virtio.c revision 1.53 1 /* $NetBSD: virtio.c,v 1.53 2021/10/28 01:36:43 yamaguchi Exp $ */
2
3 /*
4 * Copyright (c) 2020 The NetBSD Foundation, Inc.
5 * Copyright (c) 2012 Stefan Fritsch, Alexander Fiveg.
6 * Copyright (c) 2010 Minoura Makoto.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: virtio.c,v 1.53 2021/10/28 01:36:43 yamaguchi Exp $");
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/atomic.h>
37 #include <sys/bus.h>
38 #include <sys/device.h>
39 #include <sys/kmem.h>
40 #include <sys/module.h>
41
42 #define VIRTIO_PRIVATE
43
44 #include <dev/pci/virtioreg.h> /* XXX: move to non-pci */
45 #include <dev/pci/virtiovar.h> /* XXX: move to non-pci */
46
47 #define MINSEG_INDIRECT 2 /* use indirect if nsegs >= this value */
48
49 /* incomplete list */
50 static const char *virtio_device_name[] = {
51 "unknown (0)", /* 0 */
52 "network", /* 1 */
53 "block", /* 2 */
54 "console", /* 3 */
55 "entropy", /* 4 */
56 "memory balloon", /* 5 */
57 "I/O memory", /* 6 */
58 "remote processor messaging", /* 7 */
59 "SCSI", /* 8 */
60 "9P transport", /* 9 */
61 };
62 #define NDEVNAMES __arraycount(virtio_device_name)
63
64 static void virtio_init_vq(struct virtio_softc *,
65 struct virtqueue *, const bool);
66
67 void
68 virtio_set_status(struct virtio_softc *sc, int status)
69 {
70 sc->sc_ops->set_status(sc, status);
71 }
72
73 /*
74 * Reset the device.
75 */
76 /*
77 * To reset the device to a known state, do following:
78 * virtio_reset(sc); // this will stop the device activity
79 * <dequeue finished requests>; // virtio_dequeue() still can be called
80 * <revoke pending requests in the vqs if any>;
81 * virtio_reinit_start(sc); // dequeue prohibitted
82 * newfeatures = virtio_negotiate_features(sc, requestedfeatures);
83 * <some other initialization>;
84 * virtio_reinit_end(sc); // device activated; enqueue allowed
85 * Once attached, feature negotiation can only be allowed after virtio_reset.
86 */
87 void
88 virtio_reset(struct virtio_softc *sc)
89 {
90 virtio_device_reset(sc);
91 }
92
93 int
94 virtio_reinit_start(struct virtio_softc *sc)
95 {
96 int i, r;
97
98 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_ACK);
99 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER);
100 for (i = 0; i < sc->sc_nvqs; i++) {
101 int n;
102 struct virtqueue *vq = &sc->sc_vqs[i];
103 n = sc->sc_ops->read_queue_size(sc, vq->vq_index);
104 if (n == 0) /* vq disappeared */
105 continue;
106 if (n != vq->vq_num) {
107 panic("%s: virtqueue size changed, vq index %d\n",
108 device_xname(sc->sc_dev),
109 vq->vq_index);
110 }
111 virtio_init_vq(sc, vq, true);
112 sc->sc_ops->setup_queue(sc, vq->vq_index,
113 vq->vq_dmamap->dm_segs[0].ds_addr);
114 }
115
116 r = sc->sc_ops->setup_interrupts(sc, 1);
117 if (r != 0)
118 goto fail;
119
120 return 0;
121
122 fail:
123 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
124
125 return 1;
126 }
127
128 void
129 virtio_reinit_end(struct virtio_softc *sc)
130 {
131 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER_OK);
132 }
133
134 /*
135 * Feature negotiation.
136 */
137 void
138 virtio_negotiate_features(struct virtio_softc *sc, uint64_t guest_features)
139 {
140 if (!(device_cfdata(sc->sc_dev)->cf_flags & 1) &&
141 !(device_cfdata(sc->sc_child)->cf_flags & 1)) /* XXX */
142 guest_features |= VIRTIO_F_RING_INDIRECT_DESC;
143 sc->sc_ops->neg_features(sc, guest_features);
144 if (sc->sc_active_features & VIRTIO_F_RING_INDIRECT_DESC)
145 sc->sc_indirect = true;
146 else
147 sc->sc_indirect = false;
148 }
149
150
151 /*
152 * Device configuration registers readers/writers
153 */
154 #if 0
155 #define DPRINTFR(n, fmt, val, index, num) \
156 printf("\n%s (", n); \
157 for (int i = 0; i < num; i++) \
158 printf("%02x ", bus_space_read_1(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index+i)); \
159 printf(") -> "); printf(fmt, val); printf("\n");
160 #define DPRINTFR2(n, fmt, val_s, val_n) \
161 printf("%s ", n); \
162 printf("\n stream "); printf(fmt, val_s); printf(" norm "); printf(fmt, val_n); printf("\n");
163 #else
164 #define DPRINTFR(n, fmt, val, index, num)
165 #define DPRINTFR2(n, fmt, val_s, val_n)
166 #endif
167
168
169 uint8_t
170 virtio_read_device_config_1(struct virtio_softc *sc, int index) {
171 bus_space_tag_t iot = sc->sc_devcfg_iot;
172 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
173 uint8_t val;
174
175 val = bus_space_read_1(iot, ioh, index);
176
177 DPRINTFR("read_1", "%02x", val, index, 1);
178 return val;
179 }
180
181 uint16_t
182 virtio_read_device_config_2(struct virtio_softc *sc, int index) {
183 bus_space_tag_t iot = sc->sc_devcfg_iot;
184 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
185 uint16_t val;
186
187 val = bus_space_read_2(iot, ioh, index);
188 if (BYTE_ORDER != sc->sc_bus_endian)
189 val = bswap16(val);
190
191 DPRINTFR("read_2", "%04x", val, index, 2);
192 DPRINTFR2("read_2", "%04x",
193 bus_space_read_stream_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index),
194 bus_space_read_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
195 return val;
196 }
197
198 uint32_t
199 virtio_read_device_config_4(struct virtio_softc *sc, int index) {
200 bus_space_tag_t iot = sc->sc_devcfg_iot;
201 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
202 uint32_t val;
203
204 val = bus_space_read_4(iot, ioh, index);
205 if (BYTE_ORDER != sc->sc_bus_endian)
206 val = bswap32(val);
207
208 DPRINTFR("read_4", "%08x", val, index, 4);
209 DPRINTFR2("read_4", "%08x",
210 bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index),
211 bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
212 return val;
213 }
214
215 /*
216 * The Virtio spec explicitly tells that reading and writing 8 bytes are not
217 * considered atomic and no triggers may be connected to reading or writing
218 * it. We access it using two 32 reads. See virtio spec 4.1.3.1.
