virtio.c revision 1.63.2.4 1 /* $NetBSD: virtio.c,v 1.63.2.4 2023/05/13 10:56:10 martin Exp $ */
2
3 /*
4 * Copyright (c) 2020 The NetBSD Foundation, Inc.
5 * Copyright (c) 2012 Stefan Fritsch, Alexander Fiveg.
6 * Copyright (c) 2010 Minoura Makoto.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: virtio.c,v 1.63.2.4 2023/05/13 10:56:10 martin Exp $");
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/atomic.h>
37 #include <sys/bus.h>
38 #include <sys/device.h>
39 #include <sys/kmem.h>
40 #include <sys/module.h>
41
42 #define VIRTIO_PRIVATE
43
44 #include <dev/pci/virtioreg.h> /* XXX: move to non-pci */
45 #include <dev/pci/virtiovar.h> /* XXX: move to non-pci */
46
47 #define MINSEG_INDIRECT 2 /* use indirect if nsegs >= this value */
48
49 /*
50 * The maximum descriptor size is 2^15. Use that value as the end of
51 * descriptor chain terminator since it will never be a valid index
52 * in the descriptor table.
53 */
54 #define VRING_DESC_CHAIN_END 32768
55
56 /* incomplete list */
57 static const char *virtio_device_name[] = {
58 "unknown (0)", /* 0 */
59 "network", /* 1 */
60 "block", /* 2 */
61 "console", /* 3 */
62 "entropy", /* 4 */
63 "memory balloon", /* 5 */
64 "I/O memory", /* 6 */
65 "remote processor messaging", /* 7 */
66 "SCSI", /* 8 */
67 "9P transport", /* 9 */
68 };
69 #define NDEVNAMES __arraycount(virtio_device_name)
70
71 static void virtio_reset_vq(struct virtio_softc *,
72 struct virtqueue *);
73
74 void
75 virtio_set_status(struct virtio_softc *sc, int status)
76 {
77 sc->sc_ops->set_status(sc, status);
78 }
79
80 /*
81 * Reset the device.
82 */
83 /*
84 * To reset the device to a known state, do following:
85 * virtio_reset(sc); // this will stop the device activity
86 * <dequeue finished requests>; // virtio_dequeue() still can be called
87 * <revoke pending requests in the vqs if any>;
88 * virtio_reinit_start(sc); // dequeue prohibitted
89 * newfeatures = virtio_negotiate_features(sc, requestedfeatures);
90 * <some other initialization>;
91 * virtio_reinit_end(sc); // device activated; enqueue allowed
92 * Once attached, feature negotiation can only be allowed after virtio_reset.
93 */
94 void
95 virtio_reset(struct virtio_softc *sc)
96 {
97 virtio_device_reset(sc);
98 }
99
100 int
101 virtio_reinit_start(struct virtio_softc *sc)
102 {
103 int i, r;
104
105 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_ACK);
106 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER);
107 for (i = 0; i < sc->sc_nvqs; i++) {
108 int n;
109 struct virtqueue *vq = &sc->sc_vqs[i];
110 n = sc->sc_ops->read_queue_size(sc, vq->vq_index);
111 if (n == 0) /* vq disappeared */
112 continue;
113 if (n != vq->vq_num) {
114 panic("%s: virtqueue size changed, vq index %d\n",
115 device_xname(sc->sc_dev),
116 vq->vq_index);
117 }
118 virtio_reset_vq(sc, vq);
119 sc->sc_ops->setup_queue(sc, vq->vq_index,
120 vq->vq_dmamap->dm_segs[0].ds_addr);
121 }
122
123 r = sc->sc_ops->setup_interrupts(sc, 1);
124 if (r != 0)
125 goto fail;
126
127 return 0;
128
129 fail:
130 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
131
132 return 1;
133 }
134
135 void
136 virtio_reinit_end(struct virtio_softc *sc)
137 {
138 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER_OK);
139 }
140
141 /*
142 * Feature negotiation.
143 */
144 void
145 virtio_negotiate_features(struct virtio_softc *sc, uint64_t guest_features)
146 {
147 if (!(device_cfdata(sc->sc_dev)->cf_flags & 1) &&
148 !(device_cfdata(sc->sc_child)->cf_flags & 1)) /* XXX */
149 guest_features |= VIRTIO_F_RING_INDIRECT_DESC;
150 sc->sc_ops->neg_features(sc, guest_features);
151 if (sc->sc_active_features & VIRTIO_F_RING_INDIRECT_DESC)
152 sc->sc_indirect = true;
153 else
154 sc->sc_indirect = false;
155 }
156
157
158 /*
159 * Device configuration registers readers/writers
160 */
161 #if 0
162 #define DPRINTFR(n, fmt, val, index, num) \
163 printf("\n%s (", n); \
164 for (int i = 0; i < num; i++) \
165 printf("%02x ", bus_space_read_1(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index+i)); \
166 printf(") -> "); printf(fmt, val); printf("\n");
167 #define DPRINTFR2(n, fmt, val_s, val_n) \
168 printf("%s ", n); \
169 printf("\n stream "); printf(fmt, val_s); printf(" norm "); printf(fmt, val_n); printf("\n");
170 #else
171 #define DPRINTFR(n, fmt, val, index, num)
172 #define DPRINTFR2(n, fmt, val_s, val_n)
173 #endif
174
175
176 uint8_t
177 virtio_read_device_config_1(struct virtio_softc *sc, int index)
178 {
179 bus_space_tag_t iot = sc->sc_devcfg_iot;
180 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
181 uint8_t val;
182
183 val = bus_space_read_1(iot, ioh, index);
184
185 DPRINTFR("read_1", "%02x", val, index, 1);
186 return val;
187 }
188
189 uint16_t
190 virtio_read_device_config_2(struct virtio_softc *sc, int index)
191 {
192 bus_space_tag_t iot = sc->sc_devcfg_iot;
193 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
194 uint16_t val;
195
196 val = bus_space_read_2(iot, ioh, index);
197 if (BYTE_ORDER != sc->sc_bus_endian)
198 val = bswap16(val);
199
200 DPRINTFR("read_2", "%04x", val, index, 2);
201 DPRINTFR2("read_2", "%04x",
202 bus_space_read_stream_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh,
203 index),
204 bus_space_read_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
205 return val;
206 }
207
208 uint32_t
209 virtio_read_device_config_4(struct virtio_softc *sc, int index)
210 {
211 bus_space_tag_t iot = sc->sc_devcfg_iot;
212 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
213 uint32_t val;
214
215 val = bus_space_read_4(iot, ioh, index);
216 if (BYTE_ORDER != sc->sc_bus_endian)
217 val = bswap32(val);
218
219 DPRINTFR("read_4", "%08x", val, index, 4);
220 DPRINTFR2("read_4", "%08x",
221 bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh,
222 index),
223 bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
224 return val;
225 }
226
227 /*
228 * The Virtio spec explicitly tells that reading and writing 8 bytes are not
229 * considered atomic and no triggers may be connected to reading or writing
230 * it. We access it using two 32 reads. See virtio spec 4.1.3.1.
