pwmclock.c revision 1.7 1 /* $NetBSD: pwmclock.c,v 1.7 2013/04/15 19:46:16 christos Exp $ */
2
3 /*
4 * Copyright (c) 2011 Michael Lorenz
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: pwmclock.c,v 1.7 2013/04/15 19:46:16 christos Exp $");
30
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/device.h>
35 #include <sys/cpu.h>
36 #include <sys/timetc.h>
37 #include <sys/sysctl.h>
38
39 #include <dev/pci/voyagervar.h>
40 #include <dev/ic/sm502reg.h>
41
42 #include <mips/mips3_clock.h>
43 #include <mips/locore.h>
44 #include <mips/bonito/bonitoreg.h>
45 #include <mips/bonito/bonitovar.h>
46
47 #include "opt_pwmclock.h"
48
49 #ifdef PWMCLOCK_DEBUG
50 #define DPRINTF aprint_error
51 #else
52 #define DPRINTF while (0) printf
53 #endif
54
55 int pwmclock_intr(void *);
56
57 struct pwmclock_softc {
58 device_t sc_dev;
59 bus_space_tag_t sc_memt;
60 bus_space_handle_t sc_regh;
61 uint32_t sc_reg, sc_last;
62 uint32_t sc_scale[8];
63 uint32_t sc_count; /* should probably be 64 bit */
64 int sc_step;
65 int sc_step_wanted;
66 void *sc_shutdown_cookie;
67 };
68
69 static int pwmclock_match(device_t, cfdata_t, void *);
70 static void pwmclock_attach(device_t, device_t, void *);
71
72 CFATTACH_DECL_NEW(pwmclock, sizeof(struct pwmclock_softc),
73 pwmclock_match, pwmclock_attach, NULL, NULL);
74
75 static void pwmclock_start(void);
76 static u_int get_pwmclock_timecount(struct timecounter *);
77
78 struct pwmclock_softc *pwmclock;
79 extern void (*initclocks_ptr)(void);
80 extern struct clockframe cf;
81
82 /* 0, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1 */
83 static int scale_m[] = {1, 1, 3, 1, 5, 3, 7, 1};
84 static int scale_d[] = {0, 4, 8, 2, 8, 4, 8, 1};
85
86 #define scale(x, f) (x * scale_d[f] / scale_m[f])
87
88 void pwmclock_set_speed(struct pwmclock_softc *, int);
89 static int pwmclock_cpuspeed_temp(SYSCTLFN_ARGS);
90 static int pwmclock_cpuspeed_cur(SYSCTLFN_ARGS);
91 static int pwmclock_cpuspeed_available(SYSCTLFN_ARGS);
92
93 static void pwmclock_shutdown(void *);
94
95 static struct timecounter pwmclock_timecounter = {
96 get_pwmclock_timecount, /* get_timecount */
97 0, /* no poll_pps */
98 0xffffffff, /* counter_mask */
99 0, /* frequency */
100 "pwm", /* name */
101 100, /* quality */
102 NULL, /* tc_priv */
103 NULL /* tc_next */
104 };
105
106 static int
107 pwmclock_match(device_t parent, cfdata_t match, void *aux)
108 {
109 struct voyager_attach_args *vaa = (struct voyager_attach_args *)aux;
110
111 if (strcmp(vaa->vaa_name, "pwmclock") == 0) return 100;
112 return 0;
113 }
114
115 static uint32_t
116 pwmclock_wait_edge(struct pwmclock_softc *sc)
117 {
118 /* clear interrupt */
119 bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
120 while ((bus_space_read_4(sc->sc_memt, sc->sc_regh, SM502_PWM1) &
121 SM502_PWM_INTR_PENDING) == 0);
122 return mips3_cp0_count_read();
123 }
124
125 static void
126 pwmclock_attach(device_t parent, device_t self, void *aux)
127 {
128 struct pwmclock_softc *sc = device_private(self);
129 struct voyager_attach_args *vaa = aux;
130 const struct sysctlnode *sysctl_node, *me, *freq;
131 uint32_t reg, last, curr, diff, acc;
132 int i, clk;
133
134 sc->sc_dev = self;
135 sc->sc_memt = vaa->vaa_tag;
136 sc->sc_regh = vaa->vaa_regh;
137
138 aprint_normal("\n");
139
140 voyager_establish_intr(parent, 22, pwmclock_intr, sc);
141 reg = voyager_set_pwm(100, 100); /* 100Hz, 10% duty cycle */
142 reg |= SM502_PWM_ENABLE | SM502_PWM_ENABLE_INTR |
143 SM502_PWM_INTR_PENDING;
144 sc->sc_reg = reg;
145 pwmclock = sc;
146 initclocks_ptr = pwmclock_start;
147
148 /*
149 * Establish a hook so on shutdown we can set the CPU clock back to
150 * full speed. This is necessary because PMON doesn't change the
151 * clock scale register on a warm boot, the MIPS clock code gets