219 */
220 uint64_t
221 virtio_read_device_config_8(struct virtio_softc *sc, int index) {
222 bus_space_tag_t iot = sc->sc_devcfg_iot;
223 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
224 union {
225 uint64_t u64;
226 uint32_t l[2];
227 } v;
228 uint64_t val;
229
230 v.l[0] = bus_space_read_4(iot, ioh, index);
231 v.l[1] = bus_space_read_4(iot, ioh, index + 4);
232 if (sc->sc_bus_endian != sc->sc_struct_endian) {
233 v.l[0] = bswap32(v.l[0]);
234 v.l[1] = bswap32(v.l[1]);
235 }
236 val = v.u64;
237
238 if (BYTE_ORDER != sc->sc_struct_endian)
239 val = bswap64(val);
240
241 DPRINTFR("read_8", "%08lx", val, index, 8);
242 DPRINTFR2("read_8 low ", "%08x",
243 bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index),
244 bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
245 DPRINTFR2("read_8 high ", "%08x",
246 bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index + 4),
247 bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index + 4));
248 return val;
249 }
250
251 /*
252 * In the older virtio spec, device config registers are host endian. On newer
253 * they are little endian. Some newer devices however explicitly specify their
254 * register to always be little endian. These fuctions cater for these.
255 */
256 uint16_t
257 virtio_read_device_config_le_2(struct virtio_softc *sc, int index) {
258 bus_space_tag_t iot = sc->sc_devcfg_iot;
259 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
260 uint16_t val;
261
262 val = bus_space_read_2(iot, ioh, index);
263 if (sc->sc_bus_endian != LITTLE_ENDIAN)
264 val = bswap16(val);
265
266 DPRINTFR("read_le_2", "%04x", val, index, 2);
267 DPRINTFR2("read_le_2", "%04x",
268 bus_space_read_stream_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0),
269 bus_space_read_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0));
270 return val;
271 }
272
273 uint32_t
274 virtio_read_device_config_le_4(struct virtio_softc *sc, int index) {
275 bus_space_tag_t iot = sc->sc_devcfg_iot;
276 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
277 uint32_t val;
278
279 val = bus_space_read_4(iot, ioh, index);
280 if (sc->sc_bus_endian != LITTLE_ENDIAN)
281 val = bswap32(val);
282
283 DPRINTFR("read_le_4", "%08x", val, index, 4);
284 DPRINTFR2("read_le_4", "%08x",
285 bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0),
286 bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0));
287 return val;
288 }
289
290 void
291 virtio_write_device_config_1(struct virtio_softc *sc, int index, uint8_t value)
292 {
293 bus_space_tag_t iot = sc->sc_devcfg_iot;
294 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
295
296 bus_space_write_1(iot, ioh, index, value);
297 }
298
299 void
300 virtio_write_device_config_2(struct virtio_softc *sc, int index, uint16_t value)
301 {
302 bus_space_tag_t iot = sc->sc_devcfg_iot;
303 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
304
305 if (BYTE_ORDER != sc->sc_bus_endian)
306 value = bswap16(value);
307 bus_space_write_2(iot, ioh, index, value);
308 }
309
310 void
311 virtio_write_device_config_4(struct virtio_softc *sc, int index, uint32_t value)
312 {
313 bus_space_tag_t iot = sc->sc_devcfg_iot;
314 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
315
316 if (BYTE_ORDER != sc->sc_bus_endian)
317 value = bswap32(value);
318 bus_space_write_4(iot, ioh, index, value);
319 }
320
321 /*
322 * The Virtio spec explicitly tells that reading and writing 8 bytes are not
323 * considered atomic and no triggers may be connected to reading or writing
324 * it. We access it using two 32 bit writes. For good measure it is stated to
325 * always write lsb first just in case of a hypervisor bug. See See virtio
326 * spec 4.1.3.1.
327 */
328 void
329 virtio_write_device_config_8(struct virtio_softc *sc, int index, uint64_t value)
330 {
331 bus_space_tag_t iot = sc->sc_devcfg_iot;
332 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
333 union {
334 uint64_t u64;
335 uint32_t l[2];
336 } v;
337
338 if (BYTE_ORDER != sc->sc_struct_endian)
339 value = bswap64(value);
340
341 v.u64 = value;
342 if (sc->sc_bus_endian != sc->sc_struct_endian) {
343 v.l[0] = bswap32(v.l[0]);
344 v.l[1] = bswap32(v.l[1]);
345 }
346
347 if (sc->sc_struct_endian == LITTLE_ENDIAN) {
348 bus_space_write_4(iot, ioh, index, v.l[0]);
349 bus_space_write_4(iot, ioh, index + 4, v.l[1]);
350 } else {
351 bus_space_write_4(iot, ioh, index + 4, v.l[1]);
352 bus_space_write_4(iot, ioh, index, v.l[0]);
353 }
354 }
355
356 /*
357 * In the older virtio spec, device config registers are host endian. On newer
358 * they are little endian. Some newer devices however explicitly specify their
359 * register to always be little endian. These fuctions cater for these.
