virtio.c revision 1.57 1 /* $NetBSD: virtio.c,v 1.57 2022/08/12 10:49:57 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 2020 The NetBSD Foundation, Inc.
5 * Copyright (c) 2012 Stefan Fritsch, Alexander Fiveg.
6 * Copyright (c) 2010 Minoura Makoto.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: virtio.c,v 1.57 2022/08/12 10:49:57 riastradh Exp $");
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/atomic.h>
37 #include <sys/bus.h>
38 #include <sys/device.h>
39 #include <sys/kmem.h>
40 #include <sys/module.h>
41
42 #define VIRTIO_PRIVATE
43
44 #include <dev/pci/virtioreg.h> /* XXX: move to non-pci */
45 #include <dev/pci/virtiovar.h> /* XXX: move to non-pci */
46
47 #define MINSEG_INDIRECT 2 /* use indirect if nsegs >= this value */
48
49 /* incomplete list */
50 static const char *virtio_device_name[] = {
51 "unknown (0)", /* 0 */
52 "network", /* 1 */
53 "block", /* 2 */
54 "console", /* 3 */
55 "entropy", /* 4 */
56 "memory balloon", /* 5 */
57 "I/O memory", /* 6 */
58 "remote processor messaging", /* 7 */
59 "SCSI", /* 8 */
60 "9P transport", /* 9 */
61 };
62 #define NDEVNAMES __arraycount(virtio_device_name)
63
64 static void virtio_init_vq(struct virtio_softc *,
65 struct virtqueue *, const bool);
66
67 void
68 virtio_set_status(struct virtio_softc *sc, int status)
69 {
70 sc->sc_ops->set_status(sc, status);
71 }
72
73 /*
74 * Reset the device.
75 */
76 /*
77 * To reset the device to a known state, do following:
78 * virtio_reset(sc); // this will stop the device activity
79 * <dequeue finished requests>; // virtio_dequeue() still can be called
80 * <revoke pending requests in the vqs if any>;
81 * virtio_reinit_start(sc); // dequeue prohibitted
82 * newfeatures = virtio_negotiate_features(sc, requestedfeatures);
83 * <some other initialization>;
84 * virtio_reinit_end(sc); // device activated; enqueue allowed
85 * Once attached, feature negotiation can only be allowed after virtio_reset.
86 */
87 void
88 virtio_reset(struct virtio_softc *sc)
89 {
90 virtio_device_reset(sc);
91 }
92
93 int
94 virtio_reinit_start(struct virtio_softc *sc)
95 {
96 int i, r;
97
98 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_ACK);
99 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER);
100 for (i = 0; i < sc->sc_nvqs; i++) {
101 int n;
102 struct virtqueue *vq = &sc->sc_vqs[i];
103 n = sc->sc_ops->read_queue_size(sc, vq->vq_index);
104 if (n == 0) /* vq disappeared */
105 continue;
106 if (n != vq->vq_num) {
107 panic("%s: virtqueue size changed, vq index %d\n",
108 device_xname(sc->sc_dev),
109 vq->vq_index);
110 }
111 virtio_init_vq(sc, vq, true);
112 sc->sc_ops->setup_queue(sc, vq->vq_index,
113 vq->vq_dmamap->dm_segs[0].ds_addr);
114 }
115
116 r = sc->sc_ops->setup_interrupts(sc, 1);
117 if (r != 0)
118 goto fail;
119
120 return 0;
121
122 fail:
123 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
124
125 return 1;
126 }
127
128 void
129 virtio_reinit_end(struct virtio_softc *sc)
130 {
131 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER_OK);
132 }
133
134 /*
135 * Feature negotiation.
136 */
137 void
138 virtio_negotiate_features(struct virtio_softc *sc, uint64_t guest_features)
139 {
140 if (!(device_cfdata(sc->sc_dev)->cf_flags & 1) &&
141 !(device_cfdata(sc->sc_child)->cf_flags & 1)) /* XXX */
142 guest_features |= VIRTIO_F_RING_INDIRECT_DESC;
143 sc->sc_ops->neg_features(sc, guest_features);
144 if (sc->sc_active_features & VIRTIO_F_RING_INDIRECT_DESC)
145 sc->sc_indirect = true;
146 else
147 sc->sc_indirect = false;
148 }
149
150
151 /*
152 * Device configuration registers readers/writers
153 */
154 #if 0
155 #define DPRINTFR(n, fmt, val, index, num) \
156 printf("\n%s (", n); \
157 for (int i = 0; i < num; i++) \
158 printf("%02x ", bus_space_read_1(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index+i)); \
159 printf(") -> "); printf(fmt, val); printf("\n");
160 #define DPRINTFR2(n, fmt, val_s, val_n) \
161 printf("%s ", n); \
162 printf("\n stream "); printf(fmt, val_s); printf(" norm "); printf(fmt, val_n); printf("\n");
163 #else
164 #define DPRINTFR(n, fmt, val, index, num)
165 #define DPRINTFR2(n, fmt, val_s, val_n)
166 #endif
167
168
169 uint8_t
170 virtio_read_device_config_1(struct virtio_softc *sc, int index) {
171 bus_space_tag_t iot = sc->sc_devcfg_iot;
172 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
173 uint8_t val;
174
175 val = bus_space_read_1(iot, ioh, index);
176
177 DPRINTFR("read_1", "%02x", val, index, 1);
178 return val;
179 }
180
181 uint16_t
182 virtio_read_device_config_2(struct virtio_softc *sc, int index) {
183 bus_space_tag_t iot = sc->sc_devcfg_iot;
184 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
185 uint16_t val;
186
187 val = bus_space_read_2(iot, ioh, index);
188 if (BYTE_ORDER != sc->sc_bus_endian)
189 val = bswap16(val);
190
191 DPRINTFR("read_2", "%04x", val, index, 2);
192 DPRINTFR2("read_2", "%04x",
193 bus_space_read_stream_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index),
194 bus_space_read_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
195 return val;
196 }
197
198 uint32_t
199 virtio_read_device_config_4(struct virtio_softc *sc, int index) {
200 bus_space_tag_t iot = sc->sc_devcfg_iot;
201 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
202 uint32_t val;
203
204 val = bus_space_read_4(iot, ioh, index);
205 if (BYTE_ORDER != sc->sc_bus_endian)
206 val = bswap32(val);
207
208 DPRINTFR("read_4", "%08x", val, index, 4);
209 DPRINTFR2("read_4", "%08x",
210 bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index),
211 bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
212 return val;
213 }
214
215 /*
216 * The Virtio spec explicitly tells that reading and writing 8 bytes are not
217 * considered atomic and no triggers may be connected to reading or writing
218 * it. We access it using two 32 reads. See virtio spec 4.1.3.1.
