virtio.c revision 1.64 1 /* $NetBSD: virtio.c,v 1.64 2022/12/30 21:38:13 jakllsch Exp $ */
2
3 /*
4 * Copyright (c) 2020 The NetBSD Foundation, Inc.
5 * Copyright (c) 2012 Stefan Fritsch, Alexander Fiveg.
6 * Copyright (c) 2010 Minoura Makoto.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: virtio.c,v 1.64 2022/12/30 21:38:13 jakllsch Exp $");
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/atomic.h>
37 #include <sys/bus.h>
38 #include <sys/device.h>
39 #include <sys/kmem.h>
40 #include <sys/module.h>
41
42 #define VIRTIO_PRIVATE
43
44 #include <dev/pci/virtioreg.h> /* XXX: move to non-pci */
45 #include <dev/pci/virtiovar.h> /* XXX: move to non-pci */
46
47 #define MINSEG_INDIRECT 2 /* use indirect if nsegs >= this value */
48
49 /* incomplete list */
50 static const char *virtio_device_name[] = {
51 "unknown (0)", /* 0 */
52 "network", /* 1 */
53 "block", /* 2 */
54 "console", /* 3 */
55 "entropy", /* 4 */
56 "memory balloon", /* 5 */
57 "I/O memory", /* 6 */
58 "remote processor messaging", /* 7 */
59 "SCSI", /* 8 */
60 "9P transport", /* 9 */
61 };
62 #define NDEVNAMES __arraycount(virtio_device_name)
63
64 static void virtio_init_vq(struct virtio_softc *,
65 struct virtqueue *, const bool);
66
67 void
68 virtio_set_status(struct virtio_softc *sc, int status)
69 {
70 sc->sc_ops->set_status(sc, status);
71 }
72
73 /*
74 * Reset the device.
75 */
76 /*
77 * To reset the device to a known state, do following:
78 * virtio_reset(sc); // this will stop the device activity
79 * <dequeue finished requests>; // virtio_dequeue() still can be called
80 * <revoke pending requests in the vqs if any>;
81 * virtio_reinit_start(sc); // dequeue prohibitted
82 * newfeatures = virtio_negotiate_features(sc, requestedfeatures);
83 * <some other initialization>;
84 * virtio_reinit_end(sc); // device activated; enqueue allowed
85 * Once attached, feature negotiation can only be allowed after virtio_reset.
86 */
87 void
88 virtio_reset(struct virtio_softc *sc)
89 {
90 virtio_device_reset(sc);
91 }
92
93 int
94 virtio_reinit_start(struct virtio_softc *sc)
95 {
96 int i, r;
97
98 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_ACK);
99 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER);
100 for (i = 0; i < sc->sc_nvqs; i++) {
101 int n;
102 struct virtqueue *vq = &sc->sc_vqs[i];
103 n = sc->sc_ops->read_queue_size(sc, vq->vq_index);
104 if (n == 0) /* vq disappeared */
105 continue;
106 if (n != vq->vq_num) {
107 panic("%s: virtqueue size changed, vq index %d\n",
108 device_xname(sc->sc_dev),
109 vq->vq_index);
110 }
111 virtio_init_vq(sc, vq, true);
112 sc->sc_ops->setup_queue(sc, vq->vq_index,
113 vq->vq_dmamap->dm_segs[0].ds_addr);
114 }
115
116 r = sc->sc_ops->setup_interrupts(sc, 1);
117 if (r != 0)
118 goto fail;
119
120 return 0;
121
122 fail:
123 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
124
125 return 1;
126 }
127
128 void
129 virtio_reinit_end(struct virtio_softc *sc)
130 {
131 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER_OK);
132 }
133
134 /*
135 * Feature negotiation.
136 */
137 void
138 virtio_negotiate_features(struct virtio_softc *sc, uint64_t guest_features)
139 {
140 if (!(device_cfdata(sc->sc_dev)->cf_flags & 1) &&
141 !(device_cfdata(sc->sc_child)->cf_flags & 1)) /* XXX */
142 guest_features |= VIRTIO_F_RING_INDIRECT_DESC;
143 sc->sc_ops->neg_features(sc, guest_features);
144 if (sc->sc_active_features & VIRTIO_F_RING_INDIRECT_DESC)
145 sc->sc_indirect = true;
146 else
147 sc->sc_indirect = false;
148 }
149
150
151 /*
152 * Device configuration registers readers/writers
153 */
154 #if 0
155 #define DPRINTFR(n, fmt, val, index, num) \
156 printf("\n%s (", n); \
157 for (int i = 0; i < num; i++) \
158 printf("%02x ", bus_space_read_1(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index+i)); \
159 printf(") -> "); printf(fmt, val); printf("\n");
160 #define DPRINTFR2(n, fmt, val_s, val_n) \
161 printf("%s ", n); \
162 printf("\n stream "); printf(fmt, val_s); printf(" norm "); printf(fmt, val_n); printf("\n");
163 #else
164 #define DPRINTFR(n, fmt, val, index, num)
165 #define DPRINTFR2(n, fmt, val_s, val_n)
166 #endif
167
168
169 uint8_t
170 virtio_read_device_config_1(struct virtio_softc *sc, int index)
171 {
172 bus_space_tag_t iot = sc->sc_devcfg_iot;
173 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
174 uint8_t val;
175
176 val = bus_space_read_1(iot, ioh, index);
177
178 DPRINTFR("read_1", "%02x", val, index, 1);
179 return val;
180 }
181
182 uint16_t
183 virtio_read_device_config_2(struct virtio_softc *sc, int index)
184 {
185 bus_space_tag_t iot = sc->sc_devcfg_iot;
186 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
187 uint16_t val;
188
189 val = bus_space_read_2(iot, ioh, index);
190 if (BYTE_ORDER != sc->sc_bus_endian)
191 val = bswap16(val);
192
193 DPRINTFR("read_2", "%04x", val, index, 2);
194 DPRINTFR2("read_2", "%04x",
195 bus_space_read_stream_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh,
196 index),
197 bus_space_read_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
198 return val;
199 }
200
201 uint32_t
202 virtio_read_device_config_4(struct virtio_softc *sc, int index)
203 {
204 bus_space_tag_t iot = sc->sc_devcfg_iot;
205 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
206 uint32_t val;
207
208 val = bus_space_read_4(iot, ioh, index);
209 if (BYTE_ORDER != sc->sc_bus_endian)
210 val = bswap32(val);
211
212 DPRINTFR("read_4", "%08x", val, index, 4);
213 DPRINTFR2("read_4", "%08x",
214 bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh,
215 index),
216 bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
217 return val;
218 }
219
220 /*
221 * The Virtio spec explicitly tells that reading and writing 8 bytes are not
222 * considered atomic and no triggers may be connected to reading or writing
223 * it. We access it using two 32 reads. See virtio spec 4.1.3.1.
