virtio.c revision 1.66 1 /* $NetBSD: virtio.c,v 1.66 2023/03/23 03:27:48 yamaguchi Exp $ */
2
3 /*
4 * Copyright (c) 2020 The NetBSD Foundation, Inc.
5 * Copyright (c) 2012 Stefan Fritsch, Alexander Fiveg.
6 * Copyright (c) 2010 Minoura Makoto.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: virtio.c,v 1.66 2023/03/23 03:27:48 yamaguchi Exp $");
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/atomic.h>
37 #include <sys/bus.h>
38 #include <sys/device.h>
39 #include <sys/kmem.h>
40 #include <sys/module.h>
41
42 #define VIRTIO_PRIVATE
43
44 #include <dev/pci/virtioreg.h> /* XXX: move to non-pci */
45 #include <dev/pci/virtiovar.h> /* XXX: move to non-pci */
46
47 #define MINSEG_INDIRECT 2 /* use indirect if nsegs >= this value */
48
49 /* incomplete list */
50 static const char *virtio_device_name[] = {
51 "unknown (0)", /* 0 */
52 "network", /* 1 */
53 "block", /* 2 */
54 "console", /* 3 */
55 "entropy", /* 4 */
56 "memory balloon", /* 5 */
57 "I/O memory", /* 6 */
58 "remote processor messaging", /* 7 */
59 "SCSI", /* 8 */
60 "9P transport", /* 9 */
61 };
62 #define NDEVNAMES __arraycount(virtio_device_name)
63
64 static void virtio_init_vq(struct virtio_softc *,
65 struct virtqueue *, const bool);
66
67 void
68 virtio_set_status(struct virtio_softc *sc, int status)
69 {
70 sc->sc_ops->set_status(sc, status);
71 }
72
73 /*
74 * Reset the device.
75 */
76 /*
77 * To reset the device to a known state, do following:
78 * virtio_reset(sc); // this will stop the device activity
79 * <dequeue finished requests>; // virtio_dequeue() still can be called
80 * <revoke pending requests in the vqs if any>;
81 * virtio_reinit_start(sc); // dequeue prohibitted
82 * newfeatures = virtio_negotiate_features(sc, requestedfeatures);
83 * <some other initialization>;
84 * virtio_reinit_end(sc); // device activated; enqueue allowed
85 * Once attached, feature negotiation can only be allowed after virtio_reset.
86 */
87 void
88 virtio_reset(struct virtio_softc *sc)
89 {
90 virtio_device_reset(sc);
91 }
92
93 int
94 virtio_reinit_start(struct virtio_softc *sc)
95 {
96 int i, r;
97
98 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_ACK);
99 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER);
100 for (i = 0; i < sc->sc_nvqs; i++) {
101 int n;
102 struct virtqueue *vq = &sc->sc_vqs[i];
103 n = sc->sc_ops->read_queue_size(sc, vq->vq_index);
104 if (n == 0) /* vq disappeared */
105 continue;
106 if (n != vq->vq_num) {
107 panic("%s: virtqueue size changed, vq index %d\n",
108 device_xname(sc->sc_dev),
109 vq->vq_index);
110 }
111 virtio_init_vq(sc, vq, true);
112 sc->sc_ops->setup_queue(sc, vq->vq_index,
113 vq->vq_dmamap->dm_segs[0].ds_addr);
114 }
115
116 r = sc->sc_ops->setup_interrupts(sc, 1);
117 if (r != 0)
118 goto fail;
119
120 return 0;
121
122 fail:
123 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
124
125 return 1;
126 }
127
128 void
129 virtio_reinit_end(struct virtio_softc *sc)
130 {
131 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER_OK);
132 }
133
134 /*
135 * Feature negotiation.
136 */
137 void
138 virtio_negotiate_features(struct virtio_softc *sc, uint64_t guest_features)
139 {
140 if (!(device_cfdata(sc->sc_dev)->cf_flags & 1) &&
141 !(device_cfdata(sc->sc_child)->cf_flags & 1)) /* XXX */
142 guest_features |= VIRTIO_F_RING_INDIRECT_DESC;
143 sc->sc_ops->neg_features(sc, guest_features);
144 if (sc->sc_active_features & VIRTIO_F_RING_INDIRECT_DESC)
145 sc->sc_indirect = true;
146 else
147 sc->sc_indirect = false;
148 }
149
150
151 /*
152 * Device configuration registers readers/writers
153 */
154 #if 0
155 #define DPRINTFR(n, fmt, val, index, num) \
156 printf("\n%s (", n); \
157 for (int i = 0; i < num; i++) \
158 printf("%02x ", bus_space_read_1(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index+i)); \
159 printf(") -> "); printf(fmt, val); printf("\n");
160 #define DPRINTFR2(n, fmt, val_s, val_n) \
161 printf("%s ", n); \
162 printf("\n stream "); printf(fmt, val_s); printf(" norm "); printf(fmt, val_n); printf("\n");
163 #else
164 #define DPRINTFR(n, fmt, val, index, num)
165 #define DPRINTFR2(n, fmt, val_s, val_n)
166 #endif
167
168
169 uint8_t
170 virtio_read_device_config_1(struct virtio_softc *sc, int index)
171 {
172 bus_space_tag_t iot = sc->sc_devcfg_iot;
173 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
174 uint8_t val;
175
176 val = bus_space_read_1(iot, ioh, index);
177
178 DPRINTFR("read_1", "%02x", val, index, 1);
179 return val;
180 }
181
182 uint16_t
183 virtio_read_device_config_2(struct virtio_softc *sc, int index)
184 {
185 bus_space_tag_t iot = sc->sc_devcfg_iot;
186 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
187 uint16_t val;
188
189 val = bus_space_read_2(iot, ioh, index);
190 if (BYTE_ORDER != sc->sc_bus_endian)
191 val = bswap16(val);
192
193 DPRINTFR("read_2", "%04x", val, index, 2);
194 DPRINTFR2("read_2", "%04x",
195 bus_space_read_stream_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh,
196 index),
197 bus_space_read_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
198 return val;
199 }
200
201 uint32_t
202 virtio_read_device_config_4(struct virtio_softc *sc, int index)
203 {
204 bus_space_tag_t iot = sc->sc_devcfg_iot;
205 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
206 uint32_t val;
207
208 val = bus_space_read_4(iot, ioh, index);
209 if (BYTE_ORDER != sc->sc_bus_endian)
210 val = bswap32(val);
211
212 DPRINTFR("read_4", "%08x", val, index, 4);
213 DPRINTFR2("read_4", "%08x",
214 bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh,
215 index),
216 bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
217 return val;
218 }
219
220 /*
221 * The Virtio spec explicitly tells that reading and writing 8 bytes are not
222 * considered atomic and no triggers may be connected to reading or writing
223 * it. We access it using two 32 reads. See virtio spec 4.1.3.1.