219 */
220 uint64_t
221 virtio_read_device_config_8(struct virtio_softc *sc, int index) {
222 bus_space_tag_t iot = sc->sc_devcfg_iot;
223 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
224 union {
225 uint64_t u64;
226 uint32_t l[2];
227 } v;
228 uint64_t val;
229
230 v.l[0] = bus_space_read_4(iot, ioh, index);
231 v.l[1] = bus_space_read_4(iot, ioh, index + 4);
232 if (sc->sc_bus_endian != sc->sc_struct_endian) {
233 v.l[0] = bswap32(v.l[0]);
234 v.l[1] = bswap32(v.l[1]);
235 }
236 val = v.u64;
237
238 if (BYTE_ORDER != sc->sc_struct_endian)
239 val = bswap64(val);
240
241 DPRINTFR("read_8", "%08lx", val, index, 8);
242 DPRINTFR2("read_8 low ", "%08x",
243 bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index),
244 bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
245 DPRINTFR2("read_8 high ", "%08x",
246 bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index + 4),
247 bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index + 4));
248 return val;
249 }
250
251 /*
252 * In the older virtio spec, device config registers are host endian. On newer
253 * they are little endian. Some newer devices however explicitly specify their
254 * register to always be little endian. These functions cater for these.
255 */
256 uint16_t
257 virtio_read_device_config_le_2(struct virtio_softc *sc, int index) {
258 bus_space_tag_t iot = sc->sc_devcfg_iot;
259 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
260 uint16_t val;
261
262 val = bus_space_read_2(iot, ioh, index);
263 if (sc->sc_bus_endian != LITTLE_ENDIAN)
264 val = bswap16(val);
265
266 DPRINTFR("read_le_2", "%04x", val, index, 2);
267 DPRINTFR2("read_le_2", "%04x",
268 bus_space_read_stream_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0),
269 bus_space_read_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0));
270 return val;
271 }
272
273 uint32_t
274 virtio_read_device_config_le_4(struct virtio_softc *sc, int index) {
275 bus_space_tag_t iot = sc->sc_devcfg_iot;
276 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
277 uint32_t val;
278
279 val = bus_space_read_4(iot, ioh, index);
280 if (sc->sc_bus_endian != LITTLE_ENDIAN)
281 val = bswap32(val);
282
283 DPRINTFR("read_le_4", "%08x", val, index, 4);
284 DPRINTFR2("read_le_4", "%08x",
285 bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0),
286 bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0));
287 return val;
288 }
289
290 void
291 virtio_write_device_config_1(struct virtio_softc *sc, int index, uint8_t value)
292 {
293 bus_space_tag_t iot = sc->sc_devcfg_iot;
294 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
295
296 bus_space_write_1(iot, ioh, index, value);
297 }
298
299 void
300 virtio_write_device_config_2(struct virtio_softc *sc, int index, uint16_t value)
301 {
302 bus_space_tag_t iot = sc->sc_devcfg_iot;
303 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
304
305 if (BYTE_ORDER != sc->sc_bus_endian)
306 value = bswap16(value);
307 bus_space_write_2(iot, ioh, index, value);
308 }
309
310 void
311 virtio_write_device_config_4(struct virtio_softc *sc, int index, uint32_t value)
312 {
313 bus_space_tag_t iot = sc->sc_devcfg_iot;
314 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
315
316 if (BYTE_ORDER != sc->sc_bus_endian)
317 value = bswap32(value);
318 bus_space_write_4(iot, ioh, index, value);
319 }
320
321 /*
322 * The Virtio spec explicitly tells that reading and writing 8 bytes are not
323 * considered atomic and no triggers may be connected to reading or writing
324 * it. We access it using two 32 bit writes. For good measure it is stated to
325 * always write lsb first just in case of a hypervisor bug. See See virtio
326 * spec 4.1.3.1.
327 */
328 void
329 virtio_write_device_config_8(struct virtio_softc *sc, int index, uint64_t value)
330 {
331 bus_space_tag_t iot = sc->sc_devcfg_iot;
332 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
333 union {
334 uint64_t u64;
335 uint32_t l[2];
336 } v;
337
338 if (BYTE_ORDER != sc->sc_struct_endian)
339 value = bswap64(value);
340
341 v.u64 = value;
342 if (sc->sc_bus_endian != sc->sc_struct_endian) {
343 v.l[0] = bswap32(v.l[0]);
344 v.l[1] = bswap32(v.l[1]);
345 }
346
347 if (sc->sc_struct_endian == LITTLE_ENDIAN) {
348 bus_space_write_4(iot, ioh, index, v.l[0]);
349 bus_space_write_4(iot, ioh, index + 4, v.l[1]);
350 } else {
351 bus_space_write_4(iot, ioh, index + 4, v.l[1]);
352 bus_space_write_4(iot, ioh, index, v.l[0]);
353 }
354 }
355
356 /*
357 * In the older virtio spec, device config registers are host endian. On newer
358 * they are little endian. Some newer devices however explicitly specify their
359 * register to always be little endian. These functions cater for these.
360 */
361 void
362 virtio_write_device_config_le_2(struct virtio_softc *sc, int index, uint16_t value)
363 {
364 bus_space_tag_t iot = sc->sc_devcfg_iot;
365 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
366
367 if (sc->sc_bus_endian != LITTLE_ENDIAN)
368 value = bswap16(value);
369 bus_space_write_2(iot, ioh, index, value);
370 }
371
372 void
373 virtio_write_device_config_le_4(struct virtio_softc *sc, int index, uint32_t value)
374 {
375 bus_space_tag_t iot = sc->sc_devcfg_iot;
376 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
377
378 if (sc->sc_bus_endian != LITTLE_ENDIAN)
379 value = bswap32(value);
380 bus_space_write_4(iot, ioh, index, value);
381 }
382
383
384 /*
385 * data structures endian helpers
386 */
387 uint16_t virtio_rw16(struct virtio_softc *sc, uint16_t val)
388 {
389 KASSERT(sc);
390 return BYTE_ORDER != sc->sc_struct_endian ? bswap16(val) : val;
391 }
392
393 uint32_t virtio_rw32(struct virtio_softc *sc, uint32_t val)
394 {
395 KASSERT(sc);
396 return BYTE_ORDER != sc->sc_struct_endian ? bswap32(val) : val;
397 }
398
399 uint64_t virtio_rw64(struct virtio_softc *sc, uint64_t val)
400 {
401 KASSERT(sc);
402 return BYTE_ORDER != sc->sc_struct_endian ? bswap64(val) : val;
403 }
404
405
406 /*
407 * Interrupt handler.
