pwmclock.c revision 1.3.4.2 1 /* $NetBSD: pwmclock.c,v 1.3.4.2 2012/02/18 07:34:55 mrg Exp $ */
2
3 /*
4 * Copyright (c) 2011 Michael Lorenz
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: pwmclock.c,v 1.3.4.2 2012/02/18 07:34:55 mrg Exp $");
30
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/device.h>
35 #include <sys/cpu.h>
36 #include <sys/timetc.h>
37 #include <sys/sysctl.h>
38
39 #include <dev/pci/voyagervar.h>
40 #include <dev/ic/sm502reg.h>
41
42 #include <mips/mips3_clock.h>
43 #include <mips/locore.h>
44 #include <mips/bonito/bonitoreg.h>
45 #include <mips/bonito/bonitovar.h>
46
47 #include "opt_pwmclock.h"
48
49 #ifdef PWMCLOCK_DEBUG
50 #define DPRINTF aprint_error
51 #else
52 #define DPRINTF while (0) printf
53 #endif
54
55 int pwmclock_intr(void *);
56
57 struct pwmclock_softc {
58 device_t sc_dev;
59 bus_space_tag_t sc_memt;
60 bus_space_handle_t sc_regh;
61 uint32_t sc_reg, sc_last;
62 uint32_t sc_scale[8];
63 uint32_t sc_count; /* should probably be 64 bit */
64 int sc_step;
65 int sc_step_wanted;
66 };
67
68 static int pwmclock_match(device_t, cfdata_t, void *);
69 static void pwmclock_attach(device_t, device_t, void *);
70
71 CFATTACH_DECL_NEW(pwmclock, sizeof(struct pwmclock_softc),
72 pwmclock_match, pwmclock_attach, NULL, NULL);
73
74 static void pwmclock_start(void);
75 static u_int get_pwmclock_timecount(struct timecounter *);
76
77 struct pwmclock_softc *pwmclock;
78 extern void (*initclocks_ptr)(void);
79 extern struct clockframe cf;
80
81 /* 0, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1 */
82 static int scale_m[] = {1, 1, 3, 1, 5, 3, 7, 1};
83 static int scale_d[] = {0, 4, 8, 2, 8, 4, 8, 1};
84
85 #define scale(x, f) (x * scale_d[f] / scale_m[f])
86
87 void pwmclock_set_speed(struct pwmclock_softc *, int);
88 static int pwmclock_cpuspeed_temp(SYSCTLFN_ARGS);
89 static int pwmclock_cpuspeed_cur(SYSCTLFN_ARGS);
90 static int pwmclock_cpuspeed_available(SYSCTLFN_ARGS);
91
92 static struct timecounter pwmclock_timecounter = {
93 get_pwmclock_timecount, /* get_timecount */
94 0, /* no poll_pps */
95 0xffffffff, /* counter_mask */
96 0, /* frequency */
97 "pwm", /* name */
98 100, /* quality */
99 NULL, /* tc_priv */
100 NULL /* tc_next */
101 };
102
103 static int
104 pwmclock_match(device_t parent, cfdata_t match, void *aux)
105 {
106 struct voyager_attach_args *vaa = (struct voyager_attach_args *)aux;
107
108 if (strcmp(vaa->vaa_name, "pwmclock") == 0) return 100;
109 return 0;
110 }
111
112 static uint32_t
113 pwmclock_wait_edge(struct pwmclock_softc *sc)
114 {
115 /* clear interrupt */
116 bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
117 while ((bus_space_read_4(sc->sc_memt, sc->sc_regh, SM502_PWM1) & SM502_PWM_INTR_PENDING) == 0);
118 return mips3_cp0_count_read();
119 }
120
121 static void
122 pwmclock_attach(device_t parent, device_t self, void *aux)
123 {
124 struct pwmclock_softc *sc = device_private(self);
125 struct voyager_attach_args *vaa = aux;
126 const struct sysctlnode *sysctl_node, *me, *freq;
127 uint32_t reg, last, curr, diff, acc;
128 int i, clk;
129
130 sc->sc_dev = self;
131 sc->sc_memt = vaa->vaa_tag;
132 sc->sc_regh = vaa->vaa_regh;
133
134 aprint_normal("\n");
135
136 voyager_establish_intr(parent, 22, pwmclock_intr, sc);
137 reg = voyager_set_pwm(100, 100); /* 100Hz, 10% duty cycle */
138 reg |= SM502_PWM_ENABLE | SM502_PWM_ENABLE_INTR | SM502_PWM_INTR_PENDING;
139 sc->sc_reg = reg;
140 pwmclock = sc;
141 initclocks_ptr = pwmclock_start;