231 */
232 uint64_t
233 virtio_read_device_config_8(struct virtio_softc *sc, int index)
234 {
235 bus_space_tag_t iot = sc->sc_devcfg_iot;
236 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
237 union {
238 uint64_t u64;
239 uint32_t l[2];
240 } v;
241 uint64_t val;
242
243 v.l[0] = bus_space_read_4(iot, ioh, index);
244 v.l[1] = bus_space_read_4(iot, ioh, index + 4);
245 if (sc->sc_bus_endian != sc->sc_struct_endian) {
246 v.l[0] = bswap32(v.l[0]);
247 v.l[1] = bswap32(v.l[1]);
248 }
249 val = v.u64;
250
251 if (BYTE_ORDER != sc->sc_struct_endian)
252 val = bswap64(val);
253
254 DPRINTFR("read_8", "%08"PRIx64, val, index, 8);
255 DPRINTFR2("read_8 low ", "%08x",
256 bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh,
257 index),
258 bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
259 DPRINTFR2("read_8 high ", "%08x",
260 bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh,
261 index + 4),
262 bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index + 4));
263 return val;
264 }
265
266 /*
267 * In the older virtio spec, device config registers are host endian. On newer
268 * they are little endian. Some newer devices however explicitly specify their
269 * register to always be little endian. These functions cater for these.
270 */
271 uint16_t
272 virtio_read_device_config_le_2(struct virtio_softc *sc, int index)
273 {
274 bus_space_tag_t iot = sc->sc_devcfg_iot;
275 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
276 uint16_t val;
277
278 val = bus_space_read_2(iot, ioh, index);
279 if (sc->sc_bus_endian != LITTLE_ENDIAN)
280 val = bswap16(val);
281
282 DPRINTFR("read_le_2", "%04x", val, index, 2);
283 DPRINTFR2("read_le_2", "%04x",
284 bus_space_read_stream_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0),
285 bus_space_read_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0));
286 return val;
287 }
288
289 uint32_t
290 virtio_read_device_config_le_4(struct virtio_softc *sc, int index)
291 {
292 bus_space_tag_t iot = sc->sc_devcfg_iot;
293 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
294 uint32_t val;
295
296 val = bus_space_read_4(iot, ioh, index);
297 if (sc->sc_bus_endian != LITTLE_ENDIAN)
298 val = bswap32(val);
299
300 DPRINTFR("read_le_4", "%08x", val, index, 4);
301 DPRINTFR2("read_le_4", "%08x",
302 bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0),
303 bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0));
304 return val;
305 }
306
307 void
308 virtio_write_device_config_1(struct virtio_softc *sc, int index, uint8_t value)
309 {
310 bus_space_tag_t iot = sc->sc_devcfg_iot;
311 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
312
313 bus_space_write_1(iot, ioh, index, value);
314 }
315
316 void
317 virtio_write_device_config_2(struct virtio_softc *sc, int index,
318 uint16_t value)
319 {
320 bus_space_tag_t iot = sc->sc_devcfg_iot;
321 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
322
323 if (BYTE_ORDER != sc->sc_bus_endian)
324 value = bswap16(value);
325 bus_space_write_2(iot, ioh, index, value);
326 }
327
328 void
329 virtio_write_device_config_4(struct virtio_softc *sc, int index,
330 uint32_t value)
331 {
332 bus_space_tag_t iot = sc->sc_devcfg_iot;
333 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
334
335 if (BYTE_ORDER != sc->sc_bus_endian)
336 value = bswap32(value);
337 bus_space_write_4(iot, ioh, index, value);
338 }
339
340 /*
341 * The Virtio spec explicitly tells that reading and writing 8 bytes are not
342 * considered atomic and no triggers may be connected to reading or writing
343 * it. We access it using two 32 bit writes. For good measure it is stated to
344 * always write lsb first just in case of a hypervisor bug. See See virtio
345 * spec 4.1.3.1.
346 */
347 void
348 virtio_write_device_config_8(struct virtio_softc *sc, int index,
349 uint64_t value)
350 {
351 bus_space_tag_t iot = sc->sc_devcfg_iot;
352 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
353 union {
354 uint64_t u64;
355 uint32_t l[2];
356 } v;
357
358 if (BYTE_ORDER != sc->sc_struct_endian)
359 value = bswap64(value);
360
361 v.u64 = value;
362 if (sc->sc_bus_endian != sc->sc_struct_endian) {
363 v.l[0] = bswap32(v.l[0]);
364 v.l[1] = bswap32(v.l[1]);
365 }
366
367 if (sc->sc_struct_endian == LITTLE_ENDIAN) {
368 bus_space_write_4(iot, ioh, index, v.l[0]);
369 bus_space_write_4(iot, ioh, index + 4, v.l[1]);
370 } else {
371 bus_space_write_4(iot, ioh, index + 4, v.l[1]);
372 bus_space_write_4(iot, ioh, index, v.l[0]);
373 }
374 }
375
376 /*
377 * In the older virtio spec, device config registers are host endian. On newer
378 * they are little endian. Some newer devices however explicitly specify their
379 * register to always be little endian. These functions cater for these.
380 */
381 void
382 virtio_write_device_config_le_2(struct virtio_softc *sc, int index,
383 uint16_t value)
384 {
385 bus_space_tag_t iot = sc->sc_devcfg_iot;
386 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
387
388 if (sc->sc_bus_endian != LITTLE_ENDIAN)
389 value = bswap16(value);
390 bus_space_write_2(iot, ioh, index, value);
391 }
392
393 void
394 virtio_write_device_config_le_4(struct virtio_softc *sc, int index,
395 uint32_t value)
396 {
397 bus_space_tag_t iot = sc->sc_devcfg_iot;
398 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
399
400 if (sc->sc_bus_endian != LITTLE_ENDIAN)
401 value = bswap32(value);
402 bus_space_write_4(iot, ioh, index, value);
403 }
404
405
406 /*
407 * data structures endian helpers
408 */
409 uint16_t
410 virtio_rw16(struct virtio_softc *sc, uint16_t val)
411 {
412 KASSERT(sc);
413 return BYTE_ORDER != sc->sc_struct_endian ? bswap16(val) : val;
414 }
415
416 uint32_t
417 virtio_rw32(struct virtio_softc *sc, uint32_t val)
418 {
419 KASSERT(sc);
420 return BYTE_ORDER != sc->sc_struct_endian ? bswap32(val) : val;
421 }
422
423 uint64_t
424 virtio_rw64(struct virtio_softc *sc, uint64_t val)
425 {
426 KASSERT(sc);
427 return BYTE_ORDER != sc->sc_struct_endian ? bswap64(val) : val;
428 }
429
430
431 /*
432 * Interrupt handler.
