xmm7360.c revision 1.1 1 // vim: noet ts=8 sts=8 sw=8
2 /*
3 * Device driver for Intel XMM7360 LTE modems, eg. Fibocom L850-GL.
4 * Written by James Wah
5 * james (at) laird-wah.net
6 *
7 * Development of this driver was supported by genua GmbH
8 *
9 * Copyright (c) 2020 genua GmbH <info (at) genua.de>
10 *Copyright (c) 2020 James Wah <james (at) laird-wah.net>
11 *Copyright (c) 2020 Jaromir Dolecek <jdolecek (at) NetBSD.org>
12 *
13 * OpenBSD port written by Jaromir Dolecek for genua GmbH
14 *
15 * Permission to use, copy, modify, and/or distribute this software for any
16 * purpose with or without fee is hereby granted, provided that the above
17 * copyright notice and this permission notice appear in all copies.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
20 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES ON
21 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
22 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGE
23 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
24 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
25 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
26 */
27
28 #ifdef __linux__
29
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/delay.h>
36 #include <linux/uaccess.h>
37 #include <linux/cdev.h>
38 #include <linux/wait.h>
39 #include <linux/tty.h>
40 #include <linux/tty_flip.h>
41 #include <linux/poll.h>
42 #include <linux/skbuff.h>
43 #include <linux/netdevice.h>
44 #include <linux/if.h>
45 #include <linux/if_arp.h>
46 #include <net/rtnetlink.h>
47 #include <linux/hrtimer.h>
48 #include <linux/workqueue.h>
49
50 MODULE_LICENSE("Dual BSD/GPL");
51
52 static const struct pci_device_id xmm7360_ids[] = {
53 { PCI_DEVICE(0x8086, 0x7360), },
54 { 0, }
55 };
56 MODULE_DEVICE_TABLE(pci, xmm7360_ids);
57
58 /* Actually this ioctl not used for xmm0/rpc device by python code */
59 #define XMM7360_IOCTL_GET_PAGE_SIZE _IOC(_IOC_READ, 'x', 0xc0, sizeof(u32))
60
61 #define xmm7360_os_msleep(msec) msleep(msec)
62
63 #define __unused /* nothing */
64
65 #endif
66
67 #if defined(__OpenBSD__) || defined(__NetBSD__)
68
69 #ifdef __OpenBSD__
70 #include "bpfilter.h"
71 #endif
72 #ifdef __NetBSD__
73 #include "opt_inet.h"
74 #include "opt_gateway.h"
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: xmm7360.c,v 1.1 2020/07/26 14:51:18 jdolecek Exp $");
78 #endif
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/sockio.h>
83 #include <sys/mbuf.h>
84 #include <sys/kernel.h>
85 #include <sys/device.h>
86 #include <sys/socket.h>
87 #include <sys/mutex.h>
88 #include <sys/tty.h>
89 #include <sys/conf.h>
90 #include <sys/kthread.h>
91 #include <sys/poll.h>
92 #include <sys/fcntl.h> /* for FREAD/FWRITE */
93 #include <sys/vnode.h>
94 #include <uvm/uvm_param.h>
95
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99
100 #include <net/if.h>
101 #include <net/if_types.h>
102
103 #include <netinet/in.h>
104 #include <netinet/ip.h>
105 #include <netinet/ip6.h>
106
107 #ifdef __OpenBSD__
108 #include <netinet/if_ether.h>
109 #include <sys/timeout.h>
110 #include <machine/bus.h>
111 #endif
112
113 #if NBPFILTER > 0 || defined(__NetBSD__)
114 #include <net/bpf.h>
115 #endif
116
117 #ifdef __NetBSD__
118 #include "ioconf.h"
119 #include <sys/cpu.h>
120 #endif
121
122 #ifdef INET
123 #include <netinet/in_var.h>
124 #endif
125 #ifdef INET6
126 #include <netinet6/in6_var.h>
127 #endif
128
129 typedef uint8_t u8;
130 typedef uint16_t u16;
131 typedef uint32_t u32;
132 typedef bus_addr_t dma_addr_t;
133 typedef void * wait_queue_head_t; /* just address for tsleep() */
134
135 #define WWAN_BAR0 PCI_MAPREG_START
136 #define WWAN_BAR1 (PCI_MAPREG_START + 4)
137 #define WWAN_BAR2 (PCI_MAPREG_START + 8)
138
139 #define BUG_ON(never_true) KASSERT(!(never_true))
140 #define WARN_ON(x) /* nothing */
141
142 #ifdef __OpenBSD__
143 typedef struct mutex spinlock_t;
144 #define dev_err(devp, fmt, ...) \
145 printf("%s: " fmt, (devp)->dv_xname, ##__VA_ARGS__)
146 #define dev_info(devp, fmt, ...) \
147 printf("%s: " fmt, (devp)->dv_xname, ##__VA_ARGS__)
148 #define kzalloc(size, flags) malloc(size, M_DEVBUF, M_WAITOK | M_ZERO)
149 #define kfree(addr) free(addr, M_DEVBUF, 0)
150 #define mutex_init(lock) mtx_init(lock, IPL_TTY)
151 #define mutex_lock(lock) mtx_enter(lock)
152 #define mutex_unlock(lock) mtx_leave(lock)
153 /* In OpenBSD every mutex is spin mutex, and it must not be held on sleep */
154 #define spin_lock_irqsave(lock, flags) mtx_enter(lock)
155 #define spin_unlock_irqrestore(lock, flags) mtx_leave(lock)
156
157 /* Compat defines for NetBSD API */
158 #define curlwp curproc
159 #define LINESW(tp) (linesw[(tp)->t_line])
160 #define selnotify(sel, band, note) selwakeup(sel)
161 #define cfdata_t void *
162 #define device_lookup_private(cdp, unit) \
163 (unit < (*cdp).cd_ndevs) ? (*cdp).cd_devs[unit] : NULL
164 #define IFQ_SET_READY(ifq) /* nothing */
165 #define device_private(devt) (void *)devt;
166 #define if_deferred_start_init(ifp, arg) /* nothing */
167 #define IF_OUTPUT_CONST /* nothing */
168 #define tty_lock() int s = spltty()
169 #define tty_unlock() splx(s)
170 #define tty_locked() /* nothing */
171 #define pmf_device_deregister(dev) /* nothing */
172 #if NBPFILTER > 0
173 #define BPF_MTAP_OUT(ifp, m) \
174 if (ifp->if_bpf) { \
175 bpf_mtap_af(ifp->if_bpf, m->m_pkthdr.ph_family, \
176 m, BPF_DIRECTION_OUT); \
177 }
178 #else
179 #define BPF_MTAP_OUT(ifp, m) /* nothing */
180 #endif
181
182 /* Copied from NetBSD <lib/libkern/libkern.h> */
183 #define __validate_container_of(PTR, TYPE, FIELD) \
184 (0 * sizeof((PTR) - &((TYPE *)(((char *)(PTR)) - \
185 offsetof(TYPE, FIELD)))->FIELD))
186 #define container_of(PTR, TYPE, FIELD) \
187 ((TYPE *)(((char *)(PTR)) - offsetof(TYPE, FIELD)) \
188 + __validate_container_of(PTR, TYPE, FIELD))
189
190 /* Copied from NetBSD <sys/cdefs.h> */
191 #define __UNVOLATILE(a) ((void *)(unsigned long)(volatile void *)(a))
192
193 #if OpenBSD <= 201911
194 /* Backward compat with OpenBSD 6.6 */
195 #define klist_insert(klist, kn) \
196 SLIST_INSERT_HEAD(klist, kn, kn_selnext)
197 #define klist_remove(klist, kn) \
198 SLIST_REMOVE(klist, kn, knote, kn_selnext)
199 #define XMM_KQ_ISFD_INITIALIZER .f_isfd = 1
200 #else
201 #define XMM_KQ_ISFD_INITIALIZER .f_flags = FILTEROP_ISFD
202 #endif /* OpenBSD <= 201911 */
203
204 #endif
205
206 #ifdef __NetBSD__
207 typedef struct kmutex spinlock_t;
208 #define dev_err aprint_error_dev
209 #define dev_info aprint_normal_dev
210 #define mutex kmutex
211 #define kzalloc(size, flags) malloc(size, M_DEVBUF, M_WAITOK | M_ZERO)
212 #define kfree(addr) free(addr, M_DEVBUF)
213 #define mutex_init(lock) mutex_init(lock, MUTEX_DEFAULT, IPL_TTY)
214 #define mutex_lock(lock) mutex_enter(lock)
215 #define mutex_unlock(lock) mutex_exit(lock)
216 #define spin_lock_irqsave(lock, flags) mutex_enter(lock)
217 #define spin_unlock_irqrestore(lock, flags) mutex_exit(lock)
218
219 /* Compat defines with OpenBSD API */
220 #define caddr_t void *
221 #define proc lwp
222 #define LINESW(tp) (*tp->t_linesw)
223 #define ttymalloc(speed) tty_alloc()
224 #define ttyfree(tp) tty_free(tp)
225 #define l_open(dev, tp, p) l_open(dev, tp)
226 #define l_close(tp, flag, p) l_close(tp, flag)
227 #define ttkqfilter(dev, kn) ttykqfilter(dev, kn)
228 #define msleep(ident, lock, prio, wmesg, timo) \
229 mtsleep(ident, prio, wmesg, timo, lock)
230 #define pci_mapreg_map(pa, reg, type, busfl, tp, hp, bp, szp, maxsize) \
231 pci_mapreg_map(pa, reg, type, busfl, tp, hp, bp, szp)
232 #define pci_intr_establish(pc, ih, lvl, func, arg, name) \
233 pci_intr_establish_xname(pc, ih, lvl, func, arg, name)
234 #define suser(l) \
235 kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp)
236 #define kthread_create(func, arg, lwpp, name) \
237 kthread_create(0, 0, NULL, func, arg, lwpp, "%s", name)
238 #define MUTEX_ASSERT_LOCKED(lock) KASSERT(mutex_owned(lock))
239 #define MCLGETI(m, how, m0, sz) MCLGET(m, how)
240 #define m_copyback(m, off, sz, buf, how) \
241 m_copyback(m, off, sz, buf)
242 #define ifq_deq_begin(ifq) ({ \
243 struct mbuf *m0; \
244 IFQ_DEQUEUE(ifq, m0); \
245 m0; \
246 })
247 #define ifq_deq_rollback(ifq, m) m_freem(m)
248 #define ifq_deq_commit(ifq, m) /* nothing to do */
249 #define ifq_is_oactive(ifq) true /* always restart queue */
250 #define ifq_clr_oactive(ifq) /* nothing to do */
251 #define ifq_empty(ifq) IFQ_IS_EMPTY(ifq)
252 #define ifq_purge(ifq) IF_PURGE(ifq)
253 #define if_enqueue(ifp, m) ifq_enqueue(ifp, m)
254 #define if_ih_insert(ifp, func, arg) (ifp)->_if_input = (func)
255 #define if_ih_remove(ifp, func, arg) /* nothing to do */
256 #define if_hardmtu if_mtu
257 #define IF_OUTPUT_CONST const
258 #define si_note sel_klist
259 #define klist_insert(klist, kn) \
260 SLIST_INSERT_HEAD(klist, kn, kn_selnext)
261 #define klist_remove(klist, kn) \
262 SLIST_REMOVE(klist, kn, knote, kn_selnext)
263 #define XMM_KQ_ISFD_INITIALIZER .f_isfd = 1
264 #define tty_lock() mutex_spin_enter(&tty_lock)
265 #define tty_unlock() mutex_spin_exit(&tty_lock)
266 #define tty_locked() KASSERT(mutex_owned(&tty_lock))
267 #define bpfattach(bpf, ifp, dlt, sz) bpf_attach(ifp, dlt, sz)
268 #define NBPFILTER 1
269 #define BPF_MTAP_OUT(ifp, m) bpf_mtap(ifp, m, BPF_D_OUT)
270 #endif /* __NetBSD__ */
271
272 #define __user /* nothing */
273 #define copy_from_user(kbuf, userbuf, sz) \
274 ({ \
275 int __ret = 0; \
276 int error = copyin(userbuf, kbuf, sz); \
277 if (error != 0) \
278 return -error; \
279 __ret; \
280 })
281 #define copy_to_user(kbuf, userbuf, sz) \
282 ({ \
283 int __ret = 0; \
284 int error = copyout(userbuf, kbuf, sz); \
285 if (error != 0) \
286 return -error; \
287 __ret; \
288 })
289 #define xmm7360_os_msleep(msec) \
290 KASSERT(!cold); \
291 tsleep(xmm, 0, "wwancsl", msec * hz / 1000)
292
293 static void *dma_alloc_coherent(struct device *, size_t, dma_addr_t *, int);
294 static void dma_free_coherent(struct device *, size_t, volatile void *, dma_addr_t);
295
296 #ifndef PCI_PRODUCT_INTEL_XMM7360
297 #define PCI_PRODUCT_INTEL_XMM7360 0x7360
298 #endif
299
300 #define init_waitqueue_head(wqp) *(wqp) = (wqp)
301 #define wait_event_interruptible(wq, cond) \
302 ({ \
303 int __ret = 1; \
304 while (!(cond)) { \
305 KASSERT(!cold); \
306 int error = tsleep(wq, PCATCH, "xmmwq", 0); \
307 if (error) { \
308 __ret = (cond) ? 1 \
309 : ((error != ERESTART) ? -error : error); \
310 break; \
311 } \
312 } \
313 __ret; \
314 })
315
316 #define msecs_to_jiffies(msec) \
317 ({ \
318 KASSERT(hz < 1000); \
319 KASSERT(msec > (1000 / hz)); \
320 msec * hz / 1000; \
321 })
322
323 #define wait_event_interruptible_timeout(wq, cond, jiffies) \
324 ({ \
325 int __ret = 1; \
326 while (!(cond)) { \
327 if (cold) { \
328 for (int loop = 0; loop < 10; loop++) { \
329 delay(jiffies * 1000 * 1000 / hz / 10); \
330 if (cond) \
331 break; \
332 } \
333 __ret = (cond) ? 1 : 0; \
334 break; \
335 } \
336 int error = tsleep(wq, PCATCH, "xmmwq", jiffies); \
337 if (error) { \
338 __ret = (cond) ? 1 \
339 : ((error != ERESTART) ? -error : error); \
340 break; \
341 } \
342 } \
343 __ret; \
344 })
345
346 #define GFP_KERNEL 0
347
348 #endif /* __OpenBSD__ || __NetBSD__ */
349
350 /*
351 * The XMM7360 communicates via DMA ring buffers. It has one
352 * command ring, plus sixteen transfer descriptor (TD)
353 * rings. The command ring is mainly used to configure and
354 * deconfigure the TD rings.