142
143 /* ok, let's see how far the cycle counter gets between interrupts */
144 DPRINTF("calibrating CPU timer...\n");
145 for (clk = 1; clk < 8; clk++) {
146 REGVAL(LS2F_CHIPCFG0) = (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) | clk;
147 bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
148 acc = 0;
149 last = pwmclock_wait_edge(sc);
150 for (i = 0; i < 16; i++) {
151 curr = pwmclock_wait_edge(sc);
152 diff = curr - last;
153 acc += diff;
154 last = curr;
155 }
156 sc->sc_scale[clk] = (acc >> 4) / 5000;
157 }
158 #ifdef PWMCLOCK_DEBUG
159 for (clk = 1; clk < 8; clk++) {
160 aprint_normal_dev(sc->sc_dev, "%d/8: %d\n", clk + 1, sc->sc_scale[clk]);
161 }
162 #endif
163 sc->sc_step = 7;
164 sc->sc_step_wanted = 7;
165
166 /* now setup sysctl */
167 if (sysctl_createv(NULL, 0, NULL,
168 &me,
169 CTLFLAG_READWRITE, CTLTYPE_NODE, "loongson", NULL, NULL,
170 0, NULL, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL) != 0)
171 aprint_error_dev(sc->sc_dev, "couldn't create 'loongson' node\n");
172
173 if (sysctl_createv(NULL, 0, NULL,
174 &freq,
175 CTLFLAG_READWRITE, CTLTYPE_NODE, "frequency", NULL, NULL,
176 0, NULL, 0, CTL_MACHDEP, me->sysctl_num, CTL_CREATE, CTL_EOL) != 0)
177 aprint_error_dev(sc->sc_dev, "couldn't create 'frequency' node\n");
178
179 if (sysctl_createv(NULL, 0, NULL,
180 &sysctl_node,
181 CTLFLAG_READWRITE | CTLFLAG_OWNDESC,
182 CTLTYPE_INT, "target", "CPU speed", pwmclock_cpuspeed_temp,
183 0, sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
184 CTL_CREATE, CTL_EOL) == 0) {
185 } else
186 aprint_error_dev(sc->sc_dev, "couldn't create 'target' node\n");
187
188 if (sysctl_createv(NULL, 0, NULL,
189 &sysctl_node,
190 CTLFLAG_READWRITE,
191 CTLTYPE_INT, "current", NULL, pwmclock_cpuspeed_cur,
192 1, sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
193 CTL_CREATE, CTL_EOL) == 0) {
194 } else
195 aprint_error_dev(sc->sc_dev, "couldn't create 'current' node\n");
196
197 if (sysctl_createv(NULL, 0, NULL,
198 &sysctl_node,
199 CTLFLAG_READWRITE,
200 CTLTYPE_STRING, "available", NULL, pwmclock_cpuspeed_available,
201 2, sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
202 CTL_CREATE, CTL_EOL) == 0) {
203 } else
204 aprint_error_dev(sc->sc_dev, "couldn't create 'available' node\n");
205 }
206
207 void
208 pwmclock_set_speed(struct pwmclock_softc *sc, int speed)
209 {
210
211 if ((speed < 1) || (speed > 7))
212 return;
213 sc->sc_step_wanted = speed;
214 DPRINTF("%s: %d\n", __func__, speed);
215 }
216
217 /*
218 * the PWM interrupt handler
219 * we don't have a CPU clock independent, high resolution counter so we're
220 * stuck with a PWM that can't count and a CP0 counter that slows down or
221 * speeds up with the actual CPU speed. In order to still get halfway
222 * accurate time we do the following:
223 * - only change CPU speed in the timer interrupt
224 * - each timer interrupt we measure how many CP0 cycles passed since last
225 * time, adjust for CPU speed since we can be sure it didn't change, use
226 * that to update a separate counter
227 * - when reading the time counter we take the number of CP0 ticks since
228 * the last timer interrupt, scale it to CPU clock, return that plus the
229 * interrupt updated counter mentioned above to get something close to
230 * CP0 running at full speed
231 * - when changing CPU speed do it as close to taking the time from CP0 as
232 * possible to keep the period of time we spend with CP0 running at the