360 */
361 void
362 virtio_write_device_config_le_2(struct virtio_softc *sc, int index, uint16_t value)
363 {
364 bus_space_tag_t iot = sc->sc_devcfg_iot;
365 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
366
367 if (sc->sc_bus_endian != LITTLE_ENDIAN)
368 value = bswap16(value);
369 bus_space_write_2(iot, ioh, index, value);
370 }
371
372 void
373 virtio_write_device_config_le_4(struct virtio_softc *sc, int index, uint32_t value)
374 {
375 bus_space_tag_t iot = sc->sc_devcfg_iot;
376 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
377
378 if (sc->sc_bus_endian != LITTLE_ENDIAN)
379 value = bswap32(value);
380 bus_space_write_4(iot, ioh, index, value);
381 }
382
383
384 /*
385 * data structures endian helpers
386 */
387 uint16_t virtio_rw16(struct virtio_softc *sc, uint16_t val)
388 {
389 KASSERT(sc);
390 return BYTE_ORDER != sc->sc_struct_endian ? bswap16(val) : val;
391 }
392
393 uint32_t virtio_rw32(struct virtio_softc *sc, uint32_t val)
394 {
395 KASSERT(sc);
396 return BYTE_ORDER != sc->sc_struct_endian ? bswap32(val) : val;
397 }
398
399 uint64_t virtio_rw64(struct virtio_softc *sc, uint64_t val)
400 {
401 KASSERT(sc);
402 return BYTE_ORDER != sc->sc_struct_endian ? bswap64(val) : val;
403 }
404
405
406 /*
407 * Interrupt handler.
408 */
409 static void
410 virtio_soft_intr(void *arg)
411 {
412 struct virtio_softc *sc = arg;
413
414 KASSERT(sc->sc_intrhand != NULL);
415
416 (sc->sc_intrhand)(sc);
417 }
418
419 /*
420 * dmamap sync operations for a virtqueue.
421 */
422 static inline void
423 vq_sync_descs(struct virtio_softc *sc, struct virtqueue *vq, int ops)
424 {
425 /* availoffset == sizeof(vring_desc)*vq_num */
426 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap, 0, vq->vq_availoffset,
427 ops);
428 }
429
430 static inline void
431 vq_sync_aring(struct virtio_softc *sc, struct virtqueue *vq, int ops)
432 {
433 uint16_t hdrlen = offsetof(struct vring_avail, ring);
434 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX)
435 hdrlen += sizeof(uint16_t);
436
437 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
438 vq->vq_availoffset,
439 hdrlen + sc->sc_nvqs * sizeof(uint16_t),
440 ops);
441 }
442
443 static inline void
444 vq_sync_uring(struct virtio_softc *sc, struct virtqueue *vq, int ops)
445 {
446 uint16_t hdrlen = offsetof(struct vring_used, ring);
447 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX)
448 hdrlen += sizeof(uint16_t);
449
450 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
451 vq->vq_usedoffset,
452 hdrlen + sc->sc_nvqs * sizeof(struct vring_used_elem),
453 ops);
454 }
455
456 static inline void
457 vq_sync_indirect(struct virtio_softc *sc, struct virtqueue *vq, int slot,
458 int ops)
459 {
460 int offset = vq->vq_indirectoffset
461 + sizeof(struct vring_desc) * vq->vq_maxnsegs * slot;
462
463 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
464 offset, sizeof(struct vring_desc) * vq->vq_maxnsegs,
465 ops);
466 }
467
468 /*
469 * Can be used as sc_intrhand.
470 */
471 /*
472 * Scan vq, bus_dmamap_sync for the vqs (not for the payload),
473 * and calls (*vq_done)() if some entries are consumed.
474 */
475 bool
476 virtio_vq_is_enqueued(struct virtio_softc *sc, struct virtqueue *vq)
477 {
478
479 if (vq->vq_queued) {
480 vq->vq_queued = 0;
481 vq_sync_aring(sc, vq, BUS_DMASYNC_POSTWRITE);
482 }
483 vq_sync_uring(sc, vq, BUS_DMASYNC_POSTREAD);
484 membar_consumer();
485
486 return (vq->vq_used_idx != virtio_rw16(sc, vq->vq_used->idx)) ? 1 : 0;
487 }
488
489 int
490 virtio_vq_intr(struct virtio_softc *sc)
491 {
492 struct virtqueue *vq;
493 int i, r = 0;
494
495 for (i = 0; i < sc->sc_nvqs; i++) {
496 vq = &sc->sc_vqs[i];
497 if (virtio_vq_is_enqueued(sc, vq) == 1) {
498 if (vq->vq_done)
499 r |= (vq->vq_done)(vq);
500 }
501 }
502
503 return r;
504 }
505
506 int
507 virtio_vq_intrhand(struct virtio_softc *sc)
508 {
509 struct virtqueue *vq;
510 int i, r = 0;
511
512 for (i = 0; i < sc->sc_nvqs; i++) {
513 vq = &sc->sc_vqs[i];
514 r |= (vq->vq_intrhand)(vq->vq_intrhand_arg);
515 }
516
517 return r;
518 }
519
520
521 /*
522 * Increase the event index in order to delay interrupts.
523 */
524 int
525 virtio_postpone_intr(struct virtio_softc *sc, struct virtqueue *vq,
526 uint16_t nslots)
527 {
528 uint16_t idx, nused;
529
530 idx = vq->vq_used_idx + nslots;
531
532 /* set the new event index: avail_ring->used_event = idx */
533 *vq->vq_used_event = virtio_rw16(sc, idx);
534 membar_producer();
535
536 vq_sync_aring(vq->vq_owner, vq, BUS_DMASYNC_PREWRITE);
537 vq->vq_queued++;
538
539 nused = (uint16_t)
540 (virtio_rw16(sc, vq->vq_used->idx) - vq->vq_used_idx);
541 KASSERT(nused <= vq->vq_num);
542
543 return nslots < nused;
544 }
545
546 /*
547 * Postpone interrupt until 3/4 of the available descriptors have been
548 * consumed.
549 */
550 int
551 virtio_postpone_intr_smart(struct virtio_softc *sc, struct virtqueue *vq)
552 {
553 uint16_t nslots;
554
555 nslots = (uint16_t)
556 (virtio_rw16(sc, vq->vq_avail->idx) - vq->vq_used_idx) * 3 / 4;
557
558 return virtio_postpone_intr(sc, vq, nslots);
559 }
560
561 /*
562 * Postpone interrupt until all of the available descriptors have been
563 * consumed.
564 */
565 int
566 virtio_postpone_intr_far(struct virtio_softc *sc, struct virtqueue *vq)
567 {
568 uint16_t nslots;
569
570 nslots = (uint16_t)
571 (virtio_rw16(sc, vq->vq_avail->idx) - vq->vq_used_idx);
572
573 return virtio_postpone_intr(sc, vq, nslots);
574 }
575
576 /*
577 * Start/stop vq interrupt. No guarantee.
