Home | History | Annotate | Line # | Download | only in voyager
pwmclock.c revision 1.3.4.2
      1  1.3.4.2  mrg /*	$NetBSD: pwmclock.c,v 1.3.4.2 2012/02/18 07:34:55 mrg Exp $	*/
      2  1.3.4.2  mrg 
      3  1.3.4.2  mrg /*
      4  1.3.4.2  mrg  * Copyright (c) 2011 Michael Lorenz
      5  1.3.4.2  mrg  * All rights reserved.
      6  1.3.4.2  mrg  *
      7  1.3.4.2  mrg  * Redistribution and use in source and binary forms, with or without
      8  1.3.4.2  mrg  * modification, are permitted provided that the following conditions
      9  1.3.4.2  mrg  * are met:
     10  1.3.4.2  mrg  * 1. Redistributions of source code must retain the above copyright
     11  1.3.4.2  mrg  *    notice, this list of conditions and the following disclaimer.
     12  1.3.4.2  mrg  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.3.4.2  mrg  *    notice, this list of conditions and the following disclaimer in the
     14  1.3.4.2  mrg  *    documentation and/or other materials provided with the distribution.
     15  1.3.4.2  mrg  *
     16  1.3.4.2  mrg  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  1.3.4.2  mrg  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  1.3.4.2  mrg  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  1.3.4.2  mrg  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  1.3.4.2  mrg  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  1.3.4.2  mrg  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  1.3.4.2  mrg  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  1.3.4.2  mrg  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  1.3.4.2  mrg  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  1.3.4.2  mrg  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  1.3.4.2  mrg  */
     27  1.3.4.2  mrg 
     28  1.3.4.2  mrg #include <sys/cdefs.h>
     29  1.3.4.2  mrg __KERNEL_RCSID(0, "$NetBSD: pwmclock.c,v 1.3.4.2 2012/02/18 07:34:55 mrg Exp $");
     30  1.3.4.2  mrg 
     31  1.3.4.2  mrg #include <sys/param.h>
     32  1.3.4.2  mrg #include <sys/systm.h>
     33  1.3.4.2  mrg #include <sys/kernel.h>
     34  1.3.4.2  mrg #include <sys/device.h>
     35  1.3.4.2  mrg #include <sys/cpu.h>
     36  1.3.4.2  mrg #include <sys/timetc.h>
     37  1.3.4.2  mrg #include <sys/sysctl.h>
     38  1.3.4.2  mrg 
     39  1.3.4.2  mrg #include <dev/pci/voyagervar.h>
     40  1.3.4.2  mrg #include <dev/ic/sm502reg.h>
     41  1.3.4.2  mrg 
     42  1.3.4.2  mrg #include <mips/mips3_clock.h>
     43  1.3.4.2  mrg #include <mips/locore.h>
     44  1.3.4.2  mrg #include <mips/bonito/bonitoreg.h>
     45  1.3.4.2  mrg #include <mips/bonito/bonitovar.h>
     46  1.3.4.2  mrg 
     47  1.3.4.2  mrg #include "opt_pwmclock.h"
     48  1.3.4.2  mrg 
     49  1.3.4.2  mrg #ifdef PWMCLOCK_DEBUG
     50  1.3.4.2  mrg #define DPRINTF aprint_error
     51  1.3.4.2  mrg #else
     52  1.3.4.2  mrg #define DPRINTF while (0) printf
     53  1.3.4.2  mrg #endif
     54  1.3.4.2  mrg 
     55  1.3.4.2  mrg int pwmclock_intr(void *);
     56  1.3.4.2  mrg 
     57  1.3.4.2  mrg struct pwmclock_softc {
     58  1.3.4.2  mrg 	device_t sc_dev;