433 */
434 static void
435 virtio_soft_intr(void *arg)
436 {
437 struct virtio_softc *sc = arg;
438
439 KASSERT(sc->sc_intrhand != NULL);
440
441 (*sc->sc_intrhand)(sc);
442 }
443
444 /* set to vq->vq_intrhand in virtio_init_vq_vqdone() */
445 static int
446 virtio_vq_done(void *xvq)
447 {
448 struct virtqueue *vq = xvq;
449
450 return vq->vq_done(vq);
451 }
452
453 static int
454 virtio_vq_intr(struct virtio_softc *sc)
455 {
456 struct virtqueue *vq;
457 int i, r = 0;
458
459 for (i = 0; i < sc->sc_nvqs; i++) {
460 vq = &sc->sc_vqs[i];
461 if (virtio_vq_is_enqueued(sc, vq) == 1) {
462 r |= (*vq->vq_intrhand)(vq->vq_intrhand_arg);
463 }
464 }
465
466 return r;
467 }
468
469 /*
470 * dmamap sync operations for a virtqueue.
471 */
472 static inline void
473 vq_sync_descs(struct virtio_softc *sc, struct virtqueue *vq, int ops)
474 {
475
476 /* availoffset == sizeof(vring_desc) * vq_num */
477 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap, 0, vq->vq_availoffset,
478 ops);
479 }
480
481 static inline void
482 vq_sync_aring_all(struct virtio_softc *sc, struct virtqueue *vq, int ops)
483 {
484 uint16_t hdrlen = offsetof(struct vring_avail, ring);
485 size_t payloadlen = vq->vq_num * sizeof(uint16_t);
486 size_t usedlen = 0;
487
488 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX)
489 usedlen = sizeof(uint16_t);
490 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
491 vq->vq_availoffset, hdrlen + payloadlen + usedlen, ops);
492 }
493
494 static inline void
495 vq_sync_aring_header(struct virtio_softc *sc, struct virtqueue *vq, int ops)
496 {
497 uint16_t hdrlen = offsetof(struct vring_avail, ring);
498
499 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
500 vq->vq_availoffset, hdrlen, ops);
501 }
502
503 static inline void
504 vq_sync_aring_payload(struct virtio_softc *sc, struct virtqueue *vq, int ops)
505 {
506 uint16_t hdrlen = offsetof(struct vring_avail, ring);
507 size_t payloadlen = vq->vq_num * sizeof(uint16_t);
508
509 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
510 vq->vq_availoffset + hdrlen, payloadlen, ops);
511 }
512
513 static inline void
514 vq_sync_aring_used(struct virtio_softc *sc, struct virtqueue *vq, int ops)
515 {
516 uint16_t hdrlen = offsetof(struct vring_avail, ring);
517 size_t payloadlen = vq->vq_num * sizeof(uint16_t);
518 size_t usedlen = sizeof(uint16_t);
519
520 if ((sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) == 0)
521 return;
522 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
523 vq->vq_availoffset + hdrlen + payloadlen, usedlen, ops);
524 }
525
526 static inline void
527 vq_sync_uring_all(struct virtio_softc *sc, struct virtqueue *vq, int ops)
528 {
529 uint16_t hdrlen = offsetof(struct vring_used, ring);
530 size_t payloadlen = vq->vq_num * sizeof(struct vring_used_elem);
531 size_t availlen = 0;
532
533 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX)
534 availlen = sizeof(uint16_t);
535 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
536 vq->vq_usedoffset, hdrlen + payloadlen + availlen, ops);
537 }
538
539 static inline void
540 vq_sync_uring_header(struct virtio_softc *sc, struct virtqueue *vq, int ops)
541 {
542 uint16_t hdrlen = offsetof(struct vring_used, ring);
543
544 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
545 vq->vq_usedoffset, hdrlen, ops);
546 }
547
548 static inline void
549 vq_sync_uring_payload(struct virtio_softc *sc, struct virtqueue *vq, int ops)
550 {
551 uint16_t hdrlen = offsetof(struct vring_used, ring);
552 size_t payloadlen = vq->vq_num * sizeof(struct vring_used_elem);
553
554 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
555 vq->vq_usedoffset + hdrlen, payloadlen, ops);
556 }
557
558 static inline void
559 vq_sync_uring_avail(struct virtio_softc *sc, struct virtqueue *vq, int ops)
560 {
561 uint16_t hdrlen = offsetof(struct vring_used, ring);
562 size_t payloadlen = vq->vq_num * sizeof(struct vring_used_elem);
563 size_t availlen = sizeof(uint16_t);
564
565 if ((sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) == 0)
566 return;
567 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
568 vq->vq_usedoffset + hdrlen + payloadlen, availlen, ops);
569 }
570
571 static inline void
572 vq_sync_indirect(struct virtio_softc *sc, struct virtqueue *vq, int slot,
573 int ops)
574 {
575 int offset = vq->vq_indirectoffset +
576 sizeof(struct vring_desc) * vq->vq_maxnsegs * slot;
577
578 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
579 offset, sizeof(struct vring_desc) * vq->vq_maxnsegs, ops);
580 }
581
582 bool
583 virtio_vq_is_enqueued(struct virtio_softc *sc, struct virtqueue *vq)
584 {
585
586 if (vq->vq_queued) {
587 vq->vq_queued = 0;
588 vq_sync_aring_all(sc, vq, BUS_DMASYNC_POSTWRITE);
589 }
590
591 vq_sync_uring_header(sc, vq, BUS_DMASYNC_POSTREAD);
592 if (vq->vq_used_idx == virtio_rw16(sc, vq->vq_used->idx))
593 return 0;
594 vq_sync_uring_payload(sc, vq, BUS_DMASYNC_POSTREAD);
595 return 1;
596 }
597
598 /*
599 * Increase the event index in order to delay interrupts.
600 */
601 int
602 virtio_postpone_intr(struct virtio_softc *sc, struct virtqueue *vq,
603 uint16_t nslots)
604 {
605 uint16_t idx, nused;
606
607 idx = vq->vq_used_idx + nslots;
608
609 /* set the new event index: avail_ring->used_event = idx */
610 *vq->vq_used_event = virtio_rw16(sc, idx);
611 vq_sync_aring_used(vq->vq_owner, vq, BUS_DMASYNC_PREWRITE);
612 vq->vq_queued++;
613
614 nused = (uint16_t)
615 (virtio_rw16(sc, vq->vq_used->idx) - vq->vq_used_idx);
616 KASSERT(nused <= vq->vq_num);
617
618 return nslots < nused;
619 }
620
621 /*
622 * Postpone interrupt until 3/4 of the available descriptors have been
623 * consumed.
624 */
625 int
626 virtio_postpone_intr_smart(struct virtio_softc *sc, struct virtqueue *vq)
627 {
628 uint16_t nslots;
629
630 nslots = (uint16_t)
631 (virtio_rw16(sc, vq->vq_avail->idx) - vq->vq_used_idx) * 3 / 4;
632
633 return virtio_postpone_intr(sc, vq, nslots);
634 }
635
636 /*
637 * Postpone interrupt until all of the available descriptors have been
638 * consumed.
639 */
640 int
641 virtio_postpone_intr_far(struct virtio_softc *sc, struct virtqueue *vq)
642 {
643 uint16_t nslots;
644
645 nslots = (uint16_t)
646 (virtio_rw16(sc, vq->vq_avail->idx) - vq->vq_used_idx);
647
648 return virtio_postpone_intr(sc, vq, nslots);
649 }
650
651 /*
652 * Start/stop vq interrupt. No guarantee.
