99
100 d->pc = pc;
101 strncpy(d->devname, name, sizeof(d->devname));
102 d->devname[sizeof(d->devname) - 1] = '\0';
103
104 if (pci_mapreg_map(pa, 0x10,
105 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
106 0, &d->csrt, &d->csrh, NULL, NULL) &&
107 pci_mapreg_map(pa, 0x14,
108 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
109 0, &d->csrt, &d->csrh, NULL, NULL) &&
110 pci_mapreg_map(pa, 0x10,
111 PCI_MAPREG_TYPE_IO,
112 0, &d->csrt, &d->csrh, NULL, NULL) &&
113 pci_mapreg_map(pa, 0x14,
114 PCI_MAPREG_TYPE_IO,
115 0, &d->csrt, &d->csrh, NULL, NULL))
116 return (-1);
117
118 /* name sure the chip is in a sane state */
119 write_csr_4(d, lint_en, 0); /* mask all PCI interrupts */
120 write_csr_4(d, vint_en, 0); /* mask all VME interrupts */
121 write_csr_4(d, dgcs, 0x40000000); /* stop DMA activity */
122 for (i = 0; i < 8; i++) {
123 univ_pci_unmapvme(d, i);
124 univ_pci_unmappci(d, i);
125 }
126 write_csr_4(d, slsi, 0); /* disable "special PCI slave image" */
127
128 /* enable DMA */
129 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
130 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
131 PCI_COMMAND_MASTER_ENABLE);
132
133 reg = read_csr_4(d, misc_ctl);
134 printf("%s: ", name);
135 if (reg & 0x00020000) /* SYSCON */
136 printf("VME bus controller, ");
137 reg = read_csr_4(d, mast_ctl);
138 printf("requesting at VME bus level %d\n", (reg >> 22) & 3);
139
140 /* Map and establish the PCI interrupt. */
141 if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
142 pa->pa_intrline, &ih)) {
143 printf("%s: couldn't map interrupt\n", name);
144 return (-1);
145 }
146 intrstr = pci_intr_string(pc, ih);
147 /*
148 * Use a low interrupt level (the lowest?).
149 * We will raise before calling a subdevice's handler.
150 */
151 d->ih = pci_intr_establish(pc, ih, IPL_BIO, univ_pci_intr, d);
152 if (d->ih == NULL) {
153 printf("%s: couldn't establish interrupt", name);
154 if (intrstr != NULL)
155 printf(" at %s", intrstr);
156 printf("\n");
157 return (-1);
158 }
159 printf("%s: interrupting at %s\n", name, intrstr);
160
161 /* handle all VME interrupts (XXX should be configurable) */
162 d->vmeinthandler = inthdl;
163 d->vmeintcookie = intcookie;
164 write_csr_4(d, lint_stat, 0x00ff37ff); /* ack all pending IRQs */
165 write_csr_4(d, lint_en, 0x000000fe); /* enable VME IRQ 1..7 */
166
167 return (0);
168 }
169
170 int
171 univ_pci_mapvme(d, wnd, vmebase, len, am, datawidth, pcibase)
172 struct univ_pci_data *d;
173 int wnd;
174 vme_addr_t vmebase;
175 u_int32_t len;
176 vme_am_t am;
177 vme_datasize_t datawidth;
178 u_int32_t pcibase;
179 {
180 u_int32_t ctl = 0x80000000;
181
182 switch (am & VME_AM_ADRSIZEMASK) {
183 case VME_AM_A32:
184 ctl |= 0x00020000;
185 break;
186 case VME_AM_A24:
187 ctl |= 0x00010000;
188 break;
189 case VME_AM_A16:
190 break;
191 default:
192 return (EINVAL);
193 }
194 if (am & VME_AM_SUPER)
195 ctl |= 0x00001000;
196 if ((am & VME_AM_MODEMASK) == VME_AM_PRG)
197 ctl |= 0x00004000;
198 if (datawidth & VME_D32)