     59  1.3.4.2  mrg 	bus_space_tag_t sc_memt;
     60  1.3.4.2  mrg 	bus_space_handle_t sc_regh;
     61  1.3.4.2  mrg 	uint32_t sc_reg, sc_last;
     62  1.3.4.2  mrg 	uint32_t sc_scale[8];
     63  1.3.4.2  mrg 	uint32_t sc_count;	/* should probably be 64 bit */
     64  1.3.4.2  mrg 	int sc_step;
     65  1.3.4.2  mrg 	int sc_step_wanted;
     66  1.3.4.2  mrg };
     67  1.3.4.2  mrg 
     68  1.3.4.2  mrg static int	pwmclock_match(device_t, cfdata_t, void *);
     69  1.3.4.2  mrg static void	pwmclock_attach(device_t, device_t, void *);
     70  1.3.4.2  mrg 
     71  1.3.4.2  mrg CFATTACH_DECL_NEW(pwmclock, sizeof(struct pwmclock_softc),
     72  1.3.4.2  mrg     pwmclock_match, pwmclock_attach, NULL, NULL);
     73  1.3.4.2  mrg 
     74  1.3.4.2  mrg static void pwmclock_start(void);
     75  1.3.4.2  mrg static u_int get_pwmclock_timecount(struct timecounter *);
     76  1.3.4.2  mrg 
     77  1.3.4.2  mrg struct pwmclock_softc *pwmclock;
     78  1.3.4.2  mrg extern void (*initclocks_ptr)(void);
     79  1.3.4.2  mrg extern struct clockframe cf;
     80  1.3.4.2  mrg 
     81  1.3.4.2  mrg /* 0, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1 */
     82  1.3.4.2  mrg static int scale_m[] = {1, 1, 3, 1, 5, 3, 7, 1};
     83  1.3.4.2  mrg static int scale_d[] = {0, 4, 8, 2, 8, 4, 8, 1};
     84  1.3.4.2  mrg 
     85  1.3.4.2  mrg #define scale(x, f) (x * scale_d[f] / scale_m[f])
     86  1.3.4.2  mrg 
     87  1.3.4.2  mrg void pwmclock_set_speed(struct pwmclock_softc *, int);
     88  1.3.4.2  mrg static int  pwmclock_cpuspeed_temp(SYSCTLFN_ARGS);
     89  1.3.4.2  mrg static int  pwmclock_cpuspeed_cur(SYSCTLFN_ARGS);
     90  1.3.4.2  mrg static int  pwmclock_cpuspeed_available(SYSCTLFN_ARGS);
     91  1.3.4.2  mrg 
     92  1.3.4.2  mrg static struct timecounter pwmclock_timecounter = {
     93  1.3.4.2  mrg 	get_pwmclock_timecount,	/* get_timecount */
     94  1.3.4.2  mrg 	0,			/* no poll_pps */
     95  1.3.4.2  mrg 	0xffffffff,		/* counter_mask */
     96  1.3.4.2  mrg 	0,			/* frequency */
     97  1.3.4.2  mrg 	"pwm",			/* name */
     98  1.3.4.2  mrg 	100,			/* quality */
     99  1.3.4.2  mrg 	NULL,			/* tc_priv */
    100  1.3.4.2  mrg 	NULL			/* tc_next */
    101  1.3.4.2  mrg };
    102  1.3.4.2  mrg 
    103  1.3.4.2  mrg static int
    104  1.3.4.2  mrg pwmclock_match(device_t parent, cfdata_t match, void *aux)
    105  1.3.4.2  mrg {
    106  1.3.4.2  mrg 	struct voyager_attach_args *vaa = (struct voyager_attach_args *)aux;
    107  1.3.4.2  mrg 
    108  1.3.4.2  mrg 	if (strcmp(vaa->vaa_name, "pwmclock") == 0) return 100;
    109  1.3.4.2  mrg 	return 0;
    110  1.3.4.2  mrg }
    111  1.3.4.2  mrg 
    112  1.3.4.2  mrg static uint32_t
    113  1.3.4.2  mrg pwmclock_wait_edge(struct pwmclock_softc *sc)
    114  1.3.4.2  mrg {
    115  1.3.4.2  mrg 	/* clear interrupt */
    116  1.3.4.2  mrg 	bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
    117  1.3.4.2  mrg 	while ((bus_space_read_4(sc->sc_memt, sc->sc_regh, SM502_PWM1) & SM502_PWM_INTR_PENDING) == 0);
    118  1.3.4.2  mrg 	return mips3_cp0_count_read();
