Home | History | Annotate | Line # | Download | only in voyager
pwmclock.c revision 1.3.4.2
      1 /*	$NetBSD: pwmclock.c,v 1.3.4.2 2012/02/18 07:34:55 mrg Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2011 Michael Lorenz
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  */
     27 
     28 #include <sys/cdefs.h>
     29 __KERNEL_RCSID(0, "$NetBSD: pwmclock.c,v 1.3.4.2 2012/02/18 07:34:55 mrg Exp $");
     30 
     31 #include <sys/param.h>
     32 #include <sys/systm.h>
     33 #include <sys/kernel.h>
     34 #include <sys/device.h>
     35 #include <sys/cpu.h>
     36 #include <sys/timetc.h>
     37 #include <sys/sysctl.h>
     38 
     39 #include <dev/pci/voyagervar.h>
     40 #include <dev/ic/sm502reg.h>
     41 
     42 #include <mips/mips3_clock.h>
     43 #include <mips/locore.h>
     44 #include <mips/bonito/bonitoreg.h>
     45 #include <mips/bonito/bonitovar.h>
     46 
     47 #include "opt_pwmclock.h"
     48 
     49 #ifdef PWMCLOCK_DEBUG
     50 #define DPRINTF aprint_error
     51 #else
     52 #define DPRINTF while (0) printf
     53 #endif
     54 
     55 int pwmclock_intr(void *);
     56 
     57 struct pwmclock_softc {
     58 	device_t sc_dev;
     59 	bus_space_tag_t sc_memt;
     60 	bus_space_handle_t sc_regh;
     61 	uint32_t sc_reg, sc_last;
     62 	uint32_t sc_scale[8];
     63 	uint32_t sc_count;	/* should probably be 64 bit */
     64 	int sc_step;
     65 	int sc_step_wanted;
     66 };
     67 
     68 static int	pwmclock_match(device_t, cfdata_t, void *);
     69 static void	pwmclock_attach(device_t, device_t, void *);
     70 
     71 CFATTACH_DECL_NEW(pwmclock, sizeof(struct pwmclock_softc),
     72     pwmclock_match, pwmclock_attach, NULL, NULL);
     73 
     74 static void pwmclock_start(void);
     75 static u_int get_pwmclock_timecount(struct timecounter *);
     76 
     77 struct pwmclock_softc *pwmclock;
     78 extern void (*initclocks_ptr)(void);
     79 extern struct clockframe cf;
     80 
     81 /* 0, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1 */
     82 static int scale_m[] = {1, 1, 3, 1, 5, 3, 7, 1};
     83 static int scale_d[] = {0, 4, 8, 2, 8, 4, 8, 1};
     84 
     85 #define scale(x, f) (x * scale_d[f] / scale_m[f])
     86 
     87 void pwmclock_set_speed(struct pwmclock_softc *, int);
     88 static int  pwmclock_cpuspeed_temp(SYSCTLFN_ARGS);
     89 static int  pwmclock_cpuspeed_cur(SYSCTLFN_ARGS);
     90 static int  pwmclock_cpuspeed_available(SYSCTLFN_ARGS);
     91 
     92 static struct timecounter pwmclock_timecounter = {
     93 	get_pwmclock_timecount,	/* get_timecount */
     94 	0,			/* no poll_pps */
     95 	0xffffffff,		/* counter_mask */
     96 	0,			/* frequency */
     97 	"pwm",			/* name */
     98 	100,			/* quality */
     99 	NULL,			/* tc_priv */
    100 	NULL			/* tc_next */
    101 };
    102 
    103 static int
    104 pwmclock_match(device_t parent, cfdata_t match, void *aux)
    105 {
    106 	struct voyager_attach_args *vaa = (struct voyager_attach_args *)aux;
    107 
    108 	if (strcmp(vaa->vaa_name, "pwmclock") == 0) return 100;
    109 	return 0;
    110 }
    111 
    112 static uint32_t
    113 pwmclock_wait_edge(struct pwmclock_softc *sc)
    114 {
    115 	/* clear interrupt */
    116 	bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
    117 	while ((bus_space_read_4(sc->sc_memt, sc->sc_regh, SM502_PWM1) & SM502_PWM_INTR_PENDING) == 0);
    118 	return mips3_cp0_count_read();
    119 }
    120 
    121 static void
    122 pwmclock_attach(device_t parent, device_t self, void *aux)
    123 {
    124 	struct pwmclock_softc *sc = device_private(self);
    125 	struct voyager_attach_args *vaa = aux;
    126 	const struct sysctlnode *sysctl_node, *me, *freq;
    127 	uint32_t reg, last, curr, diff, acc;
    128 	int i, clk;
    129 
    130 	sc->sc_dev = self;
    131 	sc->sc_memt = vaa->vaa_tag;
    132 	sc->sc_regh = vaa->vaa_regh;
    133 
    134 	aprint_normal("\n");
    135 
    136 	voyager_establish_intr(parent, 22, pwmclock_intr, sc);
    137 	reg = voyager_set_pwm(100, 100); /* 100Hz, 10% duty cycle */
    138 	reg |= SM502_PWM_ENABLE | SM502_PWM_ENABLE_INTR | SM502_PWM_INTR_PENDING;