578 */
579 void
580 virtio_stop_vq_intr(struct virtio_softc *sc, struct virtqueue *vq)
581 {
582 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
583 /*
584 * No way to disable the interrupt completely with
585 * RingEventIdx. Instead advance used_event by half the
586 * possible value. This won't happen soon and is far enough in
587 * the past to not trigger a spurios interrupt.
588 */
589 *vq->vq_used_event = virtio_rw16(sc, vq->vq_used_idx + 0x8000);
590 } else {
591 vq->vq_avail->flags |= virtio_rw16(sc, VRING_AVAIL_F_NO_INTERRUPT);
592 }
593 vq_sync_aring(sc, vq, BUS_DMASYNC_PREWRITE);
594 vq->vq_queued++;
595 }
596
597 int
598 virtio_start_vq_intr(struct virtio_softc *sc, struct virtqueue *vq)
599 {
600 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
601 /*
602 * If event index feature is negotiated, enabling interrupts
603 * is done through setting the latest consumed index in the
604 * used_event field
605 */
606 *vq->vq_used_event = virtio_rw16(sc, vq->vq_used_idx);
607 } else {
608 vq->vq_avail->flags &= ~virtio_rw16(sc, VRING_AVAIL_F_NO_INTERRUPT);
609 }
610 vq_sync_aring(sc, vq, BUS_DMASYNC_PREWRITE);
611 vq->vq_queued++;
612
613 return vq->vq_used_idx != virtio_rw16(sc, vq->vq_used->idx);
614 }
615
616 /*
617 * Initialize vq structure.
618 */
619 static void
620 virtio_init_vq(struct virtio_softc *sc, struct virtqueue *vq,
621 const bool reinit)
622 {
623 int i, j;
624 int vq_size = vq->vq_num;
625
626 memset(vq->vq_vaddr, 0, vq->vq_bytesize);
627
628 /* build the indirect descriptor chain */
629 if (vq->vq_indirect != NULL) {
630 struct vring_desc *vd;
631
632 for (i = 0; i < vq_size; i++) {
633 vd = vq->vq_indirect;
634 vd += vq->vq_maxnsegs * i;
635 for (j = 0; j < vq->vq_maxnsegs-1; j++) {
636 vd[j].next = virtio_rw16(sc, j + 1);
637 }
638 }
639 }
640
641 /* free slot management */
642 SIMPLEQ_INIT(&vq->vq_freelist);
643 for (i = 0; i < vq_size; i++) {
644 SIMPLEQ_INSERT_TAIL(&vq->vq_freelist,
645 &vq->vq_entries[i], qe_list);
646 vq->vq_entries[i].qe_index = i;
647 }
648 if (!reinit)
649 mutex_init(&vq->vq_freelist_lock, MUTEX_SPIN, sc->sc_ipl);
650
651 /* enqueue/dequeue status */
652 vq->vq_avail_idx = 0;
653 vq->vq_used_idx = 0;
654 vq->vq_queued = 0;
655 if (!reinit) {
656 mutex_init(&vq->vq_aring_lock, MUTEX_SPIN, sc->sc_ipl);
657 mutex_init(&vq->vq_uring_lock, MUTEX_SPIN, sc->sc_ipl);
658 }
659 vq_sync_aring(sc, vq, BUS_DMASYNC_PREWRITE);
660 vq_sync_uring(sc, vq, BUS_DMASYNC_PREREAD);
661 vq->vq_queued++;
662 }
663
664 /*
665 * Allocate/free a vq.
666 */
667 int
668 virtio_alloc_vq(struct virtio_softc *sc, struct virtqueue *vq, int index,
669 int maxsegsize, int maxnsegs, const char *name)
670 {
671 int vq_size, allocsize1, allocsize2, allocsize3, allocsize = 0;
672 int rsegs, r, hdrlen;
673 #define VIRTQUEUE_ALIGN(n) (((n)+(VIRTIO_PAGE_SIZE-1))& \
674 ~(VIRTIO_PAGE_SIZE-1))
675
676 /* Make sure callers allocate vqs in order */
677 KASSERT(sc->sc_nvqs == index);
678
679 memset(vq, 0, sizeof(*vq));
680
681 vq_size = sc->sc_ops->read_queue_size(sc, index);
682 if (vq_size == 0) {
683 aprint_error_dev(sc->sc_dev,
684 "virtqueue not exist, index %d for %s\n",
685 index, name);
686 goto err;
687 }
688
689 hdrlen = sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX ? 3 : 2;
690
691 /* allocsize1: descriptor table + avail ring + pad */
692 allocsize1 = VIRTQUEUE_ALIGN(sizeof(struct vring_desc)*vq_size
693 + sizeof(uint16_t)*(hdrlen + vq_size));
694 /* allocsize2: used ring + pad */
695 allocsize2 = VIRTQUEUE_ALIGN(sizeof(uint16_t) * hdrlen
696 + sizeof(struct vring_used_elem)*vq_size);
697 /* allocsize3: indirect table */
698 if (sc->sc_indirect && maxnsegs >= MINSEG_INDIRECT)
699 allocsize3 = sizeof(struct vring_desc) * maxnsegs * vq_size;
700 else
701 allocsize3 = 0;
702 allocsize = allocsize1 + allocsize2 + allocsize3;
703
704 /* alloc and map the memory */
705 r = bus_dmamem_alloc(sc->sc_dmat, allocsize, VIRTIO_PAGE_SIZE, 0,
706 &vq->vq_segs[0], 1, &rsegs, BUS_DMA_WAITOK);
707 if (r != 0) {
708 aprint_error_dev(sc->sc_dev,
709 "virtqueue %d for %s allocation failed, "
710 "error code %d\n", index, name, r);
711 goto err;
712 }
713 r = bus_dmamem_map(sc->sc_dmat, &vq->vq_segs[0], rsegs, allocsize,
714 &vq->vq_vaddr, BUS_DMA_WAITOK);
715 if (r != 0) {
716 aprint_error_dev(sc->sc_dev,
