universe_pci.c revision 1.3 1 /* $NetBSD: universe_pci.c,v 1.3 2000/12/28 22:59:15 sommerfeld Exp $ */
2
3 /*
4 * Copyright (c) 1999
5 * Matthias Drochner. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Common functions for PCI-VME-interfaces using the
31 * Newbridge/Tundra Universe II chip (CA91C142).
32 */
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/device.h>
37
38 #include <dev/pci/pcireg.h>
39 #include <dev/pci/pcivar.h>
40 /*#include <dev/pci/pcidevs.h>*/
41
42 #include <machine/bus.h>
43
44 #include <dev/vme/vmereg.h>
45 #include <dev/vme/vmevar.h>
46
47 #include <dev/ic/universereg.h>
48 #include <dev/pci/universe_pci_var.h>
49
50 int univ_pci_intr __P((void *));
51
52 #define read_csr_4(d, reg) \
53 bus_space_read_4(d->csrt, d->csrh, offsetof(struct universereg, reg))
54 #define write_csr_4(d, reg, val) \
55 bus_space_write_4(d->csrt, d->csrh, offsetof(struct universereg, reg), val)
56
57 #define _pso(i) offsetof(struct universereg, __CONCAT(pcislv, i))
58 static int pcislvoffsets[8] = {
59 _pso(0), _pso(1), _pso(2), _pso(3),
60 _pso(4), _pso(5), _pso(6), _pso(7)
61 };
62 #undef _pso
63
64 #define read_pcislv(d, idx, reg) \
65 bus_space_read_4(d->csrt, d->csrh, \
66 pcislvoffsets[idx] + offsetof(struct universe_pcislvimg, reg))
67 #define write_pcislv(d, idx, reg, val) \
68 bus_space_write_4(d->csrt, d->csrh, \
69 pcislvoffsets[idx] + offsetof(struct universe_pcislvimg, reg), val)
70
71
72 #define _vso(i) offsetof(struct universereg, __CONCAT(vmeslv, i))
73 static int vmeslvoffsets[8] = {
74 _vso(0), _vso(1), _vso(2), _vso(3),
75 _vso(4), _vso(5), _vso(6), _vso(7)
76 };
77 #undef _vso
78
79 #define read_vmeslv(d, idx, reg) \
80 bus_space_read_4(d->csrt, d->csrh, \
81 vmeslvoffsets[idx] + offsetof(struct universe_vmeslvimg, reg))
82 #define write_vmeslv(d, idx, reg, val) \
83 bus_space_write_4(d->csrt, d->csrh, \
84 vmeslvoffsets[idx] + offsetof(struct universe_vmeslvimg, reg), val)
85
86 int
87 univ_pci_attach(d, pa, name, inthdl, intcookie)
88 struct univ_pci_data *d;
89 struct pci_attach_args *pa;
90 const char *name;
91 void (*inthdl) __P((void *, int, int));
92 void *intcookie;
93 {
94 pci_chipset_tag_t pc = pa->pa_pc;
95 pci_intr_handle_t ih;
96 const char *intrstr = NULL;
97 u_int32_t reg;
98 int i;
99
100 d->pc = pc;
101 strncpy(d->devname, name, sizeof(d->devname));
102 d->devname[sizeof(d->devname) - 1] = '\0';
103
104 if (pci_mapreg_map(pa, 0x10,
105 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
106 0, &d->csrt, &d->csrh, NULL, NULL) &&
107 pci_mapreg_map(pa, 0x14,
108 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
109 0, &d->csrt, &d->csrh, NULL, NULL) &&
110 pci_mapreg_map(pa, 0x10,
111 PCI_MAPREG_TYPE_IO,
112 0, &d->csrt, &d->csrh, NULL, NULL) &&