355 *
356 * The 16 TD rings form 8 queue pairs (QP). For example, QP
357 * 0 uses ring 0 for host->device, and ring 1 for
358 * device->host.
359 *
360 * The known queue pair functions are as follows:
361 *
362 * 0: Mux (Raw IP packets, amongst others)
363 * 1: RPC (funky command protocol based in part on ASN.1 BER)
364 * 2: AT trace? port; does not accept commands after init
365 * 4: AT command port
366 * 7: AT command port
367 *
368 */
369
370 /* Command ring, which is used to configure the queue pairs */
371 struct cmd_ring_entry {
372 dma_addr_t ptr;
373 u16 len;
374 u8 parm;
375 u8 cmd;
376 u32 extra;
377 u32 unk, flags;
378 };
379
380 #define CMD_RING_OPEN 1
381 #define CMD_RING_CLOSE 2
382 #define CMD_RING_FLUSH 3
383 #define CMD_WAKEUP 4
384
385 #define CMD_FLAG_DONE 1
386 #define CMD_FLAG_READY 2
387
388 /* Transfer descriptors used on the Tx and Rx rings of each queue pair */
389 struct td_ring_entry {
390 dma_addr_t addr;
391 u16 length;
392 u16 flags;
393 u32 unk;
394 };
395
396 #define TD_FLAG_COMPLETE 0x200
397
398 /* Root configuration object. This contains pointers to all of the control
399 * structures that the modem will interact with.
400 */
401 struct control {
402 dma_addr_t status;
403 dma_addr_t s_wptr, s_rptr;
404 dma_addr_t c_wptr, c_rptr;
405 dma_addr_t c_ring;
406 u16 c_ring_size;
407 u16 unk;
408 };
409
410 struct status {
411 u32 code;
412 u32 mode;
413 u32 asleep;
414 u32 pad;
415 };
416
417 #define CMD_RING_SIZE 0x80
418
419 /* All of the control structures can be packed into one page of RAM. */
420 struct control_page {
421 struct control ctl;
422 // Status words - written by modem.
423 volatile struct status status;
424 // Slave ring write/read pointers.
425 volatile u32 s_wptr[16], s_rptr[16];
426 // Command ring write/read pointers.
427 volatile u32 c_wptr, c_rptr;
428 // Command ring entries.
429 volatile struct cmd_ring_entry c_ring[CMD_RING_SIZE];
430 };
431
432 #define BAR0_MODE 0x0c
433 #define BAR0_DOORBELL 0x04
434 #define BAR0_WAKEUP 0x14
435
436 #define DOORBELL_TD 0
437 #define DOORBELL_CMD 1
438
439 #define BAR2_STATUS 0x00
440 #define BAR2_MODE 0x18
441 #define BAR2_CONTROL 0x19
442 #define BAR2_CONTROLH 0x1a
443
444 #define BAR2_BLANK0 0x1b
445 #define BAR2_BLANK1 0x1c
446 #define BAR2_BLANK2 0x1d
447 #define BAR2_BLANK3 0x1e
448
449 #define XMM_MODEM_BOOTING 0xfeedb007
450 #define XMM_MODEM_READY 0x600df00d
451
452 #define XMM_TAG_ACBH 0x41434248 // 'ACBH'
453 #define XMM_TAG_CMDH 0x434d4448 // 'CMDH'
454 #define XMM_TAG_ADBH 0x41444248 // 'ADBH'
455 #define XMM_TAG_ADTH 0x41445448 // 'ADTH'
456
457 /* There are 16 TD rings: a Tx and Rx ring for each queue pair */
458 struct td_ring {
459 u8 depth;
460 u8 last_handled;
461 u16 page_size;
462
463 struct td_ring_entry *tds;
464 dma_addr_t tds_phys;
465
466 // One page of page_size per td
467 void **pages;
468 dma_addr_t *pages_phys;
469 };
470
471 #define TD_MAX_PAGE_SIZE 16384
472
473 struct queue_pair {
474 struct xmm_dev *xmm;
475 u8 depth;
476 u16 page_size;
477 int tty_index;
478 int tty_needs_wake;
479 struct device dev;
480 int num;
481 int open;
482 struct mutex lock;
483 unsigned char user_buf[TD_MAX_PAGE_SIZE];
484 wait_queue_head_t wq;
485
486 #ifdef __linux__
487 struct cdev cdev;
488 struct tty_port port;
489 #endif
490 #if defined(__OpenBSD__) || defined(__NetBSD__)
491 struct selinfo selr, selw;
492 #endif
493 };
494
495 #define XMM_QP_COUNT 8
496
497 struct xmm_dev {
498 struct device *dev;
499
500 volatile uint32_t *bar0, *bar2;
501
502 volatile struct control_page *cp;
503 dma_addr_t cp_phys;
504
505 struct td_ring td_ring[2 * XMM_QP_COUNT];
506
507 struct queue_pair qp[XMM_QP_COUNT];
508
509 struct xmm_net *net;
510 struct net_device *netdev;
511
512 int error;
513 int card_num;
514 int num_ttys;
515 wait_queue_head_t wq;
516
517 #ifdef __linux__
518 struct pci_dev *pci_dev;
519
520 int irq;
521
522 struct work_struct init_work; // XXX work not actually scheduled
523 #endif
524 };
525
526 struct mux_bounds {
527 uint32_t offset;
528 uint32_t length;
529 };
530
531 struct mux_first_header {
532 uint32_t tag;
533 uint16_t unknown;
534 uint16_t sequence;
535 uint16_t length;
536 uint16_t extra;
537 uint16_t next;
538 uint16_t pad;
539 };
540
541 struct mux_next_header {
542 uint32_t tag;
543 uint16_t length;
544 uint16_t extra;
545 uint16_t next;
546 uint16_t pad;
547 };
548
549 #define MUX_MAX_PACKETS 64
550
551 struct mux_frame {
552 int n_packets, n_bytes, max_size, sequence;
553 uint16_t *last_tag_length, *last_tag_next;
554 struct mux_bounds bounds[MUX_MAX_PACKETS];
555 uint8_t data[TD_MAX_PAGE_SIZE];
556 };
557
558 struct xmm_net {
559 struct xmm_dev *xmm;
560 struct queue_pair *qp;
561 int channel;
562
563 #ifdef __linux__
564 struct sk_buff_head queue;
565 struct hrtimer deadline;
566 #endif
567 int queued_packets, queued_bytes;
568
569 int sequence;
570 spinlock_t lock;
571 struct mux_frame frame;
572 };
573
574 static void xmm7360_os_handle_net_frame(struct xmm_dev *, const u8 *, size_t);
575 static void xmm7360_os_handle_net_dequeue(struct xmm_net *, struct mux_frame *);
576 static void xmm7360_os_handle_net_txwake(struct xmm_net *);
577 static void xmm7360_os_handle_tty_idata(struct queue_pair *, const u8 *, size_t);
578
579 static void xmm7360_poll(struct xmm_dev *xmm)
580 {
581 if (xmm->cp->status.code == 0xbadc0ded) {
582 dev_err(xmm->dev, "crashed but dma up\n");
583 xmm->error = -ENODEV;
584 }
585 if (xmm->bar2[BAR2_STATUS] != XMM_MODEM_READY) {
586 dev_err(xmm->dev, "bad status %x\n",xmm->bar2[BAR2_STATUS]);
587 xmm->error = -ENODEV;
588 }
589 }
590
591 static void xmm7360_ding(struct xmm_dev *xmm, int bell)
592 {
593 if (xmm->cp->status.asleep)
594 xmm->bar0[BAR0_WAKEUP] = 1;
595 xmm->bar0[BAR0_DOORBELL] = bell;
596 xmm7360_poll(xmm);
597 }
598
599 static int xmm7360_cmd_ring_wait(struct xmm_dev *xmm)
600 {
601 // Wait for all commands to complete
602 // XXX locking?
603 int ret = wait_event_interruptible_timeout(xmm->wq, (xmm->cp->c_rptr == xmm->cp->c_wptr) || xmm->error, msecs_to_jiffies(1000));
604 if (ret == 0)
605 return -ETIMEDOUT;
606 if (ret < 0)
607 return ret;
608 return xmm->error;
609 }
610
611 static int xmm7360_cmd_ring_execute(struct xmm_dev *xmm, u8 cmd, u8 parm, u16 len, dma_addr_t ptr, u32 extra)
612 {
613 u8 wptr = xmm->cp->c_wptr;
614 u8 new_wptr = (wptr + 1) % CMD_RING_SIZE;
615 if (xmm->error)
616 return xmm->error;
617 if (new_wptr == xmm->cp->c_rptr) // ring full
618 return -EAGAIN;
619
620 xmm->cp->c_ring[wptr].ptr = ptr;
621 xmm->cp->c_ring[wptr].cmd = cmd;
622 xmm->cp->c_ring[wptr].parm = parm;
623 xmm->cp->c_ring[wptr].len = len;
624 xmm->cp->c_ring[wptr].extra = extra;
625 xmm->cp->c_ring[wptr].unk = 0;
626 xmm->cp->c_ring[wptr].flags = CMD_FLAG_READY;
627
628 xmm->cp->c_wptr = new_wptr;
629
630 xmm7360_ding(xmm, DOORBELL_CMD);
631 return xmm7360_cmd_ring_wait(xmm);
632 }
633
634 static int xmm7360_cmd_ring_init(struct xmm_dev *xmm) {
635 int timeout;
636 int ret;
637
638 xmm->cp = dma_alloc_coherent(xmm->dev, sizeof(struct control_page), &xmm->cp_phys, GFP_KERNEL);
639 BUG_ON(xmm->cp == NULL);
640
641 xmm->cp->ctl.status = xmm->cp_phys + offsetof(struct control_page, status);
642 xmm->cp->ctl.s_wptr = xmm->cp_phys + offsetof(struct control_page, s_wptr);
643 xmm->cp->ctl.s_rptr = xmm->cp_phys + offsetof(struct control_page, s_rptr);
644 xmm->cp->ctl.c_wptr = xmm->cp_phys + offsetof(struct control_page, c_wptr);
645 xmm->cp->ctl.c_rptr = xmm->cp_phys + offsetof(struct control_page, c_rptr);
646 xmm->cp->ctl.c_ring = xmm->cp_phys + offsetof(struct control_page, c_ring);
647 xmm->cp->ctl.c_ring_size = CMD_RING_SIZE;
648
649 xmm->bar2[BAR2_CONTROL] = xmm->cp_phys;
650 xmm->bar2[BAR2_CONTROLH] = xmm->cp_phys >> 32;
651
652 xmm->bar0[BAR0_MODE] = 1;
653
654 timeout = 100;
655 while (xmm->bar2[BAR2_MODE] == 0 && --timeout)
656 xmm7360_os_msleep(10);
657
658 if (!timeout)
659 return -ETIMEDOUT;
660
661 xmm->bar2[BAR2_BLANK0] = 0;
662 xmm->bar2[BAR2_BLANK1] = 0;
663 xmm->bar2[BAR2_BLANK2] = 0;
664 xmm->bar2[BAR2_BLANK3] = 0;
665
666 xmm->bar0[BAR0_MODE] = 2; // enable intrs?