224 */
225 uint64_t
226 virtio_read_device_config_8(struct virtio_softc *sc, int index)
227 {
228 bus_space_tag_t iot = sc->sc_devcfg_iot;
229 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
230 union {
231 uint64_t u64;
232 uint32_t l[2];
233 } v;
234 uint64_t val;
235
236 v.l[0] = bus_space_read_4(iot, ioh, index);
237 v.l[1] = bus_space_read_4(iot, ioh, index + 4);
238 if (sc->sc_bus_endian != sc->sc_struct_endian) {
239 v.l[0] = bswap32(v.l[0]);
240 v.l[1] = bswap32(v.l[1]);
241 }
242 val = v.u64;
243
244 if (BYTE_ORDER != sc->sc_struct_endian)
245 val = bswap64(val);
246
247 DPRINTFR("read_8", "%08"PRIx64, val, index, 8);
248 DPRINTFR2("read_8 low ", "%08x",
249 bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh,
250 index),
251 bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
252 DPRINTFR2("read_8 high ", "%08x",
253 bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh,
254 index + 4),
255 bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index + 4));
256 return val;
257 }
258
259 /*
260 * In the older virtio spec, device config registers are host endian. On newer
261 * they are little endian. Some newer devices however explicitly specify their
262 * register to always be little endian. These functions cater for these.
263 */
264 uint16_t
265 virtio_read_device_config_le_2(struct virtio_softc *sc, int index)
266 {
267 bus_space_tag_t iot = sc->sc_devcfg_iot;
268 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
269 uint16_t val;
270
271 val = bus_space_read_2(iot, ioh, index);
272 if (sc->sc_bus_endian != LITTLE_ENDIAN)
273 val = bswap16(val);
274
275 DPRINTFR("read_le_2", "%04x", val, index, 2);
276 DPRINTFR2("read_le_2", "%04x",
277 bus_space_read_stream_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0),
278 bus_space_read_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0));
279 return val;
280 }
281
282 uint32_t
283 virtio_read_device_config_le_4(struct virtio_softc *sc, int index)
284 {
285 bus_space_tag_t iot = sc->sc_devcfg_iot;
286 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
287 uint32_t val;
288
289 val = bus_space_read_4(iot, ioh, index);
290 if (sc->sc_bus_endian != LITTLE_ENDIAN)
291 val = bswap32(val);
292
293 DPRINTFR("read_le_4", "%08x", val, index, 4);
294 DPRINTFR2("read_le_4", "%08x",
295 bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0),
296 bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0));
297 return val;
298 }
299
300 void
301 virtio_write_device_config_1(struct virtio_softc *sc, int index, uint8_t value)
302 {
303 bus_space_tag_t iot = sc->sc_devcfg_iot;
304 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
305
306 bus_space_write_1(iot, ioh, index, value);
307 }
308
309 void
310 virtio_write_device_config_2(struct virtio_softc *sc, int index,
311 uint16_t value)
312 {
313 bus_space_tag_t iot = sc->sc_devcfg_iot;
314 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
315
316 if (BYTE_ORDER != sc->sc_bus_endian)
317 value = bswap16(value);
318 bus_space_write_2(iot, ioh, index, value);
319 }
320
321 void
322 virtio_write_device_config_4(struct virtio_softc *sc, int index,
323 uint32_t value)
324 {
325 bus_space_tag_t iot = sc->sc_devcfg_iot;
326 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
327
328 if (BYTE_ORDER != sc->sc_bus_endian)
329 value = bswap32(value);
330 bus_space_write_4(iot, ioh, index, value);
331 }
332
333 /*
334 * The Virtio spec explicitly tells that reading and writing 8 bytes are not
335 * considered atomic and no triggers may be connected to reading or writing
336 * it. We access it using two 32 bit writes. For good measure it is stated to
337 * always write lsb first just in case of a hypervisor bug. See See virtio
338 * spec 4.1.3.1.
339 */
340 void
341 virtio_write_device_config_8(struct virtio_softc *sc, int index,
342 uint64_t value)
343 {
344 bus_space_tag_t iot = sc->sc_devcfg_iot;
345 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
346 union {
347 uint64_t u64;
348 uint32_t l[2];
349 } v;
350
351 if (BYTE_ORDER != sc->sc_struct_endian)
352 value = bswap64(value);
353
354 v.u64 = value;
355 if (sc->sc_bus_endian != sc->sc_struct_endian) {
356 v.l[0] = bswap32(v.l[0]);
357 v.l[1] = bswap32(v.l[1]);
358 }
359
360 if (sc->sc_struct_endian == LITTLE_ENDIAN) {
361 bus_space_write_4(iot, ioh, index, v.l[0]);
362 bus_space_write_4(iot, ioh, index + 4, v.l[1]);
363 } else {
364 bus_space_write_4(iot, ioh, index + 4, v.l[1]);
365 bus_space_write_4(iot, ioh, index, v.l[0]);
366 }
367 }
368
369 /*
370 * In the older virtio spec, device config registers are host endian. On newer
371 * they are little endian. Some newer devices however explicitly specify their
372 * register to always be little endian. These functions cater for these.
373 */
374 void
375 virtio_write_device_config_le_2(struct virtio_softc *sc, int index,
376 uint16_t value)
377 {
378 bus_space_tag_t iot = sc->sc_devcfg_iot;
379 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
380
381 if (sc->sc_bus_endian != LITTLE_ENDIAN)
382 value = bswap16(value);
383 bus_space_write_2(iot, ioh, index, value);
384 }
385
386 void
387 virtio_write_device_config_le_4(struct virtio_softc *sc, int index,
388 uint32_t value)
389 {
390 bus_space_tag_t iot = sc->sc_devcfg_iot;
391 bus_space_handle_t ioh = sc->sc_devcfg_ioh;
392
393 if (sc->sc_bus_endian != LITTLE_ENDIAN)
394 value = bswap32(value);
395 bus_space_write_4(iot, ioh, index, value);
396 }
397
398
399 /*
400 * data structures endian helpers
401 */
402 uint16_t
403 virtio_rw16(struct virtio_softc *sc, uint16_t val)
404 {
405 KASSERT(sc);
406 return BYTE_ORDER != sc->sc_struct_endian ? bswap16(val) : val;
407 }
408
409 uint32_t
410 virtio_rw32(struct virtio_softc *sc, uint32_t val)
411 {
412 KASSERT(sc);
413 return BYTE_ORDER != sc->sc_struct_endian ? bswap32(val) : val;
414 }
415
416 uint64_t
417 virtio_rw64(struct virtio_softc *sc, uint64_t val)
418 {
419 KASSERT(sc);
420 return BYTE_ORDER != sc->sc_struct_endian ? bswap64(val) : val;
421 }
422
423
424 /*
425 * Interrupt handler.