113 pci_mapreg_map(pa, 0x14,
114 PCI_MAPREG_TYPE_IO,
115 0, &d->csrt, &d->csrh, NULL, NULL))
116 return (-1);
117
118 /* name sure the chip is in a sane state */
119 write_csr_4(d, lint_en, 0); /* mask all PCI interrupts */
120 write_csr_4(d, vint_en, 0); /* mask all VME interrupts */
121 write_csr_4(d, dgcs, 0x40000000); /* stop DMA activity */
122 for (i = 0; i < 8; i++) {
123 univ_pci_unmapvme(d, i);
124 univ_pci_unmappci(d, i);
125 }
126 write_csr_4(d, slsi, 0); /* disable "special PCI slave image" */
127
128 /* enable DMA */
129 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
130 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
131 PCI_COMMAND_MASTER_ENABLE);
132
133 reg = read_csr_4(d, misc_ctl);
134 printf("%s: ", name);
135 if (reg & 0x00020000) /* SYSCON */
136 printf("VME bus controller, ");
137 reg = read_csr_4(d, mast_ctl);
138 printf("requesting at VME bus level %d\n", (reg >> 22) & 3);
139
140 /* Map and establish the PCI interrupt. */
141 if (pci_intr_map(pa, &ih)) {
142 printf("%s: couldn't map interrupt\n", name);
143 return (-1);
144 }
145 intrstr = pci_intr_string(pc, ih);
146 /*
147 * Use a low interrupt level (the lowest?).
148 * We will raise before calling a subdevice's handler.
149 */
150 d->ih = pci_intr_establish(pc, ih, IPL_BIO, univ_pci_intr, d);
151 if (d->ih == NULL) {
152 printf("%s: couldn't establish interrupt", name);
153 if (intrstr != NULL)
154 printf(" at %s", intrstr);
155 printf("\n");
156 return (-1);
157 }
158 printf("%s: interrupting at %s\n", name, intrstr);
159
160 /* handle all VME interrupts (XXX should be configurable) */
161 d->vmeinthandler = inthdl;
162 d->vmeintcookie = intcookie;
163 write_csr_4(d, lint_stat, 0x00ff37ff); /* ack all pending IRQs */
164 write_csr_4(d, lint_en, 0x000000fe); /* enable VME IRQ 1..7 */
165
166 return (0);
167 }
168
169 int
170 univ_pci_mapvme(d, wnd, vmebase, len, am, datawidth, pcibase)
171 struct univ_pci_data *d;
172 int wnd;
173 vme_addr_t vmebase;
174 u_int32_t len;
175 vme_am_t am;
176 vme_datasize_t datawidth;
177 u_int32_t pcibase;
178 {
179 u_int32_t ctl = 0x80000000;
180
181 switch (am & VME_AM_ADRSIZEMASK) {
182 case VME_AM_A32:
183 ctl |= 0x00020000;
184 break;
185 case VME_AM_A24:
186 ctl |= 0x00010000;
187 break;
188 case VME_AM_A16:
189 break;
190 default:
191 return (EINVAL);
192 }
193 if (am & VME_AM_SUPER)
194 ctl |= 0x00001000;
195 if ((am & VME_AM_MODEMASK) == VME_AM_PRG)
196 ctl |= 0x00004000;
197 if (datawidth & VME_D32)
198 ctl |= 0x00800000;
199 else if (datawidth & VME_D16)
200 ctl |= 0x00400000;
201 else if (!(datawidth & VME_D8))
202 return (EINVAL);
203
204 #ifdef UNIV_DEBUG
205 printf("%s: wnd %d, map VME %x-%x to %x, ctl=%x\n",
206 d->devname, wnd, vmebase, vmebase + len, pcibase, ctl);