667
668 timeout = 100;
669 while (xmm->bar2[BAR2_MODE] != 2 && --timeout)
670 xmm7360_os_msleep(10);
671
672 if (!timeout)
673 return -ETIMEDOUT;
674
675 // enable going to sleep when idle
676 ret = xmm7360_cmd_ring_execute(xmm, CMD_WAKEUP, 0, 1, 0, 0);
677 if (ret)
678 return ret;
679
680 return 0;
681 }
682
683 static void xmm7360_cmd_ring_free(struct xmm_dev *xmm) {
684 if (xmm->bar0)
685 xmm->bar0[BAR0_MODE] = 0;
686 if (xmm->cp)
687 dma_free_coherent(xmm->dev, sizeof(struct control_page), (volatile void *)xmm->cp, xmm->cp_phys);
688 xmm->cp = NULL;
689 return;
690 }
691
692 static void xmm7360_td_ring_activate(struct xmm_dev *xmm, u8 ring_id)
693 {
694 struct td_ring *ring = &xmm->td_ring[ring_id];
695 int ret;
696
697 xmm->cp->s_rptr[ring_id] = xmm->cp->s_wptr[ring_id] = 0;
698 ring->last_handled = 0;
699 ret = xmm7360_cmd_ring_execute(xmm, CMD_RING_OPEN, ring_id, ring->depth, ring->tds_phys, 0x60);
700 BUG_ON(ret);
701 }
702
703 static void xmm7360_td_ring_create(struct xmm_dev *xmm, u8 ring_id, u8 depth, u16 page_size)
704 {
705 struct td_ring *ring = &xmm->td_ring[ring_id];
706 int i;
707
708 BUG_ON(ring->depth);
709 BUG_ON(depth & (depth-1));
710 BUG_ON(page_size > TD_MAX_PAGE_SIZE);
711
712 memset(ring, 0, sizeof(struct td_ring));
713 ring->depth = depth;
714 ring->page_size = page_size;
715 ring->tds = dma_alloc_coherent(xmm->dev, sizeof(struct td_ring_entry)*depth, &ring->tds_phys, GFP_KERNEL);
716
717 ring->pages = kzalloc(sizeof(void*)*depth, GFP_KERNEL);
718 ring->pages_phys = kzalloc(sizeof(dma_addr_t)*depth, GFP_KERNEL);
719
720 for (i=0; i<depth; i++) {
721 ring->pages[i] = dma_alloc_coherent(xmm->dev, ring->page_size, &ring->pages_phys[i], GFP_KERNEL);
722 ring->tds[i].addr = ring->pages_phys[i];
723 }
724
725 xmm7360_td_ring_activate(xmm, ring_id);
726 }
727
728 static void xmm7360_td_ring_deactivate(struct xmm_dev *xmm, u8 ring_id)
729 {
730 xmm7360_cmd_ring_execute(xmm, CMD_RING_CLOSE, ring_id, 0, 0, 0);
731 }
732
733 static void xmm7360_td_ring_destroy(struct xmm_dev *xmm, u8 ring_id)
734 {
735 struct td_ring *ring = &xmm->td_ring[ring_id];
736 int i, depth=ring->depth;
737
738 if (!depth) {
739 WARN_ON(1);
740 dev_err(xmm->dev, "Tried destroying empty ring!\n");
741 return;
742 }
743
744 xmm7360_td_ring_deactivate(xmm, ring_id);
745
746 for (i=0; i<depth; i++) {
747 dma_free_coherent(xmm->dev, ring->page_size, ring->pages[i], ring->pages_phys[i]);
748 }
749
750 kfree(ring->pages_phys);
751 kfree(ring->pages);
752
753 dma_free_coherent(xmm->dev, sizeof(struct td_ring_entry)*depth, ring->tds, ring->tds_phys);
754
755 ring->depth = 0;
756 }
757
758 static void xmm7360_td_ring_write(struct xmm_dev *xmm, u8 ring_id, const void *buf, int len)
759 {
760 struct td_ring *ring = &xmm->td_ring[ring_id];
761 u8 wptr = xmm->cp->s_wptr[ring_id];
762
763 BUG_ON(!ring->depth);
764 BUG_ON(len > ring->page_size);
765 BUG_ON(ring_id & 1);
766
767 memcpy(ring->pages[wptr], buf, len);
768 ring->tds[wptr].length = len;
769 ring->tds[wptr].flags = 0;
770 ring->tds[wptr].unk = 0;
771
772 wptr = (wptr + 1) & (ring->depth - 1);
773 BUG_ON(wptr == xmm->cp->s_rptr[ring_id]);
774
775 xmm->cp->s_wptr[ring_id] = wptr;
776 }
777
778 static int xmm7360_td_ring_full(struct xmm_dev *xmm, u8 ring_id)
779 {
780 struct td_ring *ring = &xmm->td_ring[ring_id];
781 u8 wptr = xmm->cp->s_wptr[ring_id];
782 wptr = (wptr + 1) & (ring->depth - 1);
783 return wptr == xmm->cp->s_rptr[ring_id];
784 }
785
786 static void xmm7360_td_ring_read(struct xmm_dev *xmm, u8 ring_id)
787 {
788 struct td_ring *ring = &xmm->td_ring[ring_id];
789 u8 wptr = xmm->cp->s_wptr[ring_id];
790
791 if (!ring->depth) {
792 dev_err(xmm->dev, "read on disabled ring\n");
793 WARN_ON(1);
794 return;
795 }
796 if (!(ring_id & 1)) {
797 dev_err(xmm->dev, "read on write ring\n");
798 WARN_ON(1);
799 return;
800 }
801
802 ring->tds[wptr].length = ring->page_size;
803 ring->tds[wptr].flags = 0;
804 ring->tds[wptr].unk = 0;
805
806 wptr = (wptr + 1) & (ring->depth - 1);
807 BUG_ON(wptr == xmm->cp->s_rptr[ring_id]);
808
809 xmm->cp->s_wptr[ring_id] = wptr;
810 }
811
812 static struct queue_pair * xmm7360_init_qp(struct xmm_dev *xmm, int num, u8 depth, u16 page_size)
813 {
814 struct queue_pair *qp = &xmm->qp[num];
815
816 qp->xmm = xmm;
817 qp->num = num;
818 qp->open = 0;
819 qp->depth = depth;
820 qp->page_size = page_size;
821
822 mutex_init(&qp->lock);
823 init_waitqueue_head(&qp->wq);
824 return qp;
825 }
826
827 static void xmm7360_qp_arm(struct xmm_dev *xmm, struct queue_pair *qp)
828 {
829 while (!xmm7360_td_ring_full(xmm, qp->num*2+1))
830 xmm7360_td_ring_read(xmm, qp->num*2+1);
831 xmm7360_ding(xmm, DOORBELL_TD);
832 }
833
834 static int xmm7360_qp_start(struct queue_pair *qp)
835 {
836 struct xmm_dev *xmm = qp->xmm;
837 int ret;
838
839 mutex_lock(&qp->lock);
840 if (qp->open) {
841 ret = -EBUSY;
842 } else {
843 ret = 0;
844 qp->open = 1;
845 }
846 mutex_unlock(&qp->lock);
847
848 if (ret == 0) {
849 xmm7360_td_ring_create(xmm, qp->num*2, qp->depth, qp->page_size);
850 xmm7360_td_ring_create(xmm, qp->num*2+1, qp->depth, qp->page_size);
851 xmm7360_qp_arm(xmm, qp);
852 }
853
854 return ret;
855 }
856
857 static void xmm7360_qp_resume(struct queue_pair *qp)
858 {
859 struct xmm_dev *xmm = qp->xmm;
860
861 BUG_ON(!qp->open);
862 xmm7360_td_ring_activate(xmm, qp->num*2);
863 xmm7360_td_ring_activate(xmm, qp->num*2+1);
864 xmm7360_qp_arm(xmm, qp);
865 }
866
867 static int xmm7360_qp_stop(struct queue_pair *qp)
868 {
869 struct xmm_dev *xmm = qp->xmm;
870 int ret = 0;
871
872 mutex_lock(&qp->lock);
873 if (!qp->open) {
874 ret = -ENODEV;
875 } else {
876 ret = 0;
877 /* still holding qp->open to prevent concurrent access */
878 }
879 mutex_unlock(&qp->lock);
880
881 if (ret == 0) {
882 xmm7360_td_ring_destroy(xmm, qp->num*2);
883 xmm7360_td_ring_destroy(xmm, qp->num*2+1);
884
885 mutex_lock(&qp->lock);
886 qp->open = 0;
887 mutex_unlock(&qp->lock);
888 }
889
890 return ret;
891 }
892
893 static void xmm7360_qp_suspend(struct queue_pair *qp)
894 {
895 struct xmm_dev *xmm = qp->xmm;
896
897 BUG_ON(!qp->open);
898 xmm7360_td_ring_deactivate(xmm, qp->num*2);
899 }
900
901 static int xmm7360_qp_can_write(struct queue_pair *qp)
902 {
903 struct xmm_dev *xmm = qp->xmm;
904 return !xmm7360_td_ring_full(xmm, qp->num*2);
905 }
906
907 static ssize_t xmm7360_qp_write(struct queue_pair *qp, const char *buf, size_t size)
908 {
909 struct xmm_dev *xmm = qp->xmm;
910 int page_size = qp->xmm->td_ring[qp->num*2].page_size;
911 if (xmm->error)
912 return xmm->error;
913 if (!xmm7360_qp_can_write(qp))
914 return 0;
915 if (size > page_size)
916 size = page_size;
917 xmm7360_td_ring_write(xmm, qp->num*2, buf, size);
918 xmm7360_ding(xmm, DOORBELL_TD);
919 return size;
920 }
921
922 static ssize_t xmm7360_qp_write_user(struct queue_pair *qp, const char __user *buf, size_t size)
923 {
924 int page_size = qp->xmm->td_ring[qp->num*2].page_size;
925 int ret;
926
927 if (size > page_size)
928 size = page_size;
929
930 ret = copy_from_user(qp->user_buf, buf, size);
931 size = size - ret;
932 if (!size)
933 return 0;
934 return xmm7360_qp_write(qp, qp->user_buf, size);
935 }
936
937 static int xmm7360_qp_has_data(struct queue_pair *qp)
938 {
939 struct xmm_dev *xmm = qp->xmm;
940 struct td_ring *ring = &xmm->td_ring[qp->num*2+1];
941
942 return (xmm->cp->s_rptr[qp->num*2+1] != ring->last_handled);
943 }
944
945 static ssize_t xmm7360_qp_read_user(struct queue_pair *qp, char __user *buf, size_t size)
946 {
947 struct xmm_dev *xmm = qp->xmm;
948 struct td_ring *ring = &xmm->td_ring[qp->num*2+1];
949 int idx, nread, ret;
950 // XXX locking?
951 ret = wait_event_interruptible(qp->wq, xmm7360_qp_has_data(qp) || xmm->error);
952 if (ret < 0)
953 return ret;
954 if (xmm->error)
955 return xmm->error;
956
957 idx = ring->last_handled;
958 nread = ring->tds[idx].length;
959 if (nread > size)
960 nread = size;
961 ret = copy_to_user(buf, ring->pages[idx], nread);
962 nread -= ret;
963 if (nread == 0)
964 return 0;
965
966 // XXX all data not fitting into buf+size is discarded
967 xmm7360_td_ring_read(xmm, qp->num*2+1);
968 xmm7360_ding(xmm, DOORBELL_TD);
969 ring->last_handled = (idx + 1) & (ring->depth - 1);
970
971 return nread;
972 }
973
974 static void xmm7360_tty_poll_qp(struct queue_pair *qp)
975 {
976 struct xmm_dev *xmm = qp->xmm;
977 struct td_ring *ring = &xmm->td_ring[qp->num*2+1];
978 int idx, nread;
979 while (xmm7360_qp_has_data(qp)) {
980 idx = ring->last_handled;
981 nread = ring->tds[idx].length;
982 xmm7360_os_handle_tty_idata(qp, ring->pages[idx], nread);
983
984 xmm7360_td_ring_read(xmm, qp->num*2+1);
985 xmm7360_ding(xmm, DOORBELL_TD);
986 ring->last_handled = (idx + 1) & (ring->depth - 1);
987 }
988 }
989
990 #ifdef __linux__
991
992 static void xmm7360_os_handle_tty_idata(struct queue_pair *qp, const u8 *data, size_t nread)
993 {
994 tty_insert_flip_string(&qp->port, data, nread);
995 tty_flip_buffer_push(&qp->port);
996 }
997
998 int xmm7360_cdev_open (struct inode *inode, struct file *file)
999 {
1000 struct queue_pair *qp = container_of(inode->i_cdev, struct queue_pair, cdev);
1001 file->private_data = qp;
1002 return xmm7360_qp_start(qp);
1003 }
1004
1005 int xmm7360_cdev_release (struct inode *inode, struct file *file)
1006 {
1007 struct queue_pair *qp = file->private_data;
1008 return xmm7360_qp_stop(qp);
1009 }
1010
1011 ssize_t xmm7360_cdev_write (struct file *file, const char __user *buf, size_t size, loff_t *offset)
1012 {
1013 struct queue_pair *qp = file->private_data;
1014 int ret;
1015
1016 ret = xmm7360_qp_write_user(qp, buf, size);
1017 if (ret < 0)
1018 return ret;
1019
1020 *offset += ret;
1021 return ret;
1022 }
1023
1024 ssize_t xmm7360_cdev_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
1025 {
1026 struct queue_pair *qp = file->private_data;
1027 int ret;
1028
1029 ret = xmm7360_qp_read_user(qp, buf, size);
1030 if (ret < 0)
1031 return ret;
1032
1033 *offset += ret;
1034 return ret;
1035 }
1036
1037 static unsigned int xmm7360_cdev_poll(struct file *file, poll_table *wait)
1038 {
1039 struct queue_pair *qp = file->private_data;
1040 unsigned int mask = 0;
1041
1042 poll_wait(file, &qp->wq, wait);
1043
1044 if (qp->xmm->error)
1045 return POLLHUP;
1046
1047 if (xmm7360_qp_has_data(qp))
1048 mask |= POLLIN | POLLRDNORM;
1049
1050 if (xmm7360_qp_can_write(qp))
1051 mask |= POLLOUT | POLLWRNORM;
1052
1053 return mask;
1054 }
1055
1056 static long xmm7360_cdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1057 {
1058 struct queue_pair *qp = file->private_data;
1059
1060 u32 val;
1061
1062 switch (cmd) {
1063 case XMM7360_IOCTL_GET_PAGE_SIZE:
1064 val = qp->xmm->td_ring[qp->num*2].page_size;
1065 if (copy_to_user((u32*)arg, &val, sizeof(u32)))
1066 return -EFAULT;
1067 return 0;
1068 }
1069
1070 return -ENOTTY;
1071 }
1072
1073 static struct file_operations xmm7360_fops = {
1074 .read = xmm7360_cdev_read,
1075 .write = xmm7360_cdev_write,
1076 .poll = xmm7360_cdev_poll,
1077 .unlocked_ioctl = xmm7360_cdev_ioctl,
1078 .open = xmm7360_cdev_open,
1079 .release = xmm7360_cdev_release
1080 };
1081
1082 #endif /* __linux__ */
1083
1084 static void xmm7360_mux_frame_init(struct xmm_net *xn, struct mux_frame *frame, int sequence)
1085 {
1086 frame->sequence = xn->sequence;
1087 frame->max_size = xn->xmm->td_ring[0].page_size;
1088 frame->n_packets = 0;
1089 frame->n_bytes = 0;
1090 frame->last_tag_next = NULL;
1091 frame->last_tag_length = NULL;