224 */
225 uint64_t
226 virtio_read_device_config_8(struct virtio_softc *sc, int index)
227 {
228 bus_space_tag_t iot = sc->sc_devcfg_iot;
229 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
230 union {
231 uint64_t u64;
232 uint32_t l[2];
233 } v;
234 uint64_t val;
235
236 v.l[0] = bus_space_read_4(iot, ioh, index);
237 v.l[1] = bus_space_read_4(iot, ioh, index + 4);
238 if (sc->sc_bus_endian != sc->sc_struct_endian) {
239 v.l[0] = bswap32(v.l[0]);
240 v.l[1] = bswap32(v.l[1]);
241 }
242 val = v.u64;
243
244 if (BYTE_ORDER != sc->sc_struct_endian)
245 val = bswap64(val);
246
247 DPRINTFR("read_8", "%08"PRIx64, val, index, 8);
248 DPRINTFR2("read_8 low ", "%08x",
249 bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh,
250 index),
251 bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
252 DPRINTFR2("read_8 high ", "%08x",
253 bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh,
254 index + 4),
255 bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index + 4));
256 return val;
257 }
258
259 /*
260 * In the older virtio spec, device config registers are host endian. On newer
261 * they are little endian. Some newer devices however explicitly specify their
262 * register to always be little endian. These functions cater for these.
263 */
264 uint16_t
265 virtio_read_device_config_le_2(struct virtio_softc *sc, int index)
266 {
267 bus_space_tag_t iot = sc->sc_devcfg_iot;
268 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
269 uint16_t val;
270
271 val = bus_space_read_2(iot, ioh, index);
272 if (sc->sc_bus_endian != LITTLE_ENDIAN)
273 val = bswap16(val);
274
275 DPRINTFR("read_le_2", "%04x", val, index, 2);
276 DPRINTFR2("read_le_2", "%04x",
277 bus_space_read_stream_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0),
278 bus_space_read_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0));
279 return val;
280 }
281
282 uint32_t
283 virtio_read_device_config_le_4(struct virtio_softc *sc, int index)
284 {
285 bus_space_tag_t iot = sc->sc_devcfg_iot;
286 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
287 uint32_t val;
288
289 val = bus_space_read_4(iot, ioh, index);
290 if (sc->sc_bus_endian != LITTLE_ENDIAN)
291 val = bswap32(val);
292
293 DPRINTFR("read_le_4", "%08x", val, index, 4);
294 DPRINTFR2("read_le_4", "%08x",
295 bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0),
296 bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0));
297 return val;
298 }
299
300 void
301 virtio_write_device_config_1(struct virtio_softc *sc, int index, uint8_t value)
302 {
303 bus_space_tag_t iot = sc->sc_devcfg_iot;
304 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
305
306 bus_space_write_1(iot, ioh, index, value);
307 }
308
309 void
310 virtio_write_device_config_2(struct virtio_softc *sc, int index,
311 uint16_t value)
312 {
313 bus_space_tag_t iot = sc->sc_devcfg_iot;
314 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
315
316 if (BYTE_ORDER != sc->sc_bus_endian)
317 value = bswap16(value);
318 bus_space_write_2(iot, ioh, index, value);
319 }
320
321 void
322 virtio_write_device_config_4(struct virtio_softc *sc, int index,
323 uint32_t value)
324 {
325 bus_space_tag_t iot = sc->sc_devcfg_iot;
326 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
327
328 if (BYTE_ORDER != sc->sc_bus_endian)
329 value = bswap32(value);
330 bus_space_write_4(iot, ioh, index, value);
331 }
332
333 /*
334 * The Virtio spec explicitly tells that reading and writing 8 bytes are not
335 * considered atomic and no triggers may be connected to reading or writing
336 * it. We access it using two 32 bit writes. For good measure it is stated to
337 * always write lsb first just in case of a hypervisor bug. See See virtio
338 * spec 4.1.3.1.
339 */
340 void
341 virtio_write_device_config_8(struct virtio_softc *sc, int index,
342 uint64_t value)
343 {
344 bus_space_tag_t iot = sc->sc_devcfg_iot;
345 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
346 union {
347 uint64_t u64;
348 uint32_t l[2];
349 } v;
350
351 if (BYTE_ORDER != sc->sc_struct_endian)
352 value = bswap64(value);
353
354 v.u64 = value;
355 if (sc->sc_bus_endian != sc->sc_struct_endian) {
356 v.l[0] = bswap32(v.l[0]);
357 v.l[1] = bswap32(v.l[1]);
358 }
359
360 if (sc->sc_struct_endian == LITTLE_ENDIAN) {
361 bus_space_write_4(iot, ioh, index, v.l[0]);
362 bus_space_write_4(iot, ioh, index + 4, v.l[1]);
363 } else {
364 bus_space_write_4(iot, ioh, index + 4, v.l[1]);
365 bus_space_write_4(iot, ioh, index, v.l[0]);
366 }
367 }
368
369 /*
370 * In the older virtio spec, device config registers are host endian. On newer
371 * they are little endian. Some newer devices however explicitly specify their
372 * register to always be little endian. These functions cater for these.
373 */
374 void
375 virtio_write_device_config_le_2(struct virtio_softc *sc, int index,
376 uint16_t value)
377 {
378 bus_space_tag_t iot = sc->sc_devcfg_iot;
379 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
380
381 if (sc->sc_bus_endian != LITTLE_ENDIAN)
382 value = bswap16(value);
383 bus_space_write_2(iot, ioh, index, value);
384 }
385
386 void
387 virtio_write_device_config_le_4(struct virtio_softc *sc, int index,
388 uint32_t value)
389 {
390 bus_space_tag_t iot = sc->sc_devcfg_iot;
391 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
392
393 if (sc->sc_bus_endian != LITTLE_ENDIAN)
394 value = bswap32(value);
395 bus_space_write_4(iot, ioh, index, value);
396 }
397
398
399 /*
400 * data structures endian helpers
401 */
402 uint16_t
403 virtio_rw16(struct virtio_softc *sc, uint16_t val)
404 {
405 KASSERT(sc);
406 return BYTE_ORDER != sc->sc_struct_endian ? bswap16(val) : val;
407 }
408
409 uint32_t
410 virtio_rw32(struct virtio_softc *sc, uint32_t val)
411 {
412 KASSERT(sc);
413 return BYTE_ORDER != sc->sc_struct_endian ? bswap32(val) : val;
414 }
415
416 uint64_t
417 virtio_rw64(struct virtio_softc *sc, uint64_t val)
418 {
419 KASSERT(sc);
420 return BYTE_ORDER != sc->sc_struct_endian ? bswap64(val) : val;
421 }
422
423
424 /*
425 * Interrupt handler.