408 */
409 static void
410 virtio_soft_intr(void *arg)
411 {
412 struct virtio_softc *sc = arg;
413
414 KASSERT(sc->sc_intrhand != NULL);
415
416 (*sc->sc_intrhand)(sc);
417 }
418
419 /*
420 * dmamap sync operations for a virtqueue.
421 */
422 static inline void
423 vq_sync_descs(struct virtio_softc *sc, struct virtqueue *vq, int ops)
424 {
425
426 /* availoffset == sizeof(vring_desc)*vq_num */
427 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap, 0, vq->vq_availoffset,
428 ops);
429 }
430
431 static inline void
432 vq_sync_aring_all(struct virtio_softc *sc, struct virtqueue *vq, int ops)
433 {
434 uint16_t hdrlen = offsetof(struct vring_avail, ring);
435 size_t payloadlen = sc->sc_nvqs * sizeof(uint16_t);
436 size_t usedlen = 0;
437
438 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX)
439 usedlen = sizeof(uint16_t);
440 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
441 vq->vq_availoffset, hdrlen + payloadlen + usedlen, ops);
442 }
443
444 static inline void
445 vq_sync_aring_header(struct virtio_softc *sc, struct virtqueue *vq, int ops)
446 {
447 uint16_t hdrlen = offsetof(struct vring_avail, ring);
448
449 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
450 vq->vq_availoffset, hdrlen, ops);
451 }
452
453 static inline void
454 vq_sync_aring_payload(struct virtio_softc *sc, struct virtqueue *vq, int ops)
455 {
456 uint16_t hdrlen = offsetof(struct vring_avail, ring);
457 size_t payloadlen = sc->sc_nvqs * sizeof(uint16_t);
458
459 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
460 vq->vq_availoffset + hdrlen, payloadlen, ops);
461 }
462
463 static inline void
464 vq_sync_aring_used(struct virtio_softc *sc, struct virtqueue *vq, int ops)
465 {
466 uint16_t hdrlen = offsetof(struct vring_avail, ring);
467 size_t payloadlen = sc->sc_nvqs * sizeof(uint16_t);
468 size_t usedlen = sizeof(uint16_t);
469
470 if ((sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) == 0)
471 return;
472 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
473 vq->vq_availoffset + hdrlen + payloadlen, usedlen, ops);
474 }
475
476 static inline void
477 vq_sync_uring_all(struct virtio_softc *sc, struct virtqueue *vq, int ops)
478 {
479 uint16_t hdrlen = offsetof(struct vring_used, ring);
480 size_t payloadlen = sc->sc_nvqs * sizeof(struct vring_used_elem);
481 size_t availlen = 0;
482
483 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX)
484 availlen = sizeof(uint16_t);
485 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
486 vq->vq_usedoffset, hdrlen + payloadlen + availlen, ops);
487 }
488
489 static inline void
490 vq_sync_uring_header(struct virtio_softc *sc, struct virtqueue *vq, int ops)
491 {
492 uint16_t hdrlen = offsetof(struct vring_used, ring);
493
494 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
495 vq->vq_usedoffset, hdrlen, ops);
496 }
497
498 static inline void
499 vq_sync_uring_payload(struct virtio_softc *sc, struct virtqueue *vq, int ops)
500 {
501 uint16_t hdrlen = offsetof(struct vring_used, ring);
502 size_t payloadlen = sc->sc_nvqs * sizeof(struct vring_used_elem);
503
504 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
505 vq->vq_usedoffset + hdrlen, payloadlen, ops);
506 }
507
508 static inline void
509 vq_sync_uring_avail(struct virtio_softc *sc, struct virtqueue *vq, int ops)
510 {
511 uint16_t hdrlen = offsetof(struct vring_used, ring);
512 size_t payloadlen = sc->sc_nvqs * sizeof(struct vring_used_elem);
513 size_t availlen = sizeof(uint16_t);
514
515 if ((sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) == 0)
516 return;
517 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
518 vq->vq_usedoffset + hdrlen + payloadlen, availlen, ops);
519 }
520
521 static inline void
522 vq_sync_indirect(struct virtio_softc *sc, struct virtqueue *vq, int slot,
523 int ops)
524 {
525 int offset = vq->vq_indirectoffset +
526 sizeof(struct vring_desc) * vq->vq_maxnsegs * slot;
527
528 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
529 offset, sizeof(struct vring_desc) * vq->vq_maxnsegs, ops);
530 }
531
532 bool
533 virtio_vq_is_enqueued(struct virtio_softc *sc, struct virtqueue *vq)
534 {
535
536 if (vq->vq_queued) {
537 vq->vq_queued = 0;
538 vq_sync_aring_all(sc, vq, BUS_DMASYNC_POSTWRITE);
539 }
540
541 vq_sync_uring_header(sc, vq, BUS_DMASYNC_POSTREAD);
542 if (vq->vq_used_idx == virtio_rw16(sc, vq->vq_used->idx))
543 return 0;
544 vq_sync_uring_payload(sc, vq, BUS_DMASYNC_POSTREAD);
545 return 1;
546 }
547
548 /*
549 * Scan vq, bus_dmamap_sync for the vqs (not for the payload),
550 * and calls (*vq_done)() if some entries are consumed.
551 *
552 * Can be used as sc_intrhand.
553 */
554 int
555 virtio_vq_intr(struct virtio_softc *sc)
556 {
557 struct virtqueue *vq;
558 int i, r = 0;
559
560 for (i = 0; i < sc->sc_nvqs; i++) {
561 vq = &sc->sc_vqs[i];
562 if (virtio_vq_is_enqueued(sc, vq) == 1) {
563 if (vq->vq_done)
564 r |= (*vq->vq_done)(vq);
565 }
566 }
567
568 return r;
569 }
570
571 int
572 virtio_vq_intrhand(struct virtio_softc *sc)
573 {
574 struct virtqueue *vq;
575 int i, r = 0;
576
577 for (i = 0; i < sc->sc_nvqs; i++) {
578 vq = &sc->sc_vqs[i];
579 r |= (*vq->vq_intrhand)(vq->vq_intrhand_arg);
580 }
581
582 return r;
583 }
584
585
586 /*
587 * Increase the event index in order to delay interrupts.
588 */
589 int
590 virtio_postpone_intr(struct virtio_softc *sc, struct virtqueue *vq,
591 uint16_t nslots)
592 {
593 uint16_t idx, nused;
594
595 idx = vq->vq_used_idx + nslots;
596
597 /* set the new event index: avail_ring->used_event = idx */
598 *vq->vq_used_event = virtio_rw16(sc, idx);
599 vq_sync_aring_used(vq->vq_owner, vq, BUS_DMASYNC_PREWRITE);
600 vq->vq_queued++;
601
602 nused = (uint16_t)
603 (virtio_rw16(sc, vq->vq_used->idx) - vq->vq_used_idx);
604 KASSERT(nused <= vq->vq_num);
605
606 return nslots < nused;
607 }
608
609 /*
610 * Postpone interrupt until 3/4 of the available descriptors have been
611 * consumed.