1092 }
1093
1094 static void xmm7360_mux_frame_add_tag(struct mux_frame *frame, uint32_t tag, uint16_t extra, void *data, int data_len)
1095 {
1096 int total_length;
1097 if (frame->n_bytes == 0)
1098 total_length = sizeof(struct mux_first_header) + data_len;
1099 else
1100 total_length = sizeof(struct mux_next_header) + data_len;
1101
1102 while (frame->n_bytes & 3)
1103 frame->n_bytes++;
1104
1105 BUG_ON(frame->n_bytes + total_length > frame->max_size);
1106
1107 if (frame->last_tag_next)
1108 *frame->last_tag_next = frame->n_bytes;
1109
1110 if (frame->n_bytes == 0) {
1111 struct mux_first_header *hdr = (struct mux_first_header *)frame->data;
1112 memset(hdr, 0, sizeof(struct mux_first_header));
1113 hdr->tag = htonl(tag);
1114 hdr->sequence = frame->sequence;
1115 hdr->length = total_length;
1116 hdr->extra = extra;
1117 frame->last_tag_length = &hdr->length;
1118 frame->last_tag_next = &hdr->next;
1119 frame->n_bytes += sizeof(struct mux_first_header);
1120 } else {
1121 struct mux_next_header *hdr = (struct mux_next_header *)(&frame->data[frame->n_bytes]);
1122 memset(hdr, 0, sizeof(struct mux_next_header));
1123 hdr->tag = htonl(tag);
1124 hdr->length = total_length;
1125 hdr->extra = extra;
1126 frame->last_tag_length = &hdr->length;
1127 frame->last_tag_next = &hdr->next;
1128 frame->n_bytes += sizeof(struct mux_next_header);
1129 }
1130
1131 if (data_len) {
1132 memcpy(&frame->data[frame->n_bytes], data, data_len);
1133 frame->n_bytes += data_len;
1134 }
1135 }
1136
1137 static void xmm7360_mux_frame_append_data(struct mux_frame *frame, const void *data, int data_len)
1138 {
1139 BUG_ON(frame->n_bytes + data_len > frame->max_size);
1140 BUG_ON(!frame->last_tag_length);
1141
1142 memcpy(&frame->data[frame->n_bytes], data, data_len);
1143 *frame->last_tag_length += data_len;
1144 frame->n_bytes += data_len;
1145 }
1146
1147 static int xmm7360_mux_frame_append_packet(struct mux_frame *frame, const void *data, int data_len)
1148 {
1149 int expected_adth_size = sizeof(struct mux_next_header) + 4 + (frame->n_packets+1)*sizeof(struct mux_bounds);
1150 uint8_t pad[16];
1151
1152 if (frame->n_packets >= MUX_MAX_PACKETS)
1153 return -1;
1154
1155 if (frame->n_bytes + data_len + 16 + expected_adth_size > frame->max_size)
1156 return -1;
1157
1158 BUG_ON(!frame->last_tag_length);
1159
1160 frame->bounds[frame->n_packets].offset = frame->n_bytes;
1161 frame->bounds[frame->n_packets].length = data_len + 16;
1162 frame->n_packets++;
1163
1164 memset(pad, 0, sizeof(pad));
1165 xmm7360_mux_frame_append_data(frame, pad, 16);
1166 xmm7360_mux_frame_append_data(frame, data, data_len);
1167 return 0;
1168 }
1169
1170 static int xmm7360_mux_frame_push(struct xmm_dev *xmm, struct mux_frame *frame)
1171 {
1172 struct mux_first_header *hdr = (void*)&frame->data[0];
1173 int ret;
1174 hdr->length = frame->n_bytes;
1175
1176 ret = xmm7360_qp_write(xmm->net->qp, frame->data, frame->n_bytes);
1177 if (ret < 0)
1178 return ret;
1179 return 0;
1180 }
1181
1182 static int xmm7360_mux_control(struct xmm_net *xn, u32 arg1, u32 arg2, u32 arg3, u32 arg4)
1183 {
1184 struct mux_frame *frame = &xn->frame;
1185 int ret;
1186 uint32_t cmdh_args[] = {arg1, arg2, arg3, arg4};
1187 unsigned long flags __unused;
1188
1189 spin_lock_irqsave(&xn->lock, flags);
1190
1191 xmm7360_mux_frame_init(xn, frame, 0);
1192 xmm7360_mux_frame_add_tag(frame, XMM_TAG_ACBH, 0, NULL, 0);
1193 xmm7360_mux_frame_add_tag(frame, XMM_TAG_CMDH, xn->channel, cmdh_args, sizeof(cmdh_args));
1194 ret = xmm7360_mux_frame_push(xn->xmm, frame);
1195
1196 spin_unlock_irqrestore(&xn->lock, flags);
1197
1198 return ret;
1199 }
1200
1201 static void xmm7360_net_flush(struct xmm_net *xn)
1202 {
1203 struct mux_frame *frame = &xn->frame;
1204 int ret;
1205 u32 unknown = 0;
1206
1207 #ifdef __linux__
1208 /* Never called with empty queue */
1209 BUG_ON(skb_queue_empty(&xn->queue));
1210 #endif
1211 BUG_ON(!xmm7360_qp_can_write(xn->qp));
1212
1213 xmm7360_mux_frame_init(xn, frame, xn->sequence++);
1214 xmm7360_mux_frame_add_tag(frame, XMM_TAG_ADBH, 0, NULL, 0);
1215
1216 xmm7360_os_handle_net_dequeue(xn, frame);
1217 xn->queued_packets = xn->queued_bytes = 0;
1218
1219 xmm7360_mux_frame_add_tag(frame, XMM_TAG_ADTH, xn->channel, &unknown, sizeof(uint32_t));
1220 xmm7360_mux_frame_append_data(frame, &frame->bounds[0], sizeof(struct mux_bounds)*frame->n_packets);
1221
1222 ret = xmm7360_mux_frame_push(xn->xmm, frame);
1223 if (ret)
1224 goto drop;
1225
1226 return;
1227
1228 drop:
1229 dev_err(xn->xmm->dev, "Failed to ship coalesced frame");
1230 }
1231
1232 static int xmm7360_base_init(struct xmm_dev *xmm)
1233 {
1234 int ret, i;
1235 u32 status;
1236
1237 xmm->error = 0;
1238 xmm->num_ttys = 0;
1239
1240 status = xmm->bar2[BAR2_STATUS];
1241 if (status == XMM_MODEM_BOOTING) {
1242 dev_info(xmm->dev, "modem still booting, waiting...\n");
1243 for (i=0; i<100; i++) {
1244 status = xmm->bar2[BAR2_STATUS];
1245 if (status != XMM_MODEM_BOOTING)
1246 break;
1247 xmm7360_os_msleep(200);
1248 }
1249 }
1250
1251 if (status != XMM_MODEM_READY) {
1252 dev_err(xmm->dev, "unknown modem status: 0x%08x\n", status);
1253 return -EINVAL;
1254 }
1255
1256 dev_info(xmm->dev, "modem is ready\n");
1257
1258 ret = xmm7360_cmd_ring_init(xmm);
1259 if (ret) {
1260 dev_err(xmm->dev, "Could not bring up command ring %d\n",
1261 ret);
1262 return ret;
1263 }
1264
1265 return 0;
1266 }
1267
1268 static void xmm7360_net_mux_handle_frame(struct xmm_net *xn, u8 *data, int len)
1269 {
1270 struct mux_first_header *first;
1271 struct mux_next_header *adth;
1272 int n_packets, i;
1273 struct mux_bounds *bounds;
1274
1275 first = (void*)data;
1276 if (ntohl(first->tag) == XMM_TAG_ACBH)
1277 return;
1278
1279 if (ntohl(first->tag) != XMM_TAG_ADBH) {
1280 dev_info(xn->xmm->dev, "Unexpected tag %x\n", first->tag);
1281 return;
1282 }
1283
1284 adth = (void*)(&data[first->next]);
1285 if (ntohl(adth->tag) != XMM_TAG_ADTH) {
1286 dev_err(xn->xmm->dev, "Unexpected tag %x, expected ADTH\n", adth->tag);
1287 return;
1288 }
1289
1290 n_packets = (adth->length - sizeof(struct mux_next_header) - 4) / sizeof(struct mux_bounds);
1291
1292 bounds = (void*)&data[first->next + sizeof(struct mux_next_header) + 4];
1293
1294 for (i=0; i<n_packets; i++) {
1295 if (!bounds[i].length)
1296 continue;
1297
1298 xmm7360_os_handle_net_frame(xn->xmm,
1299 &data[bounds[i].offset], bounds[i].length);
1300 }
1301 }
1302
1303 static void xmm7360_net_poll(struct xmm_dev *xmm)
1304 {
1305 struct queue_pair *qp;
1306 struct td_ring *ring;
1307 int idx, nread;
1308 struct xmm_net *xn = xmm->net;
1309 unsigned long flags __unused;
1310
1311 BUG_ON(!xn);
1312
1313 qp = xn->qp;
1314 ring = &xmm->td_ring[qp->num*2+1];
1315
1316 spin_lock_irqsave(&xn->lock, flags);
1317
1318 if (xmm7360_qp_can_write(qp))
1319 xmm7360_os_handle_net_txwake(xn);
1320
1321 while (xmm7360_qp_has_data(qp)) {
1322 idx = ring->last_handled;
1323 nread = ring->tds[idx].length;
1324 xmm7360_net_mux_handle_frame(xn, ring->pages[idx], nread);
1325
1326 xmm7360_td_ring_read(xmm, qp->num*2+1);
1327 xmm7360_ding(xmm, DOORBELL_TD);
1328 ring->last_handled = (idx + 1) & (ring->depth - 1);
1329 }
1330
1331 spin_unlock_irqrestore(&xn->lock, flags);
1332 }
1333
1334 #ifdef __linux__
1335
1336 static void xmm7360_net_uninit(struct net_device *dev)
1337 {
1338 }
1339
1340 static int xmm7360_net_open(struct net_device *dev)
1341 {
1342 struct xmm_net *xn = netdev_priv(dev);
1343 xn->queued_packets = xn->queued_bytes = 0;
1344 skb_queue_purge(&xn->queue);
1345 netif_start_queue(dev);
1346 return xmm7360_mux_control(xn, 1, 0, 0, 0);
1347 }
1348
1349 static int xmm7360_net_close(struct net_device *dev)
1350 {
1351 netif_stop_queue(dev);
1352 return 0;
1353 }
1354
1355 static int xmm7360_net_must_flush(struct xmm_net *xn, int new_packet_bytes)
1356 {
1357 int frame_size;
1358 if (xn->queued_packets >= MUX_MAX_PACKETS)
1359 return 1;
1360
1361 frame_size = sizeof(struct mux_first_header) + xn->queued_bytes + sizeof(struct mux_next_header) + 4 + sizeof(struct mux_bounds)*xn->queued_packets;
1362
1363 frame_size += 16 + new_packet_bytes + sizeof(struct mux_bounds);
1364
1365 return frame_size > xn->frame.max_size;
1366 }
1367
1368 static enum hrtimer_restart xmm7360_net_deadline_cb(struct hrtimer *t)
1369 {
1370 struct xmm_net *xn = container_of(t, struct xmm_net, deadline);
1371 unsigned long flags;
1372 spin_lock_irqsave(&xn->lock, flags);
1373 if (!skb_queue_empty(&xn->queue) && xmm7360_qp_can_write(xn->qp))
1374 xmm7360_net_flush(xn);
1375 spin_unlock_irqrestore(&xn->lock, flags);
1376 return HRTIMER_NORESTART;
1377 }
1378
1379 static netdev_tx_t xmm7360_net_xmit(struct sk_buff *skb, struct net_device *dev)
1380 {
1381 struct xmm_net *xn = netdev_priv(dev);
1382 ktime_t kt;
1383 unsigned long flags;
1384
1385 if (netif_queue_stopped(dev))
1386 return NETDEV_TX_BUSY;
1387
1388 skb_orphan(skb);
1389
1390 spin_lock_irqsave(&xn->lock, flags);
1391 if (xmm7360_net_must_flush(xn, skb->len)) {
1392 if (xmm7360_qp_can_write(xn->qp)) {
1393 xmm7360_net_flush(xn);
1394 } else {
1395 netif_stop_queue(dev);
1396 spin_unlock_irqrestore(&xn->lock, flags);
1397 return NETDEV_TX_BUSY;
1398 }
1399 }
1400
1401 xn->queued_packets++;
1402 xn->queued_bytes += 16 + skb->len;
1403 skb_queue_tail(&xn->queue, skb);
1404
1405 spin_unlock_irqrestore(&xn->lock, flags);
1406
1407 if (!hrtimer_active(&xn->deadline)) {
1408 kt = ktime_set(0, 100000);
1409 hrtimer_start(&xn->deadline, kt, HRTIMER_MODE_REL);
1410 }
1411
1412 return NETDEV_TX_OK;
1413 }
1414
1415 static void xmm7360_os_handle_net_frame(struct xmm_dev *xmm, const u8 *buf, size_t sz)
1416 {
1417 struct sk_buff *skb;
1418 void *p;
1419 u8 ip_version;
1420
1421 skb = dev_alloc_skb(sz + NET_IP_ALIGN);
1422 if (!skb)
1423 return;
1424 skb_reserve(skb, NET_IP_ALIGN);
1425 p = skb_put(skb, sz);
1426 memcpy(p, buf, sz);
1427
1428 skb->dev = xmm->netdev;
1429
1430 ip_version = skb->data[0] >> 4;
1431 if (ip_version == 4) {
1432 skb->protocol = htons(ETH_P_IP);
1433 } else if (ip_version == 6) {
1434 skb->protocol = htons(ETH_P_IPV6);
1435 } else {
1436 kfree_skb(skb);
1437 return;
1438 }
1439
1440 netif_rx(skb);
1441 }
1442
1443 static void xmm7360_os_handle_net_dequeue(struct xmm_net *xn, struct mux_frame *frame)
1444 {
1445 struct sk_buff *skb;
1446 int ret;
1447
1448 while ((skb = skb_dequeue(&xn->queue))) {
1449 ret = xmm7360_mux_frame_append_packet(frame,
1450 skb->data, skb->len);
1451 kfree_skb(skb);
1452 if (ret) {
1453 /* No more space in the frame */
1454 break;
1455 }
1456 }
1457 }
1458
1459 static void xmm7360_os_handle_net_txwake(struct xmm_net *xn)
1460 {
1461 BUG_ON(!xmm7360_qp_can_write(xn->qp));
1462
1463 if (netif_queue_stopped(xn->xmm->netdev))
1464 netif_wake_queue(xn->xmm->netdev);
1465 }
1466
1467 static const struct net_device_ops xmm7360_netdev_ops = {
1468 .ndo_uninit = xmm7360_net_uninit,
1469 .ndo_open = xmm7360_net_open,
1470 .ndo_stop = xmm7360_net_close,
1471 .ndo_start_xmit = xmm7360_net_xmit,
1472 };
1473
1474 static void xmm7360_net_setup(struct net_device *dev)
1475 {
1476 struct xmm_net *xn = netdev_priv(dev);
1477 spin_lock_init(&xn->lock);
1478 hrtimer_init(&xn->deadline, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1479 xn->deadline.function = xmm7360_net_deadline_cb;
1480 skb_queue_head_init(&xn->queue);
1481
1482 dev->netdev_ops = &xmm7360_netdev_ops;
1483
1484 dev->hard_header_len = 0;
1485 dev->addr_len = 0;