717 "virtqueue %d for %s map failed, "
718 "error code %d\n", index, name, r);
719 goto err;
720 }
721 r = bus_dmamap_create(sc->sc_dmat, allocsize, 1, allocsize, 0,
722 BUS_DMA_WAITOK, &vq->vq_dmamap);
723 if (r != 0) {
724 aprint_error_dev(sc->sc_dev,
725 "virtqueue %d for %s dmamap creation failed, "
726 "error code %d\n", index, name, r);
727 goto err;
728 }
729 r = bus_dmamap_load(sc->sc_dmat, vq->vq_dmamap,
730 vq->vq_vaddr, allocsize, NULL, BUS_DMA_WAITOK);
731 if (r != 0) {
732 aprint_error_dev(sc->sc_dev,
733 "virtqueue %d for %s dmamap load failed, "
734 "error code %d\n", index, name, r);
735 goto err;
736 }
737
738 /* remember addresses and offsets for later use */
739 vq->vq_owner = sc;
740 vq->vq_num = vq_size;
741 vq->vq_index = index;
742 vq->vq_desc = vq->vq_vaddr;
743 vq->vq_availoffset = sizeof(struct vring_desc)*vq_size;
744 vq->vq_avail = (void*)(((char*)vq->vq_desc) + vq->vq_availoffset);
745 vq->vq_used_event = (uint16_t *) ((char *)vq->vq_avail +
746 offsetof(struct vring_avail, ring[vq->vq_num]));
747 vq->vq_usedoffset = allocsize1;
748 vq->vq_used = (void*)(((char*)vq->vq_desc) + vq->vq_usedoffset);
749 vq->vq_avail_event = (uint16_t *)((char *)vq->vq_used +
750 offsetof(struct vring_used, ring[vq->vq_num]));
751
752 if (allocsize3 > 0) {
753 vq->vq_indirectoffset = allocsize1 + allocsize2;
754 vq->vq_indirect = (void*)(((char*)vq->vq_desc)
755 + vq->vq_indirectoffset);
756 }
757 vq->vq_bytesize = allocsize;
758 vq->vq_maxsegsize = maxsegsize;
759 vq->vq_maxnsegs = maxnsegs;
760
761 /* free slot management */
762 vq->vq_entries = kmem_zalloc(sizeof(struct vq_entry)*vq_size,
763 KM_SLEEP);
764 virtio_init_vq(sc, vq, false);
765
766 /* set the vq address */
767 sc->sc_ops->setup_queue(sc, index,
768 vq->vq_dmamap->dm_segs[0].ds_addr);
769
770 aprint_verbose_dev(sc->sc_dev,
771 "allocated %u byte for virtqueue %d for %s, "
772 "size %d\n", allocsize, index, name, vq_size);
773 if (allocsize3 > 0)
774 aprint_verbose_dev(sc->sc_dev,
775 "using %d byte (%d entries) "
776 "indirect descriptors\n",
777 allocsize3, maxnsegs * vq_size);
778
779 sc->sc_nvqs++;
780
781 return 0;
782
783 err:
784 sc->sc_ops->setup_queue(sc, index, 0);
785 if (vq->vq_dmamap)
786 bus_dmamap_destroy(sc->sc_dmat, vq->vq_dmamap);
787 if (vq->vq_vaddr)
788 bus_dmamem_unmap(sc->sc_dmat, vq->vq_vaddr, allocsize);
789 if (vq->vq_segs[0].ds_addr)
790 bus_dmamem_free(sc->sc_dmat, &vq->vq_segs[0], 1);
791 memset(vq, 0, sizeof(*vq));
792
793 return -1;
794 }
795
796 int
797 virtio_free_vq(struct virtio_softc *sc, struct virtqueue *vq)
798 {
799 struct vq_entry *qe;
800 int i = 0;
801
802 /* device must be already deactivated */
803 /* confirm the vq is empty */
804 SIMPLEQ_FOREACH(qe, &vq->vq_freelist, qe_list) {
805 i++;
806 }
807 if (i != vq->vq_num) {
808 printf("%s: freeing non-empty vq, index %d\n",
809 device_xname(sc->sc_dev), vq->vq_index);
810 return EBUSY;
811 }
812
813 /* tell device that there's no virtqueue any longer */
814 sc->sc_ops->setup_queue(sc, vq->vq_index, 0);
815
816 kmem_free(vq->vq_entries, sizeof(*vq->vq_entries) * vq->vq_num);
817 bus_dmamap_unload(sc->sc_dmat, vq->vq_dmamap);
818 bus_dmamap_destroy(sc->sc_dmat, vq->vq_dmamap);
819 bus_dmamem_unmap(sc->sc_dmat, vq->vq_vaddr, vq->vq_bytesize);
820 bus_dmamem_free(sc->sc_dmat, &vq->vq_segs[0], 1);
821 mutex_destroy(&vq->vq_freelist_lock);
822 mutex_destroy(&vq->vq_uring_lock);
823 mutex_destroy(&vq->vq_aring_lock);
824 memset(vq, 0, sizeof(*vq));
825
826 sc->sc_nvqs--;
827
828 return 0;
829 }
830
831 /*
832 * Free descriptor management.
833 */
834 static struct vq_entry *
835 vq_alloc_entry(struct virtqueue *vq)
836 {
837 struct vq_entry *qe;
838
839 mutex_enter(&vq->vq_freelist_lock);
840 if (SIMPLEQ_EMPTY(&vq->vq_freelist)) {
841 mutex_exit(&vq->vq_freelist_lock);
842 return NULL;
843 }
844 qe = SIMPLEQ_FIRST(&vq->vq_freelist);
845 SIMPLEQ_REMOVE_HEAD(&vq->vq_freelist, qe_list);
846 mutex_exit(&vq->vq_freelist_lock);
847
848 return qe;
849 }
850
851 static void
852 vq_free_entry(struct virtqueue *vq, struct vq_entry *qe)
853 {
854 mutex_enter(&vq->vq_freelist_lock);
855 SIMPLEQ_INSERT_TAIL(&vq->vq_freelist, qe, qe_list);
856 mutex_exit(&vq->vq_freelist_lock);
857
858 return;
859 }
860
861 /*
862 * Enqueue several dmamaps as a single request.