612 */
613 int
614 virtio_postpone_intr_smart(struct virtio_softc *sc, struct virtqueue *vq)
615 {
616 uint16_t nslots;
617
618 nslots = (uint16_t)
619 (virtio_rw16(sc, vq->vq_avail->idx) - vq->vq_used_idx) * 3 / 4;
620
621 return virtio_postpone_intr(sc, vq, nslots);
622 }
623
624 /*
625 * Postpone interrupt until all of the available descriptors have been
626 * consumed.
627 */
628 int
629 virtio_postpone_intr_far(struct virtio_softc *sc, struct virtqueue *vq)
630 {
631 uint16_t nslots;
632
633 nslots = (uint16_t)
634 (virtio_rw16(sc, vq->vq_avail->idx) - vq->vq_used_idx);
635
636 return virtio_postpone_intr(sc, vq, nslots);
637 }
638
639 /*
640 * Start/stop vq interrupt. No guarantee.
641 */
642 void
643 virtio_stop_vq_intr(struct virtio_softc *sc, struct virtqueue *vq)
644 {
645
646 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
647 /*
648 * No way to disable the interrupt completely with
649 * RingEventIdx. Instead advance used_event by half the
650 * possible value. This won't happen soon and is far enough in
651 * the past to not trigger a spurios interrupt.
652 */
653 *vq->vq_used_event = virtio_rw16(sc, vq->vq_used_idx + 0x8000);
654 vq_sync_aring_used(sc, vq, BUS_DMASYNC_PREWRITE);
655 } else {
656 vq->vq_avail->flags |=
657 virtio_rw16(sc, VRING_AVAIL_F_NO_INTERRUPT);
658 vq_sync_aring_header(sc, vq, BUS_DMASYNC_PREWRITE);
659 }
660 vq->vq_queued++;
661 }
662
663 int
664 virtio_start_vq_intr(struct virtio_softc *sc, struct virtqueue *vq)
665 {
666
667 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
668 /*
669 * If event index feature is negotiated, enabling interrupts
670 * is done through setting the latest consumed index in the
671 * used_event field
672 */
673 *vq->vq_used_event = virtio_rw16(sc, vq->vq_used_idx);
674 vq_sync_aring_used(sc, vq, BUS_DMASYNC_PREWRITE);
675 } else {
676 vq->vq_avail->flags &=
677 ~virtio_rw16(sc, VRING_AVAIL_F_NO_INTERRUPT);
678 vq_sync_aring_header(sc, vq, BUS_DMASYNC_PREWRITE);
679 }
680 vq->vq_queued++;
681
682 vq_sync_uring_header(sc, vq, BUS_DMASYNC_POSTREAD);
683 if (vq->vq_used_idx == virtio_rw16(sc, vq->vq_used->idx))
684 return 0;
685 vq_sync_uring_payload(sc, vq, BUS_DMASYNC_POSTREAD);
686 return 1;
687 }
688
689 /*
690 * Initialize vq structure.
691 */
692 static void
693 virtio_init_vq(struct virtio_softc *sc, struct virtqueue *vq,
694 const bool reinit)
695 {
696 int i, j;
697 int vq_size = vq->vq_num;
698
699 memset(vq->vq_vaddr, 0, vq->vq_bytesize);
700
701 /* build the indirect descriptor chain */
702 if (vq->vq_indirect != NULL) {
703 struct vring_desc *vd;
704
705 for (i = 0; i < vq_size; i++) {
706 vd = vq->vq_indirect;
707 vd += vq->vq_maxnsegs * i;
708 for (j = 0; j < vq->vq_maxnsegs-1; j++) {
709 vd[j].next = virtio_rw16(sc, j + 1);
710 }
711 }
712 }
713
714 /* free slot management */
715 SIMPLEQ_INIT(&vq->vq_freelist);
716 for (i = 0; i < vq_size; i++) {
717 SIMPLEQ_INSERT_TAIL(&vq->vq_freelist,
718 &vq->vq_entries[i], qe_list);
719 vq->vq_entries[i].qe_index = i;
720 }
721 if (!reinit)
722 mutex_init(&vq->vq_freelist_lock, MUTEX_SPIN, sc->sc_ipl);
723
724 /* enqueue/dequeue status */
725 vq->vq_avail_idx = 0;
726 vq->vq_used_idx = 0;
727 vq->vq_queued = 0;
728 if (!reinit) {
729 mutex_init(&vq->vq_aring_lock, MUTEX_SPIN, sc->sc_ipl);
730 mutex_init(&vq->vq_uring_lock, MUTEX_SPIN, sc->sc_ipl);
731 }
732 vq_sync_uring_all(sc, vq, BUS_DMASYNC_PREREAD);
733 vq->vq_queued++;
734 }
735
736 /*
737 * Allocate/free a vq.