1486 dev->mtu = 1500;
1487 dev->min_mtu = 1500;
1488 dev->max_mtu = 1500;
1489
1490 dev->tx_queue_len = 1000;
1491
1492 dev->type = ARPHRD_NONE;
1493 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1494 }
1495
1496 static int xmm7360_create_net(struct xmm_dev *xmm, int num)
1497 {
1498 struct net_device *netdev;
1499 struct xmm_net *xn;
1500 int ret;
1501
1502 netdev = alloc_netdev(sizeof(struct xmm_net), "wwan%d", NET_NAME_UNKNOWN, xmm7360_net_setup);
1503
1504 if (!netdev)
1505 return -ENOMEM;
1506
1507 SET_NETDEV_DEV(netdev, xmm->dev);
1508
1509 xmm->netdev = netdev;
1510
1511 xn = netdev_priv(netdev);
1512 xn->xmm = xmm;
1513 xmm->net = xn;
1514
1515 rtnl_lock();
1516 ret = register_netdevice(netdev);
1517 rtnl_unlock();
1518
1519 xn->qp = xmm7360_init_qp(xmm, num, 128, TD_MAX_PAGE_SIZE);
1520
1521 if (!ret)
1522 ret = xmm7360_qp_start(xn->qp);
1523
1524 if (ret < 0) {
1525 free_netdev(netdev);
1526 xmm->netdev = NULL;
1527 xmm7360_qp_stop(xn->qp);
1528 }
1529
1530 return ret;
1531 }
1532
1533 static void xmm7360_destroy_net(struct xmm_dev *xmm)
1534 {
1535 if (xmm->netdev) {
1536 xmm7360_qp_stop(xmm->net->qp);
1537 rtnl_lock();
1538 unregister_netdevice(xmm->netdev);
1539 rtnl_unlock();
1540 free_netdev(xmm->netdev);
1541 xmm->net = NULL;
1542 xmm->netdev = NULL;
1543 }
1544 }
1545
1546 static irqreturn_t xmm7360_irq0(int irq, void *dev_id) {
1547 struct xmm_dev *xmm = dev_id;
1548 struct queue_pair *qp;
1549 int id;
1550
1551 xmm7360_poll(xmm);
1552 wake_up(&xmm->wq);
1553 if (xmm->td_ring) {
1554 if (xmm->net)
1555 xmm7360_net_poll(xmm);
1556
1557 for (id=1; id<XMM_QP_COUNT; id++) {
1558 qp = &xmm->qp[id];
1559
1560 /* wake _cdev_read() */
1561 if (qp->open)
1562 wake_up(&qp->wq);
1563
1564 /* tty tasks */
1565 if (qp->open && qp->port.ops) {
1566 xmm7360_tty_poll_qp(qp);
1567 if (qp->tty_needs_wake && xmm7360_qp_can_write(qp) && qp->port.tty) {
1568 struct tty_ldisc *ldisc = tty_ldisc_ref(qp->port.tty);
1569 if (ldisc) {
1570 if (ldisc->ops->write_wakeup)
1571 ldisc->ops->write_wakeup(qp->port.tty);
1572 tty_ldisc_deref(ldisc);
1573 }
1574 qp->tty_needs_wake = 0;
1575 }
1576 }
1577 }
1578 }
1579
1580 return IRQ_HANDLED;
1581 }
1582
1583 static dev_t xmm_base;
1584
1585 static struct tty_driver *xmm7360_tty_driver;
1586
1587 static void xmm7360_dev_deinit(struct xmm_dev *xmm)
1588 {
1589 int i;
1590 xmm->error = -ENODEV;
1591
1592 cancel_work_sync(&xmm->init_work);
1593
1594 xmm7360_destroy_net(xmm);
1595
1596 for (i=0; i<XMM_QP_COUNT; i++) {
1597 if (xmm->qp[i].xmm) {
1598 if (xmm->qp[i].cdev.owner) {
1599 cdev_del(&xmm->qp[i].cdev);
1600 device_unregister(&xmm->qp[i].dev);
1601 }
1602 if (xmm->qp[i].port.ops) {
1603 tty_unregister_device(xmm7360_tty_driver, xmm->qp[i].tty_index);
1604 tty_port_destroy(&xmm->qp[i].port);
1605 }
1606 }
1607 memset(&xmm->qp[i], 0, sizeof(struct queue_pair));
1608 }
1609 xmm7360_cmd_ring_free(xmm);
1610
1611 }
1612
1613 static void xmm7360_remove(struct pci_dev *dev)
1614 {
1615 struct xmm_dev *xmm = pci_get_drvdata(dev);
1616
1617 xmm7360_dev_deinit(xmm);
1618
1619 if (xmm->irq)
1620 free_irq(xmm->irq, xmm);
1621 pci_free_irq_vectors(dev);
1622 pci_release_region(dev, 0);
1623 pci_release_region(dev, 2);
1624 pci_disable_device(dev);
1625 kfree(xmm);
1626 }
1627
1628 static void xmm7360_cdev_dev_release(struct device *dev)
1629 {
1630 }
1631
1632 static int xmm7360_tty_open(struct tty_struct *tty, struct file *filp)
1633 {
1634 struct queue_pair *qp = tty->driver_data;
1635 return tty_port_open(&qp->port, tty, filp);
1636 }
1637
1638 static void xmm7360_tty_close(struct tty_struct *tty, struct file *filp)
1639 {
1640 struct queue_pair *qp = tty->driver_data;
1641 if (qp)
1642 tty_port_close(&qp->port, tty, filp);
1643 }
1644
1645 static int xmm7360_tty_write(struct tty_struct *tty, const unsigned char *buffer,
1646 int count)
1647 {
1648 struct queue_pair *qp = tty->driver_data;
1649 int written;
1650 written = xmm7360_qp_write(qp, buffer, count);
1651 if (written < count)
1652 qp->tty_needs_wake = 1;
1653 return written;
1654 }
1655
1656 static int xmm7360_tty_write_room(struct tty_struct *tty)
1657 {
1658 struct queue_pair *qp = tty->driver_data;
1659 if (!xmm7360_qp_can_write(qp))
1660 return 0;
1661 else
1662 return qp->xmm->td_ring[qp->num*2].page_size;
1663 }
1664
1665 static int xmm7360_tty_install(struct tty_driver *driver, struct tty_struct *tty)
1666 {
1667 struct queue_pair *qp;
1668 int ret;
1669
1670 ret = tty_standard_install(driver, tty);
1671 if (ret)
1672 return ret;
1673
1674 tty->port = driver->ports[tty->index];
1675 qp = container_of(tty->port, struct queue_pair, port);
1676 tty->driver_data = qp;
1677 return 0;
1678 }
1679
1680
1681 static int xmm7360_tty_port_activate(struct tty_port *tport, struct tty_struct *tty)
1682 {
1683 struct queue_pair *qp = tty->driver_data;
1684 return xmm7360_qp_start(qp);
1685 }
1686
1687 static void xmm7360_tty_port_shutdown(struct tty_port *tport)
1688 {
1689 struct queue_pair *qp = tport->tty->driver_data;
1690 xmm7360_qp_stop(qp);
1691 }
1692
1693
1694 static const struct tty_port_operations xmm7360_tty_port_ops = {
1695 .activate = xmm7360_tty_port_activate,
1696 .shutdown = xmm7360_tty_port_shutdown,
1697 };
1698
1699 static const struct tty_operations xmm7360_tty_ops = {
1700 .open = xmm7360_tty_open,
1701 .close = xmm7360_tty_close,
1702 .write = xmm7360_tty_write,
1703 .write_room = xmm7360_tty_write_room,
1704 .install = xmm7360_tty_install,
1705 };
1706
1707 static int xmm7360_create_tty(struct xmm_dev *xmm, int num)
1708 {
1709 struct device *tty_dev;
1710 struct queue_pair *qp = xmm7360_init_qp(xmm, num, 8, 4096);
1711 int ret;
1712 tty_port_init(&qp->port);
1713 qp->port.low_latency = 1;
1714 qp->port.ops = &xmm7360_tty_port_ops;
1715 qp->tty_index = xmm->num_ttys++;
1716 tty_dev = tty_port_register_device(&qp->port, xmm7360_tty_driver, qp->tty_index, xmm->dev);
1717
1718 if (IS_ERR(tty_dev)) {
1719 qp->port.ops = NULL; // prevent calling unregister
1720 ret = PTR_ERR(tty_dev);
1721 dev_err(xmm->dev, "Could not allocate tty?\n");
1722 tty_port_destroy(&qp->port);
1723 return ret;
1724 }
1725
1726 return 0;
1727 }
1728
1729 static int xmm7360_create_cdev(struct xmm_dev *xmm, int num, const char *name, int cardnum)
1730 {
1731 struct queue_pair *qp = xmm7360_init_qp(xmm, num, 16, TD_MAX_PAGE_SIZE);
1732 int ret;
1733
1734 cdev_init(&qp->cdev, &xmm7360_fops);
1735 qp->cdev.owner = THIS_MODULE;
1736 device_initialize(&qp->dev);
1737 qp->dev.devt = MKDEV(MAJOR(xmm_base), num); // XXX multiple cards
1738 qp->dev.parent = &xmm->pci_dev->dev;
1739 qp->dev.release = xmm7360_cdev_dev_release;
1740 dev_set_name(&qp->dev, name, cardnum);
1741 dev_set_drvdata(&qp->dev, qp);
1742 ret = cdev_device_add(&qp->cdev, &qp->dev);
1743 if (ret) {
1744 dev_err(xmm->dev, "cdev_device_add: %d\n", ret);
1745 return ret;
1746 }
1747 return 0;
1748 }
1749
1750 static int xmm7360_dev_init(struct xmm_dev *xmm)
1751 {
1752 int ret;
1753
1754 ret = xmm7360_base_init(xmm);
1755 if (ret)
1756 return ret;
1757
1758 ret = xmm7360_create_cdev(xmm, 1, "xmm%d/rpc", xmm->card_num);
1759 if (ret)
1760 return ret;
1761 ret = xmm7360_create_cdev(xmm, 3, "xmm%d/trace", xmm->card_num);
1762 if (ret)
1763 return ret;
1764 ret = xmm7360_create_tty(xmm, 2);
1765 if (ret)
1766 return ret;
1767 ret = xmm7360_create_tty(xmm, 4);
1768 if (ret)
1769 return ret;
1770 ret = xmm7360_create_tty(xmm, 7);
1771 if (ret)
1772 return ret;
1773 ret = xmm7360_create_net(xmm, 0);
1774 if (ret)
1775 return ret;
1776
1777 return 0;
1778 }
1779
1780 void xmm7360_dev_init_work(struct work_struct *work)
1781 {
1782 struct xmm_dev *xmm = container_of(work, struct xmm_dev, init_work);
1783 xmm7360_dev_init(xmm);
1784 }
1785
1786 static int xmm7360_probe(struct pci_dev *dev, const struct pci_device_id *id)
1787 {
1788 struct xmm_dev *xmm = kzalloc(sizeof(struct xmm_dev), GFP_KERNEL);
1789 int ret;
1790
1791 xmm->pci_dev = dev;
1792 xmm->dev = &dev->dev;
1793
1794 if (!xmm) {
1795 dev_err(&(dev->dev), "kzalloc\n");
1796 return -ENOMEM;
1797 }
1798
1799 ret = pci_enable_device(dev);
1800 if (ret) {
1801 dev_err(&(dev->dev), "pci_enable_device\n");
1802 goto fail;
1803 }
1804 pci_set_master(dev);
1805
1806 ret = pci_set_dma_mask(dev, 0xffffffffffffffff);
1807 if (ret) {
1808 dev_err(xmm->dev, "Cannot set DMA mask\n");
1809 goto fail;
1810 }
1811 dma_set_coherent_mask(xmm->dev, 0xffffffffffffffff);
1812
1813
1814 ret = pci_request_region(dev, 0, "xmm0");
1815 if (ret) {
1816 dev_err(&(dev->dev), "pci_request_region(0)\n");
1817 goto fail;
1818 }
1819 xmm->bar0 = pci_iomap(dev, 0, pci_resource_len(dev, 0));
1820
1821 ret = pci_request_region(dev, 2, "xmm2");
1822 if (ret) {
1823 dev_err(&(dev->dev), "pci_request_region(2)\n");
1824 goto fail;
1825 }
1826 xmm->bar2 = pci_iomap(dev, 2, pci_resource_len(dev, 2));
1827
1828 ret = pci_alloc_irq_vectors(dev, 1, 1, PCI_IRQ_MSI | PCI_IRQ_MSIX);
1829 if (ret < 0) {
1830 dev_err(&(dev->dev), "pci_alloc_irq_vectors\n");
1831 goto fail;
1832 }
1833
1834 init_waitqueue_head(&xmm->wq);
1835 INIT_WORK(&xmm->init_work, xmm7360_dev_init_work);
1836
1837 pci_set_drvdata(dev, xmm);
1838
1839 ret = xmm7360_dev_init(xmm);
1840 if (ret)
1841 goto fail;
1842
1843 xmm->irq = pci_irq_vector(dev, 0);
1844 ret = request_irq(xmm->irq, xmm7360_irq0, 0, "xmm7360", xmm);
1845 if (ret) {
1846 dev_err(&(dev->dev), "request_irq\n");
1847 goto fail;
1848 }
1849
1850 return ret;
1851
1852 fail:
1853 xmm7360_dev_deinit(xmm);
1854 xmm7360_remove(dev);
1855 return ret;
1856 }
1857
1858 static struct pci_driver xmm7360_driver = {
1859 .name = "xmm7360",
1860 .id_table = xmm7360_ids,
1861 .probe = xmm7360_probe,
1862 .remove = xmm7360_remove,
1863 };
1864
1865 static int xmm7360_init(void)
1866 {
1867 int ret;
1868 ret = alloc_chrdev_region(&xmm_base, 0, 8, "xmm");
1869 if (ret)
1870 return ret;
1871
1872 xmm7360_tty_driver = alloc_tty_driver(8);
1873 if (!xmm7360_tty_driver)
1874 return -ENOMEM;
1875
1876 xmm7360_tty_driver->driver_name = "xmm7360";
1877 xmm7360_tty_driver->name = "ttyXMM";
1878 xmm7360_tty_driver->major = 0;
1879 xmm7360_tty_driver->type = TTY_DRIVER_TYPE_SERIAL;
1880 xmm7360_tty_driver->subtype = SERIAL_TYPE_NORMAL;
1881 xmm7360_tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1882 xmm7360_tty_driver->init_termios = tty_std_termios;
1883 xmm7360_tty_driver->init_termios.c_cflag = B115200 | CS8 | CREAD | \
1884 HUPCL | CLOCAL;
1885 xmm7360_tty_driver->init_termios.c_lflag &= ~ECHO;
1886 xmm7360_tty_driver->init_termios.c_ispeed = 115200;
1887 xmm7360_tty_driver->init_termios.c_ospeed = 115200;
1888 tty_set_operations(xmm7360_tty_driver, &xmm7360_tty_ops);
1889
1890 ret = tty_register_driver(xmm7360_tty_driver);
1891 if (ret) {
1892 pr_err("xmm7360: failed to register xmm7360_tty driver\n");
1893 return ret;
1894 }
1895
1896
1897 ret = pci_register_driver(&xmm7360_driver);
1898 if (ret)
1899 return ret;
1900
1901 return 0;
1902 }
1903
1904 static void xmm7360_exit(void)
1905 {
1906 pci_unregister_driver(&xmm7360_driver);
1907 unregister_chrdev_region(xmm_base, 8);
1908 tty_unregister_driver(xmm7360_tty_driver);
1909 put_tty_driver(xmm7360_tty_driver);
1910 }
1911
1912 module_init(xmm7360_init);
1913 module_exit(xmm7360_exit);
1914
1915 #endif /* __linux__ */
1916
1917 #if defined(__OpenBSD__) || defined(__NetBSD__)
1918
1919 /*
1920 * RPC and trace devices behave as regular character device,
1921 * other devices behave as terminal.
