pwmclock.c revision 1.3.4.3 1 /* $NetBSD: pwmclock.c,v 1.3.4.3 2012/02/24 09:11:42 mrg Exp $ */
2
3 /*
4 * Copyright (c) 2011 Michael Lorenz
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: pwmclock.c,v 1.3.4.3 2012/02/24 09:11:42 mrg Exp $");
30
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/device.h>
35 #include <sys/cpu.h>
36 #include <sys/timetc.h>
37 #include <sys/sysctl.h>
38
39 #include <dev/pci/voyagervar.h>
40 #include <dev/ic/sm502reg.h>
41
42 #include <mips/mips3_clock.h>
43 #include <mips/locore.h>
44 #include <mips/bonito/bonitoreg.h>
45 #include <mips/bonito/bonitovar.h>
46
47 #include "opt_pwmclock.h"
48
49 #ifdef PWMCLOCK_DEBUG
50 #define DPRINTF aprint_error
51 #else
52 #define DPRINTF while (0) printf
53 #endif
54
55 int pwmclock_intr(void *);
56
57 struct pwmclock_softc {
58 device_t sc_dev;
59 bus_space_tag_t sc_memt;
60 bus_space_handle_t sc_regh;
61 uint32_t sc_reg, sc_last;
62 uint32_t sc_scale[8];
63 uint32_t sc_count; /* should probably be 64 bit */
64 int sc_step;
65 int sc_step_wanted;
66 void *sc_shutdown_cookie;
67 };
68
69 static int pwmclock_match(device_t, cfdata_t, void *);
70 static void pwmclock_attach(device_t, device_t, void *);
71
72 CFATTACH_DECL_NEW(pwmclock, sizeof(struct pwmclock_softc),
73 pwmclock_match, pwmclock_attach, NULL, NULL);
74
75 static void pwmclock_start(void);
76 static u_int get_pwmclock_timecount(struct timecounter *);
77
78 struct pwmclock_softc *pwmclock;
79 extern void (*initclocks_ptr)(void);
80 extern struct clockframe cf;
81
82 /* 0, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1 */
83 static int scale_m[] = {1, 1, 3, 1, 5, 3, 7, 1};
84 static int scale_d[] = {0, 4, 8, 2, 8, 4, 8, 1};
85
86 #define scale(x, f) (x * scale_d[f] / scale_m[f])
87
88 void pwmclock_set_speed(struct pwmclock_softc *, int);
89 static int pwmclock_cpuspeed_temp(SYSCTLFN_ARGS);
90 static int pwmclock_cpuspeed_cur(SYSCTLFN_ARGS);
91 static int pwmclock_cpuspeed_available(SYSCTLFN_ARGS);
92
93 static void pwmclock_shutdown(void *);
94
95 static struct timecounter pwmclock_timecounter = {
96 get_pwmclock_timecount, /* get_timecount */
97 0, /* no poll_pps */
98 0xffffffff, /* counter_mask */
99 0, /* frequency */
100 "pwm", /* name */
101 100, /* quality */
102 NULL, /* tc_priv */
103 NULL /* tc_next */
104 };
105
106 static int
107 pwmclock_match(device_t parent, cfdata_t match, void *aux)
108 {
109 struct voyager_attach_args *vaa = (struct voyager_attach_args *)aux;
110
111 if (strcmp(vaa->vaa_name, "pwmclock") == 0) return 100;
112 return 0;
113 }
114
115 static uint32_t
116 pwmclock_wait_edge(struct pwmclock_softc *sc)
117 {
118 /* clear interrupt */
119 bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
120 while ((bus_space_read_4(sc->sc_memt, sc->sc_regh, SM502_PWM1) &
121 SM502_PWM_INTR_PENDING) == 0);
122 return mips3_cp0_count_read();
123 }
124
125 static void
126 pwmclock_attach(device_t parent, device_t self, void *aux)
127 {
128 struct pwmclock_softc *sc = device_private(self);
129 struct voyager_attach_args *vaa = aux;
130 const struct sysctlnode *sysctl_node, *me, *freq;
131 uint32_t reg, last, curr, diff, acc;
132 int i, clk;
133
134 sc->sc_dev = self;
135 sc->sc_memt = vaa->vaa_tag;
136 sc->sc_regh = vaa->vaa_regh;
137
138 aprint_normal("\n");
139
140 voyager_establish_intr(parent, 22, pwmclock_intr, sc);
141 reg = voyager_set_pwm(100, 100); /* 100Hz, 10% duty cycle */
142 reg |= SM502_PWM_ENABLE | SM502_PWM_ENABLE_INTR |
143 SM502_PWM_INTR_PENDING;
144 sc->sc_reg = reg;
145 pwmclock = sc;
146 initclocks_ptr = pwmclock_start;
147
148 /*
149 * Establish a hook so on shutdown we can set the CPU clock back to
150 * full speed. This is necessary because PMON doesn't change the
151 * clock scale register on a warm boot, the MIPS clock code gets