738 */
739 int
740 virtio_alloc_vq(struct virtio_softc *sc, struct virtqueue *vq, int index,
741 int maxsegsize, int maxnsegs, const char *name)
742 {
743 int vq_size, allocsize1, allocsize2, allocsize3, allocsize = 0;
744 int rsegs, r, hdrlen;
745 #define VIRTQUEUE_ALIGN(n) (((n)+(VIRTIO_PAGE_SIZE-1))& \
746 ~(VIRTIO_PAGE_SIZE-1))
747
748 /* Make sure callers allocate vqs in order */
749 KASSERT(sc->sc_nvqs == index);
750
751 memset(vq, 0, sizeof(*vq));
752
753 vq_size = sc->sc_ops->read_queue_size(sc, index);
754 if (vq_size == 0) {
755 aprint_error_dev(sc->sc_dev,
756 "virtqueue not exist, index %d for %s\n",
757 index, name);
758 goto err;
759 }
760
761 hdrlen = sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX ? 3 : 2;
762
763 /* allocsize1: descriptor table + avail ring + pad */
764 allocsize1 = VIRTQUEUE_ALIGN(sizeof(struct vring_desc)*vq_size
765 + sizeof(uint16_t)*(hdrlen + vq_size));
766 /* allocsize2: used ring + pad */
767 allocsize2 = VIRTQUEUE_ALIGN(sizeof(uint16_t) * hdrlen
768 + sizeof(struct vring_used_elem)*vq_size);
769 /* allocsize3: indirect table */
770 if (sc->sc_indirect && maxnsegs >= MINSEG_INDIRECT)
771 allocsize3 = sizeof(struct vring_desc) * maxnsegs * vq_size;
772 else
773 allocsize3 = 0;
774 allocsize = allocsize1 + allocsize2 + allocsize3;
775
776 /* alloc and map the memory */
777 r = bus_dmamem_alloc(sc->sc_dmat, allocsize, VIRTIO_PAGE_SIZE, 0,
778 &vq->vq_segs[0], 1, &rsegs, BUS_DMA_WAITOK);
779 if (r != 0) {
780 aprint_error_dev(sc->sc_dev,
781 "virtqueue %d for %s allocation failed, "
782 "error code %d\n", index, name, r);
783 goto err;
784 }
785 r = bus_dmamem_map(sc->sc_dmat, &vq->vq_segs[0], rsegs, allocsize,
786 &vq->vq_vaddr, BUS_DMA_WAITOK);
787 if (r != 0) {
788 aprint_error_dev(sc->sc_dev,
789 "virtqueue %d for %s map failed, "
790 "error code %d\n", index, name, r);
791 goto err;
792 }
793 r = bus_dmamap_create(sc->sc_dmat, allocsize, 1, allocsize, 0,
794 BUS_DMA_WAITOK, &vq->vq_dmamap);
795 if (r != 0) {
796 aprint_error_dev(sc->sc_dev,
797 "virtqueue %d for %s dmamap creation failed, "
798 "error code %d\n", index, name, r);
799 goto err;
800 }
801 r = bus_dmamap_load(sc->sc_dmat, vq->vq_dmamap,
802 vq->vq_vaddr, allocsize, NULL, BUS_DMA_WAITOK);
803 if (r != 0) {
804 aprint_error_dev(sc->sc_dev,
805 "virtqueue %d for %s dmamap load failed, "
806 "error code %d\n", index, name, r);
807 goto err;
808 }
809
810 /* remember addresses and offsets for later use */
811 vq->vq_owner = sc;
812 vq->vq_num = vq_size;
813 vq->vq_index = index;
814 vq->vq_desc = vq->vq_vaddr;
815 vq->vq_availoffset = sizeof(struct vring_desc)*vq_size;
816 vq->vq_avail = (void*)(((char*)vq->vq_desc) + vq->vq_availoffset);
817 vq->vq_used_event = (uint16_t *) ((char *)vq->vq_avail +
818 offsetof(struct vring_avail, ring[vq->vq_num]));
819 vq->vq_usedoffset = allocsize1;
820 vq->vq_used = (void*)(((char*)vq->vq_desc) + vq->vq_usedoffset);
821 vq->vq_avail_event = (uint16_t *)((char *)vq->vq_used +
822 offsetof(struct vring_used, ring[vq->vq_num]));
823
824 if (allocsize3 > 0) {
825 vq->vq_indirectoffset = allocsize1 + allocsize2;
826 vq->vq_indirect = (void*)(((char*)vq->vq_desc)
827 + vq->vq_indirectoffset);
828 }
829 vq->vq_bytesize = allocsize;
830 vq->vq_maxsegsize = maxsegsize;
831 vq->vq_maxnsegs = maxnsegs;
832
833 /* free slot management */
834 vq->vq_entries = kmem_zalloc(sizeof(struct vq_entry)*vq_size,
835 KM_SLEEP);
836 virtio_init_vq(sc, vq, false);
837
838 /* set the vq address */
839 sc->sc_ops->setup_queue(sc, index,
840 vq->vq_dmamap->dm_segs[0].ds_addr);
841
842 aprint_verbose_dev(sc->sc_dev,
843 "allocated %u byte for virtqueue %d for %s, "
844 "size %d\n", allocsize, index, name, vq_size);
845 if (allocsize3 > 0)
846 aprint_verbose_dev(sc->sc_dev,
847 "using %d byte (%d entries) "
848 "indirect descriptors\n",
849 allocsize3, maxnsegs * vq_size);
850
851 sc->sc_nvqs++;
852
853 return 0;
854
855 err:
856 sc->sc_ops->setup_queue(sc, index, 0);
857 if (vq->vq_dmamap)
858 bus_dmamap_destroy(sc->sc_dmat, vq->vq_dmamap);
859 if (vq->vq_vaddr)
860 bus_dmamem_unmap(sc->sc_dmat, vq->vq_vaddr, allocsize);
861 if (vq->vq_segs[0].ds_addr)
862 bus_dmamem_free(sc->sc_dmat, &vq->vq_segs[0], 1);
863 memset(vq, 0, sizeof(*vq));
864
865 return -1;
866 }
867
868 int
869 virtio_free_vq(struct virtio_softc *sc, struct virtqueue *vq)
870 {
871 struct vq_entry *qe;
872 int i = 0;
873
874 /* device must be already deactivated */
875 /* confirm the vq is empty */
876 SIMPLEQ_FOREACH(qe, &vq->vq_freelist, qe_list) {
877 i++;
878 }
879 if (i != vq->vq_num) {
880 printf("%s: freeing non-empty vq, index %d\n",
881 device_xname(sc->sc_dev), vq->vq_index);
882 return EBUSY;
883 }
884
885 /* tell device that there's no virtqueue any longer */
886 sc->sc_ops->setup_queue(sc, vq->vq_index, 0);
887
888 vq_sync_aring_all(sc, vq, BUS_DMASYNC_POSTWRITE);
889
890 kmem_free(vq->vq_entries, sizeof(*vq->vq_entries) * vq->vq_num);
891 bus_dmamap_unload(sc->sc_dmat, vq->vq_dmamap);
892 bus_dmamap_destroy(sc->sc_dmat, vq->vq_dmamap);
893 bus_dmamem_unmap(sc->sc_dmat, vq->vq_vaddr, vq->vq_bytesize);
894 bus_dmamem_free(sc->sc_dmat, &vq->vq_segs[0], 1);
895 mutex_destroy(&vq->vq_freelist_lock);
896 mutex_destroy(&vq->vq_uring_lock);
897 mutex_destroy(&vq->vq_aring_lock);
898 memset(vq, 0, sizeof(*vq));
899
900 sc->sc_nvqs--;
901
902 return 0;
903 }
904
905 /*
906 * Free descriptor management.
907 */
908 static struct vq_entry *
909 vq_alloc_entry(struct virtqueue *vq)
910 {
911 struct vq_entry *qe;
912
913 mutex_enter(&vq->vq_freelist_lock);
914 if (SIMPLEQ_EMPTY(&vq->vq_freelist)) {
915 mutex_exit(&vq->vq_freelist_lock);
916 return NULL;
917 }
918 qe = SIMPLEQ_FIRST(&vq->vq_freelist);
919 SIMPLEQ_REMOVE_HEAD(&vq->vq_freelist, qe_list);
920 mutex_exit(&vq->vq_freelist_lock);
921
922 return qe;
923 }
924
925 static void
926 vq_free_entry(struct virtqueue *vq, struct vq_entry *qe)
927 {
928 mutex_enter(&vq->vq_freelist_lock);
929 SIMPLEQ_INSERT_TAIL(&vq->vq_freelist, qe, qe_list);
930 mutex_exit(&vq->vq_freelist_lock);
931
932 return;
933 }
934
935 /*
936 * Enqueue several dmamaps as a single request.