1922 */
1923 #define DEVCUA(x) (minor(x) & 0x80)
1924 #define DEVUNIT(x) ((minor(x) & 0x70) >> 4)
1925 #define DEVFUNC_MASK 0x0f
1926 #define DEVFUNC(x) (minor(x) & DEVFUNC_MASK)
1927 #define DEV_IS_TTY(x) (DEVFUNC(x) == 2 || DEVFUNC(x) > 3)
1928
1929 struct wwanc_softc {
1930 #ifdef __OpenBSD__
1931 struct device sc_devx; /* gen. device info storage */
1932 #endif
1933 struct device *sc_dev; /* generic device information */
1934 pci_chipset_tag_t sc_pc;
1935 pcitag_t sc_tag;
1936 bus_dma_tag_t sc_dmat;
1937 pci_intr_handle_t sc_pih;
1938 void *sc_ih; /* interrupt vectoring */
1939
1940 bus_space_tag_t sc_bar0_tag;
1941 bus_space_handle_t sc_bar0_handle;
1942 bus_size_t sc_bar0_sz;
1943 bus_space_tag_t sc_bar2_tag;
1944 bus_space_handle_t sc_bar2_handle;
1945 bus_size_t sc_bar2_sz;
1946
1947 struct xmm_dev sc_xmm;
1948 struct tty *sc_tty[XMM_QP_COUNT];
1949 struct device *sc_net;
1950 struct selinfo sc_selr, sc_selw;
1951 bool sc_resume;
1952 };
1953
1954 struct wwanc_attach_args {
1955 enum wwanc_type {
1956 WWMC_TYPE_RPC,
1957 WWMC_TYPE_TRACE,
1958 WWMC_TYPE_TTY,
1959 WWMC_TYPE_NET
1960 } aa_type;
1961 };
1962
1963 static int wwanc_match(struct device *, cfdata_t, void *);
1964 static void wwanc_attach(struct device *, struct device *, void *);
1965 static int wwanc_detach(struct device *, int);
1966
1967 #ifdef __OpenBSD__
1968 static int wwanc_activate(struct device *, int);
1969
1970 struct cfattach wwanc_ca = {
1971 sizeof(struct wwanc_softc), wwanc_match, wwanc_attach,
1972 wwanc_detach, wwanc_activate
1973 };
1974
1975 struct cfdriver wwanc_cd = {
1976 NULL, "wwanc", DV_DULL
1977 };
1978 #endif
1979
1980 #ifdef __NetBSD__
1981 CFATTACH_DECL3_NEW(wwanc, sizeof(struct wwanc_softc),
1982 wwanc_match, wwanc_attach, wwanc_detach, NULL,
1983 NULL, NULL, DVF_DETACH_SHUTDOWN);
1984
1985 static bool wwanc_pmf_suspend(device_t, const pmf_qual_t *);
1986 static bool wwanc_pmf_resume(device_t, const pmf_qual_t *);
1987 #endif /* __NetBSD__ */
1988
1989 static int
1990 wwanc_match(struct device *parent, cfdata_t match, void *aux)
1991 {
1992 struct pci_attach_args *pa = aux;
1993
1994 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
1995 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_XMM7360);
1996 }
1997
1998 static int xmm7360_dev_init(struct xmm_dev *xmm)
1999 {
2000 int ret;
2001 int depth, page_size;
2002
2003 ret = xmm7360_base_init(xmm);
2004 if (ret)
2005 return ret;
2006
2007 /* Initialize queue pairs for later use */
2008 for (int num = 0; num < XMM_QP_COUNT; num++) {
2009 switch (num) {
2010 case 0: /* net */
2011 depth = 128;
2012 page_size = TD_MAX_PAGE_SIZE;
2013 break;
2014 case 1: /* rpc */
2015 case 3: /* trace */
2016 depth = 16;
2017 page_size = TD_MAX_PAGE_SIZE;
2018 break;
2019 default: /* tty */
2020 depth = 8;
2021 page_size = 4096;
2022 break;
2023 }
2024
2025 xmm7360_init_qp(xmm, num, depth, page_size);
2026 }
2027
2028 return 0;
2029 }
2030
2031 static void xmm7360_dev_deinit(struct xmm_dev *xmm)
2032 {
2033 struct wwanc_softc *sc = device_private(xmm->dev);
2034 bool devgone = false;
2035 struct tty *tp;
2036
2037 xmm->error = -ENODEV;
2038
2039 /* network device should be gone by now */
2040 KASSERT(sc->sc_net == NULL);
2041 KASSERT(xmm->net == NULL);
2042
2043 /* free ttys */
2044 for (int i=0; i<XMM_QP_COUNT; i++) {
2045 tp = sc->sc_tty[i];
2046 if (tp) {
2047 KASSERT(DEV_IS_TTY(i));
2048 if (!devgone) {
2049 vdevgone(major(tp->t_dev), 0, DEVFUNC_MASK,
2050 VCHR);
2051 devgone = true;
2052 }
2053 ttyfree(tp);
2054 sc->sc_tty[i] = NULL;
2055 }
2056 }
2057
2058 xmm7360_cmd_ring_free(xmm);
2059 }
2060
2061 static void
2062 wwanc_io_wakeup(struct queue_pair *qp, int flag)
2063 {
2064 if (flag & FREAD) {
2065 selnotify(&qp->selr, POLLIN|POLLRDNORM, NOTE_SUBMIT);
2066 wakeup(qp->wq);
2067 }
2068 if (flag & FWRITE) {
2069 selnotify(&qp->selw, POLLOUT|POLLWRNORM, NOTE_SUBMIT);
2070 wakeup(qp->wq);
2071 }
2072 }
2073
2074 static int
2075 wwanc_intr(void *xsc)
2076 {
2077 struct wwanc_softc *sc = xsc;
2078 struct xmm_dev *xmm = &sc->sc_xmm;
2079 struct queue_pair *qp;
2080
2081 xmm7360_poll(xmm);
2082 wakeup(&xmm->wq);
2083
2084 if (xmm->net && xmm->net->qp->open && xmm7360_qp_has_data(xmm->net->qp))
2085 xmm7360_net_poll(xmm);
2086
2087 for (int func = 1; func < XMM_QP_COUNT; func++) {
2088 qp = &xmm->qp[func];
2089 if (!qp->open)
2090 continue;
2091
2092 /* Check for input, wwancstart()/wwancwrite() does output */
2093 if (xmm7360_qp_has_data(qp)) {
2094 if (DEV_IS_TTY(func)) {
2095 int s = spltty();
2096 xmm7360_tty_poll_qp(qp);
2097 splx(s);
2098 }
2099 wwanc_io_wakeup(qp, FREAD);
2100 }
2101
2102 /* Wakeup/notify eventual writers */
2103 if (xmm7360_qp_can_write(qp))
2104 wwanc_io_wakeup(qp, FWRITE);
2105 }
2106
2107 return 1;
2108 }
2109
2110 static int
2111 wwancprint(void *aux, const char *pnp)
2112 {
2113 struct wwanc_attach_args *wa = aux;
2114
2115 if (pnp)
2116 printf("wwanc type %s at %s",
2117 (wa->aa_type == WWMC_TYPE_NET) ? "net" : "unk", pnp);
2118 else
2119 printf(" type %s",
2120 (wa->aa_type == WWMC_TYPE_NET) ? "net" : "unk");
2121
2122 return (UNCONF);
2123 }
2124
2125 static void
2126 wwanc_attach_finish(struct device *self)
2127 {
2128 struct wwanc_softc *sc = device_private(self);
2129
2130 if (xmm7360_dev_init(&sc->sc_xmm)) {
2131 /* error already printed */
2132 return;
2133 }
2134
2135 /* Attach the network device */
2136 struct wwanc_attach_args wa;
2137 memset(&wa, 0, sizeof(wa));
2138 wa.aa_type = WWMC_TYPE_NET;
2139 sc->sc_net = config_found(self, &wa, wwancprint);
2140 }
2141
2142 static void
2143 wwanc_attach(struct device *parent, struct device *self, void *aux)
2144 {
2145 struct wwanc_softc *sc = device_private(self);
2146 struct pci_attach_args *pa = aux;
2147 bus_space_tag_t memt;
2148 bus_space_handle_t memh;
2149 bus_size_t sz;
2150 int error;
2151 const char *intrstr;
2152 #ifdef __OpenBSD__
2153 pci_intr_handle_t ih;
2154 #endif
2155 #ifdef __NetBSD__
2156 pci_intr_handle_t *ih;
2157 char intrbuf[PCI_INTRSTR_LEN];
2158 #endif
2159
2160 sc->sc_dev = self;
2161 sc->sc_pc = pa->pa_pc;
2162 sc->sc_tag = pa->pa_tag;
2163 sc->sc_dmat = pa->pa_dmat;
2164
2165 /* map the register window, memory mapped 64-bit non-prefetchable */
2166 error = pci_mapreg_map(pa, WWAN_BAR0,
2167 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT,
2168 BUS_SPACE_MAP_LINEAR, &memt, &memh, NULL, &sz, 0);
2169 if (error != 0) {
2170 printf(": can't map mem space for BAR0 %d\n", error);
2171 return;
2172 }
2173 sc->sc_bar0_tag = memt;
2174 sc->sc_bar0_handle = memh;
2175 sc->sc_bar0_sz = sz;
2176
2177 error = pci_mapreg_map(pa, WWAN_BAR2,
2178 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT,
2179 BUS_SPACE_MAP_LINEAR, &memt, &memh, NULL, &sz, 0);
2180 if (error != 0) {
2181 bus_space_unmap(sc->sc_bar0_tag, sc->sc_bar0_handle,
2182 sc->sc_bar0_sz);
2183 printf(": can't map mem space for BAR2\n");
2184 return;
2185 }
2186 sc->sc_bar2_tag = memt;
2187 sc->sc_bar2_handle = memh;
2188 sc->sc_bar2_sz = sz;
2189
2190 /* Set xmm members needed for xmm7360_dev_init() */
2191 sc->sc_xmm.dev = self;
2192 sc->sc_xmm.bar0 = bus_space_vaddr(sc->sc_bar0_tag, sc->sc_bar0_handle);
2193 sc->sc_xmm.bar2 = bus_space_vaddr(sc->sc_bar0_tag, sc->sc_bar2_handle);
2194 init_waitqueue_head(&sc->sc_xmm.wq);
2195
2196 #ifdef __OpenBSD__
2197 if (pci_intr_map_msi(pa, &ih) && pci_intr_map(pa, &ih)) {
2198 printf(": can't map interrupt\n");
2199 goto fail;
2200 }
2201 sc->sc_pih = ih;
2202 intrstr = pci_intr_string(sc->sc_pc, ih);
2203 printf(": %s\n", intrstr);
2204 #endif
2205 #ifdef __NetBSD__
2206 if (pci_intr_alloc(pa, &ih, NULL, 0)) {
2207 printf(": can't map interrupt\n");
2208 goto fail;
2209 }
2210 sc->sc_pih = ih[0];
2211 intrstr = pci_intr_string(pa->pa_pc, ih[0], intrbuf, sizeof(intrbuf));
2212 aprint_normal(": LTE modem\n");
2213 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
2214 #endif
2215
2216 /* Device initialized, can establish the interrupt now */
2217 sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_pih, IPL_NET,
2218 wwanc_intr, sc, sc->sc_dev->dv_xname);
2219 if (sc->sc_ih == NULL) {
2220 printf("%s: can't establish interrupt\n", self->dv_xname);
2221 return;
2222 }
2223
2224 #ifdef __NetBSD__
2225 if (!pmf_device_register(self, wwanc_pmf_suspend, wwanc_pmf_resume))
2226 aprint_error_dev(self, "couldn't establish power handler\n");
2227 #endif
2228
2229 /*
2230 * Device initialization requires working interrupts, so need
2231 * to postpone this until they are enabled.
2232 */
2233 config_mountroot(self, wwanc_attach_finish);
2234 return;
2235
2236 fail:
2237 bus_space_unmap(sc->sc_bar0_tag, sc->sc_bar0_handle, sc->sc_bar0_sz);
2238 sc->sc_bar0_tag = 0;
2239 bus_space_unmap(sc->sc_bar2_tag, sc->sc_bar2_handle, sc->sc_bar2_sz);
2240 sc->sc_bar2_tag = 0;
2241 return;
2242 }
2243
2244 static int
2245 wwanc_detach(struct device *self, int flags)
2246 {
2247 int error;
2248 struct wwanc_softc *sc = device_private(self);
2249
2250 if (sc->sc_ih) {
2251 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
2252 sc->sc_ih = NULL;
2253 }
2254
2255 if (sc->sc_net) {
2256 error = config_detach_children(self, flags);
2257 if (error)
2258 return error;
2259 sc->sc_net = NULL;
2260 }
2261
2262 pmf_device_deregister(self);
2263
2264 xmm7360_dev_deinit(&sc->sc_xmm);
2265
2266 if (sc->sc_bar0_tag) {
2267 bus_space_unmap(sc->sc_bar0_tag, sc->sc_bar0_handle,
2268 sc->sc_bar0_sz);
2269 sc->sc_bar0_tag = 0;
2270 }
2271 sc->sc_xmm.bar0 = NULL;
2272
2273 if (sc->sc_bar2_tag) {
2274 bus_space_unmap(sc->sc_bar2_tag, sc->sc_bar2_handle,
2275 sc->sc_bar2_sz);
2276 sc->sc_bar2_tag = 0;
2277 }
2278 sc->sc_xmm.bar2 = NULL;
2279
2280 return 0;
2281 }
2282
2283 static void
2284 wwanc_suspend(struct device *self)
2285 {
2286 struct wwanc_softc *sc = device_private(self);
2287 struct xmm_dev *xmm = &sc->sc_xmm;
2288 struct queue_pair *qp;
2289
2290 KASSERT(!sc->sc_resume);
2291 KASSERT(xmm->cp != NULL);
2292
2293 for (int i = 0; i < XMM_QP_COUNT; i++) {
2294 qp = &xmm->qp[i];
2295 if (qp->open)
2296 xmm7360_qp_suspend(qp);
2297 }
2298
2299 xmm7360_cmd_ring_free(xmm);
2300 KASSERT(xmm->cp == NULL);
2301 }
2302
2303 static void
2304 wwanc_resume(struct device *self)
2305 {
2306 struct wwanc_softc *sc = device_private(self);
2307 struct xmm_dev *xmm = &sc->sc_xmm;
2308 struct queue_pair *qp;
2309
2310 KASSERT(xmm->cp == NULL);
2311
2312 xmm7360_base_init(xmm);
2313
2314 for (int i = 0; i < XMM_QP_COUNT; i++) {
2315 qp = &xmm->qp[i];
2316 if (qp->open)
2317 xmm7360_qp_resume(qp);
2318 }
2319 }
2320
2321 #ifdef __OpenBSD__
2322
2323 static void
2324 wwanc_defer_resume(void *xarg)
2325 {
2326 struct device *self = xarg;
2327 struct wwanc_softc *sc = device_private(self);
2328
2329 tsleep(&sc->sc_resume, 0, "wwancdr", 2 * hz);
2330
2331 wwanc_resume(self);
2332
2333 (void)config_activate_children(self, DVACT_RESUME);
2334
2335 sc->sc_resume = false;
2336 kthread_exit(0);
2337 }
2338
2339 static int
2340 wwanc_activate(struct device *self, int act)
2341 {
2342 struct wwanc_softc *sc = device_private(self);
2343
2344 switch (act) {
2345 case DVACT_QUIESCE:
2346 (void)config_activate_children(self, act);
2347 break;
2348 case DVACT_SUSPEND:
2349 if (sc->sc_resume) {
2350 /* Refuse to suspend if resume still ongoing */
2351 printf("%s: not suspending, resume still ongoing\n",
2352 self->dv_xname);
2353 return EBUSY;
2354 }
2355
2356 (void)config_activate_children(self, act);
2357 wwanc_suspend(self);
2358 break;
2359 case DVACT_RESUME:
2360 /*
2361 * Modem reinitialization can take several seconds, defer
2362 * it via kernel thread to avoid blocking the resume.