426 */
427 static void
428 virtio_soft_intr(void *arg)
429 {
430 struct virtio_softc *sc = arg;
431
432 KASSERT(sc->sc_intrhand != NULL);
433
434 (*sc->sc_intrhand)(sc);
435 }
436
437 /*
438 * dmamap sync operations for a virtqueue.
439 */
440 static inline void
441 vq_sync_descs(struct virtio_softc *sc, struct virtqueue *vq, int ops)
442 {
443
444 /* availoffset == sizeof(vring_desc) * vq_num */
445 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap, 0, vq->vq_availoffset,
446 ops);
447 }
448
449 static inline void
450 vq_sync_aring_all(struct virtio_softc *sc, struct virtqueue *vq, int ops)
451 {
452 uint16_t hdrlen = offsetof(struct vring_avail, ring);
453 size_t payloadlen = vq->vq_num * sizeof(uint16_t);
454 size_t usedlen = 0;
455
456 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX)
457 usedlen = sizeof(uint16_t);
458 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
459 vq->vq_availoffset, hdrlen + payloadlen + usedlen, ops);
460 }
461
462 static inline void
463 vq_sync_aring_header(struct virtio_softc *sc, struct virtqueue *vq, int ops)
464 {
465 uint16_t hdrlen = offsetof(struct vring_avail, ring);
466
467 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
468 vq->vq_availoffset, hdrlen, ops);
469 }
470
471 static inline void
472 vq_sync_aring_payload(struct virtio_softc *sc, struct virtqueue *vq, int ops)
473 {
474 uint16_t hdrlen = offsetof(struct vring_avail, ring);
475 size_t payloadlen = vq->vq_num * sizeof(uint16_t);
476
477 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
478 vq->vq_availoffset + hdrlen, payloadlen, ops);
479 }
480
481 static inline void
482 vq_sync_aring_used(struct virtio_softc *sc, struct virtqueue *vq, int ops)
483 {
484 uint16_t hdrlen = offsetof(struct vring_avail, ring);
485 size_t payloadlen = vq->vq_num * sizeof(uint16_t);
486 size_t usedlen = sizeof(uint16_t);
487
488 if ((sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) == 0)
489 return;
490 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
491 vq->vq_availoffset + hdrlen + payloadlen, usedlen, ops);
492 }
493
494 static inline void
495 vq_sync_uring_all(struct virtio_softc *sc, struct virtqueue *vq, int ops)
496 {
497 uint16_t hdrlen = offsetof(struct vring_used, ring);
498 size_t payloadlen = vq->vq_num * sizeof(struct vring_used_elem);
499 size_t availlen = 0;
500
501 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX)
502 availlen = sizeof(uint16_t);
503 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
504 vq->vq_usedoffset, hdrlen + payloadlen + availlen, ops);
505 }
506
507 static inline void
508 vq_sync_uring_header(struct virtio_softc *sc, struct virtqueue *vq, int ops)
509 {
510 uint16_t hdrlen = offsetof(struct vring_used, ring);
511
512 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
513 vq->vq_usedoffset, hdrlen, ops);
514 }
515
516 static inline void
517 vq_sync_uring_payload(struct virtio_softc *sc, struct virtqueue *vq, int ops)
518 {
519 uint16_t hdrlen = offsetof(struct vring_used, ring);
520 size_t payloadlen = vq->vq_num * sizeof(struct vring_used_elem);
521
522 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
523 vq->vq_usedoffset + hdrlen, payloadlen, ops);
524 }
525
526 static inline void
527 vq_sync_uring_avail(struct virtio_softc *sc, struct virtqueue *vq, int ops)
528 {
529 uint16_t hdrlen = offsetof(struct vring_used, ring);
530 size_t payloadlen = vq->vq_num * sizeof(struct vring_used_elem);
531 size_t availlen = sizeof(uint16_t);
532
533 if ((sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) == 0)
534 return;
535 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
536 vq->vq_usedoffset + hdrlen + payloadlen, availlen, ops);
537 }
538
539 static inline void
540 vq_sync_indirect(struct virtio_softc *sc, struct virtqueue *vq, int slot,
541 int ops)
542 {
543 int offset = vq->vq_indirectoffset +
544 sizeof(struct vring_desc) * vq->vq_maxnsegs * slot;
545
546 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
547 offset, sizeof(struct vring_desc) * vq->vq_maxnsegs, ops);
548 }
549
550 bool
551 virtio_vq_is_enqueued(struct virtio_softc *sc, struct virtqueue *vq)
552 {
553
554 if (vq->vq_queued) {
555 vq->vq_queued = 0;
556 vq_sync_aring_all(sc, vq, BUS_DMASYNC_POSTWRITE);
557 }
558
559 vq_sync_uring_header(sc, vq, BUS_DMASYNC_POSTREAD);
560 if (vq->vq_used_idx == virtio_rw16(sc, vq->vq_used->idx))
561 return 0;
562 vq_sync_uring_payload(sc, vq, BUS_DMASYNC_POSTREAD);
563 return 1;
564 }
565
566 /*
567 * Scan vq, bus_dmamap_sync for the vqs (not for the payload),
568 * and calls (*vq_done)() if some entries are consumed.
569 *
570 * Can be used as sc_intrhand.
571 */
572 int
573 virtio_vq_intr(struct virtio_softc *sc)
574 {
575 struct virtqueue *vq;
576 int i, r = 0;
577
578 for (i = 0; i < sc->sc_nvqs; i++) {
579 vq = &sc->sc_vqs[i];
580 if (virtio_vq_is_enqueued(sc, vq) == 1) {
581 if (vq->vq_done)
582 r |= (*vq->vq_done)(vq);
583 }
584 }
585
586 return r;
587 }
588
589 int
590 virtio_vq_intrhand(struct virtio_softc *sc)
591 {
592 struct virtqueue *vq;
593 int i, r = 0;
594
595 for (i = 0; i < sc->sc_nvqs; i++) {
596 vq = &sc->sc_vqs[i];
597 r |= (*vq->vq_intrhand)(vq->vq_intrhand_arg);
598 }
599
600 return r;
601 }
602
603
604 /*
605 * Increase the event index in order to delay interrupts.
606 */
607 int
608 virtio_postpone_intr(struct virtio_softc *sc, struct virtqueue *vq,
609 uint16_t nslots)
610 {
611 uint16_t idx, nused;
612
613 idx = vq->vq_used_idx + nslots;
614
615 /* set the new event index: avail_ring->used_event = idx */
616 *vq->vq_used_event = virtio_rw16(sc, idx);
617 vq_sync_aring_used(vq->vq_owner, vq, BUS_DMASYNC_PREWRITE);
618 vq->vq_queued++;
619
620 nused = (uint16_t)
621 (virtio_rw16(sc, vq->vq_used->idx) - vq->vq_used_idx);
622 KASSERT(nused <= vq->vq_num);
623
624 return nslots < nused;
625 }
626
627 /*
628 * Postpone interrupt until 3/4 of the available descriptors have been
629 * consumed.