152 * confused if we're too slow and the loongson-specific bits run
153 * too late in the boot process
154 */
155 sc->sc_shutdown_cookie = shutdownhook_establish(pwmclock_shutdown, sc);
156
157 /* ok, let's see how far the cycle counter gets between interrupts */
158 DPRINTF("calibrating CPU timer...\n");
159 for (clk = 1; clk < 8; clk++) {
160 #if 0
161 REGVAL(LS2F_CHIPCFG0) =
162 (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) | clk;
163 #endif
164 bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1,
165 sc->sc_reg);
166 acc = 0;
167 last = pwmclock_wait_edge(sc);
168 for (i = 0; i < 16; i++) {
169 curr = pwmclock_wait_edge(sc);
170 diff = curr - last;
171 acc += diff;
172 last = curr;
173 }
174 sc->sc_scale[clk] = (acc >> 4) / 5000;
175 }
176 #ifdef PWMCLOCK_DEBUG
177 for (clk = 1; clk < 8; clk++) {
178 aprint_normal_dev(sc->sc_dev, "%d/8: %d\n", clk + 1,
179 sc->sc_scale[clk]);
180 }
181 #endif
182 sc->sc_step = 7;
183 sc->sc_step_wanted = 7;
184
185 /* now setup sysctl */
186 if (sysctl_createv(NULL, 0, NULL,
187 &me,
188 CTLFLAG_READWRITE, CTLTYPE_NODE, "loongson", NULL, NULL,
189 0, NULL, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL) != 0)
190 aprint_error_dev(sc->sc_dev,
191 "couldn't create 'loongson' node\n");
192
193 if (sysctl_createv(NULL, 0, NULL,
194 &freq,
195 CTLFLAG_READWRITE, CTLTYPE_NODE, "frequency", NULL, NULL, 0, NULL,
196 0, CTL_MACHDEP, me->sysctl_num, CTL_CREATE, CTL_EOL) != 0)
197 aprint_error_dev(sc->sc_dev,
198 "couldn't create 'frequency' node\n");
199
200 if (sysctl_createv(NULL, 0, NULL,
201 &sysctl_node,
202 CTLFLAG_READWRITE | CTLFLAG_OWNDESC,
203 CTLTYPE_INT, "target", "CPU speed", pwmclock_cpuspeed_temp,
204 0, (void *)sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
205 CTL_CREATE, CTL_EOL) == 0) {
206 } else
207 aprint_error_dev(sc->sc_dev,
208 "couldn't create 'target' node\n");
209
210 if (sysctl_createv(NULL, 0, NULL,
211 &sysctl_node,
212 CTLFLAG_READWRITE,
213 CTLTYPE_INT, "current", NULL, pwmclock_cpuspeed_cur,
214 1, (void *)sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
215 CTL_CREATE, CTL_EOL) == 0) {
216 } else
217 aprint_error_dev(sc->sc_dev,
218 "couldn't create 'current' node\n");
219
220 if (sysctl_createv(NULL, 0, NULL,
221 &sysctl_node,
222 CTLFLAG_READWRITE,
223 CTLTYPE_STRING, "available", NULL, pwmclock_cpuspeed_available,
224 2, (void *)sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
225 CTL_CREATE, CTL_EOL) == 0) {
226 } else
227 aprint_error_dev(sc->sc_dev,
228 "couldn't create 'available' node\n");
229 }
230
231 static void
232 pwmclock_shutdown(void *cookie)
233 {
234 struct pwmclock_softc *sc = cookie;
235
236 /* just in case the interrupt handler runs again after this */
237 sc->sc_step_wanted = 7;
238 /* set the clock to full speed */
239 #if 0
240 REGVAL(LS2F_CHIPCFG0) =
241 (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) | 7;
242 #endif
243 }
244
245 void
246 pwmclock_set_speed(struct pwmclock_softc *sc, int speed)
247 {
248
249 if ((speed < 1) || (speed > 7))
250 return;
251 sc->sc_step_wanted = speed;
252 DPRINTF("%s: %d\n", __func__, speed);
253 }
254
255 /*
256 * the PWM interrupt handler
257 * we don't have a CPU clock independent, high resolution counter so we're
258 * stuck with a PWM that can't count and a CP0 counter that slows down or
259 * speeds up with the actual CPU speed. In order to still get halfway
260 * accurate time we do the following:
261 * - only change CPU speed in the timer interrupt
262 * - each timer interrupt we measure how many CP0 cycles passed since last
263 * time, adjust for CPU speed since we can be sure it didn't change, use
264 * that to update a separate counter
265 * - when reading the time counter we take the number of CP0 ticks since
266 * the last timer interrupt, scale it to CPU clock, return that plus the