2363 */
2364 sc->sc_resume = true;
2365 kthread_create(wwanc_defer_resume, self, NULL, "wwancres");
2366 break;
2367 default:
2368 break;
2369 }
2370
2371 return 0;
2372 }
2373
2374 cdev_decl(wwanc);
2375 #endif /* __OpenBSD__ */
2376
2377 #ifdef __NetBSD__
2378 static bool
2379 wwanc_pmf_suspend(device_t self, const pmf_qual_t *qual)
2380 {
2381 wwanc_suspend(self);
2382 return true;
2383 }
2384
2385 static bool
2386 wwanc_pmf_resume(device_t self, const pmf_qual_t *qual)
2387 {
2388 wwanc_resume(self);
2389 return true;
2390 }
2391
2392 static dev_type_open(wwancopen);
2393 static dev_type_close(wwancclose);
2394 static dev_type_read(wwancread);
2395 static dev_type_write(wwancwrite);
2396 static dev_type_ioctl(wwancioctl);
2397 static dev_type_poll(wwancpoll);
2398 static dev_type_kqfilter(wwanckqfilter);
2399 static dev_type_tty(wwanctty);
2400
2401 const struct cdevsw wwanc_cdevsw = {
2402 .d_open = wwancopen,
2403 .d_close = wwancclose,
2404 .d_read = wwancread,
2405 .d_write = wwancwrite,
2406 .d_ioctl = wwancioctl,
2407 .d_stop = nullstop,
2408 .d_tty = wwanctty,
2409 .d_poll = wwancpoll,
2410 .d_mmap = nommap,
2411 .d_kqfilter = wwanckqfilter,
2412 .d_discard = nodiscard,
2413 .d_flag = D_TTY
2414 };
2415 #endif
2416
2417 static int wwancparam(struct tty *, struct termios *);
2418 static void wwancstart(struct tty *);
2419
2420 static void xmm7360_os_handle_tty_idata(struct queue_pair *qp, const u8 *data, size_t nread)
2421 {
2422 struct xmm_dev *xmm = qp->xmm;
2423 struct wwanc_softc *sc = device_private(xmm->dev);
2424 int func = qp->num;
2425 struct tty *tp = sc->sc_tty[func];
2426
2427 KASSERT(DEV_IS_TTY(func));
2428 KASSERT(tp);
2429
2430 for (int i = 0; i < nread; i++)
2431 LINESW(tp).l_rint(data[i], tp);
2432 }
2433
2434 int
2435 wwancopen(dev_t dev, int flags, int mode, struct proc *p)
2436 {
2437 int unit = DEVUNIT(dev);
2438 struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, unit);
2439 struct tty *tp;
2440 int func, error;
2441
2442 if (sc == NULL)
2443 return ENXIO;
2444
2445 /* Only allow opening the rpc/trace/AT queue pairs */
2446 func = DEVFUNC(dev);
2447 if (func < 1 || func > 7)
2448 return ENXIO;
2449
2450 if (DEV_IS_TTY(dev)) {
2451 if (!sc->sc_tty[func]) {
2452 tp = sc->sc_tty[func] = ttymalloc(1000000);
2453
2454 tp->t_oproc = wwancstart;
2455 tp->t_param = wwancparam;
2456 tp->t_dev = dev;
2457 tp->t_sc = (void *)sc;
2458 } else
2459 tp = sc->sc_tty[func];
2460
2461 if (!ISSET(tp->t_state, TS_ISOPEN)) {
2462 ttychars(tp);
2463 tp->t_iflag = TTYDEF_IFLAG;
2464 tp->t_oflag = TTYDEF_OFLAG;
2465 tp->t_lflag = TTYDEF_LFLAG;
2466 tp->t_cflag = TTYDEF_CFLAG;
2467 tp->t_ispeed = tp->t_ospeed = B115200;
2468 SET(tp->t_cflag, CS8 | CREAD | HUPCL | CLOCAL);
2469
2470 SET(tp->t_state, TS_CARR_ON);
2471 } else if (suser(p) != 0) {
2472 return EBUSY;
2473 }
2474
2475 error = LINESW(tp).l_open(dev, tp, p);
2476 if (error)
2477 return error;
2478 }
2479
2480 /* Initialize ring if qp not open yet */
2481 xmm7360_qp_start(&sc->sc_xmm.qp[func]);
2482
2483 return 0;
2484 }
2485
2486 int
2487 wwancread(dev_t dev, struct uio *uio, int flag)
2488 {
2489 struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2490 int func = DEVFUNC(dev);
2491
2492 KASSERT(sc != NULL);
2493
2494 if (DEV_IS_TTY(dev)) {
2495 struct tty *tp = sc->sc_tty[func];
2496
2497 return (LINESW(tp).l_read(tp, uio, flag));
2498 } else {
2499 struct queue_pair *qp = &sc->sc_xmm.qp[func];
2500 ssize_t ret;
2501 char *buf;
2502 size_t size, read = 0;
2503
2504 #ifdef __OpenBSD__
2505 KASSERT(uio->uio_segflg == UIO_USERSPACE);
2506 #endif
2507
2508 for (int i = 0; i < uio->uio_iovcnt; i++) {
2509 buf = uio->uio_iov[i].iov_base;
2510 size = uio->uio_iov[i].iov_len;
2511
2512 while (size > 0) {
2513 ret = xmm7360_qp_read_user(qp, buf, size);
2514 if (ret < 0) {
2515 /*
2516 * This shadows -EPERM, but that is
2517 * not returned by the call stack,
2518 * so this condition is safe.
2519 */
2520 return (ret == ERESTART) ? ret : -ret;
2521 }
2522
2523 KASSERT(ret > 0 && ret <= size);
2524 size -= ret;
2525 buf += ret;
2526 read += ret;
2527
2528 /* Reader will re-try if they want more */
2529 goto out;
2530 }
2531 }
2532
2533 out:
2534 uio->uio_resid -= read;
2535 uio->uio_offset += read;
2536
2537 return 0;
2538 }
2539 }
2540
2541 int
2542 wwancwrite(dev_t dev, struct uio *uio, int flag)
2543 {
2544 struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2545 int func = DEVFUNC(dev);
2546
2547 if (DEV_IS_TTY(dev)) {
2548 struct tty *tp = sc->sc_tty[func];
2549
2550 return (LINESW(tp).l_write(tp, uio, flag));
2551 } else {
2552 struct queue_pair *qp = &sc->sc_xmm.qp[func];
2553 ssize_t ret;
2554 const char *buf;
2555 size_t size, wrote = 0;
2556
2557 #ifdef __OpenBSD__
2558 KASSERT(uio->uio_segflg == UIO_USERSPACE);
2559 #endif
2560
2561 for (int i = 0; i < uio->uio_iovcnt; i++) {
2562 buf = uio->uio_iov[i].iov_base;
2563 size = uio->uio_iov[i].iov_len;
2564
2565 while (size > 0) {
2566 ret = xmm7360_qp_write_user(qp, buf, size);
2567 if (ret < 0) {
2568 /*
2569 * This shadows -EPERM, but that is
2570 * not returned by the call stack,
2571 * so this condition is safe.
2572 */
2573 return (ret == ERESTART) ? ret : -ret;
2574 }
2575
2576 KASSERT(ret > 0 && ret <= size);
2577 size -= ret;
2578 buf += ret;
2579 wrote += ret;
2580 }
2581 }
2582
2583 uio->uio_resid -= wrote;
2584 uio->uio_offset += wrote;
2585
2586 return 0;
2587 }
2588 }
2589
2590 int
2591 wwancioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
2592 {
2593 struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2594 int error;
2595
2596 if (DEV_IS_TTY(dev)) {
2597 struct tty *tp = sc->sc_tty[DEVFUNC(dev)];
2598 KASSERT(tp);
2599
2600 error = LINESW(tp).l_ioctl(tp, cmd, data, flag, p);
2601 if (error >= 0)
2602 return error;
2603 error = ttioctl(tp, cmd, data, flag, p);
2604 if (error >= 0)
2605 return error;
2606 }
2607
2608 return ENOTTY;
2609 }
2610
2611 int
2612 wwancclose(dev_t dev, int flag, int mode, struct proc *p)
2613 {
2614 struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2615 int func = DEVFUNC(dev);
2616
2617 if (DEV_IS_TTY(dev)) {
2618 struct tty *tp = sc->sc_tty[func];
2619 KASSERT(tp);
2620
2621 CLR(tp->t_state, TS_BUSY | TS_FLUSH);
2622 LINESW(tp).l_close(tp, flag, p);
2623 ttyclose(tp);
2624 }
2625
2626 xmm7360_qp_stop(&sc->sc_xmm.qp[func]);
2627
2628 return 0;
2629 }
2630
2631 struct tty *
2632 wwanctty(dev_t dev)
2633 {
2634 struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2635 struct tty *tp = sc->sc_tty[DEVFUNC(dev)];
2636
2637 KASSERT(DEV_IS_TTY(dev));
2638 KASSERT(tp);
2639
2640 return tp;
2641 }
2642
2643 static int
2644 wwancparam(struct tty *tp, struct termios *t)
2645 {
2646 struct wwanc_softc *sc = (struct wwanc_softc *)tp->t_sc;
2647 dev_t dev = tp->t_dev;
2648 int func = DEVFUNC(dev);
2649
2650 KASSERT(DEV_IS_TTY(dev));
2651 KASSERT(tp == sc->sc_tty[func]);
2652 /* Can't assert tty_locked(), it's not taken when called via ttioctl()*/
2653
2654 /* Nothing to set on hardware side, just copy values */
2655 tp->t_ispeed = t->c_ispeed;
2656 tp->t_ospeed = t->c_ospeed;
2657 tp->t_cflag = t->c_cflag;
2658
2659 return 0;
2660 }
2661
2662 static void
2663 wwancstart(struct tty *tp)
2664 {
2665 struct wwanc_softc *sc = (struct wwanc_softc *)tp->t_sc;
2666 dev_t dev = tp->t_dev;
2667 int func = DEVFUNC(dev);
2668 struct queue_pair *qp = &sc->sc_xmm.qp[func];
2669 int n, written;
2670
2671 KASSERT(DEV_IS_TTY(dev));
2672 KASSERT(tp == sc->sc_tty[func]);
2673 tty_locked();
2674
2675 if (ISSET(tp->t_state, TS_BUSY) || !xmm7360_qp_can_write(qp))
2676 return;
2677 if (tp->t_outq.c_cc == 0)
2678 return;
2679
2680 /*
2681 * If we can write, we can write full qb page_size amount of data.
2682 * Once q_to_b() is called, the data must be trasmitted - q_to_b()
2683 * removes them from the tty output queue. Partial write is not
2684 * possible.