    139 	sc->sc_reg = reg;
    140 	pwmclock = sc;
    141 	initclocks_ptr = pwmclock_start;
    142 
    143 	/* ok, let's see how far the cycle counter gets between interrupts */
    144 	DPRINTF("calibrating CPU timer...\n");
    145 	for (clk = 1; clk < 8; clk++) {
    146 		REGVAL(LS2F_CHIPCFG0) = (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) | clk;
    147 		bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
    148 		acc = 0;
    149 		last = pwmclock_wait_edge(sc);
    150 		for (i = 0; i < 16; i++) {
    151 			curr = pwmclock_wait_edge(sc);
    152 			diff = curr - last;
    153 			acc += diff;
    154 			last = curr;
    155 		}
    156 		sc->sc_scale[clk] = (acc >> 4) / 5000;
    157 	}
    158 #ifdef PWMCLOCK_DEBUG
    159 	for (clk = 1; clk < 8; clk++) {
    160 		aprint_normal_dev(sc->sc_dev, "%d/8: %d\n", clk + 1, sc->sc_scale[clk]);
    161 	}
    162 #endif
    163 	sc->sc_step = 7;
    164 	sc->sc_step_wanted = 7;
    165 
    166 	/* now setup sysctl */
    167 	if (sysctl_createv(NULL, 0, NULL,
    168 	    &me,
    169 	    CTLFLAG_READWRITE, CTLTYPE_NODE, "loongson", NULL, NULL,
    170 	    0, NULL, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL) != 0)
    171 		aprint_error_dev(sc->sc_dev, "couldn't create 'loongson' node\n");
    172 
    173 	if (sysctl_createv(NULL, 0, NULL,
    174 	    &freq,
    175 	    CTLFLAG_READWRITE, CTLTYPE_NODE, "frequency", NULL, NULL,
    176 	    0, NULL, 0, CTL_MACHDEP, me->sysctl_num, CTL_CREATE, CTL_EOL) != 0)
    177 		aprint_error_dev(sc->sc_dev, "couldn't create 'frequency' node\n");
    178 
    179 	if (sysctl_createv(NULL, 0, NULL,
    180 	    &sysctl_node,
    181 	    CTLFLAG_READWRITE | CTLFLAG_OWNDESC,
    182 	    CTLTYPE_INT, "target", "CPU speed", pwmclock_cpuspeed_temp,
    183 	    0, sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
    184 	    CTL_CREATE, CTL_EOL) == 0) {
    185 	} else
    186 		aprint_error_dev(sc->sc_dev, "couldn't create 'target' node\n");
    187 
    188 	if (sysctl_createv(NULL, 0, NULL,
    189 	    &sysctl_node,
    190 	    CTLFLAG_READWRITE,
    191 	    CTLTYPE_INT, "current", NULL, pwmclock_cpuspeed_cur,
    192 	    1, sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
    193 	    CTL_CREATE, CTL_EOL) == 0) {
    194 	} else
    195 		aprint_error_dev(sc->sc_dev, "couldn't create 'current' node\n");
    196 
    197 	if (sysctl_createv(NULL, 0, NULL,
    198 	    &sysctl_node,
    199 	    CTLFLAG_READWRITE,
    200 	    CTLTYPE_STRING, "available", NULL, pwmclock_cpuspeed_available,
    201 	    2, sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
    202 	    CTL_CREATE, CTL_EOL) == 0) {
    203 	} else
    204 		aprint_error_dev(sc->sc_dev, "couldn't create 'available' node\n");
    205 }
    206 
    207 void
    208 pwmclock_set_speed(struct pwmclock_softc *sc, int speed)
    209 {
    210 
    211 	if ((speed < 1) || (speed > 7))
    212 		return;
    213 	sc->sc_step_wanted = speed;
    214 	DPRINTF("%s: %d\n", __func__, speed);
    215 }
    216 
    217 /*
    218  * the PWM interrupt handler
    219  * we don't have a CPU clock independent, high resolution counter so we're
    220  * stuck with a PWM that can't count and a CP0 counter that slows down or
    221  * speeds up with the actual CPU speed. In order to still get halfway
    222  * accurate time we do the following:
    223  * - only change CPU speed in the timer interrupt
    224  * - each timer interrupt we measure how many CP0 cycles passed since last
    225  *   time, adjust for CPU speed since we can be sure it didn't change, use
    226  *   that to update a separate counter
    227  * - when reading the time counter we take the number of CP0 ticks since
    228  *   the last timer interrupt, scale it to CPU clock, return that plus the
    229  *   interrupt updated counter mentioned above to get something close to
    230  *   CP0 running at full speed
    231  * - when changing CPU speed do it as close to taking the time from CP0 as
    232  *   possible to keep the period of time we spend with CP0 running at the