426 */
427 static void
428 virtio_soft_intr(void *arg)
429 {
430 struct virtio_softc *sc = arg;
431
432 KASSERT(sc->sc_intrhand != NULL);
433
434 (*sc->sc_intrhand)(sc);
435 }
436
437 /*
438 * dmamap sync operations for a virtqueue.
439 */
440 static inline void
441 vq_sync_descs(struct virtio_softc *sc, struct virtqueue *vq, int ops)
442 {
443
444 /* availoffset == sizeof(vring_desc) * vq_num */
445 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap, 0, vq->vq_availoffset,
446 ops);
447 }
448
449 static inline void
450 vq_sync_aring_all(struct virtio_softc *sc, struct virtqueue *vq, int ops)
451 {
452 uint16_t hdrlen = offsetof(struct vring_avail, ring);
453 size_t payloadlen = vq->vq_num * sizeof(uint16_t);
454 size_t usedlen = 0;
455
456 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX)
457 usedlen = sizeof(uint16_t);
458 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
459 vq->vq_availoffset, hdrlen + payloadlen + usedlen, ops);
460 }
461
462 static inline void
463 vq_sync_aring_header(struct virtio_softc *sc, struct virtqueue *vq, int ops)
464 {
465 uint16_t hdrlen = offsetof(struct vring_avail, ring);
466
467 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
468 vq->vq_availoffset, hdrlen, ops);
469 }
470
471 static inline void
472 vq_sync_aring_payload(struct virtio_softc *sc, struct virtqueue *vq, int ops)
473 {
474 uint16_t hdrlen = offsetof(struct vring_avail, ring);
475 size_t payloadlen = vq->vq_num * sizeof(uint16_t);
476
477 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
478 vq->vq_availoffset + hdrlen, payloadlen, ops);
479 }
480
481 static inline void
482 vq_sync_aring_used(struct virtio_softc *sc, struct virtqueue *vq, int ops)
483 {
484 uint16_t hdrlen = offsetof(struct vring_avail, ring);
485 size_t payloadlen = vq->vq_num * sizeof(uint16_t);
486 size_t usedlen = sizeof(uint16_t);
487
488 if ((sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) == 0)
489 return;
490 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
491 vq->vq_availoffset + hdrlen + payloadlen, usedlen, ops);
492 }
493
494 static inline void
495 vq_sync_uring_all(struct virtio_softc *sc, struct virtqueue *vq, int ops)
496 {
497 uint16_t hdrlen = offsetof(struct vring_used, ring);
498 size_t payloadlen = vq->vq_num * sizeof(struct vring_used_elem);
499 size_t availlen = 0;
500
501 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX)
502 availlen = sizeof(uint16_t);
503 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
504 vq->vq_usedoffset, hdrlen + payloadlen + availlen, ops);
505 }
506
507 static inline void
508 vq_sync_uring_header(struct virtio_softc *sc, struct virtqueue *vq, int ops)
509 {
510 uint16_t hdrlen = offsetof(struct vring_used, ring);
511
512 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
513 vq->vq_usedoffset, hdrlen, ops);
514 }
515
516 static inline void
517 vq_sync_uring_payload(struct virtio_softc *sc, struct virtqueue *vq, int ops)
518 {
519 uint16_t hdrlen = offsetof(struct vring_used, ring);
520 size_t payloadlen = vq->vq_num * sizeof(struct vring_used_elem);
521
522 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
523 vq->vq_usedoffset + hdrlen, payloadlen, ops);
524 }
525
526 static inline void
527 vq_sync_uring_avail(struct virtio_softc *sc, struct virtqueue *vq, int ops)
528 {
529 uint16_t hdrlen = offsetof(struct vring_used, ring);
530 size_t payloadlen = vq->vq_num * sizeof(struct vring_used_elem);
531 size_t availlen = sizeof(uint16_t);
532
533 if ((sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) == 0)
534 return;
535 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
536 vq->vq_usedoffset + hdrlen + payloadlen, availlen, ops);
537 }
538
539 static inline void
540 vq_sync_indirect(struct virtio_softc *sc, struct virtqueue *vq, int slot,
541 int ops)
542 {
543 int offset = vq->vq_indirectoffset +
544 sizeof(struct vring_desc) * vq->vq_maxnsegs * slot;
545
546 bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
547 offset, sizeof(struct vring_desc) * vq->vq_maxnsegs, ops);
548 }
549
550 bool
551 virtio_vq_is_enqueued(struct virtio_softc *sc, struct virtqueue *vq)
552 {
553
554 if (vq->vq_queued) {
555 vq->vq_queued = 0;
556 vq_sync_aring_all(sc, vq, BUS_DMASYNC_POSTWRITE);
557 }
558
559 vq_sync_uring_header(sc, vq, BUS_DMASYNC_POSTREAD);
560 if (vq->vq_used_idx == virtio_rw16(sc, vq->vq_used->idx))
561 return 0;
562 vq_sync_uring_payload(sc, vq, BUS_DMASYNC_POSTREAD);
563 return 1;
564 }
565
566 /*
567 * Scan vq, bus_dmamap_sync for the vqs (not for the payload),
568 * and calls (*vq_done)() if some entries are consumed.
569 *
570 * Can be used as sc_intrhand.
571 */
572 int
573 virtio_vq_intr(struct virtio_softc *sc)
574 {
575 struct virtqueue *vq;
576 int i, r = 0;
577
578 for (i = 0; i < sc->sc_nvqs; i++) {
579 vq = &sc->sc_vqs[i];
580 if (virtio_vq_is_enqueued(sc, vq) == 1) {
581 if (vq->vq_done)
582 r |= (*vq->vq_done)(vq);
583 }
584 }
585
586 return r;
587 }
588
589 int
590 virtio_vq_intrhand(struct virtio_softc *sc)
591 {
592 struct virtqueue *vq;
593 int i, r = 0;
594
595 for (i = 0; i < sc->sc_nvqs; i++) {
596 vq = &sc->sc_vqs[i];
597 r |= (*vq->vq_intrhand)(vq->vq_intrhand_arg);
598 }
599
600 return r;
601 }
602
603
604 /*
605 * Increase the event index in order to delay interrupts.
606 */
607 int
608 virtio_postpone_intr(struct virtio_softc *sc, struct virtqueue *vq,
609 uint16_t nslots)
610 {
611 uint16_t idx, nused;
612
613 idx = vq->vq_used_idx + nslots;
614
615 /* set the new event index: avail_ring->used_event = idx */
616 *vq->vq_used_event = virtio_rw16(sc, idx);
617 vq_sync_aring_used(vq->vq_owner, vq, BUS_DMASYNC_PREWRITE);
618 vq->vq_queued++;
619
620 nused = (uint16_t)
621 (virtio_rw16(sc, vq->vq_used->idx) - vq->vq_used_idx);
622 KASSERT(nused <= vq->vq_num);
623
624 return nslots < nused;
625 }
626
627 /*
628 * Postpone interrupt until 3/4 of the available descriptors have been
629 * consumed.