    119  1.3.4.2  mrg }
    120  1.3.4.2  mrg 
    121  1.3.4.2  mrg static void
    122  1.3.4.2  mrg pwmclock_attach(device_t parent, device_t self, void *aux)
    123  1.3.4.2  mrg {
    124  1.3.4.2  mrg 	struct pwmclock_softc *sc = device_private(self);
    125  1.3.4.2  mrg 	struct voyager_attach_args *vaa = aux;
    126  1.3.4.2  mrg 	const struct sysctlnode *sysctl_node, *me, *freq;
    127  1.3.4.2  mrg 	uint32_t reg, last, curr, diff, acc;
    128  1.3.4.2  mrg 	int i, clk;
    129  1.3.4.2  mrg 
    130  1.3.4.2  mrg 	sc->sc_dev = self;
    131  1.3.4.2  mrg 	sc->sc_memt = vaa->vaa_tag;
    132  1.3.4.2  mrg 	sc->sc_regh = vaa->vaa_regh;
    133  1.3.4.2  mrg 
    134  1.3.4.2  mrg 	aprint_normal("\n");
    135  1.3.4.2  mrg 
    136  1.3.4.2  mrg 	voyager_establish_intr(parent, 22, pwmclock_intr, sc);
    137  1.3.4.2  mrg 	reg = voyager_set_pwm(100, 100); /* 100Hz, 10% duty cycle */
    138  1.3.4.2  mrg 	reg |= SM502_PWM_ENABLE | SM502_PWM_ENABLE_INTR | SM502_PWM_INTR_PENDING;
    139  1.3.4.2  mrg 	sc->sc_reg = reg;
    140  1.3.4.2  mrg 	pwmclock = sc;
    141  1.3.4.2  mrg 	initclocks_ptr = pwmclock_start;
    142  1.3.4.2  mrg 
    143  1.3.4.2  mrg 	/* ok, let's see how far the cycle counter gets between interrupts */
    144  1.3.4.2  mrg 	DPRINTF("calibrating CPU timer...\n");
    145  1.3.4.2  mrg 	for (clk = 1; clk < 8; clk++) {
    146  1.3.4.2  mrg 		REGVAL(LS2F_CHIPCFG0) = (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) | clk;
    147  1.3.4.2  mrg 		bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
    148  1.3.4.2  mrg 		acc = 0;
    149  1.3.4.2  mrg 		last = pwmclock_wait_edge(sc);
    150  1.3.4.2  mrg 		for (i = 0; i < 16; i++) {
    151  1.3.4.2  mrg 			curr = pwmclock_wait_edge(sc);
    152  1.3.4.2  mrg 			diff = curr - last;
    153  1.3.4.2  mrg 			acc += diff;
    154  1.3.4.2  mrg 			last = curr;
    155  1.3.4.2  mrg 		}
    156  1.3.4.2  mrg 		sc->sc_scale[clk] = (acc >> 4) / 5000;
    157  1.3.4.2  mrg 	}
    158  1.3.4.2  mrg #ifdef PWMCLOCK_DEBUG
    159  1.3.4.2  mrg 	for (clk = 1; clk < 8; clk++) {
    160  1.3.4.2  mrg 		aprint_normal_dev(sc->sc_dev, "%d/8: %d\n", clk + 1, sc->sc_scale[clk]);
    161  1.3.4.2  mrg 	}
    162  1.3.4.2  mrg #endif
    163  1.3.4.2  mrg 	sc->sc_step = 7;
    164  1.3.4.2  mrg 	sc->sc_step_wanted = 7;
    165  1.3.4.2  mrg 
    166  1.3.4.2  mrg 	/* now setup sysctl */
    167  1.3.4.2  mrg 	if (sysctl_createv(NULL, 0, NULL,
    168  1.3.4.2  mrg 	    &me,
    169  1.3.4.2  mrg 	    CTLFLAG_READWRITE, CTLTYPE_NODE, "loongson", NULL, NULL,
    170  1.3.4.2  mrg 	    0, NULL, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL) != 0)
    171  1.3.4.2  mrg 		aprint_error_dev(sc->sc_dev, "couldn't create 'loongson' node\n");
    172  1.3.4.2  mrg 
    173  1.3.4.2  mrg 	if (sysctl_createv(NULL, 0, NULL,
    174  1.3.4.2  mrg 	    &freq,
    175  1.3.4.2  mrg 	    CTLFLAG_READWRITE, CTLTYPE_NODE, "frequency", NULL, NULL,
    176  1.3.4.2  mrg 	    0, NULL, 0, CTL_MACHDEP, me->sysctl_num, CTL_CREATE, CTL_EOL) != 0)
