pwmclock.c revision 1.6.2.2 1 /* $NetBSD: pwmclock.c,v 1.6.2.2 2017/12/03 11:37:30 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 2011 Michael Lorenz
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: pwmclock.c,v 1.6.2.2 2017/12/03 11:37:30 jdolecek Exp $");
30
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/device.h>
35 #include <sys/cpu.h>
36 #include <sys/timetc.h>
37 #include <sys/sysctl.h>
38
39 #include <dev/pci/voyagervar.h>
40 #include <dev/ic/sm502reg.h>
41
42 #include <mips/mips3_clock.h>
43 #include <mips/locore.h>
44 #include <mips/bonito/bonitoreg.h>
45 #include <mips/bonito/bonitovar.h>
46
47 #include "opt_pwmclock.h"
48
49 #ifdef PWMCLOCK_DEBUG
50 #define DPRINTF aprint_error
51 #else
52 #define DPRINTF while (0) printf
53 #endif
54
55 int pwmclock_intr(void *);
56
57 struct pwmclock_softc {
58 device_t sc_dev;
59 bus_space_tag_t sc_memt;
60 bus_space_handle_t sc_regh;
61 uint32_t sc_reg, sc_last;
62 uint32_t sc_scale[8];
63 uint32_t sc_count; /* should probably be 64 bit */
64 int sc_step;
65 int sc_step_wanted;
66 void *sc_shutdown_cookie;
67 };
68
69 static int pwmclock_match(device_t, cfdata_t, void *);
70 static void pwmclock_attach(device_t, device_t, void *);
71
72 CFATTACH_DECL_NEW(pwmclock, sizeof(struct pwmclock_softc),
73 pwmclock_match, pwmclock_attach, NULL, NULL);
74
75 static void pwmclock_start(void);
76 static u_int get_pwmclock_timecount(struct timecounter *);
77
78 struct pwmclock_softc *pwmclock;
79 extern void (*initclocks_ptr)(void);
80
81 /* 0, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1 */
82 static int scale_m[] = {1, 1, 3, 1, 5, 3, 7, 1};
83 static int scale_d[] = {0, 4, 8, 2, 8, 4, 8, 1};
84
85 #define scale(x, f) (x * scale_d[f] / scale_m[f])
86
87 void pwmclock_set_speed(struct pwmclock_softc *, int);
88 static int pwmclock_cpuspeed_temp(SYSCTLFN_ARGS);
89 static int pwmclock_cpuspeed_cur(SYSCTLFN_ARGS);
90 static int pwmclock_cpuspeed_available(SYSCTLFN_ARGS);
91
92 static void pwmclock_shutdown(void *);
93
94 static struct timecounter pwmclock_timecounter = {
95 get_pwmclock_timecount, /* get_timecount */
96 0, /* no poll_pps */
97 0xffffffff, /* counter_mask */
98 0, /* frequency */
99 "pwm", /* name */
100 100, /* quality */
101 NULL, /* tc_priv */
102 NULL /* tc_next */
103 };
104
105 static int
106 pwmclock_match(device_t parent, cfdata_t match, void *aux)
107 {
108 struct voyager_attach_args *vaa = (struct voyager_attach_args *)aux;
109
110 if (strcmp(vaa->vaa_name, "pwmclock") == 0) return 100;
111 return 0;
112 }
113
114 static uint32_t
115 pwmclock_wait_edge(struct pwmclock_softc *sc)
116 {
117 /* clear interrupt */
118 bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
119 while ((bus_space_read_4(sc->sc_memt, sc->sc_regh, SM502_PWM1) &
120 SM502_PWM_INTR_PENDING) == 0);
121 return mips3_cp0_count_read();
122 }
123
124 static void
125 pwmclock_attach(device_t parent, device_t self, void *aux)
126 {
127 struct pwmclock_softc *sc = device_private(self);
128 struct voyager_attach_args *vaa = aux;
129 const struct sysctlnode *sysctl_node, *me, *freq;
130 uint32_t reg, last, curr, diff, acc;
131 int i, clk;
132
133 sc->sc_dev = self;
134 sc->sc_memt = vaa->vaa_tag;
135 sc->sc_regh = vaa->vaa_regh;
136
137 aprint_normal("\n");
138
139 /* NULL here gets us the clockframe */
140 voyager_establish_intr(parent, 22, pwmclock_intr, NULL);
141 reg = voyager_set_pwm(100, 100); /* 100Hz, 10% duty cycle */
142 reg |= SM502_PWM_ENABLE | SM502_PWM_ENABLE_INTR |
143 SM502_PWM_INTR_PENDING;
144 sc->sc_reg = reg;
145 pwmclock = sc;
146 initclocks_ptr = pwmclock_start;
147
148 /*
149 * Establish a hook so on shutdown we can set the CPU clock back to
150 * full speed. This is necessary because PMON doesn't change the
151 * clock scale register on a warm boot, the MIPS clock code gets