233 * wrong frequency as short as possible - hopefully short enough to stay
234 * insignificant compared to other noise since switching speeds isn't
235 * going to happen all that often
236 */
237
238 int
239 pwmclock_intr(void *cookie)
240 {
241 struct pwmclock_softc *sc = cookie;
242 uint32_t reg, now, diff;
243
244 /* is it us? */
245 reg = bus_space_read_4(sc->sc_memt, sc->sc_regh, SM502_PWM1);
246 if ((reg & SM502_PWM_INTR_PENDING) == 0)
247 return 0;
248
249 /* yes, it's us, so clear the interrupt */
250 bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
251
252 /*
253 * this looks kinda funny but what we want here is this:
254 * - reading the counter and changing the CPU clock should be as
255 * close together as possible in order to remain halfway accurate
256 * - we need to use the previous sc_step in order to scale the
257 * interval passed since the last clock interrupt correctly, so
258 * we only change sc_step after doing that
259 */
260 if (sc->sc_step_wanted != sc->sc_step) {
261 REGVAL(LS2F_CHIPCFG0) =
262 (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) |
263 sc->sc_step_wanted;
264 }
265
266 now = mips3_cp0_count_read();
267 diff = now - sc->sc_last;
268 sc->sc_count += scale(diff, sc->sc_step);
269 sc->sc_last = now;
270 if (sc->sc_step_wanted != sc->sc_step) {
271 sc->sc_step = sc->sc_step_wanted;
272 }
273 hardclock(&cf);
274
275 return 1;
276 }
277
278 static void
279 pwmclock_start(void)
280 {
281 struct pwmclock_softc *sc = pwmclock;
282 sc->sc_count = 0;
283 sc->sc_last = mips3_cp0_count_read();
284 pwmclock_timecounter.tc_frequency = curcpu()->ci_cpu_freq / 2;
285 tc_init(&pwmclock_timecounter);
286 bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
287 }
288
289 static u_int
290 get_pwmclock_timecount(struct timecounter *tc)
291 {
292 struct pwmclock_softc *sc = pwmclock;
293 uint32_t now, diff;
294
295 now = mips3_cp0_count_read();
296 diff = now - sc->sc_last;
297 return sc->sc_count + scale(diff, sc->sc_step);
298 }
299
300 static int
301 pwmclock_cpuspeed_temp(SYSCTLFN_ARGS)
302 {
303 struct sysctlnode node = *rnode;
304 struct pwmclock_softc *sc = node.sysctl_data;
305 int mhz, i;
306
307 mhz = sc->sc_scale[sc->sc_step_wanted];
308
309 node.sysctl_data = &mhz;
310 if (sysctl_lookup(SYSCTLFN_CALL(&node)) == 0) {
311 int new_reg;
312
313 new_reg = *(int *)node.sysctl_data;
314 i = 1;
315 while ((i < 8) && (sc->sc_scale[i] != new_reg))
316 i++;
317 if (i > 7)
318 return EINVAL;
319 pwmclock_set_speed(sc, i);
320 return 0;
321 }
322 return EINVAL;
323 }
324
325 static int
326 pwmclock_cpuspeed_cur(SYSCTLFN_ARGS)
327 {
328 struct sysctlnode node = *rnode;
329 struct pwmclock_softc *sc = node.sysctl_data;
330 int mhz;
331
332 mhz = sc->sc_scale[sc->sc_step];
333 node.sysctl_data = &mhz;
334 return sysctl_lookup(SYSCTLFN_CALL(&node));
335 }
336
337 static int
338 pwmclock_cpuspeed_available(SYSCTLFN_ARGS)
339 {
340 struct sysctlnode node = *rnode;
341 struct pwmclock_softc *sc = node.sysctl_data;
342 char buf[128];
343
344 snprintf(buf, 128, "%d %d %d %d %d %d %d", sc->sc_scale[1],
345 sc->sc_scale[2], sc->sc_scale[3], sc->sc_scale[4],
346 sc->sc_scale[5], sc->sc_scale[6], sc->sc_scale[7]);
347 node.sysctl_data = buf;
348 return(sysctl_lookup(SYSCTLFN_CALL(&node)));
349 }
350
351 SYSCTL_SETUP(sysctl_ams_setup, "sysctl obio subtree setup")
352 {
353
354 sysctl_createv(NULL, 0, NULL, NULL,
355 CTLFLAG_PERMANENT,
356 CTLTYPE_NODE, "machdep", NULL,
357 NULL, 0, NULL, 0,
358 CTL_MACHDEP, CTL_EOL);
359 }
360