630 */
631 int
632 virtio_postpone_intr_smart(struct virtio_softc *sc, struct virtqueue *vq)
633 {
634 uint16_t nslots;
635
636 nslots = (uint16_t)
637 (virtio_rw16(sc, vq->vq_avail->idx) - vq->vq_used_idx) * 3 / 4;
638
639 return virtio_postpone_intr(sc, vq, nslots);
640 }
641
642 /*
643 * Postpone interrupt until all of the available descriptors have been
644 * consumed.
645 */
646 int
647 virtio_postpone_intr_far(struct virtio_softc *sc, struct virtqueue *vq)
648 {
649 uint16_t nslots;
650
651 nslots = (uint16_t)
652 (virtio_rw16(sc, vq->vq_avail->idx) - vq->vq_used_idx);
653
654 return virtio_postpone_intr(sc, vq, nslots);
655 }
656
657 /*
658 * Start/stop vq interrupt. No guarantee.
659 */
660 void
661 virtio_stop_vq_intr(struct virtio_softc *sc, struct virtqueue *vq)
662 {
663
664 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
665 /*
666 * No way to disable the interrupt completely with
667 * RingEventIdx. Instead advance used_event by half the
668 * possible value. This won't happen soon and is far enough in
669 * the past to not trigger a spurios interrupt.
670 */
671 *vq->vq_used_event = virtio_rw16(sc, vq->vq_used_idx + 0x8000);
672 vq_sync_aring_used(sc, vq, BUS_DMASYNC_PREWRITE);
673 } else {
674 vq->vq_avail->flags |=
675 virtio_rw16(sc, VRING_AVAIL_F_NO_INTERRUPT);
676 vq_sync_aring_header(sc, vq, BUS_DMASYNC_PREWRITE);
677 }
678 vq->vq_queued++;
679 }
680
681 int
682 virtio_start_vq_intr(struct virtio_softc *sc, struct virtqueue *vq)
683 {
684
685 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
686 /*
687 * If event index feature is negotiated, enabling interrupts
688 * is done through setting the latest consumed index in the
689 * used_event field
690 */
691 *vq->vq_used_event = virtio_rw16(sc, vq->vq_used_idx);
692 vq_sync_aring_used(sc, vq, BUS_DMASYNC_PREWRITE);
693 } else {
694 vq->vq_avail->flags &=
695 ~virtio_rw16(sc, VRING_AVAIL_F_NO_INTERRUPT);
696 vq_sync_aring_header(sc, vq, BUS_DMASYNC_PREWRITE);
697 }
698 vq->vq_queued++;
699
700 vq_sync_uring_header(sc, vq, BUS_DMASYNC_POSTREAD);
701 if (vq->vq_used_idx == virtio_rw16(sc, vq->vq_used->idx))
702 return 0;
703 vq_sync_uring_payload(sc, vq, BUS_DMASYNC_POSTREAD);
704 return 1;
705 }
706
707 /*
708 * Initialize vq structure.
709 */
710 static void
711 virtio_init_vq(struct virtio_softc *sc, struct virtqueue *vq,
712 const bool reinit)
713 {
714 int i, j;
715 int vq_size = vq->vq_num;
716
717 memset(vq->vq_vaddr, 0, vq->vq_bytesize);
718
719 /* build the indirect descriptor chain */
720 if (vq->vq_indirect != NULL) {
721 struct vring_desc *vd;
722
723 for (i = 0; i < vq_size; i++) {
724 vd = vq->vq_indirect;
725 vd += vq->vq_maxnsegs * i;
726 for (j = 0; j < vq->vq_maxnsegs - 1; j++) {
727 vd[j].next = virtio_rw16(sc, j + 1);
728 }
729 }
730 }
731
732 /* free slot management */
733 SIMPLEQ_INIT(&vq->vq_freelist);
734 for (i = 0; i < vq_size; i++) {
735 SIMPLEQ_INSERT_TAIL(&vq->vq_freelist, &vq->vq_entries[i],
736 qe_list);
737 vq->vq_entries[i].qe_index = i;
738 }
739 if (!reinit)
740 mutex_init(&vq->vq_freelist_lock, MUTEX_SPIN, sc->sc_ipl);
741
742 /* enqueue/dequeue status */
743 vq->vq_avail_idx = 0;
744 vq->vq_used_idx = 0;
745 vq->vq_queued = 0;
746 if (!reinit) {
747 mutex_init(&vq->vq_aring_lock, MUTEX_SPIN, sc->sc_ipl);
748 mutex_init(&vq->vq_uring_lock, MUTEX_SPIN, sc->sc_ipl);
749 }
750 vq_sync_uring_all(sc, vq, BUS_DMASYNC_PREREAD);
751 vq->vq_queued++;
752 }
753
754 /*
755 * Allocate/free a vq.