    177  1.3.4.2  mrg 		aprint_error_dev(sc->sc_dev, "couldn't create 'frequency' node\n");
    178  1.3.4.2  mrg 
    179  1.3.4.2  mrg 	if (sysctl_createv(NULL, 0, NULL,
    180  1.3.4.2  mrg 	    &sysctl_node,
    181  1.3.4.2  mrg 	    CTLFLAG_READWRITE | CTLFLAG_OWNDESC,
    182  1.3.4.2  mrg 	    CTLTYPE_INT, "target", "CPU speed", pwmclock_cpuspeed_temp,
    183  1.3.4.2  mrg 	    0, sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
    184  1.3.4.2  mrg 	    CTL_CREATE, CTL_EOL) == 0) {
    185  1.3.4.2  mrg 	} else
    186  1.3.4.2  mrg 		aprint_error_dev(sc->sc_dev, "couldn't create 'target' node\n");
    187  1.3.4.2  mrg 
    188  1.3.4.2  mrg 	if (sysctl_createv(NULL, 0, NULL,
    189  1.3.4.2  mrg 	    &sysctl_node,
    190  1.3.4.2  mrg 	    CTLFLAG_READWRITE,
    191  1.3.4.2  mrg 	    CTLTYPE_INT, "current", NULL, pwmclock_cpuspeed_cur,
    192  1.3.4.2  mrg 	    1, sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
    193  1.3.4.2  mrg 	    CTL_CREATE, CTL_EOL) == 0) {
    194  1.3.4.2  mrg 	} else
    195  1.3.4.2  mrg 		aprint_error_dev(sc->sc_dev, "couldn't create 'current' node\n");
    196  1.3.4.2  mrg 
    197  1.3.4.2  mrg 	if (sysctl_createv(NULL, 0, NULL,
    198  1.3.4.2  mrg 	    &sysctl_node,
    199  1.3.4.2  mrg 	    CTLFLAG_READWRITE,
    200  1.3.4.2  mrg 	    CTLTYPE_STRING, "available", NULL, pwmclock_cpuspeed_available,
    201  1.3.4.2  mrg 	    2, sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
    202  1.3.4.2  mrg 	    CTL_CREATE, CTL_EOL) == 0) {
    203  1.3.4.2  mrg 	} else
    204  1.3.4.2  mrg 		aprint_error_dev(sc->sc_dev, "couldn't create 'available' node\n");
    205  1.3.4.2  mrg }
    206  1.3.4.2  mrg 
    207  1.3.4.2  mrg void
    208  1.3.4.2  mrg pwmclock_set_speed(struct pwmclock_softc *sc, int speed)
    209  1.3.4.2  mrg {
    210  1.3.4.2  mrg 
    211  1.3.4.2  mrg 	if ((speed < 1) || (speed > 7))
    212  1.3.4.2  mrg 		return;
    213  1.3.4.2  mrg 	sc->sc_step_wanted = speed;
    214  1.3.4.2  mrg 	DPRINTF("%s: %d\n", __func__, speed);
    215  1.3.4.2  mrg }
    216  1.3.4.2  mrg 
    217  1.3.4.2  mrg /*
    218  1.3.4.2  mrg  * the PWM interrupt handler
    219  1.3.4.2  mrg  * we don't have a CPU clock independent, high resolution counter so we're
    220  1.3.4.2  mrg  * stuck with a PWM that can't count and a CP0 counter that slows down or
    221  1.3.4.2  mrg  * speeds up with the actual CPU speed. In order to still get halfway
    222  1.3.4.2  mrg  * accurate time we do the following:
    223  1.3.4.2  mrg  * - only change CPU speed in the timer interrupt
    224  1.3.4.2  mrg  * - each timer interrupt we measure how many CP0 cycles passed since last
    225  1.3.4.2  mrg  *   time, adjust for CPU speed since we can be sure it didn't change, use
    226  1.3.4.2  mrg  *   that to update a separate counter
    227  1.3.4.2  mrg  * - when reading the time counter we take the number of CP0 ticks since
    228  1.3.4.2  mrg  *   the last timer interrupt, scale it to CPU clock, return that plus the
    229  1.3.4.2  mrg  *   interrupt updated counter mentioned above to get something close to