863 */
864 /*
865 * Typical usage:
866 * <queue size> number of followings are stored in arrays
867 * - command blocks (in dmamem) should be pre-allocated and mapped
868 * - dmamaps for command blocks should be pre-allocated and loaded
869 * - dmamaps for payload should be pre-allocated
870 * r = virtio_enqueue_prep(sc, vq, &slot); // allocate a slot
871 * if (r) // currently 0 or EAGAIN
872 * return r;
873 * r = bus_dmamap_load(dmat, dmamap_payload[slot], data, count, ..);
874 * if (r) {
875 * virtio_enqueue_abort(sc, vq, slot);
876 * return r;
877 * }
878 * r = virtio_enqueue_reserve(sc, vq, slot,
879 * dmamap_payload[slot]->dm_nsegs+1);
880 * // ^ +1 for command
881 * if (r) { // currently 0 or EAGAIN
882 * bus_dmamap_unload(dmat, dmamap_payload[slot]);
883 * return r; // do not call abort()
884 * }
885 * <setup and prepare commands>
886 * bus_dmamap_sync(dmat, dmamap_cmd[slot],... BUS_DMASYNC_PREWRITE);
887 * bus_dmamap_sync(dmat, dmamap_payload[slot],...);
888 * virtio_enqueue(sc, vq, slot, dmamap_cmd[slot], false);
889 * virtio_enqueue(sc, vq, slot, dmamap_payload[slot], iswrite);
890 * virtio_enqueue_commit(sc, vq, slot, true);
891 */
892
893 /*
894 * enqueue_prep: allocate a slot number
895 */
896 int
897 virtio_enqueue_prep(struct virtio_softc *sc, struct virtqueue *vq, int *slotp)
898 {
899 struct vq_entry *qe1;
900
901 KASSERT(slotp != NULL);
902
903 qe1 = vq_alloc_entry(vq);
904 if (qe1 == NULL)
905 return EAGAIN;
906 /* next slot is not allocated yet */
907 qe1->qe_next = -1;
908 *slotp = qe1->qe_index;
909
910 return 0;
911 }
912
913 /*
914 * enqueue_reserve: allocate remaining slots and build the descriptor chain.
915 */
916 int
917 virtio_enqueue_reserve(struct virtio_softc *sc, struct virtqueue *vq,
918 int slot, int nsegs)
919 {
920 int indirect;
921 struct vq_entry *qe1 = &vq->vq_entries[slot];
922
923 KASSERT(qe1->qe_next == -1);
924 KASSERT(1 <= nsegs && nsegs <= vq->vq_num);
925
926 if ((vq->vq_indirect != NULL) &&
927 (nsegs >= MINSEG_INDIRECT) &&
928 (nsegs <= vq->vq_maxnsegs))
929 indirect = 1;
930 else
931 indirect = 0;
932 qe1->qe_indirect = indirect;
933
934 if (indirect) {
935 struct vring_desc *vd;
936 uint64_t addr;
937 int i;
938
939 vd = &vq->vq_desc[qe1->qe_index];
940 addr = vq->vq_dmamap->dm_segs[0].ds_addr
941 + vq->vq_indirectoffset;
942 addr += sizeof(struct vring_desc)
943 * vq->vq_maxnsegs * qe1->qe_index;
944 vd->addr = virtio_rw64(sc, addr);
945 vd->len = virtio_rw32(sc, sizeof(struct vring_desc) * nsegs);
946 vd->flags = virtio_rw16(sc, VRING_DESC_F_INDIRECT);
947
948 vd = vq->vq_indirect;
949 vd += vq->vq_maxnsegs * qe1->qe_index;
950 qe1->qe_desc_base = vd;
951
952 for (i = 0; i < nsegs-1; i++) {
953 vd[i].flags = virtio_rw16(sc, VRING_DESC_F_NEXT);
954 }
955 vd[i].flags = virtio_rw16(sc, 0);
956 qe1->qe_next = 0;
957
958 return 0;
959 } else {
960 struct vring_desc *vd;
961 struct vq_entry *qe;
962 int i, s;
963
964 vd = &vq->vq_desc[0];
965 qe1->qe_desc_base = vd;
966 qe1->qe_next = qe1->qe_index;
967 s = slot;
968 for (i = 0; i < nsegs - 1; i++) {
969 qe = vq_alloc_entry(vq);
970 if (qe == NULL) {
971 vd[s].flags = virtio_rw16(sc, 0);
972 virtio_enqueue_abort(sc, vq, slot);
973 return EAGAIN;
974 }
975 vd[s].flags = virtio_rw16(sc, VRING_DESC_F_NEXT);
976 vd[s].next = virtio_rw16(sc, qe->qe_index);
977 s = qe->qe_index;
978 }
979 vd[s].flags = virtio_rw16(sc, 0);
980
981 return 0;
982 }
983 }
984
985 /*
986 * enqueue: enqueue a single dmamap.
987 */
988 int
989 virtio_enqueue(struct virtio_softc *sc, struct virtqueue *vq, int slot,
990 bus_dmamap_t dmamap, bool write)
991 {
992 struct vq_entry *qe1 = &vq->vq_entries[slot];
993 struct vring_desc *vd = qe1->qe_desc_base;
994 int i;
995 int s = qe1->qe_next;
996
997 KASSERT(s >= 0);
998 KASSERT(dmamap->dm_nsegs > 0);
999
1000 for (i = 0; i < dmamap->dm_nsegs; i++) {
1001 vd[s].addr = virtio_rw64(sc, dmamap->dm_segs[i].ds_addr);
1002 vd[s].len = virtio_rw32(sc, dmamap->dm_segs[i].ds_len);
1003 if (!write)
1004 vd[s].flags |= virtio_rw16(sc, VRING_DESC_F_WRITE);
1005 s = virtio_rw16(sc, vd[s].next);
1006 }
1007 qe1->qe_next = s;
1008
1009 return 0;
1010 }
1011
1012 int
1013 virtio_enqueue_p(struct virtio_softc *sc, struct virtqueue *vq, int slot,
1014 bus_dmamap_t dmamap, bus_addr_t start, bus_size_t len,
1015 bool write)
1016 {
1017 struct vq_entry *qe1 = &vq->vq_entries[slot];
1018 struct vring_desc *vd = qe1->qe_desc_base;
1019 int s = qe1->qe_next;
1020
1021 KASSERT(s >= 0);
1022 KASSERT(dmamap->dm_nsegs == 1); /* XXX */
1023 KASSERT((dmamap->dm_segs[0].ds_len > start) &&
1024 (dmamap->dm_segs[0].ds_len >= start + len));
1025
1026 vd[s].addr = virtio_rw64(sc, dmamap->dm_segs[0].ds_addr + start);
1027 vd[s].len = virtio_rw32(sc, len);
1028 if (!write)
1029 vd[s].flags |= virtio_rw16(sc, VRING_DESC_F_WRITE);
1030 qe1->qe_next = virtio_rw16(sc, vd[s].next);
1031
1032 return 0;
1033 }
1034
1035 /*
1036 * enqueue_commit: add it to the aring.