653 */
654 void
655 virtio_stop_vq_intr(struct virtio_softc *sc, struct virtqueue *vq)
656 {
657
658 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
659 /*
660 * No way to disable the interrupt completely with
661 * RingEventIdx. Instead advance used_event by half the
662 * possible value. This won't happen soon and is far enough in
663 * the past to not trigger a spurios interrupt.
664 */
665 *vq->vq_used_event = virtio_rw16(sc, vq->vq_used_idx + 0x8000);
666 vq_sync_aring_used(sc, vq, BUS_DMASYNC_PREWRITE);
667 } else {
668 vq->vq_avail->flags |=
669 virtio_rw16(sc, VRING_AVAIL_F_NO_INTERRUPT);
670 vq_sync_aring_header(sc, vq, BUS_DMASYNC_PREWRITE);
671 }
672 vq->vq_queued++;
673 }
674
675 int
676 virtio_start_vq_intr(struct virtio_softc *sc, struct virtqueue *vq)
677 {
678
679 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
680 /*
681 * If event index feature is negotiated, enabling interrupts
682 * is done through setting the latest consumed index in the
683 * used_event field
684 */
685 *vq->vq_used_event = virtio_rw16(sc, vq->vq_used_idx);
686 vq_sync_aring_used(sc, vq, BUS_DMASYNC_PREWRITE);
687 } else {
688 vq->vq_avail->flags &=
689 ~virtio_rw16(sc, VRING_AVAIL_F_NO_INTERRUPT);
690 vq_sync_aring_header(sc, vq, BUS_DMASYNC_PREWRITE);
691 }
692 vq->vq_queued++;
693
694 vq_sync_uring_header(sc, vq, BUS_DMASYNC_POSTREAD);
695 if (vq->vq_used_idx == virtio_rw16(sc, vq->vq_used->idx))
696 return 0;
697 vq_sync_uring_payload(sc, vq, BUS_DMASYNC_POSTREAD);
698 return 1;
699 }
700
701 /*
702 * Initialize vq structure.
703 */
704 /*
705 * Reset virtqueue parameters
706 */
707 static void
708 virtio_reset_vq(struct virtio_softc *sc, struct virtqueue *vq)
709 {
710 struct vring_desc *vds;
711 int i, j;
712 int vq_size = vq->vq_num;
713
714 memset(vq->vq_vaddr, 0, vq->vq_bytesize);
715
716 /* build the descriptor chain for free slot management */
717 vds = vq->vq_desc;
718 for (i = 0; i < vq_size - 1; i++) {
719 vds[i].next = virtio_rw16(sc, i + 1);
720 }
721 vds[i].next = virtio_rw16(sc, VRING_DESC_CHAIN_END);
722 vq->vq_free_idx = 0;
723
724 /* build the indirect descriptor chain */
725 if (vq->vq_indirect != NULL) {
726 struct vring_desc *vd;
727
728 for (i = 0; i < vq_size; i++) {
729 vd = vq->vq_indirect;
730 vd += vq->vq_maxnsegs * i;
731 for (j = 0; j < vq->vq_maxnsegs - 1; j++) {
732 vd[j].next = virtio_rw16(sc, j + 1);
733 }
734 }
735 }
736
737 /* enqueue/dequeue status */
738 vq->vq_avail_idx = 0;
739 vq->vq_used_idx = 0;
740 vq->vq_queued = 0;
741 vq_sync_uring_all(sc, vq, BUS_DMASYNC_PREREAD);
742 vq->vq_queued++;
743 }
744
745 /* Initialize vq */
746 void
747 virtio_init_vq_vqdone(struct virtio_softc *sc, struct virtqueue *vq,
748 int index, int (*vq_done)(struct virtqueue *))
749 {
750
751 virtio_init_vq(sc, vq, index, virtio_vq_done, vq);
752 vq->vq_done = vq_done;
753 }
754
755 void
756 virtio_init_vq(struct virtio_softc *sc, struct virtqueue *vq, int index,
757 int (*func)(void *), void *arg)
758 {
759
760 memset(vq, 0, sizeof(*vq));
761
762 vq->vq_owner = sc;
763 vq->vq_num = sc->sc_ops->read_queue_size(sc, index);
764 vq->vq_index = index;
765 vq->vq_intrhand = func;
766 vq->vq_intrhand_arg = arg;
767 }
768
769 /*
770 * Allocate/free a vq.
771 */
772 int
773 virtio_alloc_vq(struct virtio_softc *sc, struct virtqueue *vq,
774 int maxsegsize, int maxnsegs, const char *name)
775 {
776 bus_size_t size_desc, size_avail, size_used, size_indirect;
777 bus_size_t allocsize = 0, size_desc_avail;
778 int rsegs, r, hdrlen;
779 unsigned int vq_num;
780 #define VIRTQUEUE_ALIGN(n) roundup(n, VIRTIO_PAGE_SIZE)
781
782 vq_num = vq->vq_num;
783
784 if (vq_num == 0) {
785 aprint_error_dev(sc->sc_dev,
786 "virtqueue not exist, index %d for %s\n",
787 vq->vq_index, name);
788 goto err;
789 }
790
791 hdrlen = sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX ? 3 : 2;
792
793 size_desc = sizeof(vq->vq_desc[0]) * vq_num;
794 size_avail = sizeof(uint16_t) * hdrlen
795 + sizeof(vq->vq_avail[0].ring[0]) * vq_num;
796 size_used = sizeof(uint16_t) *hdrlen
797 + sizeof(vq->vq_used[0].ring[0]) * vq_num;
798 size_indirect = (sc->sc_indirect && maxnsegs >= MINSEG_INDIRECT) ?