756 */
757 int
758 virtio_alloc_vq(struct virtio_softc *sc, struct virtqueue *vq, int index,
759 int maxsegsize, int maxnsegs, const char *name)
760 {
761 int vq_size, allocsize1, allocsize2, allocsize3, allocsize = 0;
762 int rsegs, r, hdrlen;
763 #define VIRTQUEUE_ALIGN(n) roundup(n, VIRTIO_PAGE_SIZE)
764
765 memset(vq, 0, sizeof(*vq));
766
767 vq_size = sc->sc_ops->read_queue_size(sc, index);
768 if (vq_size == 0) {
769 aprint_error_dev(sc->sc_dev,
770 "virtqueue not exist, index %d for %s\n",
771 index, name);
772 goto err;
773 }
774
775 hdrlen = sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX ? 3 : 2;
776
777 /* allocsize1: descriptor table + avail ring + pad */
778 allocsize1 = VIRTQUEUE_ALIGN(sizeof(struct vring_desc) * vq_size
779 + sizeof(uint16_t) * (hdrlen + vq_size));
780 /* allocsize2: used ring + pad */
781 allocsize2 = VIRTQUEUE_ALIGN(sizeof(uint16_t) * hdrlen
782 + sizeof(struct vring_used_elem) * vq_size);
783 /* allocsize3: indirect table */
784 if (sc->sc_indirect && maxnsegs >= MINSEG_INDIRECT)
785 allocsize3 = sizeof(struct vring_desc) * maxnsegs * vq_size;
786 else
787 allocsize3 = 0;
788 allocsize = allocsize1 + allocsize2 + allocsize3;
789
790 /* alloc and map the memory */
791 r = bus_dmamem_alloc(sc->sc_dmat, allocsize, VIRTIO_PAGE_SIZE, 0,
792 &vq->vq_segs[0], 1, &rsegs, BUS_DMA_WAITOK);
793 if (r != 0) {
794 aprint_error_dev(sc->sc_dev,
795 "virtqueue %d for %s allocation failed, "
796 "error code %d\n", index, name, r);
797 goto err;
798 }
799 r = bus_dmamem_map(sc->sc_dmat, &vq->vq_segs[0], rsegs, allocsize,
800 &vq->vq_vaddr, BUS_DMA_WAITOK);
801 if (r != 0) {
802 aprint_error_dev(sc->sc_dev,
803 "virtqueue %d for %s map failed, "
804 "error code %d\n", index, name, r);
805 goto err;
806 }
807 r = bus_dmamap_create(sc->sc_dmat, allocsize, 1, allocsize, 0,
808 BUS_DMA_WAITOK, &vq->vq_dmamap);
809 if (r != 0) {
810 aprint_error_dev(sc->sc_dev,
811 "virtqueue %d for %s dmamap creation failed, "
812 "error code %d\n", index, name, r);
813 goto err;
814 }
815 r = bus_dmamap_load(sc->sc_dmat, vq->vq_dmamap,
816 vq->vq_vaddr, allocsize, NULL, BUS_DMA_WAITOK);
817 if (r != 0) {
818 aprint_error_dev(sc->sc_dev,
819 "virtqueue %d for %s dmamap load failed, "
820 "error code %d\n", index, name, r);
821 goto err;
822 }
823
824 /* remember addresses and offsets for later use */
825 vq->vq_owner = sc;
826 vq->vq_num = vq_size;
827 vq->vq_index = index;
828 vq->vq_desc = vq->vq_vaddr;
829 vq->vq_availoffset = sizeof(struct vring_desc) * vq_size;
830 vq->vq_avail = (void *)(((char *)vq->vq_desc) + vq->vq_availoffset);
831 vq->vq_used_event = (uint16_t *)((char *)vq->vq_avail +
832 offsetof(struct vring_avail, ring[vq->vq_num]));
833 vq->vq_usedoffset = allocsize1;
834 vq->vq_used = (void *)(((char *)vq->vq_desc) + vq->vq_usedoffset);
835 vq->vq_avail_event = (uint16_t *)((char *)vq->vq_used +
836 offsetof(struct vring_used, ring[vq->vq_num]));
837
838 if (allocsize3 > 0) {
839 vq->vq_indirectoffset = allocsize1 + allocsize2;
840 vq->vq_indirect = (void *)(((char *)vq->vq_desc)
841 + vq->vq_indirectoffset);
842 }
843 vq->vq_bytesize = allocsize;
844 vq->vq_maxsegsize = maxsegsize;
845 vq->vq_maxnsegs = maxnsegs;
846
847 /* free slot management */
848 vq->vq_entries = kmem_zalloc(sizeof(struct vq_entry) * vq_size,
849 KM_SLEEP);
850 virtio_init_vq(sc, vq, false);
851
852 /* set the vq address */
853 sc->sc_ops->setup_queue(sc, index,
854 vq->vq_dmamap->dm_segs[0].ds_addr);
855
856 aprint_verbose_dev(sc->sc_dev,
857 "allocated %u byte for virtqueue %d for %s, size %d\n",
858 allocsize, index, name, vq_size);
859 if (allocsize3 > 0)
860 aprint_verbose_dev(sc->sc_dev,
861 "using %d byte (%d entries) indirect descriptors\n",
862 allocsize3, maxnsegs * vq_size);
863
864 return 0;
865
866 err:
867 sc->sc_ops->setup_queue(sc, index, 0);
868 if (vq->vq_dmamap)
869 bus_dmamap_destroy(sc->sc_dmat, vq->vq_dmamap);
870 if (vq->vq_vaddr)
871 bus_dmamem_unmap(sc->sc_dmat, vq->vq_vaddr, allocsize);
872 if (vq->vq_segs[0].ds_addr)
873 bus_dmamem_free(sc->sc_dmat, &vq->vq_segs[0], 1);
874 memset(vq, 0, sizeof(*vq));
875
876 return -1;
877 }
878
879 int
880 virtio_free_vq(struct virtio_softc *sc, struct virtqueue *vq)
881 {
882 struct vq_entry *qe;
883 int i = 0;
884
885 /* device must be already deactivated */
886 /* confirm the vq is empty */
887 SIMPLEQ_FOREACH(qe, &vq->vq_freelist, qe_list) {
888 i++;
889 }
890 if (i != vq->vq_num) {
891 printf("%s: freeing non-empty vq, index %d\n",
892 device_xname(sc->sc_dev), vq->vq_index);
893 return EBUSY;
894 }
895
896 /* tell device that there's no virtqueue any longer */
897 sc->sc_ops->setup_queue(sc, vq->vq_index, 0);
898
899 vq_sync_aring_all(sc, vq, BUS_DMASYNC_POSTWRITE);
900
901 kmem_free(vq->vq_entries, sizeof(*vq->vq_entries) * vq->vq_num);
902 bus_dmamap_unload(sc->sc_dmat, vq->vq_dmamap);
903 bus_dmamap_destroy(sc->sc_dmat, vq->vq_dmamap);
904 bus_dmamem_unmap(sc->sc_dmat, vq->vq_vaddr, vq->vq_bytesize);
905 bus_dmamem_free(sc->sc_dmat, &vq->vq_segs[0], 1);
906 mutex_destroy(&vq->vq_freelist_lock);
907 mutex_destroy(&vq->vq_uring_lock);
908 mutex_destroy(&vq->vq_aring_lock);
909 memset(vq, 0, sizeof(*vq));
910
911 return 0;
912 }
913
914 /*
915 * Free descriptor management.
916 */
917 static struct vq_entry *
918 vq_alloc_entry(struct virtqueue *vq)
919 {
920 struct vq_entry *qe;
921
922 mutex_enter(&vq->vq_freelist_lock);
923 if (SIMPLEQ_EMPTY(&vq->vq_freelist)) {
924 mutex_exit(&vq->vq_freelist_lock);
925 return NULL;
926 }
927 qe = SIMPLEQ_FIRST(&vq->vq_freelist);
928 SIMPLEQ_REMOVE_HEAD(&vq->vq_freelist, qe_list);
929 mutex_exit(&vq->vq_freelist_lock);
930
931 return qe;
932 }
933
934 static void
935 vq_free_entry(struct virtqueue *vq, struct vq_entry *qe)
936 {
937 mutex_enter(&vq->vq_freelist_lock);
938 SIMPLEQ_INSERT_TAIL(&vq->vq_freelist, qe, qe_list);
939 mutex_exit(&vq->vq_freelist_lock);
940
941 return;
942 }
943
944 /*
945 * Enqueue several dmamaps as a single request.