267 * interrupt updated counter mentioned above to get something close to
268 * CP0 running at full speed
269 * - when changing CPU speed do it as close to taking the time from CP0 as
270 * possible to keep the period of time we spend with CP0 running at the
271 * wrong frequency as short as possible - hopefully short enough to stay
272 * insignificant compared to other noise since switching speeds isn't
273 * going to happen all that often
274 */
275
276 int
277 pwmclock_intr(void *cookie)
278 {
279 struct pwmclock_softc *sc = cookie;
280 uint32_t reg, now, diff;
281
282 /* is it us? */
283 reg = bus_space_read_4(sc->sc_memt, sc->sc_regh, SM502_PWM1);
284 if ((reg & SM502_PWM_INTR_PENDING) == 0)
285 return 0;
286
287 /* yes, it's us, so clear the interrupt */
288 bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
289
290 /*
291 * this looks kinda funny but what we want here is this:
292 * - reading the counter and changing the CPU clock should be as
293 * close together as possible in order to remain halfway accurate
294 * - we need to use the previous sc_step in order to scale the
295 * interval passed since the last clock interrupt correctly, so
296 * we only change sc_step after doing that
297 */
298 if (sc->sc_step_wanted != sc->sc_step) {
299 #if 0
300 REGVAL(LS2F_CHIPCFG0) =
301 (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) |
302 sc->sc_step_wanted;
303 #endif
304 }
305
306 now = mips3_cp0_count_read();
307 diff = now - sc->sc_last;
308 sc->sc_count += scale(diff, sc->sc_step);
309 sc->sc_last = now;
310 if (sc->sc_step_wanted != sc->sc_step) {
311 sc->sc_step = sc->sc_step_wanted;
312 }
313 hardclock(&cf);
314
315 return 1;
316 }
317
318 static void
319 pwmclock_start(void)
320 {
321 struct pwmclock_softc *sc = pwmclock;
322 sc->sc_count = 0;
323 sc->sc_last = mips3_cp0_count_read();
324 pwmclock_timecounter.tc_frequency = curcpu()->ci_cpu_freq / 2;
325 tc_init(&pwmclock_timecounter);
326 bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
327 }
328
329 static u_int
330 get_pwmclock_timecount(struct timecounter *tc)
331 {
332 struct pwmclock_softc *sc = pwmclock;
333 uint32_t now, diff;
334
335 now = mips3_cp0_count_read();
336 diff = now - sc->sc_last;
337 return sc->sc_count + scale(diff, sc->sc_step);
338 }
339
340 static int
341 pwmclock_cpuspeed_temp(SYSCTLFN_ARGS)
342 {
343 struct sysctlnode node = *rnode;
344 struct pwmclock_softc *sc = node.sysctl_data;
345 int mhz, i;
346
347 mhz = sc->sc_scale[sc->sc_step_wanted];
348
349 node.sysctl_data = &mhz;
350 if (sysctl_lookup(SYSCTLFN_CALL(&node)) == 0) {
351 int new_reg;
352
353 new_reg = *(int *)node.sysctl_data;
354 i = 1;
355 while ((i < 8) && (sc->sc_scale[i] != new_reg))
356 i++;
357 if (i > 7)
358 return EINVAL;
359 pwmclock_set_speed(sc, i);
360 return 0;
361 }
362 return EINVAL;
363 }
364
365 static int
366 pwmclock_cpuspeed_cur(SYSCTLFN_ARGS)
367 {
368 struct sysctlnode node = *rnode;
369 struct pwmclock_softc *sc = node.sysctl_data;
370 int mhz;
371
372 mhz = sc->sc_scale[sc->sc_step];
373 node.sysctl_data = &mhz;
374 return sysctl_lookup(SYSCTLFN_CALL(&node));
375 }
376
377 static int
378 pwmclock_cpuspeed_available(SYSCTLFN_ARGS)
379 {
380 struct sysctlnode node = *rnode;
381 struct pwmclock_softc *sc = node.sysctl_data;
382 char buf[128];
383
384 snprintf(buf, 128, "%d %d %d %d %d %d %d", sc->sc_scale[1],
385 sc->sc_scale[2], sc->sc_scale[3], sc->sc_scale[4],
386 sc->sc_scale[5], sc->sc_scale[6], sc->sc_scale[7]);
387 node.sysctl_data = buf;
388 return(sysctl_lookup(SYSCTLFN_CALL(&node)));
389 }
390
391 SYSCTL_SETUP(sysctl_ams_setup, "sysctl obio subtree setup")
392 {
393
394 sysctl_createv(NULL, 0, NULL, NULL,
395 CTLFLAG_PERMANENT,
396 CTLTYPE_NODE, "machdep", NULL,
397 NULL, 0, NULL, 0,
398 CTL_MACHDEP, CTL_EOL);
399 }
400