799 sizeof(struct vring_desc) * maxnsegs * vq_num : 0;
800
801 size_desc_avail = VIRTQUEUE_ALIGN(size_desc + size_avail);
802 size_used = VIRTQUEUE_ALIGN(size_used);
803
804 allocsize = size_desc_avail + size_used + size_indirect;
805
806 /* alloc and map the memory */
807 r = bus_dmamem_alloc(sc->sc_dmat, allocsize, VIRTIO_PAGE_SIZE, 0,
808 &vq->vq_segs[0], 1, &rsegs, BUS_DMA_WAITOK);
809 if (r != 0) {
810 aprint_error_dev(sc->sc_dev,
811 "virtqueue %d for %s allocation failed, "
812 "error code %d\n", vq->vq_index, name, r);
813 goto err;
814 }
815
816 r = bus_dmamem_map(sc->sc_dmat, &vq->vq_segs[0], rsegs, allocsize,
817 &vq->vq_vaddr, BUS_DMA_WAITOK);
818 if (r != 0) {
819 aprint_error_dev(sc->sc_dev,
820 "virtqueue %d for %s map failed, "
821 "error code %d\n", vq->vq_index, name, r);
822 goto err;
823 }
824
825 r = bus_dmamap_create(sc->sc_dmat, allocsize, 1, allocsize, 0,
826 BUS_DMA_WAITOK, &vq->vq_dmamap);
827 if (r != 0) {
828 aprint_error_dev(sc->sc_dev,
829 "virtqueue %d for %s dmamap creation failed, "
830 "error code %d\n", vq->vq_index, name, r);
831 goto err;
832 }
833
834 r = bus_dmamap_load(sc->sc_dmat, vq->vq_dmamap,
835 vq->vq_vaddr, allocsize, NULL, BUS_DMA_WAITOK);
836 if (r != 0) {
837 aprint_error_dev(sc->sc_dev,
838 "virtqueue %d for %s dmamap load failed, "
839 "error code %d\n", vq->vq_index, name, r);
840 goto err;
841 }
842
843 vq->vq_bytesize = allocsize;
844 vq->vq_maxsegsize = maxsegsize;
845 vq->vq_maxnsegs = maxnsegs;
846
847 #define VIRTIO_PTR(base, offset) (void *)((intptr_t)(base) + (offset))
848 /* initialize vring pointers */
849 vq->vq_desc = VIRTIO_PTR(vq->vq_vaddr, 0);
850 vq->vq_availoffset = size_desc;
851 vq->vq_avail = VIRTIO_PTR(vq->vq_vaddr, vq->vq_availoffset);
852 vq->vq_used_event = VIRTIO_PTR(vq->vq_avail,
853 offsetof(struct vring_avail, ring[vq_num]));
854 vq->vq_usedoffset = size_desc_avail;
855 vq->vq_used = VIRTIO_PTR(vq->vq_vaddr, vq->vq_usedoffset);
856 vq->vq_avail_event = VIRTIO_PTR(vq->vq_used,
857 offsetof(struct vring_used, ring[vq_num]));
858
859 if (size_indirect > 0) {
860 vq->vq_indirectoffset = size_desc_avail + size_used;
861 vq->vq_indirect = VIRTIO_PTR(vq->vq_vaddr,
862 vq->vq_indirectoffset);
863 }
864 #undef VIRTIO_PTR
865
866 vq->vq_descx = kmem_zalloc(sizeof(vq->vq_descx[0]) * vq_num,
867 KM_SLEEP);
868
869 mutex_init(&vq->vq_freedesc_lock, MUTEX_SPIN, sc->sc_ipl);
870 mutex_init(&vq->vq_aring_lock, MUTEX_SPIN, sc->sc_ipl);
871 mutex_init(&vq->vq_uring_lock, MUTEX_SPIN, sc->sc_ipl);
872
873 virtio_reset_vq(sc, vq);
874
875 aprint_verbose_dev(sc->sc_dev,
876 "allocated %" PRIuBUSSIZE " byte for virtqueue %d for %s, "
877 "size %d\n", allocsize, vq->vq_index, name, vq_num);
878 if (size_indirect > 0)
879 aprint_verbose_dev(sc->sc_dev,
880 "using %" PRIuBUSSIZE " byte (%d entries) indirect "
881 "descriptors\n", size_indirect, maxnsegs * vq_num);
882
883 return 0;
884
885 err:
886 sc->sc_ops->setup_queue(sc, vq->vq_index, 0);
887 if (vq->vq_dmamap)
888 bus_dmamap_destroy(sc->sc_dmat, vq->vq_dmamap);
889 if (vq->vq_vaddr)
890 bus_dmamem_unmap(sc->sc_dmat, vq->vq_vaddr, allocsize);
891 if (vq->vq_segs[0].ds_addr)
892 bus_dmamem_free(sc->sc_dmat, &vq->vq_segs[0], 1);
893 memset(vq, 0, sizeof(*vq));
894
895 return -1;
896 }
897
898 int
899 virtio_free_vq(struct virtio_softc *sc, struct virtqueue *vq)
900 {
901 uint16_t s;
902 size_t i;
903
904 if (vq->vq_vaddr == NULL)
905 return 0;
906
907 /* device must be already deactivated */
908 /* confirm the vq is empty */
909 s = vq->vq_free_idx;
910 i = 0;
911 while (s != virtio_rw16(sc, VRING_DESC_CHAIN_END)) {
912 s = vq->vq_desc[s].next;
913 i++;
914 }
915 if (i != vq->vq_num) {
916 printf("%s: freeing non-empty vq, index %d\n",
917 device_xname(sc->sc_dev), vq->vq_index);
918 return EBUSY;
919 }
920
921 /* tell device that there's no virtqueue any longer */
922 sc->sc_ops->setup_queue(sc, vq->vq_index, 0);
923
924 vq_sync_aring_all(sc, vq, BUS_DMASYNC_POSTWRITE);
925
926 kmem_free(vq->vq_descx, sizeof(vq->vq_descx[0]) * vq->vq_num);
927 bus_dmamap_unload(sc->sc_dmat, vq->vq_dmamap);
928 bus_dmamap_destroy(sc->sc_dmat, vq->vq_dmamap);
929 bus_dmamem_unmap(sc->sc_dmat, vq->vq_vaddr, vq->vq_bytesize);
930 bus_dmamem_free(sc->sc_dmat, &vq->vq_segs[0], 1);
931 mutex_destroy(&vq->vq_freedesc_lock);
932 mutex_destroy(&vq->vq_uring_lock);
933 mutex_destroy(&vq->vq_aring_lock);
934 memset(vq, 0, sizeof(*vq));
935
936 return 0;
937 }
938
939 /*
940 * Free descriptor management.
941 */
942 static int
943 vq_alloc_slot_locked(struct virtio_softc *sc, struct virtqueue *vq,
944 size_t nslots)
945 {
946 struct vring_desc *vd;
947 uint16_t rv, tail;
948 size_t i;
949
950 KASSERT(mutex_owned(&vq->vq_freedesc_lock));
951
952 tail = virtio_rw16(sc, vq->vq_free_idx);
953 for (i = 0; i < nslots - 1; i++) {
954 if (tail == VRING_DESC_CHAIN_END)
955 return VRING_DESC_CHAIN_END;
956
957 vd = &vq->vq_desc[tail];
958 vd->flags = virtio_rw16(sc, VRING_DESC_F_NEXT);
959 tail = virtio_rw16(sc, vd->next);
960 }
961
962 if (tail == VRING_DESC_CHAIN_END)
963 return VRING_DESC_CHAIN_END;
964
965 rv = virtio_rw16(sc, vq->vq_free_idx);
966
967 vd = &vq->vq_desc[tail];
968 vd->flags = virtio_rw16(sc, 0);
969 vq->vq_free_idx = vd->next;
970
971 return rv;
972 }
973 static uint16_t
974 vq_alloc_slot(struct virtio_softc *sc, struct virtqueue *vq, size_t nslots)
975 {
976 uint16_t rv;
977
978 mutex_enter(&vq->vq_freedesc_lock);
979 rv = vq_alloc_slot_locked(sc, vq, nslots);
980 mutex_exit(&vq->vq_freedesc_lock);
981
982 return rv;
983 }
984
985 static void
986 vq_free_slot(struct virtio_softc *sc, struct virtqueue *vq, uint16_t slot)
987 {
988 struct vring_desc *vd;
989 uint16_t s;
990
991 mutex_enter(&vq->vq_freedesc_lock);
992 vd = &vq->vq_desc[slot];
993 while ((vd->flags & virtio_rw16(sc, VRING_DESC_F_NEXT)) != 0) {
994 s = virtio_rw16(sc, vd->next);
995 vd = &vq->vq_desc[s];
996 }
997 vd->next = vq->vq_free_idx;
998 vq->vq_free_idx = virtio_rw16(sc, slot);
999 mutex_exit(&vq->vq_freedesc_lock);
1000 }
1001
1002 /*
1003 * Enqueue several dmamaps as a single request.