946 */
947 /*
948 * Typical usage:
949 * <queue size> number of followings are stored in arrays
950 * - command blocks (in dmamem) should be pre-allocated and mapped
951 * - dmamaps for command blocks should be pre-allocated and loaded
952 * - dmamaps for payload should be pre-allocated
953 * r = virtio_enqueue_prep(sc, vq, &slot); // allocate a slot
954 * if (r) // currently 0 or EAGAIN
955 * return r;
956 * r = bus_dmamap_load(dmat, dmamap_payload[slot], data, count, ..);
957 * if (r) {
958 * virtio_enqueue_abort(sc, vq, slot);
959 * return r;
960 * }
961 * r = virtio_enqueue_reserve(sc, vq, slot,
962 * dmamap_payload[slot]->dm_nsegs + 1);
963 * // ^ +1 for command
964 * if (r) { // currently 0 or EAGAIN
965 * bus_dmamap_unload(dmat, dmamap_payload[slot]);
966 * return r; // do not call abort()
967 * }
968 * <setup and prepare commands>
969 * bus_dmamap_sync(dmat, dmamap_cmd[slot],... BUS_DMASYNC_PREWRITE);
970 * bus_dmamap_sync(dmat, dmamap_payload[slot],...);
971 * virtio_enqueue(sc, vq, slot, dmamap_cmd[slot], false);
972 * virtio_enqueue(sc, vq, slot, dmamap_payload[slot], iswrite);
973 * virtio_enqueue_commit(sc, vq, slot, true);
974 */
975
976 /*
977 * enqueue_prep: allocate a slot number
978 */
979 int
980 virtio_enqueue_prep(struct virtio_softc *sc, struct virtqueue *vq, int *slotp)
981 {
982 struct vq_entry *qe1;
983
984 KASSERT(slotp != NULL);
985
986 qe1 = vq_alloc_entry(vq);
987 if (qe1 == NULL)
988 return EAGAIN;
989 /* next slot is not allocated yet */
990 qe1->qe_next = -1;
991 *slotp = qe1->qe_index;
992
993 return 0;
994 }
995
996 /*
997 * enqueue_reserve: allocate remaining slots and build the descriptor chain.
998 */
999 int
1000 virtio_enqueue_reserve(struct virtio_softc *sc, struct virtqueue *vq,
1001 int slot, int nsegs)
1002 {
1003 int indirect;
1004 struct vq_entry *qe1 = &vq->vq_entries[slot];
1005
1006 KASSERT(qe1->qe_next == -1);
1007 KASSERT(1 <= nsegs && nsegs <= vq->vq_num);
1008
1009 if ((vq->vq_indirect != NULL) &&
1010 (nsegs >= MINSEG_INDIRECT) &&
1011 (nsegs <= vq->vq_maxnsegs))
1012 indirect = 1;
1013 else
1014 indirect = 0;
1015 qe1->qe_indirect = indirect;
1016
1017 if (indirect) {
1018 struct vring_desc *vd;
1019 uint64_t addr;
1020 int i;
1021
1022 vd = &vq->vq_desc[qe1->qe_index];
1023 addr = vq->vq_dmamap->dm_segs[0].ds_addr
1024 + vq->vq_indirectoffset;
1025 addr += sizeof(struct vring_desc)
1026 * vq->vq_maxnsegs * qe1->qe_index;
1027 vd->addr = virtio_rw64(sc, addr);
1028 vd->len = virtio_rw32(sc, sizeof(struct vring_desc) * nsegs);
1029 vd->flags = virtio_rw16(sc, VRING_DESC_F_INDIRECT);
1030
1031 vd = vq->vq_indirect;
1032 vd += vq->vq_maxnsegs * qe1->qe_index;
1033 qe1->qe_desc_base = vd;
1034
1035 for (i = 0; i < nsegs - 1; i++) {
1036 vd[i].flags = virtio_rw16(sc, VRING_DESC_F_NEXT);
1037 }
1038 vd[i].flags = virtio_rw16(sc, 0);
1039 qe1->qe_next = 0;
1040
1041 return 0;
1042 } else {
1043 struct vring_desc *vd;
1044 struct vq_entry *qe;
1045 int i, s;
1046
1047 vd = &vq->vq_desc[0];
1048 qe1->qe_desc_base = vd;
1049 qe1->qe_next = qe1->qe_index;
1050 s = slot;
1051 for (i = 0; i < nsegs - 1; i++) {
1052 qe = vq_alloc_entry(vq);
1053 if (qe == NULL) {
1054 vd[s].flags = virtio_rw16(sc, 0);
1055 virtio_enqueue_abort(sc, vq, slot);
1056 return EAGAIN;
1057 }
1058 vd[s].flags = virtio_rw16(sc, VRING_DESC_F_NEXT);
1059 vd[s].next = virtio_rw16(sc, qe->qe_index);
1060 s = qe->qe_index;
1061 }
1062 vd[s].flags = virtio_rw16(sc, 0);
1063
1064 return 0;
1065 }
1066 }
1067
1068 /*
1069 * enqueue: enqueue a single dmamap.
1070 */
1071 int
1072 virtio_enqueue(struct virtio_softc *sc, struct virtqueue *vq, int slot,
1073 bus_dmamap_t dmamap, bool write)
1074 {
1075 struct vq_entry *qe1 = &vq->vq_entries[slot];
1076 struct vring_desc *vd = qe1->qe_desc_base;
1077 int i;
1078 int s = qe1->qe_next;
1079
1080 KASSERT(s >= 0);
1081 KASSERT(dmamap->dm_nsegs > 0);
1082
1083 for (i = 0; i < dmamap->dm_nsegs; i++) {
1084 vd[s].addr = virtio_rw64(sc, dmamap->dm_segs[i].ds_addr);
1085 vd[s].len = virtio_rw32(sc, dmamap->dm_segs[i].ds_len);
1086 if (!write)
1087 vd[s].flags |= virtio_rw16(sc, VRING_DESC_F_WRITE);
1088 s = virtio_rw16(sc, vd[s].next);
1089 }
1090 qe1->qe_next = s;
1091
1092 return 0;
1093 }
1094
1095 int
1096 virtio_enqueue_p(struct virtio_softc *sc, struct virtqueue *vq, int slot,
1097 bus_dmamap_t dmamap, bus_addr_t start, bus_size_t len,
1098 bool write)
1099 {
1100 struct vq_entry *qe1 = &vq->vq_entries[slot];
1101 struct vring_desc *vd = qe1->qe_desc_base;
1102 int s = qe1->qe_next;
1103
1104 KASSERT(s >= 0);
1105 KASSERT(dmamap->dm_nsegs == 1); /* XXX */
1106 KASSERT(dmamap->dm_segs[0].ds_len > start);
1107 KASSERT(dmamap->dm_segs[0].ds_len >= start + len);
1108
1109 vd[s].addr = virtio_rw64(sc, dmamap->dm_segs[0].ds_addr + start);
1110 vd[s].len = virtio_rw32(sc, len);
1111 if (!write)
1112 vd[s].flags |= virtio_rw16(sc, VRING_DESC_F_WRITE);
1113 qe1->qe_next = virtio_rw16(sc, vd[s].next);
1114
1115 return 0;
1116 }
1117
1118 /*
1119 * enqueue_commit: add it to the aring.