152 * confused if we're too slow and the loongson-specific bits run
153 * too late in the boot process
154 */
155 sc->sc_shutdown_cookie = shutdownhook_establish(pwmclock_shutdown, sc);
156
157 /* ok, let's see how far the cycle counter gets between interrupts */
158 DPRINTF("calibrating CPU timer...\n");
159 for (clk = 1; clk < 8; clk++) {
160
161 REGVAL(LS2F_CHIPCFG0) =
162 (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) | clk;
163 bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1,
164 sc->sc_reg);
165 acc = 0;
166 last = pwmclock_wait_edge(sc);
167 for (i = 0; i < 16; i++) {
168 curr = pwmclock_wait_edge(sc);
169 diff = curr - last;
170 acc += diff;
171 last = curr;
172 }
173 sc->sc_scale[clk] = (acc >> 4) / 5000;
174 }
175 #ifdef PWMCLOCK_DEBUG
176 for (clk = 1; clk < 8; clk++) {
177 aprint_normal_dev(sc->sc_dev, "%d/8: %d\n", clk + 1,
178 sc->sc_scale[clk]);
179 }
180 #endif
181 sc->sc_step = 7;
182 sc->sc_step_wanted = 7;
183
184 /* now setup sysctl */
185 if (sysctl_createv(NULL, 0, NULL,
186 &me,
187 CTLFLAG_READWRITE, CTLTYPE_NODE, "loongson", NULL, NULL,
188 0, NULL, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL) != 0)
189 aprint_error_dev(sc->sc_dev,
190 "couldn't create 'loongson' node\n");
191
192 if (sysctl_createv(NULL, 0, NULL,
193 &freq,
194 CTLFLAG_READWRITE, CTLTYPE_NODE, "frequency", NULL, NULL, 0, NULL,
195 0, CTL_MACHDEP, me->sysctl_num, CTL_CREATE, CTL_EOL) != 0)
196 aprint_error_dev(sc->sc_dev,
197 "couldn't create 'frequency' node\n");
198
199 if (sysctl_createv(NULL, 0, NULL,
200 &sysctl_node,
201 CTLFLAG_READWRITE | CTLFLAG_OWNDESC,
202 CTLTYPE_INT, "target", "CPU speed", pwmclock_cpuspeed_temp,
203 0, (void *)sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
204 CTL_CREATE, CTL_EOL) == 0) {
205 } else
206 aprint_error_dev(sc->sc_dev,
207 "couldn't create 'target' node\n");
208
209 if (sysctl_createv(NULL, 0, NULL,
210 &sysctl_node,
211 CTLFLAG_READWRITE,
212 CTLTYPE_INT, "current", NULL, pwmclock_cpuspeed_cur,
213 1, (void *)sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
214 CTL_CREATE, CTL_EOL) == 0) {
215 } else
216 aprint_error_dev(sc->sc_dev,
217 "couldn't create 'current' node\n");
218
219 if (sysctl_createv(NULL, 0, NULL,
220 &sysctl_node,
221 CTLFLAG_READWRITE,
222 CTLTYPE_STRING, "available", NULL, pwmclock_cpuspeed_available,
223 2, (void *)sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
224 CTL_CREATE, CTL_EOL) == 0) {
225 } else
226 aprint_error_dev(sc->sc_dev,
227 "couldn't create 'available' node\n");
228 }
229
230 static void
231 pwmclock_shutdown(void *cookie)
232 {
233 struct pwmclock_softc *sc = cookie;
234
235 /* just in case the interrupt handler runs again after this */
236 sc->sc_step_wanted = 7;
237 /* set the clock to full speed */
238 REGVAL(LS2F_CHIPCFG0) =
239 (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) | 7;
240 }
241
242 void
243 pwmclock_set_speed(struct pwmclock_softc *sc, int speed)
244 {
245
246 if ((speed < 1) || (speed > 7))
247 return;
248 sc->sc_step_wanted = speed;
249 DPRINTF("%s: %d\n", __func__, speed);
250 }
251
252 /*
253 * the PWM interrupt handler
254 * we don't have a CPU clock independent, high resolution counter so we're
255 * stuck with a PWM that can't count and a CP0 counter that slows down or
256 * speeds up with the actual CPU speed. In order to still get halfway
257 * accurate time we do the following:
258 * - only change CPU speed in the timer interrupt
259 * - each timer interrupt we measure how many CP0 cycles passed since last
260 * time, adjust for CPU speed since we can be sure it didn't change, use
261 * that to update a separate counter
262 * - when reading the time counter we take the number of CP0 ticks since
263 * the last timer interrupt, scale it to CPU clock, return that plus the