1004 */
1005 /*
1006 * Typical usage:
1007 * <queue size> number of followings are stored in arrays
1008 * - command blocks (in dmamem) should be pre-allocated and mapped
1009 * - dmamaps for command blocks should be pre-allocated and loaded
1010 * - dmamaps for payload should be pre-allocated
1011 * r = virtio_enqueue_prep(sc, vq, &slot); // allocate a slot
1012 * if (r) // currently 0 or EAGAIN
1013 * return r;
1014 * r = bus_dmamap_load(dmat, dmamap_payload[slot], data, count, ..);
1015 * if (r) {
1016 * virtio_enqueue_abort(sc, vq, slot);
1017 * return r;
1018 * }
1019 * r = virtio_enqueue_reserve(sc, vq, slot,
1020 * dmamap_payload[slot]->dm_nsegs + 1);
1021 * // ^ +1 for command
1022 * if (r) { // currently 0 or EAGAIN
1023 * bus_dmamap_unload(dmat, dmamap_payload[slot]);
1024 * return r; // do not call abort()
1025 * }
1026 * <setup and prepare commands>
1027 * bus_dmamap_sync(dmat, dmamap_cmd[slot],... BUS_DMASYNC_PREWRITE);
1028 * bus_dmamap_sync(dmat, dmamap_payload[slot],...);
1029 * virtio_enqueue(sc, vq, slot, dmamap_cmd[slot], false);
1030 * virtio_enqueue(sc, vq, slot, dmamap_payload[slot], iswrite);
1031 * virtio_enqueue_commit(sc, vq, slot, true);
1032 */
1033
1034 /*
1035 * enqueue_prep: allocate a slot number
1036 */
1037 int
1038 virtio_enqueue_prep(struct virtio_softc *sc, struct virtqueue *vq, int *slotp)
1039 {
1040 uint16_t slot;
1041
1042 KASSERT(slotp != NULL);
1043
1044 slot = vq_alloc_slot(sc, vq, 1);
1045 if (slot == VRING_DESC_CHAIN_END)
1046 return EAGAIN;
1047
1048 *slotp = slot;
1049
1050 return 0;
1051 }
1052
1053 /*
1054 * enqueue_reserve: allocate remaining slots and build the descriptor chain.
1055 */
1056 int
1057 virtio_enqueue_reserve(struct virtio_softc *sc, struct virtqueue *vq,
1058 int slot, int nsegs)
1059 {
1060 struct vring_desc *vd;
1061 struct vring_desc_extra *vdx;
1062 int i;
1063
1064 KASSERT(1 <= nsegs && nsegs <= vq->vq_num);
1065
1066 vdx = &vq->vq_descx[slot];
1067 vd = &vq->vq_desc[slot];
1068
1069 KASSERT((vd->flags & virtio_rw16(sc, VRING_DESC_F_NEXT)) == 0);
1070
1071 if ((vq->vq_indirect != NULL) &&
1072 (nsegs >= MINSEG_INDIRECT) &&
1073 (nsegs <= vq->vq_maxnsegs))
1074 vdx->use_indirect = true;
1075 else
1076 vdx->use_indirect = false;
1077
1078 if (vdx->use_indirect) {
1079 uint64_t addr;
1080
1081 addr = vq->vq_dmamap->dm_segs[0].ds_addr
1082 + vq->vq_indirectoffset;
1083 addr += sizeof(struct vring_desc)
1084 * vq->vq_maxnsegs * slot;
1085
1086 vd->addr = virtio_rw64(sc, addr);
1087 vd->len = virtio_rw32(sc, sizeof(struct vring_desc) * nsegs);
1088 vd->flags = virtio_rw16(sc, VRING_DESC_F_INDIRECT);
1089
1090 vd = &vq->vq_indirect[vq->vq_maxnsegs * slot];
1091 vdx->desc_base = vd;
1092 vdx->desc_free_idx = 0;
1093
1094 for (i = 0; i < nsegs - 1; i++) {
1095 vd[i].flags = virtio_rw16(sc, VRING_DESC_F_NEXT);
1096 }
1097 vd[i].flags = virtio_rw16(sc, 0);
1098 } else {
1099 uint16_t s;
1100
1101 s = vq_alloc_slot(sc, vq, nsegs - 1);
1102 if (s == VRING_DESC_CHAIN_END) {
1103 vq_free_slot(sc, vq, slot);
1104 return EAGAIN;
1105 }
1106
1107 vd->next = virtio_rw16(sc, s);
1108 vd->flags = virtio_rw16(sc, VRING_DESC_F_NEXT);
1109
1110 vdx->desc_base = &vq->vq_desc[0];
1111 vdx->desc_free_idx = slot;
1112 }
1113
1114 return 0;
1115 }
1116
1117 /*
1118 * enqueue: enqueue a single dmamap.
1119 */
1120 int
1121 virtio_enqueue(struct virtio_softc *sc, struct virtqueue *vq, int slot,
1122 bus_dmamap_t dmamap, bool write)
1123 {
1124 struct vring_desc *vds;
1125 struct vring_desc_extra *vdx;
1126 uint16_t s;
1127 int i;
1128
1129 KASSERT(dmamap->dm_nsegs > 0);
1130
1131 vdx = &vq->vq_descx[slot];
1132 vds = vdx->desc_base;
1133 s = vdx->desc_free_idx;
1134
1135 KASSERT(vds != NULL);
1136
1137 for (i = 0; i < dmamap->dm_nsegs; i++) {
1138 KASSERT(s != VRING_DESC_CHAIN_END);
1139
1140 vds[s].addr = virtio_rw64(sc, dmamap->dm_segs[i].ds_addr);
1141 vds[s].len = virtio_rw32(sc, dmamap->dm_segs[i].ds_len);
1142 if (!write)
1143 vds[s].flags |= virtio_rw16(sc, VRING_DESC_F_WRITE);
1144
1145 if ((vds[s].flags & virtio_rw16(sc, VRING_DESC_F_NEXT)) == 0) {
1146 s = VRING_DESC_CHAIN_END;
1147 } else {
1148 s = virtio_rw16(sc, vds[s].next);
1149 }
1150 }
1151
1152 vdx->desc_free_idx = s;
1153
1154 return 0;
1155 }
1156
1157 int
1158 virtio_enqueue_p(struct virtio_softc *sc, struct virtqueue *vq, int slot,
1159 bus_dmamap_t dmamap, bus_addr_t start, bus_size_t len,
1160 bool write)
1161 {
1162 struct vring_desc_extra *vdx;
1163 struct vring_desc *vds;
1164 uint16_t s;
1165
1166 vdx = &vq->vq_descx[slot];
1167 vds = vdx->desc_base;
1168 s = vdx->desc_free_idx;
1169
1170 KASSERT(s != VRING_DESC_CHAIN_END);
1171 KASSERT(vds != NULL);
1172 KASSERT(dmamap->dm_nsegs == 1); /* XXX */
1173 KASSERT(dmamap->dm_segs[0].ds_len > start);
1174 KASSERT(dmamap->dm_segs[0].ds_len >= start + len);
1175
1176 vds[s].addr = virtio_rw64(sc, dmamap->dm_segs[0].ds_addr + start);
1177 vds[s].len = virtio_rw32(sc, len);
1178 if (!write)
1179 vds[s].flags |= virtio_rw16(sc, VRING_DESC_F_WRITE);
1180
1181 if ((vds[s].flags & virtio_rw16(sc, VRING_DESC_F_NEXT)) == 0) {
1182 s = VRING_DESC_CHAIN_END;
1183 } else {
1184 s = virtio_rw16(sc, vds[s].next);
1185 }
1186
1187 vdx->desc_free_idx = s;
1188
1189 return 0;
1190 }
1191
1192 /*
1193 * enqueue_commit: add it to the aring.