207 #endif
208
209 write_pcislv(d, wnd, lsi_bs, pcibase);
210 write_pcislv(d, wnd, lsi_bd, pcibase + len);
211 write_pcislv(d, wnd, lsi_to, vmebase - pcibase);
212 write_pcislv(d, wnd, lsi_ctl, ctl);
213 return (0);
214 }
215
216 void
217 univ_pci_unmapvme(d, wnd)
218 struct univ_pci_data *d;
219 int wnd;
220 {
221 #ifdef UNIV_DEBUG
222 printf("%s: unmap VME wnd %d\n", d->devname, wnd);
223 #endif
224 write_pcislv(d, wnd, lsi_ctl, 0);
225 }
226
227
228 int
229 univ_pci_mappci(d, wnd, pcibase, len, vmebase, am)
230 struct univ_pci_data *d;
231 int wnd;
232 u_int32_t pcibase;
233 u_int32_t len;
234 vme_addr_t vmebase;
235 vme_am_t am;
236 {
237 u_int32_t ctl = 0x80000000;
238
239 switch (am & VME_AM_ADRSIZEMASK) {
240 case VME_AM_A32:
241 ctl |= 0x00020000;
242 break;
243 case VME_AM_A24:
244 ctl |= 0x00010000;
245 break;
246 case VME_AM_A16:
247 break;
248 default:
249 return (EINVAL);
250 }
251 if (am & VME_AM_SUPER)
252 ctl |= 0x00200000;
253 else
254 ctl |= 0x00300000; /* both */
255 if ((am & VME_AM_MODEMASK) == VME_AM_PRG)
256 ctl |= 0x00800000;
257 else
258 ctl |= 0x00c00000; /* both */
259
260 #ifdef UNIV_DEBUG
261 printf("%s: wnd %d, map PCI %x-%x to %x, ctl=%x\n",
262 d->devname, wnd, pcibase, pcibase + len, vmebase, ctl);
263 #endif
264
265 write_vmeslv(d, wnd, vsi_bs, vmebase);
266 write_vmeslv(d, wnd, vsi_bd, vmebase + len);
267 write_vmeslv(d, wnd, vsi_to, pcibase - vmebase);
268 write_vmeslv(d, wnd, vsi_ctl, ctl);
269 return (0);
270 }
271
272 void
273 univ_pci_unmappci(d, wnd)
274 struct univ_pci_data *d;
275 int wnd;
276 {
277 #ifdef UNIV_DEBUG
278 printf("%s: unmap PCI wnd %d\n", d->devname, wnd);
279 #endif
280 write_vmeslv(d, wnd, vsi_ctl, 0);
281 }
282
283 int
284 univ_pci_vmebuserr(d, clear)
285 struct univ_pci_data *d;
286 int clear;
287 {
288 u_int32_t pcicsr;
289
290 pcicsr = read_csr_4(d, pci_csr);
291 if ((pcicsr & 0xf8000000) && clear)
292 write_csr_4(d, pci_csr, pcicsr | 0xf8000000);
293 return (pcicsr & 0x08000000); /* target abort */
294 }
295
296 int
297 univ_pci_intr(v)
298 void *v;
299 {
300 struct univ_pci_data *d = v;
301 u_int32_t intcsr;
302 int i, vec;
303
304 intcsr = read_csr_4(d, lint_stat) & 0xffffff;
305 if (!intcsr)
306 return (0);
307
308 /* ack everything */
309 write_csr_4(d, lint_stat, intcsr);
310 #ifdef UNIV_DEBUG
311 printf("%s: intr, lint_stat=%x\n", d->devname, intcsr);
312 #endif
313 if (intcsr & 0x000000fe) { /* VME interrupt */
314 for (i = 7; i >= 1; i--) {
315 if (!(intcsr & (1 << i)))
316 continue;
317 vec = read_csr_4(d, v_statid[i - 1]);
318 if (vec & 0x100) {
319 printf("%s: err irq %d\n", d->devname, i);
320 continue;
321 }
322 if (d->vmeinthandler)
323 (*d->vmeinthandler)(d->vmeintcookie, i, vec);
324 }
325 }
326
327 return (1);
328 }
329