264 * interrupt updated counter mentioned above to get something close to
265 * CP0 running at full speed
266 * - when changing CPU speed do it as close to taking the time from CP0 as
267 * possible to keep the period of time we spend with CP0 running at the
268 * wrong frequency as short as possible - hopefully short enough to stay
269 * insignificant compared to other noise since switching speeds isn't
270 * going to happen all that often
271 */
272
273 int
274 pwmclock_intr(void *cookie)
275 {
276 struct clockframe *cf = cookie;
277 struct pwmclock_softc *sc = pwmclock;
278 uint32_t reg, now, diff;
279
280 /* is it us? */
281 reg = bus_space_read_4(sc->sc_memt, sc->sc_regh, SM502_PWM1);
282 if ((reg & SM502_PWM_INTR_PENDING) == 0)
283 return 0;
284
285 /* yes, it's us, so clear the interrupt */
286 bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
287
288 /*
289 * this looks kinda funny but what we want here is this:
290 * - reading the counter and changing the CPU clock should be as
291 * close together as possible in order to remain halfway accurate
292 * - we need to use the previous sc_step in order to scale the
293 * interval passed since the last clock interrupt correctly, so
294 * we only change sc_step after doing that
295 */
296 if (sc->sc_step_wanted != sc->sc_step) {
297
298 REGVAL(LS2F_CHIPCFG0) =
299 (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) |
300 sc->sc_step_wanted;
301 }
302
303 now = mips3_cp0_count_read();
304 diff = now - sc->sc_last;
305 sc->sc_count += scale(diff, sc->sc_step);
306 sc->sc_last = now;
307 if (sc->sc_step_wanted != sc->sc_step) {
308 sc->sc_step = sc->sc_step_wanted;
309 }
310
311 hardclock(cf);
312
313 return 1;
314 }
315
316 static void
317 pwmclock_start(void)
318 {
319 struct pwmclock_softc *sc = pwmclock;
320 sc->sc_count = 0;
321 sc->sc_last = mips3_cp0_count_read();
322 pwmclock_timecounter.tc_frequency = curcpu()->ci_cpu_freq / 2;
323 tc_init(&pwmclock_timecounter);
324 bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
325 }
326
327 static u_int
328 get_pwmclock_timecount(struct timecounter *tc)
329 {
330 struct pwmclock_softc *sc = pwmclock;
331 uint32_t now, diff;
332
333 now = mips3_cp0_count_read();
334 diff = now - sc->sc_last;
335 return sc->sc_count + scale(diff, sc->sc_step);
336 }
337
338 static int
339 pwmclock_cpuspeed_temp(SYSCTLFN_ARGS)
340 {
341 struct sysctlnode node = *rnode;
342 struct pwmclock_softc *sc = node.sysctl_data;
343 int mhz, i;
344
345 mhz = sc->sc_scale[sc->sc_step_wanted];
346
347 node.sysctl_data = &mhz;
348 if (sysctl_lookup(SYSCTLFN_CALL(&node)) == 0) {
349 int new_reg;
350
351 new_reg = *(int *)node.sysctl_data;
352 i = 1;
353 while ((i < 8) && (sc->sc_scale[i] != new_reg))
354 i++;
355 if (i > 7)
356 return EINVAL;
357 pwmclock_set_speed(sc, i);
358 return 0;
359 }
360 return EINVAL;
361 }
362
363 static int
364 pwmclock_cpuspeed_cur(SYSCTLFN_ARGS)
365 {
366 struct sysctlnode node = *rnode;
367 struct pwmclock_softc *sc = node.sysctl_data;
368 int mhz;
369
370 mhz = sc->sc_scale[sc->sc_step];
371 node.sysctl_data = &mhz;
372 return sysctl_lookup(SYSCTLFN_CALL(&node));
373 }
374
375 static int
376 pwmclock_cpuspeed_available(SYSCTLFN_ARGS)
377 {
378 struct sysctlnode node = *rnode;
379 struct pwmclock_softc *sc = node.sysctl_data;
380 char buf[128];
381
382 snprintf(buf, 128, "%d %d %d %d %d %d %d", sc->sc_scale[1],
383 sc->sc_scale[2], sc->sc_scale[3], sc->sc_scale[4],
384 sc->sc_scale[5], sc->sc_scale[6], sc->sc_scale[7]);
385 node.sysctl_data = buf;
386 return(sysctl_lookup(SYSCTLFN_CALL(&node)));
387 }
388
389 SYSCTL_SETUP(sysctl_ams_setup, "sysctl obio subtree setup")
390 {
391
392 sysctl_createv(NULL, 0, NULL, NULL,
393 CTLFLAG_PERMANENT,
394 CTLTYPE_NODE, "machdep", NULL,
395 NULL, 0, NULL, 0,
396 CTL_MACHDEP, CTL_EOL);
397 }
398