1194 */
1195 int
1196 virtio_enqueue_commit(struct virtio_softc *sc, struct virtqueue *vq, int slot,
1197 bool notifynow)
1198 {
1199
1200 if (slot < 0) {
1201 mutex_enter(&vq->vq_aring_lock);
1202 goto notify;
1203 }
1204
1205 vq_sync_descs(sc, vq, BUS_DMASYNC_PREWRITE);
1206 if (vq->vq_descx[slot].use_indirect)
1207 vq_sync_indirect(sc, vq, slot, BUS_DMASYNC_PREWRITE);
1208
1209 mutex_enter(&vq->vq_aring_lock);
1210 vq->vq_avail->ring[(vq->vq_avail_idx++) % vq->vq_num] =
1211 virtio_rw16(sc, slot);
1212
1213 notify:
1214 if (notifynow) {
1215 uint16_t o, n, t;
1216 uint16_t flags;
1217
1218 o = virtio_rw16(sc, vq->vq_avail->idx) - 1;
1219 n = vq->vq_avail_idx;
1220
1221 /*
1222 * Prepare for `device->CPU' (host->guest) transfer
1223 * into the buffer. This must happen before we commit
1224 * the vq->vq_avail->idx update to ensure we're not
1225 * still using the buffer in case program-prior loads
1226 * or stores in it get delayed past the store to
1227 * vq->vq_avail->idx.
1228 */
1229 vq_sync_uring_all(sc, vq, BUS_DMASYNC_PREREAD);
1230
1231 /* ensure payload is published, then avail idx */
1232 vq_sync_aring_payload(sc, vq, BUS_DMASYNC_PREWRITE);
1233 vq->vq_avail->idx = virtio_rw16(sc, vq->vq_avail_idx);
1234 vq_sync_aring_header(sc, vq, BUS_DMASYNC_PREWRITE);
1235 vq->vq_queued++;
1236
1237 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
1238 vq_sync_uring_avail(sc, vq, BUS_DMASYNC_POSTREAD);
1239 t = virtio_rw16(sc, *vq->vq_avail_event) + 1;
1240 if ((uint16_t) (n - t) < (uint16_t) (n - o))
1241 sc->sc_ops->kick(sc, vq->vq_index);
1242 } else {
1243 vq_sync_uring_header(sc, vq, BUS_DMASYNC_POSTREAD);
1244 flags = virtio_rw16(sc, vq->vq_used->flags);
1245 if (!(flags & VRING_USED_F_NO_NOTIFY))
1246 sc->sc_ops->kick(sc, vq->vq_index);
1247 }
1248 }
1249 mutex_exit(&vq->vq_aring_lock);
1250
1251 return 0;
1252 }
1253
1254 /*
1255 * enqueue_abort: rollback.
1256 */
1257 int
1258 virtio_enqueue_abort(struct virtio_softc *sc, struct virtqueue *vq, int slot)
1259 {
1260 struct vring_desc_extra *vdx;
1261
1262 vq_free_slot(sc, vq, slot);
1263
1264 vdx = &vq->vq_descx[slot];
1265 vdx->desc_free_idx = VRING_DESC_CHAIN_END;
1266 vdx->desc_base = NULL;
1267
1268 return 0;
1269 }
1270
1271 /*
1272 * Dequeue a request.
1273 */
1274 /*
1275 * dequeue: dequeue a request from uring; dmamap_sync for uring is
1276 * already done in the interrupt handler.
1277 */
1278 int
1279 virtio_dequeue(struct virtio_softc *sc, struct virtqueue *vq,
1280 int *slotp, int *lenp)
1281 {
1282 uint16_t slot, usedidx;
1283
1284 if (vq->vq_used_idx == virtio_rw16(sc, vq->vq_used->idx))
1285 return ENOENT;
1286 mutex_enter(&vq->vq_uring_lock);
1287 usedidx = vq->vq_used_idx++;
1288 mutex_exit(&vq->vq_uring_lock);
1289 usedidx %= vq->vq_num;
1290 slot = virtio_rw32(sc, vq->vq_used->ring[usedidx].id);
1291
1292 if (vq->vq_descx[slot].use_indirect)
1293 vq_sync_indirect(sc, vq, slot, BUS_DMASYNC_POSTWRITE);
1294
1295 if (slotp)
1296 *slotp = slot;
1297 if (lenp)
1298 *lenp = virtio_rw32(sc, vq->vq_used->ring[usedidx].len);
1299
1300 return 0;
1301 }
1302
1303 /*
1304 * dequeue_commit: complete dequeue; the slot is recycled for future use.
1305 * if you forget to call this the slot will be leaked.
1306 */
1307 int
1308 virtio_dequeue_commit(struct virtio_softc *sc, struct virtqueue *vq, int slot)
1309 {
1310 struct vring_desc_extra *vdx;
1311
1312 vq_free_slot(sc, vq, slot);
1313
1314 vdx = &vq->vq_descx[slot];
1315 vdx->desc_base = NULL;
1316 vdx->desc_free_idx = VRING_DESC_CHAIN_END;
1317
1318 return 0;
1319 }
1320
1321 /*
1322 * Attach a child, fill all the members.