152 * confused if we're too slow and the loongson-specific bits run
153 * too late in the boot process
154 */
155 sc->sc_shutdown_cookie = shutdownhook_establish(pwmclock_shutdown, sc);
156
157 /* ok, let's see how far the cycle counter gets between interrupts */
158 DPRINTF("calibrating CPU timer...\n");
159 for (clk = 1; clk < 8; clk++) {
160 REGVAL(LS2F_CHIPCFG0) =
161 (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) | clk;
162 bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1,
163 sc->sc_reg);
164 acc = 0;
165 last = pwmclock_wait_edge(sc);
166 for (i = 0; i < 16; i++) {
167 curr = pwmclock_wait_edge(sc);
168 diff = curr - last;
169 acc += diff;
170 last = curr;
171 }
172 sc->sc_scale[clk] = (acc >> 4) / 5000;
173 }
174 #ifdef PWMCLOCK_DEBUG
175 for (clk = 1; clk < 8; clk++) {
176 aprint_normal_dev(sc->sc_dev, "%d/8: %d\n", clk + 1,
177 sc->sc_scale[clk]);
178 }
179 #endif
180 sc->sc_step = 7;
181 sc->sc_step_wanted = 7;
182
183 /* now setup sysctl */
184 if (sysctl_createv(NULL, 0, NULL,
185 &me,
186 CTLFLAG_READWRITE, CTLTYPE_NODE, "loongson", NULL, NULL,
187 0, NULL, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL) != 0)
188 aprint_error_dev(sc->sc_dev,
189 "couldn't create 'loongson' node\n");
190
191 if (sysctl_createv(NULL, 0, NULL,
192 &freq,
193 CTLFLAG_READWRITE, CTLTYPE_NODE, "frequency", NULL, NULL, 0, NULL,
194 0, CTL_MACHDEP, me->sysctl_num, CTL_CREATE, CTL_EOL) != 0)
195 aprint_error_dev(sc->sc_dev,
196 "couldn't create 'frequency' node\n");
197
198 if (sysctl_createv(NULL, 0, NULL,
199 &sysctl_node,
200 CTLFLAG_READWRITE | CTLFLAG_OWNDESC,
201 CTLTYPE_INT, "target", "CPU speed", pwmclock_cpuspeed_temp,
202 0, sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
203 CTL_CREATE, CTL_EOL) == 0) {
204 } else
205 aprint_error_dev(sc->sc_dev,
206 "couldn't create 'target' node\n");
207
208 if (sysctl_createv(NULL, 0, NULL,
209 &sysctl_node,
210 CTLFLAG_READWRITE,
211 CTLTYPE_INT, "current", NULL, pwmclock_cpuspeed_cur,
212 1, sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
213 CTL_CREATE, CTL_EOL) == 0) {
214 } else
215 aprint_error_dev(sc->sc_dev,
216 "couldn't create 'current' node\n");
217
218 if (sysctl_createv(NULL, 0, NULL,
219 &sysctl_node,
220 CTLFLAG_READWRITE,
221 CTLTYPE_STRING, "available", NULL, pwmclock_cpuspeed_available,
222 2, sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
223 CTL_CREATE, CTL_EOL) == 0) {
224 } else
225 aprint_error_dev(sc->sc_dev,
226 "couldn't create 'available' node\n");
227 }
228
229 static void
230 pwmclock_shutdown(void *cookie)
231 {
232 struct pwmclock_softc *sc = cookie;
233
234 /* just in case the interrupt handler runs again after this */
235 sc->sc_step_wanted = 7;
236 /* set the clock to full speed */
237 REGVAL(LS2F_CHIPCFG0) =
238 (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) | 7;
239 }
240
241 void
242 pwmclock_set_speed(struct pwmclock_softc *sc, int speed)
243 {
244
245 if ((speed < 1) || (speed > 7))
246 return;
247 sc->sc_step_wanted = speed;
248 DPRINTF("%s: %d\n", __func__, speed);
249 }
250
251 /*
252 * the PWM interrupt handler
253 * we don't have a CPU clock independent, high resolution counter so we're
254 * stuck with a PWM that can't count and a CP0 counter that slows down or
255 * speeds up with the actual CPU speed. In order to still get halfway
256 * accurate time we do the following:
257 * - only change CPU speed in the timer interrupt
258 * - each timer interrupt we measure how many CP0 cycles passed since last
259 * time, adjust for CPU speed since we can be sure it didn't change, use
260 * that to update a separate counter
261 * - when reading the time counter we take the number of CP0 ticks since
262 * the last timer interrupt, scale it to CPU clock, return that plus the