630 */
631 int
632 virtio_postpone_intr_smart(struct virtio_softc *sc, struct virtqueue *vq)
633 {
634 uint16_t nslots;
635
636 nslots = (uint16_t)
637 (virtio_rw16(sc, vq->vq_avail->idx) - vq->vq_used_idx) * 3 / 4;
638
639 return virtio_postpone_intr(sc, vq, nslots);
640 }
641
642 /*
643 * Postpone interrupt until all of the available descriptors have been
644 * consumed.
645 */
646 int
647 virtio_postpone_intr_far(struct virtio_softc *sc, struct virtqueue *vq)
648 {
649 uint16_t nslots;
650
651 nslots = (uint16_t)
652 (virtio_rw16(sc, vq->vq_avail->idx) - vq->vq_used_idx);
653
654 return virtio_postpone_intr(sc, vq, nslots);
655 }
656
657 /*
658 * Start/stop vq interrupt. No guarantee.
659 */
660 void
661 virtio_stop_vq_intr(struct virtio_softc *sc, struct virtqueue *vq)
662 {
663
664 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
665 /*
666 * No way to disable the interrupt completely with
667 * RingEventIdx. Instead advance used_event by half the
668 * possible value. This won't happen soon and is far enough in
669 * the past to not trigger a spurios interrupt.
670 */
671 *vq->vq_used_event = virtio_rw16(sc, vq->vq_used_idx + 0x8000);
672 vq_sync_aring_used(sc, vq, BUS_DMASYNC_PREWRITE);
673 } else {
674 vq->vq_avail->flags |=
675 virtio_rw16(sc, VRING_AVAIL_F_NO_INTERRUPT);
676 vq_sync_aring_header(sc, vq, BUS_DMASYNC_PREWRITE);
677 }
678 vq->vq_queued++;
679 }
680
681 int
682 virtio_start_vq_intr(struct virtio_softc *sc, struct virtqueue *vq)
683 {
684
685 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
686 /*
687 * If event index feature is negotiated, enabling interrupts
688 * is done through setting the latest consumed index in the
689 * used_event field
690 */
691 *vq->vq_used_event = virtio_rw16(sc, vq->vq_used_idx);
692 vq_sync_aring_used(sc, vq, BUS_DMASYNC_PREWRITE);
693 } else {
694 vq->vq_avail->flags &=
695 ~virtio_rw16(sc, VRING_AVAIL_F_NO_INTERRUPT);
696 vq_sync_aring_header(sc, vq, BUS_DMASYNC_PREWRITE);
697 }
698 vq->vq_queued++;
699
700 vq_sync_uring_header(sc, vq, BUS_DMASYNC_POSTREAD);
701 if (vq->vq_used_idx == virtio_rw16(sc, vq->vq_used->idx))
702 return 0;
703 vq_sync_uring_payload(sc, vq, BUS_DMASYNC_POSTREAD);
704 return 1;
705 }
706
707 /*
708 * Initialize vq structure.
709 */
710 static void
711 virtio_init_vq(struct virtio_softc *sc, struct virtqueue *vq,
712 const bool reinit)
713 {
714 int i, j;
715 int vq_size = vq->vq_num;
716
717 memset(vq->vq_vaddr, 0, vq->vq_bytesize);
718
719 /* build the indirect descriptor chain */
720 if (vq->vq_indirect != NULL) {
721 struct vring_desc *vd;
722
723 for (i = 0; i < vq_size; i++) {
724 vd = vq->vq_indirect;
725 vd += vq->vq_maxnsegs * i;
726 for (j = 0; j < vq->vq_maxnsegs - 1; j++) {
727 vd[j].next = virtio_rw16(sc, j + 1);
728 }
729 }
730 }
731
732 /* free slot management */
733 SIMPLEQ_INIT(&vq->vq_freelist);
734 for (i = 0; i < vq_size; i++) {
735 SIMPLEQ_INSERT_TAIL(&vq->vq_freelist, &vq->vq_entries[i],
736 qe_list);
737 vq->vq_entries[i].qe_index = i;
738 }
739 if (!reinit)
740 mutex_init(&vq->vq_freelist_lock, MUTEX_SPIN, sc->sc_ipl);
741
742 /* enqueue/dequeue status */
743 vq->vq_avail_idx = 0;
744 vq->vq_used_idx = 0;
745 vq->vq_queued = 0;
746 if (!reinit) {
747 mutex_init(&vq->vq_aring_lock, MUTEX_SPIN, sc->sc_ipl);
748 mutex_init(&vq->vq_uring_lock, MUTEX_SPIN, sc->sc_ipl);
749 }
750 vq_sync_uring_all(sc, vq, BUS_DMASYNC_PREREAD);
751 vq->vq_queued++;
752 }
753
754 /*
755 * Allocate/free a vq.