937 */
938 /*
939 * Typical usage:
940 * <queue size> number of followings are stored in arrays
941 * - command blocks (in dmamem) should be pre-allocated and mapped
942 * - dmamaps for command blocks should be pre-allocated and loaded
943 * - dmamaps for payload should be pre-allocated
944 * r = virtio_enqueue_prep(sc, vq, &slot); // allocate a slot
945 * if (r) // currently 0 or EAGAIN
946 * return r;
947 * r = bus_dmamap_load(dmat, dmamap_payload[slot], data, count, ..);
948 * if (r) {
949 * virtio_enqueue_abort(sc, vq, slot);
950 * return r;
951 * }
952 * r = virtio_enqueue_reserve(sc, vq, slot,
953 * dmamap_payload[slot]->dm_nsegs+1);
954 * // ^ +1 for command
955 * if (r) { // currently 0 or EAGAIN
956 * bus_dmamap_unload(dmat, dmamap_payload[slot]);
957 * return r; // do not call abort()
958 * }
959 * <setup and prepare commands>
960 * bus_dmamap_sync(dmat, dmamap_cmd[slot],... BUS_DMASYNC_PREWRITE);
961 * bus_dmamap_sync(dmat, dmamap_payload[slot],...);
962 * virtio_enqueue(sc, vq, slot, dmamap_cmd[slot], false);
963 * virtio_enqueue(sc, vq, slot, dmamap_payload[slot], iswrite);
964 * virtio_enqueue_commit(sc, vq, slot, true);
965 */
966
967 /*
968 * enqueue_prep: allocate a slot number
969 */
970 int
971 virtio_enqueue_prep(struct virtio_softc *sc, struct virtqueue *vq, int *slotp)
972 {
973 struct vq_entry *qe1;
974
975 KASSERT(slotp != NULL);
976
977 qe1 = vq_alloc_entry(vq);
978 if (qe1 == NULL)
979 return EAGAIN;
980 /* next slot is not allocated yet */
981 qe1->qe_next = -1;
982 *slotp = qe1->qe_index;
983
984 return 0;
985 }
986
987 /*
988 * enqueue_reserve: allocate remaining slots and build the descriptor chain.
989 */
990 int
991 virtio_enqueue_reserve(struct virtio_softc *sc, struct virtqueue *vq,
992 int slot, int nsegs)
993 {
994 int indirect;
995 struct vq_entry *qe1 = &vq->vq_entries[slot];
996
997 KASSERT(qe1->qe_next == -1);
998 KASSERT(1 <= nsegs && nsegs <= vq->vq_num);
999
1000 if ((vq->vq_indirect != NULL) &&
1001 (nsegs >= MINSEG_INDIRECT) &&
1002 (nsegs <= vq->vq_maxnsegs))
1003 indirect = 1;
1004 else
1005 indirect = 0;
1006 qe1->qe_indirect = indirect;
1007
1008 if (indirect) {
1009 struct vring_desc *vd;
1010 uint64_t addr;
1011 int i;
1012
1013 vd = &vq->vq_desc[qe1->qe_index];
1014 addr = vq->vq_dmamap->dm_segs[0].ds_addr
1015 + vq->vq_indirectoffset;
1016 addr += sizeof(struct vring_desc)
1017 * vq->vq_maxnsegs * qe1->qe_index;
1018 vd->addr = virtio_rw64(sc, addr);
1019 vd->len = virtio_rw32(sc, sizeof(struct vring_desc) * nsegs);
1020 vd->flags = virtio_rw16(sc, VRING_DESC_F_INDIRECT);
1021
1022 vd = vq->vq_indirect;
1023 vd += vq->vq_maxnsegs * qe1->qe_index;
1024 qe1->qe_desc_base = vd;
1025
1026 for (i = 0; i < nsegs-1; i++) {
1027 vd[i].flags = virtio_rw16(sc, VRING_DESC_F_NEXT);
1028 }
1029 vd[i].flags = virtio_rw16(sc, 0);
1030 qe1->qe_next = 0;
1031
1032 return 0;
1033 } else {
1034 struct vring_desc *vd;
1035 struct vq_entry *qe;
1036 int i, s;
1037
1038 vd = &vq->vq_desc[0];
1039 qe1->qe_desc_base = vd;
1040 qe1->qe_next = qe1->qe_index;
1041 s = slot;
1042 for (i = 0; i < nsegs - 1; i++) {
1043 qe = vq_alloc_entry(vq);
1044 if (qe == NULL) {
1045 vd[s].flags = virtio_rw16(sc, 0);
1046 virtio_enqueue_abort(sc, vq, slot);
1047 return EAGAIN;
1048 }
1049 vd[s].flags = virtio_rw16(sc, VRING_DESC_F_NEXT);
1050 vd[s].next = virtio_rw16(sc, qe->qe_index);
1051 s = qe->qe_index;
1052 }
1053 vd[s].flags = virtio_rw16(sc, 0);
1054
1055 return 0;
1056 }
1057 }
1058
1059 /*
1060 * enqueue: enqueue a single dmamap.
1061 */
1062 int
1063 virtio_enqueue(struct virtio_softc *sc, struct virtqueue *vq, int slot,
1064 bus_dmamap_t dmamap, bool write)
1065 {
1066 struct vq_entry *qe1 = &vq->vq_entries[slot];
1067 struct vring_desc *vd = qe1->qe_desc_base;
1068 int i;
1069 int s = qe1->qe_next;
1070
1071 KASSERT(s >= 0);
1072 KASSERT(dmamap->dm_nsegs > 0);
1073
1074 for (i = 0; i < dmamap->dm_nsegs; i++) {
1075 vd[s].addr = virtio_rw64(sc, dmamap->dm_segs[i].ds_addr);
1076 vd[s].len = virtio_rw32(sc, dmamap->dm_segs[i].ds_len);
1077 if (!write)
1078 vd[s].flags |= virtio_rw16(sc, VRING_DESC_F_WRITE);
1079 s = virtio_rw16(sc, vd[s].next);
1080 }
1081 qe1->qe_next = s;
1082
1083 return 0;
1084 }
1085
1086 int
1087 virtio_enqueue_p(struct virtio_softc *sc, struct virtqueue *vq, int slot,
1088 bus_dmamap_t dmamap, bus_addr_t start, bus_size_t len,
1089 bool write)
1090 {
1091 struct vq_entry *qe1 = &vq->vq_entries[slot];
1092 struct vring_desc *vd = qe1->qe_desc_base;
1093 int s = qe1->qe_next;
1094
1095 KASSERT(s >= 0);
1096 KASSERT(dmamap->dm_nsegs == 1); /* XXX */
1097 KASSERT((dmamap->dm_segs[0].ds_len > start) &&
1098 (dmamap->dm_segs[0].ds_len >= start + len));
1099
1100 vd[s].addr = virtio_rw64(sc, dmamap->dm_segs[0].ds_addr + start);
1101 vd[s].len = virtio_rw32(sc, len);
1102 if (!write)
1103 vd[s].flags |= virtio_rw16(sc, VRING_DESC_F_WRITE);
1104 qe1->qe_next = virtio_rw16(sc, vd[s].next);
1105
1106 return 0;
1107 }
1108
1109 /*
1110 * enqueue_commit: add it to the aring.