199 ctl |= 0x00800000;
200 else if (datawidth & VME_D16)
201 ctl |= 0x00400000;
202 else if (!(datawidth & VME_D8))
203 return (EINVAL);
204
205 #ifdef UNIV_DEBUG
206 printf("%s: wnd %d, map VME %x-%x to %x, ctl=%x\n",
207 d->devname, wnd, vmebase, vmebase + len, pcibase, ctl);
208 #endif
209
210 write_pcislv(d, wnd, lsi_bs, pcibase);
211 write_pcislv(d, wnd, lsi_bd, pcibase + len);
212 write_pcislv(d, wnd, lsi_to, vmebase - pcibase);
213 write_pcislv(d, wnd, lsi_ctl, ctl);
214 return (0);
215 }
216
217 void
218 univ_pci_unmapvme(d, wnd)
219 struct univ_pci_data *d;
220 int wnd;
221 {
222 #ifdef UNIV_DEBUG
223 printf("%s: unmap VME wnd %d\n", d->devname, wnd);
224 #endif
225 write_pcislv(d, wnd, lsi_ctl, 0);
226 }
227
228
229 int
230 univ_pci_mappci(d, wnd, pcibase, len, vmebase, am)
231 struct univ_pci_data *d;
232 int wnd;
233 u_int32_t pcibase;
234 u_int32_t len;
235 vme_addr_t vmebase;
236 vme_am_t am;
237 {
238 u_int32_t ctl = 0x80000000;
239
240 switch (am & VME_AM_ADRSIZEMASK) {
241 case VME_AM_A32:
242 ctl |= 0x00020000;
243 break;
244 case VME_AM_A24:
245 ctl |= 0x00010000;
246 break;
247 case VME_AM_A16:
248 break;
249 default:
250 return (EINVAL);
251 }
252 if (am & VME_AM_SUPER)
253 ctl |= 0x00200000;
254 else
255 ctl |= 0x00300000; /* both */
256 if ((am & VME_AM_MODEMASK) == VME_AM_PRG)
257 ctl |= 0x00800000;
258 else
259 ctl |= 0x00c00000; /* both */
260
261 #ifdef UNIV_DEBUG
262 printf("%s: wnd %d, map PCI %x-%x to %x, ctl=%x\n",
263 d->devname, wnd, pcibase, pcibase + len, vmebase, ctl);
264 #endif
265
266 write_vmeslv(d, wnd, vsi_bs, vmebase);
267 write_vmeslv(d, wnd, vsi_bd, vmebase + len);
268 write_vmeslv(d, wnd, vsi_to, pcibase - vmebase);
269 write_vmeslv(d, wnd, vsi_ctl, ctl);
270 return (0);
271 }
272
273 void
274 univ_pci_unmappci(d, wnd)
275 struct univ_pci_data *d;
276 int wnd;
277 {
278 #ifdef UNIV_DEBUG
279 printf("%s: unmap PCI wnd %d\n", d->devname, wnd);
280 #endif
281 write_vmeslv(d, wnd, vsi_ctl, 0);
282 }
283
284 int
285 univ_pci_vmebuserr(d, clear)
286 struct univ_pci_data *d;
287 int clear;
288 {
289 u_int32_t pcicsr;
290
291 pcicsr = read_csr_4(d, pci_csr);
292 if ((pcicsr & 0xf8000000) && clear)
293 write_csr_4(d, pci_csr, pcicsr | 0xf8000000);
294 return (pcicsr & 0x08000000); /* target abort */
295 }
296
297 int
298 univ_pci_intr(v)
299 void *v;
300 {
301 struct univ_pci_data *d = v;
302 u_int32_t intcsr;
303 int i, vec;
304
305 intcsr = read_csr_4(d, lint_stat) & 0xffffff;
306 if (!intcsr)
307 return (0);
308
309 /* ack everything */
310 write_csr_4(d, lint_stat, intcsr);
311 #ifdef UNIV_DEBUG
312 printf("%s: intr, lint_stat=%x\n", d->devname, intcsr);
313 #endif
314 if (intcsr & 0x000000fe) { /* VME interrupt */
315 for (i = 7; i >= 1; i--) {
316 if (!(intcsr & (1 << i)))
317 continue;
318 vec = read_csr_4(d, v_statid[i - 1]);
319 if (vec & 0x100) {
320 printf("%s: err irq %d\n", d->devname, i);
321 continue;
322 }
323 if (d->vmeinthandler)
324 (*d->vmeinthandler)(d->vmeintcookie, i, vec);
325 }
326 }
327
328 return (1);
329 }
330