1323 */
1324 void
1325 virtio_child_attach_start(struct virtio_softc *sc, device_t child, int ipl,
1326 uint64_t req_features, const char *feat_bits)
1327 {
1328 char buf[1024];
1329
1330 KASSERT(sc->sc_child == NULL);
1331 KASSERT(!ISSET(sc->sc_child_flags, VIRTIO_CHILD_DETACHED));
1332
1333 sc->sc_child = child;
1334 sc->sc_ipl = ipl;
1335
1336 virtio_negotiate_features(sc, req_features);
1337 snprintb(buf, sizeof(buf), feat_bits, sc->sc_active_features);
1338 aprint_normal(": features: %s\n", buf);
1339 aprint_naive("\n");
1340 }
1341
1342 int
1343 virtio_child_attach_finish(struct virtio_softc *sc,
1344 struct virtqueue *vqs, size_t nvqs,
1345 virtio_callback config_change,
1346 int req_flags)
1347 {
1348 size_t i;
1349 int r;
1350
1351 #ifdef DIAGNOSTIC
1352 KASSERT(nvqs > 0);
1353 #define VIRTIO_ASSERT_FLAGS (VIRTIO_F_INTR_SOFTINT | VIRTIO_F_INTR_PERVQ)
1354 KASSERT((req_flags & VIRTIO_ASSERT_FLAGS) != VIRTIO_ASSERT_FLAGS);
1355 #undef VIRTIO_ASSERT_FLAGS
1356
1357 for (i = 0; i < nvqs; i++){
1358 KASSERT(vqs[i].vq_index == i);
1359 KASSERT(vqs[i].vq_intrhand != NULL);
1360 KASSERT(vqs[i].vq_done == NULL ||
1361 vqs[i].vq_intrhand == virtio_vq_done);
1362 }
1363 #endif
1364
1365
1366 sc->sc_vqs = vqs;
1367 sc->sc_nvqs = nvqs;
1368 sc->sc_config_change = config_change;
1369 sc->sc_intrhand = virtio_vq_intr;
1370 sc->sc_flags = req_flags;
1371
1372 /* set the vq address */
1373 for (i = 0; i < nvqs; i++) {
1374 sc->sc_ops->setup_queue(sc, vqs[i].vq_index,
1375 vqs[i].vq_dmamap->dm_segs[0].ds_addr);
1376 }
1377
1378 r = sc->sc_ops->alloc_interrupts(sc);
1379 if (r != 0) {
1380 aprint_error_dev(sc->sc_dev,
1381 "failed to allocate interrupts\n");
1382 goto fail;
1383 }
1384
1385 r = sc->sc_ops->setup_interrupts(sc, 0);
1386 if (r != 0) {
1387 aprint_error_dev(sc->sc_dev, "failed to setup interrupts\n");
1388 goto fail;
1389 }
1390
1391 KASSERT(sc->sc_soft_ih == NULL);
1392 if (sc->sc_flags & VIRTIO_F_INTR_SOFTINT) {
1393 u_int flags = SOFTINT_NET;
1394 if (sc->sc_flags & VIRTIO_F_INTR_MPSAFE)
1395 flags |= SOFTINT_MPSAFE;
1396
1397 sc->sc_soft_ih = softint_establish(flags, virtio_soft_intr,
1398 sc);
1399 if (sc->sc_soft_ih == NULL) {
1400 sc->sc_ops->free_interrupts(sc);
1401 aprint_error_dev(sc->sc_dev,
1402 "failed to establish soft interrupt\n");
1403 goto fail;
1404 }
1405 }
1406
1407 SET(sc->sc_child_flags, VIRTIO_CHILD_ATTACH_FINISHED);
1408 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER_OK);
1409 return 0;
1410
1411 fail:
1412 if (sc->sc_soft_ih) {
1413 softint_disestablish(sc->sc_soft_ih);
1414 sc->sc_soft_ih = NULL;
1415 }
1416
1417 sc->sc_ops->free_interrupts(sc);
1418
1419 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
1420 return 1;
1421 }
1422
1423 void
1424 virtio_child_detach(struct virtio_softc *sc)
1425 {
1426
1427 /* already detached */
1428 if (ISSET(sc->sc_child_flags, VIRTIO_CHILD_DETACHED))
1429 return;
1430
1431 sc->sc_vqs = NULL;
1432
1433 virtio_device_reset(sc);
1434
1435 sc->sc_ops->free_interrupts(sc);
1436
1437 if (sc->sc_soft_ih) {
1438 softint_disestablish(sc->sc_soft_ih);
1439 sc->sc_soft_ih = NULL;
1440 }
1441
1442 SET(sc->sc_child_flags, VIRTIO_CHILD_DETACHED);
1443 }
1444
1445 void
1446 virtio_child_attach_failed(struct virtio_softc *sc)
1447 {
1448 virtio_child_detach(sc);
1449
1450 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
1451
1452 SET(sc->sc_child_flags, VIRTIO_CHILD_ATTACH_FAILED);
1453 }
1454
1455 bus_dma_tag_t
1456 virtio_dmat(struct virtio_softc *sc)
1457 {
1458 return sc->sc_dmat;
1459 }
1460
1461 device_t
1462 virtio_child(struct virtio_softc *sc)
1463 {
1464 return sc->sc_child;
1465 }
1466
1467 int
1468 virtio_intrhand(struct virtio_softc *sc)
1469 {
1470 return (*sc->sc_intrhand)(sc);
1471 }
1472
1473 uint64_t
1474 virtio_features(struct virtio_softc *sc)
1475 {
1476 return sc->sc_active_features;
1477 }
1478
1479 int
1480 virtio_attach_failed(struct virtio_softc *sc)
1481 {
1482 device_t self = sc->sc_dev;
1483
1484 /* no error if its not connected, but its failed */
1485 if (sc->sc_childdevid == 0)
1486 return 1;
1487
1488 if (ISSET(sc->sc_child_flags, VIRTIO_CHILD_ATTACH_FAILED)) {
1489 aprint_error_dev(self, "virtio configuration failed\n");
1490 return 1;
1491 }
1492
1493 if (sc->sc_child == NULL) {
1494 aprint_error_dev(self,
1495 "no matching child driver; not configured\n");
1496 return 1;
1497 }
1498
1499 /* sanity check */
1500 if (!ISSET(sc->sc_child_flags, VIRTIO_CHILD_ATTACH_FINISHED)) {
1501 aprint_error_dev(self, "virtio internal error, child driver "
1502 "signaled OK but didn't initialize interrupts\n");
1503 return 1;
1504 }
1505
1506 return 0;
1507 }
1508
1509 void
1510 virtio_print_device_type(device_t self, int id, int revision)
1511 {
1512 aprint_normal_dev(self, "%s device (id %d, rev. 0x%02x)\n",
1513 (id < NDEVNAMES ? virtio_device_name[id] : "Unknown"),
1514 id,
1515 revision);
1516 }
1517
1518
1519 MODULE(MODULE_CLASS_DRIVER, virtio, NULL);
1520
1521 #ifdef _MODULE
1522 #include "ioconf.c"
1523 #endif
1524
1525 static int
1526 virtio_modcmd(modcmd_t cmd, void *opaque)
1527 {
1528 int error = 0;
1529
1530 #ifdef _MODULE
1531 switch (cmd) {
1532 case MODULE_CMD_INIT:
1533 error = config_init_component(cfdriver_ioconf_virtio,
1534 cfattach_ioconf_virtio, cfdata_ioconf_virtio);
1535 break;
1536 case MODULE_CMD_FINI:
1537 error = config_fini_component(cfdriver_ioconf_virtio,
1538 cfattach_ioconf_virtio, cfdata_ioconf_virtio);
1539 break;
1540 default:
1541 error = ENOTTY;
1542 break;
1543 }
1544 #endif
1545
1546 return error;
1547 }
1548