1111 */
1112 int
1113 virtio_enqueue_commit(struct virtio_softc *sc, struct virtqueue *vq, int slot,
1114 bool notifynow)
1115 {
1116 struct vq_entry *qe1;
1117
1118 if (slot < 0) {
1119 mutex_enter(&vq->vq_aring_lock);
1120 goto notify;
1121 }
1122 vq_sync_descs(sc, vq, BUS_DMASYNC_PREWRITE);
1123 qe1 = &vq->vq_entries[slot];
1124 if (qe1->qe_indirect)
1125 vq_sync_indirect(sc, vq, slot, BUS_DMASYNC_PREWRITE);
1126 mutex_enter(&vq->vq_aring_lock);
1127 vq->vq_avail->ring[(vq->vq_avail_idx++) % vq->vq_num] =
1128 virtio_rw16(sc, slot);
1129
1130 notify:
1131 if (notifynow) {
1132 uint16_t o, n, t;
1133 uint16_t flags;
1134
1135 o = virtio_rw16(sc, vq->vq_avail->idx);
1136 n = vq->vq_avail_idx;
1137
1138 /*
1139 * Prepare for `device->CPU' (host->guest) transfer
1140 * into the buffer. This must happen before we commit
1141 * the vq->vq_avail->idx update to ensure we're not
1142 * still using the buffer in case program-prior loads
1143 * or stores in it get delayed past the store to
1144 * vq->vq_avail->idx.
1145 */
1146 vq_sync_uring_all(sc, vq, BUS_DMASYNC_PREREAD);
1147
1148 /* ensure payload is published, then avail idx */
1149 vq_sync_aring_payload(sc, vq, BUS_DMASYNC_PREWRITE);
1150 vq->vq_avail->idx = virtio_rw16(sc, vq->vq_avail_idx);
1151 vq_sync_aring_header(sc, vq, BUS_DMASYNC_PREWRITE);
1152 vq->vq_queued++;
1153
1154 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
1155 vq_sync_uring_avail(sc, vq, BUS_DMASYNC_POSTREAD);
1156 t = virtio_rw16(sc, *vq->vq_avail_event) + 1;
1157 if ((uint16_t) (n - t) < (uint16_t) (n - o))
1158 sc->sc_ops->kick(sc, vq->vq_index);
1159 } else {
1160 vq_sync_uring_header(sc, vq, BUS_DMASYNC_POSTREAD);
1161 flags = virtio_rw16(sc, vq->vq_used->flags);
1162 if (!(flags & VRING_USED_F_NO_NOTIFY))
1163 sc->sc_ops->kick(sc, vq->vq_index);
1164 }
1165 }
1166 mutex_exit(&vq->vq_aring_lock);
1167
1168 return 0;
1169 }
1170
1171 /*
1172 * enqueue_abort: rollback.
1173 */
1174 int
1175 virtio_enqueue_abort(struct virtio_softc *sc, struct virtqueue *vq, int slot)
1176 {
1177 struct vq_entry *qe = &vq->vq_entries[slot];
1178 struct vring_desc *vd;
1179 int s;
1180
1181 if (qe->qe_next < 0) {
1182 vq_free_entry(vq, qe);
1183 return 0;
1184 }
1185
1186 s = slot;
1187 vd = &vq->vq_desc[0];
1188 while (virtio_rw16(sc, vd[s].flags) & VRING_DESC_F_NEXT) {
1189 s = virtio_rw16(sc, vd[s].next);
1190 vq_free_entry(vq, qe);
1191 qe = &vq->vq_entries[s];
1192 }
1193 vq_free_entry(vq, qe);
1194 return 0;
1195 }
1196
1197 /*
1198 * Dequeue a request.
1199 */
1200 /*
1201 * dequeue: dequeue a request from uring; dmamap_sync for uring is
1202 * already done in the interrupt handler.
1203 */
1204 int
1205 virtio_dequeue(struct virtio_softc *sc, struct virtqueue *vq,
1206 int *slotp, int *lenp)
1207 {
1208 uint16_t slot, usedidx;
1209 struct vq_entry *qe;
1210
1211 if (vq->vq_used_idx == virtio_rw16(sc, vq->vq_used->idx))
1212 return ENOENT;
1213 mutex_enter(&vq->vq_uring_lock);
1214 usedidx = vq->vq_used_idx++;
1215 mutex_exit(&vq->vq_uring_lock);
1216 usedidx %= vq->vq_num;
1217 slot = virtio_rw32(sc, vq->vq_used->ring[usedidx].id);
1218 qe = &vq->vq_entries[slot];
1219
1220 if (qe->qe_indirect)
1221 vq_sync_indirect(sc, vq, slot, BUS_DMASYNC_POSTWRITE);
1222
1223 if (slotp)
1224 *slotp = slot;
1225 if (lenp)
1226 *lenp = virtio_rw32(sc, vq->vq_used->ring[usedidx].len);
1227
1228 return 0;
1229 }
1230
1231 /*
1232 * dequeue_commit: complete dequeue; the slot is recycled for future use.
1233 * if you forget to call this the slot will be leaked.
1234 */
1235 int
1236 virtio_dequeue_commit(struct virtio_softc *sc, struct virtqueue *vq, int slot)
1237 {
1238 struct vq_entry *qe = &vq->vq_entries[slot];
1239 struct vring_desc *vd = &vq->vq_desc[0];
1240 int s = slot;
1241
1242 while (virtio_rw16(sc, vd[s].flags) & VRING_DESC_F_NEXT) {
1243 s = virtio_rw16(sc, vd[s].next);
1244 vq_free_entry(vq, qe);
1245 qe = &vq->vq_entries[s];
1246 }
1247 vq_free_entry(vq, qe);
1248
1249 return 0;
1250 }
1251
1252 /*
1253 * Attach a child, fill all the members.