1037 */
1038 int
1039 virtio_enqueue_commit(struct virtio_softc *sc, struct virtqueue *vq, int slot,
1040 bool notifynow)
1041 {
1042 struct vq_entry *qe1;
1043
1044 if (slot < 0) {
1045 mutex_enter(&vq->vq_aring_lock);
1046 goto notify;
1047 }
1048 vq_sync_descs(sc, vq, BUS_DMASYNC_PREWRITE);
1049 qe1 = &vq->vq_entries[slot];
1050 if (qe1->qe_indirect)
1051 vq_sync_indirect(sc, vq, slot, BUS_DMASYNC_PREWRITE);
1052 mutex_enter(&vq->vq_aring_lock);
1053 vq->vq_avail->ring[(vq->vq_avail_idx++) % vq->vq_num] =
1054 virtio_rw16(sc, slot);
1055
1056 notify:
1057 if (notifynow) {
1058 uint16_t o, n, t;
1059 uint16_t flags;
1060 o = virtio_rw16(sc, vq->vq_avail->idx);
1061 n = vq->vq_avail_idx;
1062
1063 /* publish avail idx */
1064 membar_producer();
1065 vq->vq_avail->idx = virtio_rw16(sc, vq->vq_avail_idx);
1066 vq_sync_aring(sc, vq, BUS_DMASYNC_PREWRITE);
1067 vq->vq_queued++;
1068
1069 membar_consumer();
1070 vq_sync_uring(sc, vq, BUS_DMASYNC_PREREAD);
1071 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
1072 t = virtio_rw16(sc, *vq->vq_avail_event) + 1;
1073 if ((uint16_t) (n - t) < (uint16_t) (n - o))
1074 sc->sc_ops->kick(sc, vq->vq_index);
1075 } else {
1076 flags = virtio_rw16(sc, vq->vq_used->flags);
1077 if (!(flags & VRING_USED_F_NO_NOTIFY))
1078 sc->sc_ops->kick(sc, vq->vq_index);
1079 }
1080 vq_sync_uring(sc, vq, BUS_DMASYNC_POSTREAD);
1081 vq_sync_aring(sc, vq, BUS_DMASYNC_POSTWRITE);
1082 }
1083 mutex_exit(&vq->vq_aring_lock);
1084
1085 return 0;
1086 }
1087
1088 /*
1089 * enqueue_abort: rollback.
1090 */
1091 int
1092 virtio_enqueue_abort(struct virtio_softc *sc, struct virtqueue *vq, int slot)
1093 {
1094 struct vq_entry *qe = &vq->vq_entries[slot];
1095 struct vring_desc *vd;
1096 int s;
1097
1098 if (qe->qe_next < 0) {
1099 vq_free_entry(vq, qe);
1100 return 0;
1101 }
1102
1103 s = slot;
1104 vd = &vq->vq_desc[0];
1105 while (virtio_rw16(sc, vd[s].flags) & VRING_DESC_F_NEXT) {
1106 s = virtio_rw16(sc, vd[s].next);
1107 vq_free_entry(vq, qe);
1108 qe = &vq->vq_entries[s];
1109 }
1110 vq_free_entry(vq, qe);
1111 return 0;
1112 }
1113
1114 /*
1115 * Dequeue a request.
1116 */
1117 /*
1118 * dequeue: dequeue a request from uring; dmamap_sync for uring is
1119 * already done in the interrupt handler.
1120 */
1121 int
1122 virtio_dequeue(struct virtio_softc *sc, struct virtqueue *vq,
1123 int *slotp, int *lenp)
1124 {
1125 uint16_t slot, usedidx;
1126 struct vq_entry *qe;
1127
1128 if (vq->vq_used_idx == virtio_rw16(sc, vq->vq_used->idx))
1129 return ENOENT;
1130 mutex_enter(&vq->vq_uring_lock);
1131 usedidx = vq->vq_used_idx++;
1132 mutex_exit(&vq->vq_uring_lock);
1133 usedidx %= vq->vq_num;
1134 slot = virtio_rw32(sc, vq->vq_used->ring[usedidx].id);
1135 qe = &vq->vq_entries[slot];
1136
1137 if (qe->qe_indirect)
1138 vq_sync_indirect(sc, vq, slot, BUS_DMASYNC_POSTWRITE);
1139
1140 if (slotp)
1141 *slotp = slot;
1142 if (lenp)
1143 *lenp = virtio_rw32(sc, vq->vq_used->ring[usedidx].len);
1144
1145 return 0;
1146 }
1147
1148 /*
1149 * dequeue_commit: complete dequeue; the slot is recycled for future use.
1150 * if you forget to call this the slot will be leaked.
1151 */
1152 int
1153 virtio_dequeue_commit(struct virtio_softc *sc, struct virtqueue *vq, int slot)
1154 {
1155 struct vq_entry *qe = &vq->vq_entries[slot];
1156 struct vring_desc *vd = &vq->vq_desc[0];
1157 int s = slot;
1158
1159 while (virtio_rw16(sc, vd[s].flags) & VRING_DESC_F_NEXT) {
1160 s = virtio_rw16(sc, vd[s].next);
1161 vq_free_entry(vq, qe);
1162 qe = &vq->vq_entries[s];
1163 }
1164 vq_free_entry(vq, qe);
1165
1166 return 0;
1167 }
1168
1169 /*
1170 * Attach a child, fill all the members.