    230  1.3.4.2  mrg  *   CP0 running at full speed
    231  1.3.4.2  mrg  * - when changing CPU speed do it as close to taking the time from CP0 as
    232  1.3.4.2  mrg  *   possible to keep the period of time we spend with CP0 running at the
    233  1.3.4.2  mrg  *   wrong frequency as short as possible - hopefully short enough to stay
    234  1.3.4.2  mrg  *   insignificant compared to other noise since switching speeds isn't
    235  1.3.4.2  mrg  *   going to happen all that often
    236  1.3.4.2  mrg  */
    237  1.3.4.2  mrg 
    238  1.3.4.2  mrg int
    239  1.3.4.2  mrg pwmclock_intr(void *cookie)
    240  1.3.4.2  mrg {
    241  1.3.4.2  mrg 	struct pwmclock_softc *sc = cookie;
    242  1.3.4.2  mrg 	uint32_t reg, now, diff;
    243  1.3.4.2  mrg 
    244  1.3.4.2  mrg 	/* is it us? */
    245  1.3.4.2  mrg 	reg = bus_space_read_4(sc->sc_memt, sc->sc_regh, SM502_PWM1);
    246  1.3.4.2  mrg 	if ((reg & SM502_PWM_INTR_PENDING) == 0)
    247  1.3.4.2  mrg 		return 0;
    248  1.3.4.2  mrg 
    249  1.3.4.2  mrg 	/* yes, it's us, so clear the interrupt */
    250  1.3.4.2  mrg 	bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
    251  1.3.4.2  mrg 
    252  1.3.4.2  mrg 	/*
    253  1.3.4.2  mrg 	 * this looks kinda funny but what we want here is this:
    254  1.3.4.2  mrg 	 * - reading the counter and changing the CPU clock should be as
    255  1.3.4.2  mrg 	 *   close together as possible in order to remain halfway accurate
    256  1.3.4.2  mrg 	 * - we need to use the previous sc_step in order to scale the
    257  1.3.4.2  mrg 	 *   interval passed since the last clock interrupt correctly, so
    258  1.3.4.2  mrg 	 *   we only change sc_step after doing that
    259  1.3.4.2  mrg 	 */
    260  1.3.4.2  mrg 	if (sc->sc_step_wanted != sc->sc_step) {
    261  1.3.4.2  mrg 		REGVAL(LS2F_CHIPCFG0) =
    262  1.3.4.2  mrg 		    (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) |
    263  1.3.4.2  mrg 		     sc->sc_step_wanted;
    264  1.3.4.2  mrg 	}
    265  1.3.4.2  mrg 
    266  1.3.4.2  mrg 	now = mips3_cp0_count_read();
    267  1.3.4.2  mrg 	diff = now - sc->sc_last;
    268  1.3.4.2  mrg 	sc->sc_count += scale(diff, sc->sc_step);
    269  1.3.4.2  mrg 	sc->sc_last = now;
    270  1.3.4.2  mrg 	if (sc->sc_step_wanted != sc->sc_step) {
    271  1.3.4.2  mrg 		sc->sc_step = sc->sc_step_wanted;
    272  1.3.4.2  mrg 	}
    273  1.3.4.2  mrg 	hardclock(&cf);
    274  1.3.4.2  mrg 
    275  1.3.4.2  mrg 	return 1;
    276  1.3.4.2  mrg }
    277  1.3.4.2  mrg 
    278  1.3.4.2  mrg static void
    279  1.3.4.2  mrg pwmclock_start(void)
    280  1.3.4.2  mrg {
    281  1.3.4.2  mrg 	struct pwmclock_softc *sc = pwmclock;
    282  1.3.4.2  mrg 	sc->sc_count = 0;
    283  1.3.4.2  mrg 	sc->sc_last = mips3_cp0_count_read();
    284  1.3.4.2  mrg 	pwmclock_timecounter.tc_frequency = curcpu()->ci_cpu_freq / 2;
    285  1.3.4.2  mrg 	tc_init(&pwmclock_timecounter);
    286  1.3.4.2  mrg 	bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
    287  1.3.4.2  mrg }
    288  1.3.4.2  mrg 
    289  1.3.4.2  mrg static u_int