756 */
757 int
758 virtio_alloc_vq(struct virtio_softc *sc, struct virtqueue *vq, int index,
759 int maxsegsize, int maxnsegs, const char *name)
760 {
761 int vq_size, allocsize1, allocsize2, allocsize3, allocsize = 0;
762 int rsegs, r, hdrlen;
763 #define VIRTQUEUE_ALIGN(n) roundup(n, VIRTIO_PAGE_SIZE)
764
765 /* Make sure callers allocate vqs in order */
766 KASSERT(sc->sc_nvqs == index);
767
768 memset(vq, 0, sizeof(*vq));
769
770 vq_size = sc->sc_ops->read_queue_size(sc, index);
771 if (vq_size == 0) {
772 aprint_error_dev(sc->sc_dev,
773 "virtqueue not exist, index %d for %s\n",
774 index, name);
775 goto err;
776 }
777
778 hdrlen = sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX ? 3 : 2;
779
780 /* allocsize1: descriptor table + avail ring + pad */
781 allocsize1 = VIRTQUEUE_ALIGN(sizeof(struct vring_desc) * vq_size
782 + sizeof(uint16_t) * (hdrlen + vq_size));
783 /* allocsize2: used ring + pad */
784 allocsize2 = VIRTQUEUE_ALIGN(sizeof(uint16_t) * hdrlen
785 + sizeof(struct vring_used_elem) * vq_size);
786 /* allocsize3: indirect table */
787 if (sc->sc_indirect && maxnsegs >= MINSEG_INDIRECT)
788 allocsize3 = sizeof(struct vring_desc) * maxnsegs * vq_size;
789 else
790 allocsize3 = 0;
791 allocsize = allocsize1 + allocsize2 + allocsize3;
792
793 /* alloc and map the memory */
794 r = bus_dmamem_alloc(sc->sc_dmat, allocsize, VIRTIO_PAGE_SIZE, 0,
795 &vq->vq_segs[0], 1, &rsegs, BUS_DMA_WAITOK);
796 if (r != 0) {
797 aprint_error_dev(sc->sc_dev,
798 "virtqueue %d for %s allocation failed, "
799 "error code %d\n", index, name, r);
800 goto err;
801 }
802 r = bus_dmamem_map(sc->sc_dmat, &vq->vq_segs[0], rsegs, allocsize,
803 &vq->vq_vaddr, BUS_DMA_WAITOK);
804 if (r != 0) {
805 aprint_error_dev(sc->sc_dev,
806 "virtqueue %d for %s map failed, "
807 "error code %d\n", index, name, r);
808 goto err;
809 }
810 r = bus_dmamap_create(sc->sc_dmat, allocsize, 1, allocsize, 0,
811 BUS_DMA_WAITOK, &vq->vq_dmamap);
812 if (r != 0) {
813 aprint_error_dev(sc->sc_dev,
814 "virtqueue %d for %s dmamap creation failed, "
815 "error code %d\n", index, name, r);
816 goto err;
817 }
818 r = bus_dmamap_load(sc->sc_dmat, vq->vq_dmamap,
819 vq->vq_vaddr, allocsize, NULL, BUS_DMA_WAITOK);
820 if (r != 0) {
821 aprint_error_dev(sc->sc_dev,
822 "virtqueue %d for %s dmamap load failed, "
823 "error code %d\n", index, name, r);
824 goto err;
825 }
826
827 /* remember addresses and offsets for later use */
828 vq->vq_owner = sc;
829 vq->vq_num = vq_size;
830 vq->vq_index = index;
831 vq->vq_desc = vq->vq_vaddr;
832 vq->vq_availoffset = sizeof(struct vring_desc) * vq_size;
833 vq->vq_avail = (void *)(((char *)vq->vq_desc) + vq->vq_availoffset);
834 vq->vq_used_event = (uint16_t *)((char *)vq->vq_avail +
835 offsetof(struct vring_avail, ring[vq->vq_num]));
836 vq->vq_usedoffset = allocsize1;
837 vq->vq_used = (void *)(((char *)vq->vq_desc) + vq->vq_usedoffset);
838 vq->vq_avail_event = (uint16_t *)((char *)vq->vq_used +
839 offsetof(struct vring_used, ring[vq->vq_num]));
840
841 if (allocsize3 > 0) {
842 vq->vq_indirectoffset = allocsize1 + allocsize2;
843 vq->vq_indirect = (void *)(((char *)vq->vq_desc)
844 + vq->vq_indirectoffset);
845 }
846 vq->vq_bytesize = allocsize;
847 vq->vq_maxsegsize = maxsegsize;
848 vq->vq_maxnsegs = maxnsegs;
849
850 /* free slot management */
851 vq->vq_entries = kmem_zalloc(sizeof(struct vq_entry) * vq_size,
852 KM_SLEEP);
853 virtio_init_vq(sc, vq, false);
854
855 /* set the vq address */
856 sc->sc_ops->setup_queue(sc, index,
857 vq->vq_dmamap->dm_segs[0].ds_addr);
858
859 aprint_verbose_dev(sc->sc_dev,
860 "allocated %u byte for virtqueue %d for %s, size %d\n",
861 allocsize, index, name, vq_size);
862 if (allocsize3 > 0)
863 aprint_verbose_dev(sc->sc_dev,
864 "using %d byte (%d entries) indirect descriptors\n",
865 allocsize3, maxnsegs * vq_size);
866
867 sc->sc_nvqs++;
868
869 return 0;
870
871 err:
872 sc->sc_ops->setup_queue(sc, index, 0);
873 if (vq->vq_dmamap)
874 bus_dmamap_destroy(sc->sc_dmat, vq->vq_dmamap);
875 if (vq->vq_vaddr)
876 bus_dmamem_unmap(sc->sc_dmat, vq->vq_vaddr, allocsize);
877 if (vq->vq_segs[0].ds_addr)
878 bus_dmamem_free(sc->sc_dmat, &vq->vq_segs[0], 1);
879 memset(vq, 0, sizeof(*vq));
880
881 return -1;
882 }
883
884 int
885 virtio_free_vq(struct virtio_softc *sc, struct virtqueue *vq)
886 {
887 struct vq_entry *qe;
888 int i = 0;
889
890 /* device must be already deactivated */
891 /* confirm the vq is empty */
892 SIMPLEQ_FOREACH(qe, &vq->vq_freelist, qe_list) {
893 i++;
894 }
895 if (i != vq->vq_num) {
896 printf("%s: freeing non-empty vq, index %d\n",
897 device_xname(sc->sc_dev), vq->vq_index);
898 return EBUSY;
899 }
900
901 /* tell device that there's no virtqueue any longer */
902 sc->sc_ops->setup_queue(sc, vq->vq_index, 0);
903
904 vq_sync_aring_all(sc, vq, BUS_DMASYNC_POSTWRITE);
905
906 kmem_free(vq->vq_entries, sizeof(*vq->vq_entries) * vq->vq_num);
907 bus_dmamap_unload(sc->sc_dmat, vq->vq_dmamap);
908 bus_dmamap_destroy(sc->sc_dmat, vq->vq_dmamap);
909 bus_dmamem_unmap(sc->sc_dmat, vq->vq_vaddr, vq->vq_bytesize);
910 bus_dmamem_free(sc->sc_dmat, &vq->vq_segs[0], 1);
911 mutex_destroy(&vq->vq_freelist_lock);
912 mutex_destroy(&vq->vq_uring_lock);
913 mutex_destroy(&vq->vq_aring_lock);
914 memset(vq, 0, sizeof(*vq));
915
916 sc->sc_nvqs--;
917
918 return 0;
919 }
920
921 /*
922 * Free descriptor management.
923 */
924 static struct vq_entry *
925 vq_alloc_entry(struct virtqueue *vq)
926 {
927 struct vq_entry *qe;
928
929 mutex_enter(&vq->vq_freelist_lock);
930 if (SIMPLEQ_EMPTY(&vq->vq_freelist)) {
931 mutex_exit(&vq->vq_freelist_lock);
932 return NULL;
933 }
934 qe = SIMPLEQ_FIRST(&vq->vq_freelist);
935 SIMPLEQ_REMOVE_HEAD(&vq->vq_freelist, qe_list);
936 mutex_exit(&vq->vq_freelist_lock);
937
938 return qe;
939 }
940
941 static void
942 vq_free_entry(struct virtqueue *vq, struct vq_entry *qe)
943 {
944 mutex_enter(&vq->vq_freelist_lock);
945 SIMPLEQ_INSERT_TAIL(&vq->vq_freelist, qe, qe_list);
946 mutex_exit(&vq->vq_freelist_lock);
947
948 return;
949 }
950
951 /*
952 * Enqueue several dmamaps as a single request.
