Home | History | Annotate | Line # | Download | only in voyager
pwmclock.c revision 1.1
      1 /*	$NetBSD: pwmclock.c,v 1.1 2011/12/13 14:39:37 macallan Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2011 Michael Lorenz
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  */
     27 
     28 #include <sys/cdefs.h>
     29 __KERNEL_RCSID(0, "$NetBSD: pwmclock.c,v 1.1 2011/12/13 14:39:37 macallan Exp $");
     30 
     31 #include <sys/param.h>
     32 #include <sys/systm.h>
     33 #include <sys/kernel.h>
     34 #include <sys/device.h>
     35 #include <sys/cpu.h>
     36 #include <sys/timetc.h>
     37 #include <sys/sysctl.h>
     38 
     39 #include <dev/pci/voyagervar.h>
     40 #include <dev/ic/sm502reg.h>
     41 
     42 #include <mips/mips3_clock.h>
     43 #include <mips/locore.h>
     44 #include <mips/bonito/bonitoreg.h>
     45 #include <mips/bonito/bonitovar.h>
     46 
     47 #ifdef PWMCLOCK_DEBUG
     48 #define DPRINTF aprint_error
     49 #else
     50 #define DPRINTF while (0) printf
     51 #endif
     52 
     53 int pwmclock_intr(void *);
     54 
     55 struct pwmclock_softc {
     56 	device_t sc_dev;
     57 	bus_space_tag_t sc_memt;
     58 	bus_space_handle_t sc_regh;
     59 	uint32_t sc_reg, sc_last;
     60 	uint32_t sc_scale[8];
     61 	uint32_t sc_count;	/* should probably be 64 bit */
     62 	int sc_step;
     63 	int sc_step_wanted;
     64 };
     65 
     66 static int	pwmclock_match(device_t, cfdata_t, void *);
     67 static void	pwmclock_attach(device_t, device_t, void *);
     68 
     69 CFATTACH_DECL_NEW(pwmclock, sizeof(struct pwmclock_softc),
     70     pwmclock_match, pwmclock_attach, NULL, NULL);
     71 
     72 static void pwmclock_start(void);
     73 static u_int get_pwmclock_timecount(struct timecounter *);
     74 
     75 struct pwmclock_softc *pwmclock;
     76 extern void (*initclocks_ptr)(void);
     77 extern struct clockframe cf;
     78 
     79 /* 0, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1 */
     80 static int scale_m[] = {1, 1, 3, 1, 5, 3, 7, 1};
     81 static int scale_d[] = {0, 4, 8, 2, 8, 4, 8, 1};
     82 
     83 #define scale(x, f) (x * scale_d[f] / scale_m[f])
     84 
     85 void pwmclock_set_speed(struct pwmclock_softc *, int);
     86 static int  pwmclock_cpuspeed_temp(SYSCTLFN_ARGS);
     87 static int  pwmclock_cpuspeed_cur(SYSCTLFN_ARGS);
     88 static int  pwmclock_cpuspeed_available(SYSCTLFN_ARGS);
     89 
     90 static struct timecounter pwmclock_timecounter = {
     91 	get_pwmclock_timecount,	/* get_timecount */
     92 	0,			/* no poll_pps */
     93 	0xffffffff,		/* counter_mask */
     94 	0,			/* frequency */
     95 	"pwm",			/* name */
     96 	100,			/* quality */
     97 	NULL,			/* tc_priv */
     98 	NULL			/* tc_next */
     99 };
    100 
    101 static int
    102 pwmclock_match(device_t parent, cfdata_t match, void *aux)
    103 {
    104 	struct voyager_attach_args *vaa = (struct voyager_attach_args *)aux;
    105 
    106 	if (strcmp(vaa->vaa_name, "pwmclock") == 0) return 100;
    107 	return 0;
    108 }
    109 
    110 static uint32_t
    111 pwmclock_wait_edge(struct pwmclock_softc *sc)
    112 {
    113 	/* clear interrupt */
    114 	bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
    115 	while ((bus_space_read_4(sc->sc_memt, sc->sc_regh, SM502_PWM1) & SM502_PWM_INTR_PENDING) == 0);
    116 	return mips3_cp0_count_read();
    117 }
    118 
    119 static void
    120 pwmclock_attach(device_t parent, device_t self, void *aux)
    121 {
    122 	struct pwmclock_softc *sc = device_private(self);
    123 	struct voyager_attach_args *vaa = aux;
    124 	const struct sysctlnode *sysctl_node, *me, *freq;
    125 	uint32_t reg, last, curr, diff, acc;
    126 	int i, clk;
    127 
    128 	sc->sc_dev = self;
    129 	sc->sc_memt = vaa->vaa_tag;
    130 	sc->sc_regh = vaa->vaa_regh;
    131 
    132 	aprint_normal("\n");
    133 
    134 	voyager_establish_intr(parent, 22, pwmclock_intr, sc);
    135 	reg = voyager_set_pwm(100, 100); /* 100Hz, 10% duty cycle */
    136 	reg |= SM502_PWM_ENABLE | SM502_PWM_ENABLE_INTR | SM502_PWM_INTR_PENDING;