    290  1.3.4.2  mrg get_pwmclock_timecount(struct timecounter *tc)
    291  1.3.4.2  mrg {
    292  1.3.4.2  mrg 	struct pwmclock_softc *sc = pwmclock;
    293  1.3.4.2  mrg 	uint32_t now, diff;
    294  1.3.4.2  mrg 
    295  1.3.4.2  mrg 	now = mips3_cp0_count_read();
    296  1.3.4.2  mrg 	diff = now - sc->sc_last;
    297  1.3.4.2  mrg 	return sc->sc_count + scale(diff, sc->sc_step);
    298  1.3.4.2  mrg }
    299  1.3.4.2  mrg 
    300  1.3.4.2  mrg static int
    301  1.3.4.2  mrg pwmclock_cpuspeed_temp(SYSCTLFN_ARGS)
    302  1.3.4.2  mrg {
    303  1.3.4.2  mrg 	struct sysctlnode node = *rnode;
    304  1.3.4.2  mrg 	struct pwmclock_softc *sc = node.sysctl_data;
    305  1.3.4.2  mrg 	int mhz, i;
    306  1.3.4.2  mrg 
    307  1.3.4.2  mrg 	mhz = sc->sc_scale[sc->sc_step_wanted];
    308  1.3.4.2  mrg 
    309  1.3.4.2  mrg 	node.sysctl_data = &mhz;
    310  1.3.4.2  mrg 	if (sysctl_lookup(SYSCTLFN_CALL(&node)) == 0) {
    311  1.3.4.2  mrg 		int new_reg;
    312  1.3.4.2  mrg 
    313  1.3.4.2  mrg 		new_reg = *(int *)node.sysctl_data;
    314  1.3.4.2  mrg 		i = 1;
    315  1.3.4.2  mrg 		while ((i < 8) && (sc->sc_scale[i] != new_reg))
    316  1.3.4.2  mrg 			i++;
    317  1.3.4.2  mrg 		if (i > 7)
    318  1.3.4.2  mrg 			return EINVAL;
    319  1.3.4.2  mrg 		pwmclock_set_speed(sc, i);
    320  1.3.4.2  mrg 		return 0;
    321  1.3.4.2  mrg 	}
    322  1.3.4.2  mrg 	return EINVAL;
    323  1.3.4.2  mrg }
    324  1.3.4.2  mrg 
    325  1.3.4.2  mrg static int
    326  1.3.4.2  mrg pwmclock_cpuspeed_cur(SYSCTLFN_ARGS)
    327  1.3.4.2  mrg {
    328  1.3.4.2  mrg 	struct sysctlnode node = *rnode;
    329  1.3.4.2  mrg 	struct pwmclock_softc *sc = node.sysctl_data;
    330  1.3.4.2  mrg 	int mhz;
    331  1.3.4.2  mrg 
    332  1.3.4.2  mrg 	mhz = sc->sc_scale[sc->sc_step];
    333  1.3.4.2  mrg 	node.sysctl_data = &mhz;
    334  1.3.4.2  mrg 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    335  1.3.4.2  mrg }
    336  1.3.4.2  mrg 
    337  1.3.4.2  mrg static int
    338  1.3.4.2  mrg pwmclock_cpuspeed_available(SYSCTLFN_ARGS)
    339  1.3.4.2  mrg {
    340  1.3.4.2  mrg 	struct sysctlnode node = *rnode;
    341  1.3.4.2  mrg 	struct pwmclock_softc *sc = node.sysctl_data;
    342  1.3.4.2  mrg 	char buf[128];
    343  1.3.4.2  mrg 
    344  1.3.4.2  mrg 	snprintf(buf, 128, "%d %d %d %d %d %d %d", sc->sc_scale[1],
    345  1.3.4.2  mrg 	    sc->sc_scale[2], sc->sc_scale[3], sc->sc_scale[4],
    346  1.3.4.2  mrg 	    sc->sc_scale[5], sc->sc_scale[6], sc->sc_scale[7]);
    347  1.3.4.2  mrg 	node.sysctl_data = buf;
    348  1.3.4.2  mrg 	return(sysctl_lookup(SYSCTLFN_CALL(&node)));
    349  1.3.4.2  mrg }
    350  1.3.4.2  mrg 
    351  1.3.4.2  mrg SYSCTL_SETUP(sysctl_ams_setup, "sysctl obio subtree setup")
    352  1.3.4.2  mrg {
    353  1.3.4.2  mrg 
    354  1.3.4.2  mrg 	sysctl_createv(NULL, 0, NULL, NULL,
    355  1.3.4.2  mrg 		       CTLFLAG_PERMANENT,
    356  1.3.4.2  mrg 		       CTLTYPE_NODE, "machdep", NULL,
    357  1.3.4.2  mrg 		       NULL, 0, NULL, 0,
    358  1.3.4.2  mrg 		       CTL_MACHDEP, CTL_EOL);
    359  1.3.4.2  mrg }
    360