953 */
954 /*
955 * Typical usage:
956 * <queue size> number of followings are stored in arrays
957 * - command blocks (in dmamem) should be pre-allocated and mapped
958 * - dmamaps for command blocks should be pre-allocated and loaded
959 * - dmamaps for payload should be pre-allocated
960 * r = virtio_enqueue_prep(sc, vq, &slot); // allocate a slot
961 * if (r) // currently 0 or EAGAIN
962 * return r;
963 * r = bus_dmamap_load(dmat, dmamap_payload[slot], data, count, ..);
964 * if (r) {
965 * virtio_enqueue_abort(sc, vq, slot);
966 * return r;
967 * }
968 * r = virtio_enqueue_reserve(sc, vq, slot,
969 * dmamap_payload[slot]->dm_nsegs + 1);
970 * // ^ +1 for command
971 * if (r) { // currently 0 or EAGAIN
972 * bus_dmamap_unload(dmat, dmamap_payload[slot]);
973 * return r; // do not call abort()
974 * }
975 * <setup and prepare commands>
976 * bus_dmamap_sync(dmat, dmamap_cmd[slot],... BUS_DMASYNC_PREWRITE);
977 * bus_dmamap_sync(dmat, dmamap_payload[slot],...);
978 * virtio_enqueue(sc, vq, slot, dmamap_cmd[slot], false);
979 * virtio_enqueue(sc, vq, slot, dmamap_payload[slot], iswrite);
980 * virtio_enqueue_commit(sc, vq, slot, true);
981 */
982
983 /*
984 * enqueue_prep: allocate a slot number
985 */
986 int
987 virtio_enqueue_prep(struct virtio_softc *sc, struct virtqueue *vq, int *slotp)
988 {
989 struct vq_entry *qe1;
990
991 KASSERT(slotp != NULL);
992
993 qe1 = vq_alloc_entry(vq);
994 if (qe1 == NULL)
995 return EAGAIN;
996 /* next slot is not allocated yet */
997 qe1->qe_next = -1;
998 *slotp = qe1->qe_index;
999
1000 return 0;
1001 }
1002
1003 /*
1004 * enqueue_reserve: allocate remaining slots and build the descriptor chain.
1005 */
1006 int
1007 virtio_enqueue_reserve(struct virtio_softc *sc, struct virtqueue *vq,
1008 int slot, int nsegs)
1009 {
1010 int indirect;
1011 struct vq_entry *qe1 = &vq->vq_entries[slot];
1012
1013 KASSERT(qe1->qe_next == -1);
1014 KASSERT(1 <= nsegs && nsegs <= vq->vq_num);
1015
1016 if ((vq->vq_indirect != NULL) &&
1017 (nsegs >= MINSEG_INDIRECT) &&
1018 (nsegs <= vq->vq_maxnsegs))
1019 indirect = 1;
1020 else
1021 indirect = 0;
1022 qe1->qe_indirect = indirect;
1023
1024 if (indirect) {
1025 struct vring_desc *vd;
1026 uint64_t addr;
1027 int i;
1028
1029 vd = &vq->vq_desc[qe1->qe_index];
1030 addr = vq->vq_dmamap->dm_segs[0].ds_addr
1031 + vq->vq_indirectoffset;
1032 addr += sizeof(struct vring_desc)
1033 * vq->vq_maxnsegs * qe1->qe_index;
1034 vd->addr = virtio_rw64(sc, addr);
1035 vd->len = virtio_rw32(sc, sizeof(struct vring_desc) * nsegs);
1036 vd->flags = virtio_rw16(sc, VRING_DESC_F_INDIRECT);
1037
1038 vd = vq->vq_indirect;
1039 vd += vq->vq_maxnsegs * qe1->qe_index;
1040 qe1->qe_desc_base = vd;
1041
1042 for (i = 0; i < nsegs - 1; i++) {
1043 vd[i].flags = virtio_rw16(sc, VRING_DESC_F_NEXT);
1044 }
1045 vd[i].flags = virtio_rw16(sc, 0);
1046 qe1->qe_next = 0;
1047
1048 return 0;
1049 } else {
1050 struct vring_desc *vd;
1051 struct vq_entry *qe;
1052 int i, s;
1053
1054 vd = &vq->vq_desc[0];
1055 qe1->qe_desc_base = vd;
1056 qe1->qe_next = qe1->qe_index;
1057 s = slot;
1058 for (i = 0; i < nsegs - 1; i++) {
1059 qe = vq_alloc_entry(vq);
1060 if (qe == NULL) {
1061 vd[s].flags = virtio_rw16(sc, 0);
1062 virtio_enqueue_abort(sc, vq, slot);
1063 return EAGAIN;
1064 }
1065 vd[s].flags = virtio_rw16(sc, VRING_DESC_F_NEXT);
1066 vd[s].next = virtio_rw16(sc, qe->qe_index);
1067 s = qe->qe_index;
1068 }
1069 vd[s].flags = virtio_rw16(sc, 0);
1070
1071 return 0;
1072 }
1073 }
1074
1075 /*
1076 * enqueue: enqueue a single dmamap.
1077 */
1078 int
1079 virtio_enqueue(struct virtio_softc *sc, struct virtqueue *vq, int slot,
1080 bus_dmamap_t dmamap, bool write)
1081 {
1082 struct vq_entry *qe1 = &vq->vq_entries[slot];
1083 struct vring_desc *vd = qe1->qe_desc_base;
1084 int i;
1085 int s = qe1->qe_next;
1086
1087 KASSERT(s >= 0);
1088 KASSERT(dmamap->dm_nsegs > 0);
1089
1090 for (i = 0; i < dmamap->dm_nsegs; i++) {
1091 vd[s].addr = virtio_rw64(sc, dmamap->dm_segs[i].ds_addr);
1092 vd[s].len = virtio_rw32(sc, dmamap->dm_segs[i].ds_len);
1093 if (!write)
1094 vd[s].flags |= virtio_rw16(sc, VRING_DESC_F_WRITE);
1095 s = virtio_rw16(sc, vd[s].next);
1096 }
1097 qe1->qe_next = s;
1098
1099 return 0;
1100 }
1101
1102 int
1103 virtio_enqueue_p(struct virtio_softc *sc, struct virtqueue *vq, int slot,
1104 bus_dmamap_t dmamap, bus_addr_t start, bus_size_t len,
1105 bool write)
1106 {
1107 struct vq_entry *qe1 = &vq->vq_entries[slot];
1108 struct vring_desc *vd = qe1->qe_desc_base;
1109 int s = qe1->qe_next;
1110
1111 KASSERT(s >= 0);
1112 KASSERT(dmamap->dm_nsegs == 1); /* XXX */
1113 KASSERT(dmamap->dm_segs[0].ds_len > start);
1114 KASSERT(dmamap->dm_segs[0].ds_len >= start + len);
1115
1116 vd[s].addr = virtio_rw64(sc, dmamap->dm_segs[0].ds_addr + start);
1117 vd[s].len = virtio_rw32(sc, len);
1118 if (!write)
1119 vd[s].flags |= virtio_rw16(sc, VRING_DESC_F_WRITE);
1120 qe1->qe_next = virtio_rw16(sc, vd[s].next);
1121
1122 return 0;
1123 }
1124
1125 /*
1126 * enqueue_commit: add it to the aring.