1254 */
1255 void
1256 virtio_child_attach_start(struct virtio_softc *sc, device_t child, int ipl,
1257 struct virtqueue *vqs,
1258 virtio_callback config_change,
1259 virtio_callback intr_hand,
1260 int req_flags, int req_features, const char *feat_bits)
1261 {
1262 char buf[1024];
1263
1264 sc->sc_child = child;
1265 sc->sc_ipl = ipl;
1266 sc->sc_vqs = vqs;
1267 sc->sc_config_change = config_change;
1268 sc->sc_intrhand = intr_hand;
1269 sc->sc_flags = req_flags;
1270
1271 virtio_negotiate_features(sc, req_features);
1272 snprintb(buf, sizeof(buf), feat_bits, sc->sc_active_features);
1273 aprint_normal(": features: %s\n", buf);
1274 aprint_naive("\n");
1275 }
1276
1277 void
1278 virtio_child_attach_set_vqs(struct virtio_softc *sc,
1279 struct virtqueue *vqs, int nvq_pairs)
1280 {
1281
1282 KASSERT(nvq_pairs == 1 ||
1283 (sc->sc_flags & VIRTIO_F_INTR_SOFTINT) == 0);
1284 if (nvq_pairs > 1)
1285 sc->sc_child_mq = true;
1286
1287 sc->sc_vqs = vqs;
1288 }
1289
1290 int
1291 virtio_child_attach_finish(struct virtio_softc *sc)
1292 {
1293 int r;
1294
1295 sc->sc_finished_called = true;
1296 r = sc->sc_ops->alloc_interrupts(sc);
1297 if (r != 0) {
1298 aprint_error_dev(sc->sc_dev, "failed to allocate interrupts\n");
1299 goto fail;
1300 }
1301
1302 r = sc->sc_ops->setup_interrupts(sc, 0);
1303 if (r != 0) {
1304 aprint_error_dev(sc->sc_dev, "failed to setup interrupts\n");
1305 goto fail;
1306 }
1307
1308 KASSERT(sc->sc_soft_ih == NULL);
1309 if (sc->sc_flags & VIRTIO_F_INTR_SOFTINT) {
1310 u_int flags = SOFTINT_NET;
1311 if (sc->sc_flags & VIRTIO_F_INTR_MPSAFE)
1312 flags |= SOFTINT_MPSAFE;
1313
1314 sc->sc_soft_ih = softint_establish(flags, virtio_soft_intr, sc);
1315 if (sc->sc_soft_ih == NULL) {
1316 sc->sc_ops->free_interrupts(sc);
1317 aprint_error_dev(sc->sc_dev,
1318 "failed to establish soft interrupt\n");
1319 goto fail;
1320 }
1321 }
1322
1323 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER_OK);
1324 return 0;
1325
1326 fail:
1327 if (sc->sc_soft_ih) {
1328 softint_disestablish(sc->sc_soft_ih);
1329 sc->sc_soft_ih = NULL;
1330 }
1331
1332 sc->sc_ops->free_interrupts(sc);
1333
1334 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
1335 return 1;
1336 }
1337
1338 void
1339 virtio_child_detach(struct virtio_softc *sc)
1340 {
1341 sc->sc_child = NULL;
1342 sc->sc_vqs = NULL;
1343
1344 virtio_device_reset(sc);
1345
1346 sc->sc_ops->free_interrupts(sc);
1347
1348 if (sc->sc_soft_ih) {
1349 softint_disestablish(sc->sc_soft_ih);
1350 sc->sc_soft_ih = NULL;
1351 }
1352 }
1353
1354 void
1355 virtio_child_attach_failed(struct virtio_softc *sc)
1356 {
1357 virtio_child_detach(sc);
1358
1359 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
1360
1361 sc->sc_child = VIRTIO_CHILD_FAILED;
1362 }
1363
1364 bus_dma_tag_t
1365 virtio_dmat(struct virtio_softc *sc)
1366 {
1367 return sc->sc_dmat;
1368 }
1369
1370 device_t
1371 virtio_child(struct virtio_softc *sc)
1372 {
1373 return sc->sc_child;
1374 }
1375
1376 int
1377 virtio_intrhand(struct virtio_softc *sc)
1378 {
1379 return (*sc->sc_intrhand)(sc);
1380 }
1381
1382 uint64_t
1383 virtio_features(struct virtio_softc *sc)
1384 {
1385 return sc->sc_active_features;
1386 }
1387
1388 int
1389 virtio_attach_failed(struct virtio_softc *sc)
1390 {
1391 device_t self = sc->sc_dev;
1392
1393 /* no error if its not connected, but its failed */
1394 if (sc->sc_childdevid == 0)
1395 return 1;
1396
1397 if (sc->sc_child == NULL) {
1398 aprint_error_dev(self,
1399 "no matching child driver; not configured\n");
1400 return 1;
1401 }
1402
1403 if (sc->sc_child == VIRTIO_CHILD_FAILED) {
1404 aprint_error_dev(self, "virtio configuration failed\n");
1405 return 1;
1406 }
1407
1408 /* sanity check */
1409 if (!sc->sc_finished_called) {
1410 aprint_error_dev(self, "virtio internal error, child driver "
1411 "signaled OK but didn't initialize interrupts\n");
1412 return 1;
1413 }
1414
1415 return 0;
1416 }
1417
1418 void
1419 virtio_print_device_type(device_t self, int id, int revision)
1420 {
1421 aprint_normal_dev(self, "%s device (rev. 0x%02x)\n",
1422 (id < NDEVNAMES ? virtio_device_name[id] : "Unknown"),
1423 revision);
1424 }
1425
1426
1427 MODULE(MODULE_CLASS_DRIVER, virtio, NULL);
1428
1429 #ifdef _MODULE
1430 #include "ioconf.c"
1431 #endif
1432
1433 static int
1434 virtio_modcmd(modcmd_t cmd, void *opaque)
1435 {
1436 int error = 0;
1437
1438 #ifdef _MODULE
1439 switch (cmd) {
1440 case MODULE_CMD_INIT:
1441 error = config_init_component(cfdriver_ioconf_virtio,
1442 cfattach_ioconf_virtio, cfdata_ioconf_virtio);
1443 break;
1444 case MODULE_CMD_FINI:
1445 error = config_fini_component(cfdriver_ioconf_virtio,
1446 cfattach_ioconf_virtio, cfdata_ioconf_virtio);
1447 break;
1448 default:
1449 error = ENOTTY;
1450 break;
1451 }
1452 #endif
1453
1454 return error;
1455 }
1456