263 * interrupt updated counter mentioned above to get something close to
264 * CP0 running at full speed
265 * - when changing CPU speed do it as close to taking the time from CP0 as
266 * possible to keep the period of time we spend with CP0 running at the
267 * wrong frequency as short as possible - hopefully short enough to stay
268 * insignificant compared to other noise since switching speeds isn't
269 * going to happen all that often
270 */
271
272 int
273 pwmclock_intr(void *cookie)
274 {
275 struct pwmclock_softc *sc = cookie;
276 uint32_t reg, now, diff;
277
278 /* is it us? */
279 reg = bus_space_read_4(sc->sc_memt, sc->sc_regh, SM502_PWM1);
280 if ((reg & SM502_PWM_INTR_PENDING) == 0)
281 return 0;
282
283 /* yes, it's us, so clear the interrupt */
284 bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
285
286 /*
287 * this looks kinda funny but what we want here is this:
288 * - reading the counter and changing the CPU clock should be as
289 * close together as possible in order to remain halfway accurate
290 * - we need to use the previous sc_step in order to scale the
291 * interval passed since the last clock interrupt correctly, so
292 * we only change sc_step after doing that
293 */
294 if (sc->sc_step_wanted != sc->sc_step) {
295 REGVAL(LS2F_CHIPCFG0) =
296 (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) |
297 sc->sc_step_wanted;
298 }
299
300 now = mips3_cp0_count_read();
301 diff = now - sc->sc_last;
302 sc->sc_count += scale(diff, sc->sc_step);
303 sc->sc_last = now;
304 if (sc->sc_step_wanted != sc->sc_step) {
305 sc->sc_step = sc->sc_step_wanted;
306 }
307 hardclock(&cf);
308
309 return 1;
310 }
311
312 static void
313 pwmclock_start(void)
314 {
315 struct pwmclock_softc *sc = pwmclock;
316 sc->sc_count = 0;
317 sc->sc_last = mips3_cp0_count_read();
318 pwmclock_timecounter.tc_frequency = curcpu()->ci_cpu_freq / 2;
319 tc_init(&pwmclock_timecounter);
320 bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
321 }
322
323 static u_int
324 get_pwmclock_timecount(struct timecounter *tc)
325 {
326 struct pwmclock_softc *sc = pwmclock;
327 uint32_t now, diff;
328
329 now = mips3_cp0_count_read();
330 diff = now - sc->sc_last;
331 return sc->sc_count + scale(diff, sc->sc_step);
332 }
333
334 static int
335 pwmclock_cpuspeed_temp(SYSCTLFN_ARGS)
336 {
337 struct sysctlnode node = *rnode;
338 struct pwmclock_softc *sc = node.sysctl_data;
339 int mhz, i;
340
341 mhz = sc->sc_scale[sc->sc_step_wanted];
342
343 node.sysctl_data = &mhz;
344 if (sysctl_lookup(SYSCTLFN_CALL(&node)) == 0) {
345 int new_reg;
346
347 new_reg = *(int *)node.sysctl_data;
348 i = 1;
349 while ((i < 8) && (sc->sc_scale[i] != new_reg))
350 i++;
351 if (i > 7)
352 return EINVAL;
353 pwmclock_set_speed(sc, i);
354 return 0;
355 }
356 return EINVAL;
357 }
358
359 static int
360 pwmclock_cpuspeed_cur(SYSCTLFN_ARGS)
361 {
362 struct sysctlnode node = *rnode;
363 struct pwmclock_softc *sc = node.sysctl_data;
364 int mhz;
365
366 mhz = sc->sc_scale[sc->sc_step];
367 node.sysctl_data = &mhz;
368 return sysctl_lookup(SYSCTLFN_CALL(&node));
369 }
370
371 static int
372 pwmclock_cpuspeed_available(SYSCTLFN_ARGS)
373 {
374 struct sysctlnode node = *rnode;
375 struct pwmclock_softc *sc = node.sysctl_data;
376 char buf[128];
377
378 snprintf(buf, 128, "%d %d %d %d %d %d %d", sc->sc_scale[1],
379 sc->sc_scale[2], sc->sc_scale[3], sc->sc_scale[4],
380 sc->sc_scale[5], sc->sc_scale[6], sc->sc_scale[7]);
381 node.sysctl_data = buf;
382 return(sysctl_lookup(SYSCTLFN_CALL(&node)));
383 }
384
385 SYSCTL_SETUP(sysctl_ams_setup, "sysctl obio subtree setup")
386 {
387
388 sysctl_createv(NULL, 0, NULL, NULL,
389 CTLFLAG_PERMANENT,
390 CTLTYPE_NODE, "machdep", NULL,
391 NULL, 0, NULL, 0,
392 CTL_MACHDEP, CTL_EOL);
393 }
394