    233  *   wrong frequency as short as possible - hopefully short enough to stay
    234  *   insignificant compared to other noise since switching speeds isn't
    235  *   going to happen all that often
    236  */
    237 
    238 int
    239 pwmclock_intr(void *cookie)
    240 {
    241 	struct pwmclock_softc *sc = cookie;
    242 	uint32_t reg, now, diff;
    243 
    244 	/* is it us? */
    245 	reg = bus_space_read_4(sc->sc_memt, sc->sc_regh, SM502_PWM1);
    246 	if ((reg & SM502_PWM_INTR_PENDING) == 0)
    247 		return 0;
    248 
    249 	/* yes, it's us, so clear the interrupt */
    250 	bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
    251 
    252 	/*
    253 	 * this looks kinda funny but what we want here is this:
    254 	 * - reading the counter and changing the CPU clock should be as
    255 	 *   close together as possible in order to remain halfway accurate
    256 	 * - we need to use the previous sc_step in order to scale the
    257 	 *   interval passed since the last clock interrupt correctly, so
    258 	 *   we only change sc_step after doing that
    259 	 */
    260 	if (sc->sc_step_wanted != sc->sc_step) {
    261 		REGVAL(LS2F_CHIPCFG0) =
    262 		    (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) |
    263 		     sc->sc_step_wanted;
    264 	}
    265 
    266 	now = mips3_cp0_count_read();
    267 	diff = now - sc->sc_last;
    268 	sc->sc_count += scale(diff, sc->sc_step);
    269 	sc->sc_last = now;
    270 	if (sc->sc_step_wanted != sc->sc_step) {
    271 		sc->sc_step = sc->sc_step_wanted;
    272 	}
    273 	hardclock(&cf);
    274 
    275 	return 1;
    276 }
    277 
    278 static void
    279 pwmclock_start(void)
    280 {
    281 	struct pwmclock_softc *sc = pwmclock;
    282 	sc->sc_count = 0;
    283 	sc->sc_last = mips3_cp0_count_read();
    284 	pwmclock_timecounter.tc_frequency = curcpu()->ci_cpu_freq / 2;
    285 	tc_init(&pwmclock_timecounter);
    286 	bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
    287 }
    288 
    289 static u_int
    290 get_pwmclock_timecount(struct timecounter *tc)
    291 {
    292 	struct pwmclock_softc *sc = pwmclock;
    293 	uint32_t now, diff;
    294 
    295 	now = mips3_cp0_count_read();
    296 	diff = now - sc->sc_last;
    297 	return sc->sc_count + scale(diff, sc->sc_step);
    298 }
    299 
    300 static int
    301 pwmclock_cpuspeed_temp(SYSCTLFN_ARGS)
    302 {
    303 	struct sysctlnode node = *rnode;
    304 	struct pwmclock_softc *sc = node.sysctl_data;
    305 	int mhz, i;
    306 
    307 	mhz = sc->sc_scale[sc->sc_step_wanted];
    308 
    309 	node.sysctl_data = &mhz;
    310 	if (sysctl_lookup(SYSCTLFN_CALL(&node)) == 0) {
    311 		int new_reg;
    312 
    313 		new_reg = *(int *)node.sysctl_data;
    314 		i = 1;
    315 		while ((i < 8) && (sc->sc_scale[i] != new_reg))
    316 			i++;
    317 		if (i > 7)
    318 			return EINVAL;
    319 		pwmclock_set_speed(sc, i);
    320 		return 0;
    321 	}
    322 	return EINVAL;
    323 }
    324 
    325 static int
    326 pwmclock_cpuspeed_cur(SYSCTLFN_ARGS)
    327 {
    328 	struct sysctlnode node = *rnode;
    329 	struct pwmclock_softc *sc = node.sysctl_data;
    330 	int mhz;
    331 
    332 	mhz = sc->sc_scale[sc->sc_step];
    333 	node.sysctl_data = &mhz;
    334 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    335 }
    336 
    337 static int
    338 pwmclock_cpuspeed_available(SYSCTLFN_ARGS)
    339 {
    340 	struct sysctlnode node = *rnode;
    341 	struct pwmclock_softc *sc = node.sysctl_data;
    342 	char buf[128];
    343 
    344 	snprintf(buf, 128, "%d %d %d %d %d %d %d", sc->sc_scale[1],
    345 	    sc->sc_scale[2], sc->sc_scale[3], sc->sc_scale[4],
    346 	    sc->sc_scale[5], sc->sc_scale[6], sc->sc_scale[7]);
    347 	node.sysctl_data = buf;
    348 	return(sysctl_lookup(SYSCTLFN_CALL(&node)));
    349 }
    350 
    351 SYSCTL_SETUP(sysctl_ams_setup, "sysctl obio subtree setup")
    352 {
    353 
    354 	sysctl_createv(NULL, 0, NULL, NULL,
    355 		       CTLFLAG_PERMANENT,
    356 		       CTLTYPE_NODE, "machdep", NULL,
    357 		       NULL, 0, NULL, 0,
    358 		       CTL_MACHDEP, CTL_EOL);
    359 }
    360