1120 */
1121 int
1122 virtio_enqueue_commit(struct virtio_softc *sc, struct virtqueue *vq, int slot,
1123 bool notifynow)
1124 {
1125 struct vq_entry *qe1;
1126
1127 if (slot < 0) {
1128 mutex_enter(&vq->vq_aring_lock);
1129 goto notify;
1130 }
1131 vq_sync_descs(sc, vq, BUS_DMASYNC_PREWRITE);
1132 qe1 = &vq->vq_entries[slot];
1133 if (qe1->qe_indirect)
1134 vq_sync_indirect(sc, vq, slot, BUS_DMASYNC_PREWRITE);
1135 mutex_enter(&vq->vq_aring_lock);
1136 vq->vq_avail->ring[(vq->vq_avail_idx++) % vq->vq_num] =
1137 virtio_rw16(sc, slot);
1138
1139 notify:
1140 if (notifynow) {
1141 uint16_t o, n, t;
1142 uint16_t flags;
1143
1144 o = virtio_rw16(sc, vq->vq_avail->idx) - 1;
1145 n = vq->vq_avail_idx;
1146
1147 /*
1148 * Prepare for `device->CPU' (host->guest) transfer
1149 * into the buffer. This must happen before we commit
1150 * the vq->vq_avail->idx update to ensure we're not
1151 * still using the buffer in case program-prior loads
1152 * or stores in it get delayed past the store to
1153 * vq->vq_avail->idx.
1154 */
1155 vq_sync_uring_all(sc, vq, BUS_DMASYNC_PREREAD);
1156
1157 /* ensure payload is published, then avail idx */
1158 vq_sync_aring_payload(sc, vq, BUS_DMASYNC_PREWRITE);
1159 vq->vq_avail->idx = virtio_rw16(sc, vq->vq_avail_idx);
1160 vq_sync_aring_header(sc, vq, BUS_DMASYNC_PREWRITE);
1161 vq->vq_queued++;
1162
1163 if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
1164 vq_sync_uring_avail(sc, vq, BUS_DMASYNC_POSTREAD);
1165 t = virtio_rw16(sc, *vq->vq_avail_event) + 1;
1166 if ((uint16_t) (n - t) < (uint16_t) (n - o))
1167 sc->sc_ops->kick(sc, vq->vq_index);
1168 } else {
1169 vq_sync_uring_header(sc, vq, BUS_DMASYNC_POSTREAD);
1170 flags = virtio_rw16(sc, vq->vq_used->flags);
1171 if (!(flags & VRING_USED_F_NO_NOTIFY))
1172 sc->sc_ops->kick(sc, vq->vq_index);
1173 }
1174 }
1175 mutex_exit(&vq->vq_aring_lock);
1176
1177 return 0;
1178 }
1179
1180 /*
1181 * enqueue_abort: rollback.
1182 */
1183 int
1184 virtio_enqueue_abort(struct virtio_softc *sc, struct virtqueue *vq, int slot)
1185 {
1186 struct vq_entry *qe = &vq->vq_entries[slot];
1187 struct vring_desc *vd;
1188 int s;
1189
1190 if (qe->qe_next < 0) {
1191 vq_free_entry(vq, qe);
1192 return 0;
1193 }
1194
1195 s = slot;
1196 vd = &vq->vq_desc[0];
1197 while (virtio_rw16(sc, vd[s].flags) & VRING_DESC_F_NEXT) {
1198 s = virtio_rw16(sc, vd[s].next);
1199 vq_free_entry(vq, qe);
1200 qe = &vq->vq_entries[s];
1201 }
1202 vq_free_entry(vq, qe);
1203 return 0;
1204 }
1205
1206 /*
1207 * Dequeue a request.
1208 */
1209 /*
1210 * dequeue: dequeue a request from uring; dmamap_sync for uring is
1211 * already done in the interrupt handler.
1212 */
1213 int
1214 virtio_dequeue(struct virtio_softc *sc, struct virtqueue *vq,
1215 int *slotp, int *lenp)
1216 {
1217 uint16_t slot, usedidx;
1218 struct vq_entry *qe;
1219
1220 if (vq->vq_used_idx == virtio_rw16(sc, vq->vq_used->idx))
1221 return ENOENT;
1222 mutex_enter(&vq->vq_uring_lock);
1223 usedidx = vq->vq_used_idx++;
1224 mutex_exit(&vq->vq_uring_lock);
1225 usedidx %= vq->vq_num;
1226 slot = virtio_rw32(sc, vq->vq_used->ring[usedidx].id);
1227 qe = &vq->vq_entries[slot];
1228
1229 if (qe->qe_indirect)
1230 vq_sync_indirect(sc, vq, slot, BUS_DMASYNC_POSTWRITE);
1231
1232 if (slotp)
1233 *slotp = slot;
1234 if (lenp)
1235 *lenp = virtio_rw32(sc, vq->vq_used->ring[usedidx].len);
1236
1237 return 0;
1238 }
1239
1240 /*
1241 * dequeue_commit: complete dequeue; the slot is recycled for future use.
1242 * if you forget to call this the slot will be leaked.
1243 */
1244 int
1245 virtio_dequeue_commit(struct virtio_softc *sc, struct virtqueue *vq, int slot)
1246 {
1247 struct vq_entry *qe = &vq->vq_entries[slot];
1248 struct vring_desc *vd = &vq->vq_desc[0];
1249 int s = slot;
1250
1251 while (virtio_rw16(sc, vd[s].flags) & VRING_DESC_F_NEXT) {
1252 s = virtio_rw16(sc, vd[s].next);
1253 vq_free_entry(vq, qe);
1254 qe = &vq->vq_entries[s];
1255 }
1256 vq_free_entry(vq, qe);
1257
1258 return 0;
1259 }
1260
1261 /*
1262 * Attach a child, fill all the members.