1171 */
1172 void
1173 virtio_child_attach_start(struct virtio_softc *sc, device_t child, int ipl,
1174 struct virtqueue *vqs,
1175 virtio_callback config_change,
1176 virtio_callback intr_hand,
1177 int req_flags, int req_features, const char *feat_bits)
1178 {
1179 char buf[1024];
1180
1181 sc->sc_child = child;
1182 sc->sc_ipl = ipl;
1183 sc->sc_vqs = vqs;
1184 sc->sc_config_change = config_change;
1185 sc->sc_intrhand = intr_hand;
1186 sc->sc_flags = req_flags;
1187
1188 virtio_negotiate_features(sc, req_features);
1189 snprintb(buf, sizeof(buf), feat_bits, sc->sc_active_features);
1190 aprint_normal(": features: %s\n", buf);
1191 aprint_naive("\n");
1192 }
1193
1194 void
1195 virtio_child_attach_set_vqs(struct virtio_softc *sc,
1196 struct virtqueue *vqs, int nvq_pairs)
1197 {
1198
1199 KASSERT(nvq_pairs == 1 ||
1200 (sc->sc_flags & VIRTIO_F_INTR_SOFTINT) == 0);
1201 if (nvq_pairs > 1)
1202 sc->sc_child_mq = true;
1203
1204 sc->sc_vqs = vqs;
1205 }
1206
1207 int
1208 virtio_child_attach_finish(struct virtio_softc *sc)
1209 {
1210 int r;
1211
1212 sc->sc_finished_called = true;
1213 r = sc->sc_ops->alloc_interrupts(sc);
1214 if (r != 0) {
1215 aprint_error_dev(sc->sc_dev, "failed to allocate interrupts\n");
1216 goto fail;
1217 }
1218
1219 r = sc->sc_ops->setup_interrupts(sc, 0);
1220 if (r != 0) {
1221 aprint_error_dev(sc->sc_dev, "failed to setup interrupts\n");
1222 goto fail;
1223 }
1224
1225 KASSERT(sc->sc_soft_ih == NULL);
1226 if (sc->sc_flags & VIRTIO_F_INTR_SOFTINT) {
1227 u_int flags = SOFTINT_NET;
1228 if (sc->sc_flags & VIRTIO_F_INTR_MPSAFE)
1229 flags |= SOFTINT_MPSAFE;
1230
1231 sc->sc_soft_ih = softint_establish(flags, virtio_soft_intr, sc);
1232 if (sc->sc_soft_ih == NULL) {
1233 sc->sc_ops->free_interrupts(sc);
1234 aprint_error_dev(sc->sc_dev,
1235 "failed to establish soft interrupt\n");
1236 goto fail;
1237 }
1238 }
1239
1240 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER_OK);
1241 return 0;
1242
1243 fail:
1244 if (sc->sc_soft_ih) {
1245 softint_disestablish(sc->sc_soft_ih);
1246 sc->sc_soft_ih = NULL;
1247 }
1248
1249 sc->sc_ops->free_interrupts(sc);
1250
1251 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
1252 return 1;
1253 }
1254
1255 void
1256 virtio_child_detach(struct virtio_softc *sc)
1257 {
1258 sc->sc_child = NULL;
1259 sc->sc_vqs = NULL;
1260
1261 virtio_device_reset(sc);
1262
1263 sc->sc_ops->free_interrupts(sc);
1264
1265 if (sc->sc_soft_ih) {
1266 softint_disestablish(sc->sc_soft_ih);
1267 sc->sc_soft_ih = NULL;
1268 }
1269 }
1270
1271 void
1272 virtio_child_attach_failed(struct virtio_softc *sc)
1273 {
1274 virtio_child_detach(sc);
1275
1276 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
1277
1278 sc->sc_child = VIRTIO_CHILD_FAILED;
1279 }
1280
1281 bus_dma_tag_t
1282 virtio_dmat(struct virtio_softc *sc)
1283 {
1284 return sc->sc_dmat;
1285 }
1286
1287 device_t
1288 virtio_child(struct virtio_softc *sc)
1289 {
1290 return sc->sc_child;
1291 }
1292
1293 int
1294 virtio_intrhand(struct virtio_softc *sc)
1295 {
1296 return (sc->sc_intrhand)(sc);
1297 }
1298
1299 uint64_t
1300 virtio_features(struct virtio_softc *sc)
1301 {
1302 return sc->sc_active_features;
1303 }
1304
1305 int
1306 virtio_attach_failed(struct virtio_softc *sc)
1307 {
1308 device_t self = sc->sc_dev;
1309
1310 /* no error if its not connected, but its failed */
1311 if (sc->sc_childdevid == 0)
1312 return 1;
1313
1314 if (sc->sc_child == NULL) {
1315 aprint_error_dev(self,
1316 "no matching child driver; not configured\n");
1317 return 1;
1318 }
1319
1320 if (sc->sc_child == VIRTIO_CHILD_FAILED) {
1321 aprint_error_dev(self, "virtio configuration failed\n");
1322 return 1;
1323 }
1324
1325 /* sanity check */
1326 if (!sc->sc_finished_called) {
1327 aprint_error_dev(self, "virtio internal error, child driver "
1328 "signaled OK but didn't initialize interrupts\n");
1329 return 1;
1330 }
1331
1332 return 0;
1333 }
1334
1335 void
1336 virtio_print_device_type(device_t self, int id, int revision)
1337 {
1338 aprint_normal_dev(self, "%s device (rev. 0x%02x)\n",
1339 (id < NDEVNAMES ? virtio_device_name[id] : "Unknown"),
1340 revision);
1341 }
1342
1343
1344 MODULE(MODULE_CLASS_DRIVER, virtio, NULL);
1345
1346 #ifdef _MODULE
1347 #include "ioconf.c"
1348 #endif
1349
1350 static int
1351 virtio_modcmd(modcmd_t cmd, void *opaque)
1352 {
1353 int error = 0;
1354
1355 #ifdef _MODULE
1356 switch (cmd) {
1357 case MODULE_CMD_INIT:
1358 error = config_init_component(cfdriver_ioconf_virtio,
1359 cfattach_ioconf_virtio, cfdata_ioconf_virtio);
1360 break;
1361 case MODULE_CMD_FINI:
1362 error = config_fini_component(cfdriver_ioconf_virtio,
1363 cfattach_ioconf_virtio, cfdata_ioconf_virtio);
1364 break;
1365 default:
1366 error = ENOTTY;
1367 break;
1368 }
1369 #endif
1370
1371 return error;
1372 }
1373