    137 	sc->sc_reg = reg;
    138 	pwmclock = sc;
    139 	initclocks_ptr = pwmclock_start;
    140 
    141 	/* ok, let's see how far the cycle counter gets between interrupts */
    142 	aprint_normal_dev(sc->sc_dev, "calibrating CPU timer...\n");
    143 	for (clk = 1; clk < 8; clk++) {
    144 		REGVAL(LS2F_CHIPCFG0) = (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) | clk;
    145 		bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
    146 		acc = 0;
    147 		last = pwmclock_wait_edge(sc);
    148 		for (i = 0; i < 16; i++) {
    149 			curr = pwmclock_wait_edge(sc);
    150 			diff = curr - last;
    151 			acc += diff;
    152 			last = curr;
    153 		}
    154 		sc->sc_scale[clk] = (acc >> 4) / 5000;
    155 	}
    156 	for (clk = 1; clk < 8; clk++) {
    157 		aprint_normal_dev(sc->sc_dev, "%d/8: %d\n", clk + 1, sc->sc_scale[clk]);
    158 	}
    159 	sc->sc_step = 7;
    160 	sc->sc_step_wanted = 7;
    161 
    162 	/* now setup sysctl */
    163 	if (sysctl_createv(NULL, 0, NULL,
    164 	    &me,
    165 	    CTLFLAG_READWRITE, CTLTYPE_NODE, "loongson", NULL, NULL,
    166 	    0, NULL, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL) != 0)
    167 		aprint_error_dev(sc->sc_dev, "couldn't create 'loongson' node\n");
    168 
    169 	if (sysctl_createv(NULL, 0, NULL,
    170 	    &freq,
    171 	    CTLFLAG_READWRITE, CTLTYPE_NODE, "frequency", NULL, NULL,
    172 	    0, NULL, 0, CTL_MACHDEP, me->sysctl_num, CTL_CREATE, CTL_EOL) != 0)
    173 		aprint_error_dev(sc->sc_dev, "couldn't create 'frequency' node\n");
    174 
    175 	if (sysctl_createv(NULL, 0, NULL,
    176 	    &sysctl_node,
    177 	    CTLFLAG_READWRITE | CTLFLAG_OWNDESC,
    178 	    CTLTYPE_INT, "target", "CPU speed", pwmclock_cpuspeed_temp,
    179 	    0, sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
    180 	    CTL_CREATE, CTL_EOL) == 0) {
    181 	} else
    182 		aprint_error_dev(sc->sc_dev, "couldn't create 'target' node\n");
    183 
    184 	if (sysctl_createv(NULL, 0, NULL,
    185 	    &sysctl_node,
    186 	    CTLFLAG_READWRITE,
    187 	    CTLTYPE_INT, "current", NULL, pwmclock_cpuspeed_cur,
    188 	    1, sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
    189 	    CTL_CREATE, CTL_EOL) == 0) {
    190 	} else
    191 		aprint_error_dev(sc->sc_dev, "couldn't create 'current' node\n");
    192 
    193 	if (sysctl_createv(NULL, 0, NULL,
    194 	    &sysctl_node,
    195 	    CTLFLAG_READWRITE,
    196 	    CTLTYPE_STRING, "available", NULL, pwmclock_cpuspeed_available,
    197 	    2, sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
    198 	    CTL_CREATE, CTL_EOL) == 0) {
    199 	} else
    200 		aprint_error_dev(sc->sc_dev, "couldn't create 'available' node\n");
    201 }
    202 
    203 void
    204 pwmclock_set_speed(struct pwmclock_softc *sc, int speed)
    205 {
    206 
    207 	if ((speed < 1) || (speed > 7))
    208 		return;
    209 	sc->sc_step_wanted = speed;
    210 	DPRINTF("%s: %d\n", __func__, speed);
    211 }
    212 
    213 /*
    214  * the PWM interrupt handler
    215  * we don't have a CPU clock independent, high resolution counter so we're
    216  * stuck with a PWM that can't count and a CP0 counter that slows down or
    217  * speeds up with the actual CPU speed. In order to still get halfway
    218  * accurate time we do the following:
    219  * - only change CPU speed in the timer interrupt
    220  * - each timer interrupt we measure how many CP0 cycles passed since last
    221  *   time, adjust for CPU speed since we can be sure it didn't change, use
    222  *   that to update a separate counter
    223  * - when reading the time counter we take the number of CP0 ticks since
    224  *   the last timer interrupt, scale it to CPU clock, return that plus the
    225  *   interrupt updated counter mentioned above to get something close to
    226  *   CP0 running at full speed
    227  * - when changing CPU speed do it as close to taking the time from CP0 as
    228  *   possible to keep the period of time we spend with CP0 running at the
    229  *   wrong frequency as short as possible - hopefully short enough to stay