1127 */
1128 int
1129 virtio_enqueue_commit(struct virtio_softc *sc, struct virtqueue *vq, int slot,
1130 bool notifynow)
1131 {
1132 struct vq_entry *qe1;
1133
1134 if (slot < 0) {
1135 mutex_enter(&vq->vq_aring_lock);
1136 goto notify;
1137 }
1138 vq_sync_descs(sc, vq, BUS_DMASYNC_PREWRITE);
1139 qe1 = &vq->vq_entries[slot];
1140 if (qe1->qe_indirect)
1141 vq_sync_indirect(sc, vq, slot, BUS_DMASYNC_PREWRITE);
1142 mutex_enter(&vq->vq_aring_lock);
1143 vq->vq_avail->ring[(vq->vq_avail_idx++) % vq->vq_num] =
1144 virtio_rw16(sc, slot);
1145
1146 notify:
1147 if (notifynow) {
1148 uint16_t o, n, t;
1149 uint16_t flags;
1150
1151 o = virtio_rw16(sc, vq->vq_avail->idx);
1152 n = vq->vq_avail_idx;
1153
1154 /*
1155 * Prepare for `device->CPU' (host->guest) transfer
1156 * into the buffer. This must happen before we commit
1157 * the vq->vq_avail->idx update to ensure we're not
1158 * still using the buffer in case program-prior loads
1159 * or stores in it get delayed past the store to
1160 * vq->vq_avail->idx.
1161 */
1162 vq_sync_uring_all(sc, vq, BUS_DMASYNC_PREREAD);
1163
1164 /* ensure payload is published, then avail idx */
1165 vq_sync_aring_payload(sc, vq, BUS_DMASYNC_PREWRITE);
1166 vq->vq_avail->idx = virtio_rw16(sc, vq->vq_avail_idx);
1167 vq_sync_aring_header(sc, vq, BUS_DMASYNC_PREWRITE);
1168 vq->vq_queued++;
1169
1170 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
1171 vq_sync_uring_avail(sc, vq, BUS_DMASYNC_POSTREAD);
1172 t = virtio_rw16(sc, *vq->vq_avail_event) + 1;
1173 if ((uint16_t) (n - t) < (uint16_t) (n - o))
1174 sc->sc_ops->kick(sc, vq->vq_index);
1175 } else {
1176 vq_sync_uring_header(sc, vq, BUS_DMASYNC_POSTREAD);
1177 flags = virtio_rw16(sc, vq->vq_used->flags);
1178 if (!(flags & VRING_USED_F_NO_NOTIFY))
1179 sc->sc_ops->kick(sc, vq->vq_index);
1180 }
1181 }
1182 mutex_exit(&vq->vq_aring_lock);
1183
1184 return 0;
1185 }
1186
1187 /*
1188 * enqueue_abort: rollback.
1189 */
1190 int
1191 virtio_enqueue_abort(struct virtio_softc *sc, struct virtqueue *vq, int slot)
1192 {
1193 struct vq_entry *qe = &vq->vq_entries[slot];
1194 struct vring_desc *vd;
1195 int s;
1196
1197 if (qe->qe_next < 0) {
1198 vq_free_entry(vq, qe);
1199 return 0;
1200 }
1201
1202 s = slot;
1203 vd = &vq->vq_desc[0];
1204 while (virtio_rw16(sc, vd[s].flags) & VRING_DESC_F_NEXT) {
1205 s = virtio_rw16(sc, vd[s].next);
1206 vq_free_entry(vq, qe);
1207 qe = &vq->vq_entries[s];
1208 }
1209 vq_free_entry(vq, qe);
1210 return 0;
1211 }
1212
1213 /*
1214 * Dequeue a request.
1215 */
1216 /*
1217 * dequeue: dequeue a request from uring; dmamap_sync for uring is
1218 * already done in the interrupt handler.
1219 */
1220 int
1221 virtio_dequeue(struct virtio_softc *sc, struct virtqueue *vq,
1222 int *slotp, int *lenp)
1223 {
1224 uint16_t slot, usedidx;
1225 struct vq_entry *qe;
1226
1227 if (vq->vq_used_idx == virtio_rw16(sc, vq->vq_used->idx))
1228 return ENOENT;
1229 mutex_enter(&vq->vq_uring_lock);
1230 usedidx = vq->vq_used_idx++;
1231 mutex_exit(&vq->vq_uring_lock);
1232 usedidx %= vq->vq_num;
1233 slot = virtio_rw32(sc, vq->vq_used->ring[usedidx].id);
1234 qe = &vq->vq_entries[slot];
1235
1236 if (qe->qe_indirect)
1237 vq_sync_indirect(sc, vq, slot, BUS_DMASYNC_POSTWRITE);
1238
1239 if (slotp)
1240 *slotp = slot;
1241 if (lenp)
1242 *lenp = virtio_rw32(sc, vq->vq_used->ring[usedidx].len);
1243
1244 return 0;
1245 }
1246
1247 /*
1248 * dequeue_commit: complete dequeue; the slot is recycled for future use.
1249 * if you forget to call this the slot will be leaked.
1250 */
1251 int
1252 virtio_dequeue_commit(struct virtio_softc *sc, struct virtqueue *vq, int slot)
1253 {
1254 struct vq_entry *qe = &vq->vq_entries[slot];
1255 struct vring_desc *vd = &vq->vq_desc[0];
1256 int s = slot;
1257
1258 while (virtio_rw16(sc, vd[s].flags) & VRING_DESC_F_NEXT) {
1259 s = virtio_rw16(sc, vd[s].next);
1260 vq_free_entry(vq, qe);
1261 qe = &vq->vq_entries[s];
1262 }
1263 vq_free_entry(vq, qe);
1264
1265 return 0;
1266 }
1267
1268 /*
1269 * Attach a child, fill all the members.