1263 */
1264 void
1265 virtio_child_attach_start(struct virtio_softc *sc, device_t child, int ipl,
1266 uint64_t req_features, const char *feat_bits)
1267 {
1268 char buf[1024];
1269
1270 sc->sc_child = child;
1271 sc->sc_ipl = ipl;
1272
1273 virtio_negotiate_features(sc, req_features);
1274 snprintb(buf, sizeof(buf), feat_bits, sc->sc_active_features);
1275 aprint_normal(": features: %s\n", buf);
1276 aprint_naive("\n");
1277 }
1278
1279 int
1280 virtio_child_attach_finish(struct virtio_softc *sc,
1281 struct virtqueue *vqs, size_t nvqs,
1282 virtio_callback config_change, virtio_callback intr_hand,
1283 int req_flags)
1284 {
1285 int r;
1286
1287 #ifdef DIAGNOSTIC
1288 KASSERT(nvqs > 0);
1289 #define VIRTIO_ASSERT_FLAGS (VIRTIO_F_INTR_SOFTINT | VIRTIO_F_INTR_PERVQ)
1290 KASSERT((req_flags & VIRTIO_ASSERT_FLAGS) != VIRTIO_ASSERT_FLAGS);
1291 #undef VIRTIO_ASSERT_FLAGS
1292
1293 for (size_t _i = 0; _i < nvqs; _i++){
1294 KASSERT(vqs[_i].vq_index == _i);
1295 KASSERT((req_flags & VIRTIO_F_INTR_PERVQ) == 0 ||
1296 vqs[_i].vq_intrhand != NULL);
1297 }
1298 #endif
1299
1300 sc->sc_finished_called = true;
1301
1302 sc->sc_vqs = vqs;
1303 sc->sc_nvqs = nvqs;
1304 sc->sc_config_change = config_change;
1305 sc->sc_intrhand = intr_hand;
1306 sc->sc_flags = req_flags;
1307
1308 r = sc->sc_ops->alloc_interrupts(sc);
1309 if (r != 0) {
1310 aprint_error_dev(sc->sc_dev,
1311 "failed to allocate interrupts\n");
1312 goto fail;
1313 }
1314
1315 r = sc->sc_ops->setup_interrupts(sc, 0);
1316 if (r != 0) {
1317 aprint_error_dev(sc->sc_dev, "failed to setup interrupts\n");
1318 goto fail;
1319 }
1320
1321 KASSERT(sc->sc_soft_ih == NULL);
1322 if (sc->sc_flags & VIRTIO_F_INTR_SOFTINT) {
1323 u_int flags = SOFTINT_NET;
1324 if (sc->sc_flags & VIRTIO_F_INTR_MPSAFE)
1325 flags |= SOFTINT_MPSAFE;
1326
1327 sc->sc_soft_ih = softint_establish(flags, virtio_soft_intr,
1328 sc);
1329 if (sc->sc_soft_ih == NULL) {
1330 sc->sc_ops->free_interrupts(sc);
1331 aprint_error_dev(sc->sc_dev,
1332 "failed to establish soft interrupt\n");
1333 goto fail;
1334 }
1335 }
1336
1337 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER_OK);
1338 return 0;
1339
1340 fail:
1341 if (sc->sc_soft_ih) {
1342 softint_disestablish(sc->sc_soft_ih);
1343 sc->sc_soft_ih = NULL;
1344 }
1345
1346 sc->sc_ops->free_interrupts(sc);
1347
1348 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
1349 return 1;
1350 }
1351
1352 void
1353 virtio_child_detach(struct virtio_softc *sc)
1354 {
1355 sc->sc_child = NULL;
1356 sc->sc_vqs = NULL;
1357
1358 virtio_device_reset(sc);
1359
1360 sc->sc_ops->free_interrupts(sc);
1361
1362 if (sc->sc_soft_ih) {
1363 softint_disestablish(sc->sc_soft_ih);
1364 sc->sc_soft_ih = NULL;
1365 }
1366 }
1367
1368 void
1369 virtio_child_attach_failed(struct virtio_softc *sc)
1370 {
1371 virtio_child_detach(sc);
1372
1373 virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
1374
1375 sc->sc_child = VIRTIO_CHILD_FAILED;
1376 }
1377
1378 bus_dma_tag_t
1379 virtio_dmat(struct virtio_softc *sc)
1380 {
1381 return sc->sc_dmat;
1382 }
1383
1384 device_t
1385 virtio_child(struct virtio_softc *sc)
1386 {
1387 return sc->sc_child;
1388 }
1389
1390 int
1391 virtio_intrhand(struct virtio_softc *sc)
1392 {
1393 return (*sc->sc_intrhand)(sc);
1394 }
1395
1396 uint64_t
1397 virtio_features(struct virtio_softc *sc)
1398 {
1399 return sc->sc_active_features;
1400 }
1401
1402 int
1403 virtio_attach_failed(struct virtio_softc *sc)
1404 {
1405 device_t self = sc->sc_dev;
1406
1407 /* no error if its not connected, but its failed */
1408 if (sc->sc_childdevid == 0)
1409 return 1;
1410
1411 if (sc->sc_child == NULL) {
1412 aprint_error_dev(self,
1413 "no matching child driver; not configured\n");
1414 return 1;
1415 }
1416
1417 if (sc->sc_child == VIRTIO_CHILD_FAILED) {
1418 aprint_error_dev(self, "virtio configuration failed\n");
1419 return 1;
1420 }
1421
1422 /* sanity check */
1423 if (!sc->sc_finished_called) {
1424 aprint_error_dev(self, "virtio internal error, child driver "
1425 "signaled OK but didn't initialize interrupts\n");
1426 return 1;
1427 }
1428
1429 return 0;
1430 }
1431
1432 void
1433 virtio_print_device_type(device_t self, int id, int revision)
1434 {
1435 aprint_normal_dev(self, "%s device (id %d, rev. 0x%02x)\n",
1436 (id < NDEVNAMES ? virtio_device_name[id] : "Unknown"),
1437 id,
1438 revision);
1439 }
1440
1441
1442 MODULE(MODULE_CLASS_DRIVER, virtio, NULL);
1443
1444 #ifdef _MODULE
1445 #include "ioconf.c"
1446 #endif
1447
1448 static int
1449 virtio_modcmd(modcmd_t cmd, void *opaque)
1450 {
1451 int error = 0;
1452
1453 #ifdef _MODULE
1454 switch (cmd) {
1455 case MODULE_CMD_INIT:
1456 error = config_init_component(cfdriver_ioconf_virtio,
1457 cfattach_ioconf_virtio, cfdata_ioconf_virtio);
1458 break;
1459 case MODULE_CMD_FINI:
1460 error = config_fini_component(cfdriver_ioconf_virtio,
1461 cfattach_ioconf_virtio, cfdata_ioconf_virtio);
1462 break;
1463 default:
1464 error = ENOTTY;
1465 break;
1466 }
1467 #endif
1468
1469 return error;
1470 }
1471