    230  *   insignificant compared to other noise since switching speeds isn't
    231  *   going to happen all that often
    232  */
    233 
    234 int
    235 pwmclock_intr(void *cookie)
    236 {
    237 	struct pwmclock_softc *sc = cookie;
    238 	uint32_t reg, now, diff;
    239 
    240 	/* is it us? */
    241 	reg = bus_space_read_4(sc->sc_memt, sc->sc_regh, SM502_PWM1);
    242 	if ((reg & SM502_PWM_INTR_PENDING) == 0)
    243 		return 0;
    244 
    245 	/* yes, it's us, so clear the interrupt */
    246 	bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
    247 
    248 	/*
    249 	 * this looks kinda funny but what we want here is this:
    250 	 * - reading the counter and changing the CPU clock should be as
    251 	 *   close together as possible in order to remain halfway accurate
    252 	 * - we need to use the previous sc_step in order to scale the
    253 	 *   interval passed since the last clock interrupt correctly, so
    254 	 *   we only change sc_step after doing that
    255 	 */
    256 	if (sc->sc_step_wanted != sc->sc_step) {
    257 		REGVAL(LS2F_CHIPCFG0) =
    258 		    (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) |
    259 		     sc->sc_step_wanted;
    260 	}
    261 
    262 	now = mips3_cp0_count_read();
    263 	diff = now - sc->sc_last;
    264 	sc->sc_count += scale(diff, sc->sc_step);
    265 	sc->sc_last = now;
    266 	if (sc->sc_step_wanted != sc->sc_step) {
    267 		sc->sc_step = sc->sc_step_wanted;
    268 	}
    269 	hardclock(&cf);
    270 
    271 	return 1;
    272 }
    273 
    274 static void
    275 pwmclock_start()
    276 {
    277 	struct pwmclock_softc *sc = pwmclock;
    278 	sc->sc_count = 0;
    279 	sc->sc_last = mips3_cp0_count_read();
    280 	pwmclock_timecounter.tc_frequency = curcpu()->ci_cpu_freq / 2;
    281 	tc_init(&pwmclock_timecounter);
    282 	bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
    283 }
    284 
    285 static u_int
    286 get_pwmclock_timecount(struct timecounter *tc)
    287 {
    288 	struct pwmclock_softc *sc = pwmclock;
    289 	uint32_t now, diff;
    290 
    291 	now = mips3_cp0_count_read();
    292 	diff = now - sc->sc_last;
    293 	return sc->sc_count + scale(diff, sc->sc_step);
    294 }
    295 
    296 static int
    297 pwmclock_cpuspeed_temp(SYSCTLFN_ARGS)
    298 {
    299 	struct sysctlnode node = *rnode;
    300 	struct pwmclock_softc *sc = node.sysctl_data;
    301 	int mhz, i;
    302 
    303 	mhz = sc->sc_scale[sc->sc_step_wanted];
    304 
    305 	node.sysctl_data = &mhz;
    306 	if (sysctl_lookup(SYSCTLFN_CALL(&node)) == 0) {
    307 		int new_reg;
    308 
    309 		new_reg = *(int *)node.sysctl_data;
    310 		i = 1;
    311 		while ((i < 8) && (sc->sc_scale[i] != new_reg))
    312 			i++;
    313 		if (i > 7)
    314 			return EINVAL;
    315 		pwmclock_set_speed(sc, i);
    316 		return 0;
    317 	}
    318 	return EINVAL;
    319 }
    320 
    321 static int
    322 pwmclock_cpuspeed_cur(SYSCTLFN_ARGS)
    323 {
    324 	struct sysctlnode node = *rnode;
    325 	struct pwmclock_softc *sc = node.sysctl_data;
    326 	int mhz;
    327 
    328 	mhz = sc->sc_scale[sc->sc_step];
    329 	node.sysctl_data = &mhz;
    330 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    331 }
    332 
    333 static int
    334 pwmclock_cpuspeed_available(SYSCTLFN_ARGS)
    335 {
    336 	struct sysctlnode node = *rnode;
    337 	struct pwmclock_softc *sc = node.sysctl_data;
    338 	char buf[128];
    339 
    340 	snprintf(buf, 128, "%d %d %d %d %d %d %d", sc->sc_scale[1],
    341 	    sc->sc_scale[2], sc->sc_scale[3], sc->sc_scale[4],
    342 	    sc->sc_scale[5], sc->sc_scale[6], sc->sc_scale[7]);
    343 	node.sysctl_data = buf;
    344 	return(sysctl_lookup(SYSCTLFN_CALL(&node)));
    345 }
    346 
    347 SYSCTL_SETUP(sysctl_ams_setup, "sysctl obio subtree setup")
    348 {
    349 
    350 	sysctl_createv(NULL, 0, NULL, NULL,
    351 		       CTLFLAG_PERMANENT,
    352 		       CTLTYPE_NODE, "machdep", NULL,
    353 		       NULL, 0, NULL, 0,
    354 		       CTL_MACHDEP, CTL_EOL);
    355 }
    356