1270 */
1271 void
1272 virtio_child_attach_start(struct virtio_softc *sc, device_t child, int ipl,
1273 struct virtqueue *vqs,
1274 virtio_callback config_change,
1275 virtio_callback intr_hand,
1276 int req_flags, int req_features, const char *feat_bits)
1277 {
1278 char buf[1024];
1279
1280 sc->sc_child = child;
1281 sc->sc_ipl = ipl;
1282 sc->sc_vqs = vqs;
1283 sc->sc_config_change = config_change;
1284 sc->sc_intrhand = intr_hand;
1285 sc->sc_flags = req_flags;
1286
1287 virtio_negotiate_features(sc, req_features);
1288 snprintb(buf, sizeof(buf), feat_bits, sc->sc_active_features);
1289 aprint_normal(": features: %s\n", buf);
1290 aprint_naive("\n");
1291 }
1292
1293 void
1294 virtio_child_attach_set_vqs(struct virtio_softc *sc,
1295 struct virtqueue *vqs, int nvq_pairs)
1296 {
1297
1298 KASSERT(nvq_pairs == 1 ||
1299 (sc->sc_flags & VIRTIO_F_INTR_SOFTINT) == 0);
1300 if (nvq_pairs > 1)
1301 sc->sc_child_mq = true;
1302
1303 sc->sc_vqs = vqs;
1304 }
1305
1306 int
1307 virtio_child_attach_finish(struct virtio_softc *sc)
1308 {
1309 int r;
1310
1311 sc->sc_finished_called = true;
1312 r = sc->sc_ops->alloc_interrupts(sc);
1313 if (r != 0) {
1314 aprint_error_dev(sc->sc_dev,
1315 "failed to allocate interrupts\n");
1316 goto fail;
1317 }
1318
1319 r = sc->sc_ops->setup_interrupts(sc, 0);
1320 if (r != 0) {
1321 aprint_error_dev(sc->sc_dev, "failed to setup interrupts\n");
1322 goto fail;
1323 }
1324
1325 KASSERT(sc->sc_soft_ih == NULL);
1326 if (sc->sc_flags & VIRTIO_F_INTR_SOFTINT) {
1327 u_int flags = SOFTINT_NET;
1328 if (sc->sc_flags & VIRTIO_F_INTR_MPSAFE)
1329 flags |= SOFTINT_MPSAFE;
1330
1331 sc->sc_soft_ih = softint_establish(flags, virtio_soft_intr,
1332 sc);
1333 if (sc->sc_soft_ih == NULL) {
1334 sc->sc_ops->free_interrupts(sc);
1335 aprint_error_dev(sc->sc_dev,
1336 "failed to establish soft interrupt\n");
1337 goto fail;
1338 }
1339 }
1340
1341 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER_OK);
1342 return 0;
1343
1344 fail:
1345 if (sc->sc_soft_ih) {
1346 softint_disestablish(sc->sc_soft_ih);
1347 sc->sc_soft_ih = NULL;
1348 }
1349
1350 sc->sc_ops->free_interrupts(sc);
1351
1352 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
1353 return 1;
1354 }
1355
1356 void
1357 virtio_child_detach(struct virtio_softc *sc)
1358 {
1359 sc->sc_child = NULL;
1360 sc->sc_vqs = NULL;
1361
1362 virtio_device_reset(sc);
1363
1364 sc->sc_ops->free_interrupts(sc);
1365
1366 if (sc->sc_soft_ih) {
1367 softint_disestablish(sc->sc_soft_ih);
1368 sc->sc_soft_ih = NULL;
1369 }
1370 }
1371
1372 void
1373 virtio_child_attach_failed(struct virtio_softc *sc)
1374 {
1375 virtio_child_detach(sc);
1376
1377 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
1378
1379 sc->sc_child = VIRTIO_CHILD_FAILED;
1380 }
1381
1382 bus_dma_tag_t
1383 virtio_dmat(struct virtio_softc *sc)
1384 {
1385 return sc->sc_dmat;
1386 }
1387
1388 device_t
1389 virtio_child(struct virtio_softc *sc)
1390 {
1391 return sc->sc_child;
1392 }
1393
1394 int
1395 virtio_intrhand(struct virtio_softc *sc)
1396 {
1397 return (*sc->sc_intrhand)(sc);
1398 }
1399
1400 uint64_t
1401 virtio_features(struct virtio_softc *sc)
1402 {
1403 return sc->sc_active_features;
1404 }
1405
1406 int
1407 virtio_attach_failed(struct virtio_softc *sc)
1408 {
1409 device_t self = sc->sc_dev;
1410
1411 /* no error if its not connected, but its failed */
1412 if (sc->sc_childdevid == 0)
1413 return 1;
1414
1415 if (sc->sc_child == NULL) {
1416 aprint_error_dev(self,
1417 "no matching child driver; not configured\n");
1418 return 1;
1419 }
1420
1421 if (sc->sc_child == VIRTIO_CHILD_FAILED) {
1422 aprint_error_dev(self, "virtio configuration failed\n");
1423 return 1;
1424 }
1425
1426 /* sanity check */
1427 if (!sc->sc_finished_called) {
1428 aprint_error_dev(self, "virtio internal error, child driver "
1429 "signaled OK but didn't initialize interrupts\n");
1430 return 1;
1431 }
1432
1433 return 0;
1434 }
1435
1436 void
1437 virtio_print_device_type(device_t self, int id, int revision)
1438 {
1439 aprint_normal_dev(self, "%s device (id %d, rev. 0x%02x)\n",
1440 (id < NDEVNAMES ? virtio_device_name[id] : "Unknown"),
1441 id,
1442 revision);
1443 }
1444
1445
1446 MODULE(MODULE_CLASS_DRIVER, virtio, NULL);
1447
1448 #ifdef _MODULE
1449 #include "ioconf.c"
1450 #endif
1451
1452 static int
1453 virtio_modcmd(modcmd_t cmd, void *opaque)
1454 {
1455 int error = 0;
1456
1457 #ifdef _MODULE
1458 switch (cmd) {
1459 case MODULE_CMD_INIT:
1460 error = config_init_component(cfdriver_ioconf_virtio,
1461 cfattach_ioconf_virtio, cfdata_ioconf_virtio);
1462 break;
1463 case MODULE_CMD_FINI:
1464 error = config_fini_component(cfdriver_ioconf_virtio,
1465 cfattach_ioconf_virtio, cfdata_ioconf_virtio);
1466 break;
1467 default:
1468 error = ENOTTY;
1469 break;
1470 }
1471 #endif
1472
1473 return error;
1474 }
1475