2685 */
2686 KASSERT(sizeof(qp->user_buf) >= qp->page_size);
2687 SET(tp->t_state, TS_BUSY);
2688 n = q_to_b(&tp->t_outq, qp->user_buf, qp->page_size);
2689 KASSERT(n > 0);
2690 KASSERT(n <= qp->page_size);
2691 written = xmm7360_qp_write(qp, qp->user_buf, n);
2692 CLR(tp->t_state, TS_BUSY);
2693
2694 if (written != n) {
2695 dev_err(sc->sc_dev, "xmm7360_qp_write(%d) failed %d != %d\n",
2696 func, written, n);
2697 /* nothing to recover, just return */
2698 }
2699 }
2700
2701 int
2702 wwancpoll(dev_t dev, int events, struct proc *p)
2703 {
2704 struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2705 int func = DEVFUNC(dev);
2706 struct queue_pair *qp = &sc->sc_xmm.qp[func];
2707 int mask = 0;
2708
2709 if (DEV_IS_TTY(dev)) {
2710 #ifdef __OpenBSD__
2711 return ttpoll(dev, events, p);
2712 #endif
2713 #ifdef __NetBSD__
2714 struct tty *tp = sc->sc_tty[func];
2715
2716 return LINESW(tp).l_poll(tp, events, p);
2717 #endif
2718 }
2719
2720 KASSERT(!DEV_IS_TTY(dev));
2721
2722 if (qp->xmm->error) {
2723 mask |= POLLHUP;
2724 goto out;
2725 }
2726
2727 if (xmm7360_qp_has_data(qp))
2728 mask |= POLLIN | POLLRDNORM;
2729
2730 if (xmm7360_qp_can_write(qp))
2731 mask |= POLLOUT | POLLWRNORM;
2732
2733 out:
2734 if ((mask & events) == 0) {
2735 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND))
2736 selrecord(p, &sc->sc_selr);
2737 if (events & (POLLOUT | POLLWRNORM))
2738 selrecord(p, &sc->sc_selw);
2739 }
2740
2741 return mask & events;
2742 }
2743
2744 static void
2745 filt_wwancrdetach(struct knote *kn)
2746 {
2747 struct queue_pair *qp = (struct queue_pair *)kn->kn_hook;
2748
2749 tty_lock();
2750 klist_remove(&qp->selr.si_note, kn);
2751 tty_unlock();
2752 }
2753
2754 static int
2755 filt_wwancread(struct knote *kn, long hint)
2756 {
2757 struct queue_pair *qp = (struct queue_pair *)kn->kn_hook;
2758
2759 kn->kn_data = 0;
2760
2761 if (!qp->open) {
2762 kn->kn_flags |= EV_EOF;
2763 return (1);
2764 } else {
2765 kn->kn_data = xmm7360_qp_has_data(qp) ? 1 : 0;
2766 }
2767
2768 return (kn->kn_data > 0);
2769 }
2770
2771 static void
2772 filt_wwancwdetach(struct knote *kn)
2773 {
2774 struct queue_pair *qp = (struct queue_pair *)kn->kn_hook;
2775
2776 tty_lock();
2777 klist_remove(&qp->selw.si_note, kn);
2778 tty_unlock();
2779 }
2780
2781 static int
2782 filt_wwancwrite(struct knote *kn, long hint)
2783 {
2784 struct queue_pair *qp = (struct queue_pair *)kn->kn_hook;
2785
2786 kn->kn_data = 0;
2787
2788 if (qp->open) {
2789 if (xmm7360_qp_can_write(qp))
2790 kn->kn_data = qp->page_size;
2791 }
2792
2793 return (kn->kn_data > 0);
2794 }
2795
2796 static const struct filterops wwancread_filtops = {
2797 XMM_KQ_ISFD_INITIALIZER,
2798 .f_attach = NULL,
2799 .f_detach = filt_wwancrdetach,
2800 .f_event = filt_wwancread,
2801 };
2802
2803 static const struct filterops wwancwrite_filtops = {
2804 XMM_KQ_ISFD_INITIALIZER,
2805 .f_attach = NULL,
2806 .f_detach = filt_wwancwdetach,
2807 .f_event = filt_wwancwrite,
2808 };
2809
2810 int
2811 wwanckqfilter(dev_t dev, struct knote *kn)
2812 {
2813 struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2814 int func = DEVFUNC(dev);
2815 struct queue_pair *qp = &sc->sc_xmm.qp[func];
2816 struct klist *klist;
2817
2818 if (DEV_IS_TTY(func))
2819 return ttkqfilter(dev, kn);
2820
2821 KASSERT(!DEV_IS_TTY(func));
2822
2823 switch (kn->kn_filter) {
2824 case EVFILT_READ:
2825 klist = &qp->selr.si_note;
2826 kn->kn_fop = &wwancread_filtops;
2827 break;
2828 case EVFILT_WRITE:
2829 klist = &qp->selw.si_note;
2830 kn->kn_fop = &wwancwrite_filtops;
2831 break;
2832 default:
2833 return (EINVAL);
2834 }
2835
2836 kn->kn_hook = (void *)qp;
2837
2838 tty_lock();
2839 klist_insert(klist, kn);
2840 tty_unlock();
2841
2842 return (0);
2843 }
2844
2845 static void *
2846 dma_alloc_coherent(struct device *self, size_t sz, dma_addr_t *physp, int flags)
2847 {
2848 struct wwanc_softc *sc = device_private(self);
2849 bus_dma_segment_t seg;
2850 int nsegs;
2851 int error;
2852 caddr_t kva;
2853
2854 error = bus_dmamem_alloc(sc->sc_dmat, sz, 0, 0, &seg, 1, &nsegs,
2855 BUS_DMA_WAITOK);
2856 if (error) {
2857 panic("%s: bus_dmamem_alloc(%lu) failed %d\n",
2858 self->dv_xname, (unsigned long)sz, error);
2859 /* NOTREACHED */
2860 }
2861
2862 KASSERT(nsegs == 1);
2863 KASSERT(seg.ds_len == round_page(sz));
2864
2865 error = bus_dmamem_map(sc->sc_dmat, &seg, nsegs, sz, &kva,
2866 BUS_DMA_WAITOK | BUS_DMA_COHERENT);
2867 if (error) {
2868 panic("%s: bus_dmamem_alloc(%lu) failed %d\n",
2869 self->dv_xname, (unsigned long)sz, error);
2870 /* NOTREACHED */
2871 }
2872
2873 memset(kva, 0, sz);
2874 *physp = seg.ds_addr;
2875 return (void *)kva;
2876 }
2877
2878 static void
2879 dma_free_coherent(struct device *self, size_t sz, volatile void *vaddr, dma_addr_t phys)
2880 {
2881 struct wwanc_softc *sc = device_private(self);
2882 bus_dma_segment_t seg;
2883
2884 sz = round_page(sz);
2885
2886 bus_dmamem_unmap(sc->sc_dmat, __UNVOLATILE(vaddr), sz);
2887
2888 /* this does't need the exact seg returned by bus_dmamem_alloc() */
2889 memset(&seg, 0, sizeof(seg));
2890 seg.ds_addr = phys;
2891 seg.ds_len = sz;
2892 bus_dmamem_free(sc->sc_dmat, &seg, 1);
2893 }
2894
2895 struct wwan_softc {
2896 #ifdef __OpenBSD__
2897 struct device sc_devx; /* gen. device info storage */
2898 #endif
2899 struct device *sc_dev; /* generic device */
2900 struct wwanc_softc *sc_parent; /* parent device */
2901 struct ifnet sc_ifnet; /* network-visible interface */
2902 struct xmm_net sc_xmm_net;
2903 };
2904
2905 static void xmm7360_os_handle_net_frame(struct xmm_dev *xmm, const u8 *buf, size_t sz)
2906 {
2907 struct wwanc_softc *sc = device_private(xmm->dev);
2908 struct wwan_softc *sc_if = device_private(sc->sc_net);
2909 struct ifnet *ifp = &sc_if->sc_ifnet;
2910 struct mbuf *m;
2911
2912 KASSERT(sz <= MCLBYTES);
2913
2914 MGETHDR(m, M_DONTWAIT, MT_DATA);
2915 if (!m)
2916 return;
2917 if (sz > MHLEN) {
2918 MCLGETI(m, M_DONTWAIT, NULL, sz);
2919 if ((m->m_flags & M_EXT) == 0) {
2920 m_freem(m);
2921 return;
2922 }
2923 }
2924 m->m_len = m->m_pkthdr.len = sz;
2925
2926 /*
2927 * No explicit alignment necessary - there is no ethernet header,
2928 * so IP address is already aligned.
2929 */
2930 KASSERT(m->m_pkthdr.len == sz);
2931 m_copyback(m, 0, sz, (const void *)buf, M_NOWAIT);
2932
2933 #ifdef __OpenBSD__
2934 struct mbuf_list ml = MBUF_LIST_INITIALIZER();
2935 ml_enqueue(&ml, m);
2936 if_input(ifp, &ml);
2937 #endif
2938 #ifdef __NetBSD__
2939 if_percpuq_enqueue(ifp->if_percpuq, m);
2940 #endif
2941 }
2942
2943 static void
2944 xmm7360_os_handle_net_dequeue(struct xmm_net *xn, struct mux_frame *frame)
2945 {
2946 struct wwan_softc *sc_if =
2947 container_of(xn, struct wwan_softc, sc_xmm_net);
2948 struct ifnet *ifp = &sc_if->sc_ifnet;
2949 struct mbuf *m;
2950 int ret;
2951
2952 MUTEX_ASSERT_LOCKED(&xn->lock);
2953
2954 while ((m = ifq_deq_begin(&ifp->if_snd))) {
2955 /*
2956 * xmm7360_mux_frame_append_packet() requires single linear
2957 * buffer, so try m_defrag(). Another option would be
2958 * using m_copydata() into an intermediate buffer.
2959 */
2960 if (m->m_next) {
2961 if (m_defrag(m, M_DONTWAIT) != 0 || m->m_next) {
2962 /* Can't defrag, drop and continue */
2963 ifq_deq_commit(&ifp->if_snd, m);
2964 m_freem(m);
2965 continue;
2966 }
2967 }
2968
2969 ret = xmm7360_mux_frame_append_packet(frame,
2970 mtod(m, void *), m->m_pkthdr.len);
2971 if (ret) {
2972 /* No more space in the frame */
2973 ifq_deq_rollback(&ifp->if_snd, m);
2974 break;
2975 }
2976 ifq_deq_commit(&ifp->if_snd, m);
2977
2978 /* Send a copy of the frame to the BPF listener */
2979 BPF_MTAP_OUT(ifp, m);
2980
2981 m_freem(m);
2982 }
2983 }
2984
2985 static void xmm7360_os_handle_net_txwake(struct xmm_net *xn)
2986 {
2987 struct wwan_softc *sc_if =
2988 container_of(xn, struct wwan_softc, sc_xmm_net);
2989 struct ifnet *ifp = &sc_if->sc_ifnet;
2990
2991 MUTEX_ASSERT_LOCKED(&xn->lock);
2992
2993 KASSERT(xmm7360_qp_can_write(xn->qp));
2994 if (ifq_is_oactive(&ifp->if_snd)) {
2995 ifq_clr_oactive(&ifp->if_snd);
2996 #ifdef __OpenBSD__
2997 ifq_restart(&ifp->if_snd);
2998 #endif
2999 #ifdef __NetBSD__
3000 if_schedule_deferred_start(ifp);
3001 #endif
3002 }
3003 }
3004
3005 #ifdef __OpenBSD__
3006 /*
3007 * Process received raw IPv4/IPv6 packet. There is no encapsulation.
3008 */
3009 static int
3010 wwan_if_input(struct ifnet *ifp, struct mbuf *m, void *cookie)
3011 {
3012 const uint8_t *data = mtod(m, uint8_t *);
3013 void (*input)(struct ifnet *, struct mbuf *);
3014 u8 ip_version;
3015
3016 ip_version = data[0] >> 4;
3017
3018 switch (ip_version) {
3019 case IPVERSION:
3020 input = ipv4_input;
3021 break;
3022 case (IPV6_VERSION >> 4):
3023 input = ipv6_input;
3024 break;
3025 default:
3026 /* Unknown protocol, just drop packet */
3027 m_freem(m);
3028 return 1;
3029 /* NOTREACHED */
3030 }
3031
3032 (*input)(ifp, m);
3033 return 1;
3034 }
3035 #endif /* __OpenBSD__ */
3036
3037 #ifdef __NetBSD__
3038 static bool wwan_pmf_suspend(device_t, const pmf_qual_t *);
3039
3040 /*
3041 * Process received raw IPv4/IPv6 packet. There is no encapsulation.
3042 */
3043 static void
3044 wwan_if_input(struct ifnet *ifp, struct mbuf *m)
3045 {
3046 const uint8_t *data = mtod(m, uint8_t *);
3047 pktqueue_t *pktq = NULL;
3048 u8 ip_version;
3049
3050 KASSERT(!cpu_intr_p());
3051 KASSERT((m->m_flags & M_PKTHDR) != 0);
3052
3053 if ((ifp->if_flags & IFF_UP) == 0) {
3054 m_freem(m);
3055 return;
3056 }
3057
3058 if_statadd(ifp, if_ibytes, m->m_pkthdr.len);
3059
3060 /*
3061 * The interface can't receive packets for other host, so never
3062 * really IFF_PROMISC even if bpf listener is attached.
3063 */
3064 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
3065 return;
3066 if (m == NULL)
3067 return;
3068
3069 ip_version = data[0] >> 4;
3070 switch (ip_version) {
3071 #ifdef INET
3072 case IPVERSION:
3073 #ifdef GATEWAY
3074 if (ipflow_fastforward(m))
3075 return;
3076 #endif
3077 pktq = ip_pktq;
3078 break;
3079 #endif /* INET */
3080 #ifdef INET6
3081 case (IPV6_VERSION >> 4):
3082 if (__predict_false(!in6_present)) {
3083 m_freem(m);
3084 return;
3085 }
3086 #ifdef GATEWAY
3087 if (ip6flow_fastforward(&m))
3088 return;
3089 #endif
3090 pktq = ip6_pktq;
3091 break;
3092 #endif /* INET6 */
3093 default:
3094 /* Unknown protocol, just drop packet */
3095 m_freem(m);
3096 return;
3097 /* NOTREACHED */
3098 }
3099
3100 KASSERT(pktq != NULL);
3101
3102 /* No errors. Receive the packet. */
3103 m_set_rcvif(m, ifp);
3104
3105 #ifdef NET_MPSAFE
3106 const u_int h = curcpu()->ci_index;
3107 #else
3108 const uint32_t h = pktq_rps_hash(m);
3109 #endif
3110 if (__predict_false(!pktq_enqueue(pktq, m, h))) {
3111 m_freem(m);
3112 }
3113 }
3114 #endif
3115
3116 /*
3117 * Transmit raw IPv4/IPv6 packet. No encapsulation necessary.
3118 */
3119 static int
3120 wwan_if_output(struct ifnet *ifp, struct mbuf *m,
3121 IF_OUTPUT_CONST struct sockaddr *dst, IF_OUTPUT_CONST struct rtentry *rt)
3122 {
3123 // there is no ethernet frame, this means no bridge(4) handling
3124 return (if_enqueue(ifp, m));
3125 }
3126
3127 static int
3128 wwan_if_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3129 {
3130 struct wwan_softc *sc_if = ifp->if_softc;
3131 int error = 0;
3132 int s;
3133
3134 s = splnet();
3135
3136 switch (cmd) {
3137 #ifdef __NetBSD__
3138 case SIOCINITIFADDR:
3139 #endif
3140 #ifdef __OpenBSD__
3141 case SIOCAIFADDR:
3142 case SIOCAIFADDR_IN6:
3143 case SIOCSIFADDR:
3144 #endif
3145 /* Make interface ready to run if address is assigned */
3146 ifp->if_flags |= IFF_UP;
3147 if (!(ifp->if_flags & IFF_RUNNING)) {
3148 ifp->if_flags |= IFF_RUNNING;
3149 xmm7360_mux_control(&sc_if->sc_xmm_net, 1, 0, 0, 0);
3150 }
3151 break;
3152 case SIOCSIFFLAGS:
3153 case SIOCADDMULTI:
3154 case SIOCDELMULTI:
3155 /* nothing special to do */
3156 break;
3157 case SIOCSIFMTU:
3158 error = ENOTTY;
3159 break;
3160 default:
3161 #ifdef __NetBSD__
3162 /*
3163 * Call common code for SIOCG* ioctls. In OpenBSD those ioctls
3164 * are handled in ifioctl(), and the if_ioctl is not called
3165 * for them at all.
3166 */
3167 error = ifioctl_common(ifp, cmd, data);
3168 if (error == ENETRESET)
3169 error = 0;
3170 #endif
3171 #ifdef __OpenBSD__
3172 error = ENOTTY;
3173 #endif
3174 break;
3175 }
3176
3177 splx(s);
3178
3179 return error;
3180 }
3181
3182 static void
3183 wwan_if_start(struct ifnet *ifp)
3184 {
3185 struct wwan_softc *sc = ifp->if_softc;
3186
3187 mutex_lock(&sc->sc_xmm_net.lock);
3188 while (!ifq_empty(&ifp->if_snd)) {
3189 if (!xmm7360_qp_can_write(sc->sc_xmm_net.qp)) {
3190 break;
3191 }
3192 xmm7360_net_flush(&sc->sc_xmm_net);
3193 }
3194 mutex_unlock(&sc->sc_xmm_net.lock);
3195 }
3196
3197 static int
3198 wwan_match(struct device *parent, cfdata_t match, void *aux)
3199 {
3200 struct wwanc_attach_args *wa = aux;
3201
3202 return (wa->aa_type == WWMC_TYPE_NET);
3203 }
3204
3205 static void
3206 wwan_attach(struct device *parent, struct device *self, void *aux)
3207 {
3208 struct wwan_softc *sc_if = device_private(self);
3209 struct ifnet *ifp = &sc_if->sc_ifnet;
3210 struct xmm_dev *xmm;
3211 struct xmm_net *xn;
3212
3213 sc_if->sc_dev = self;
3214 sc_if->sc_parent = device_private(parent);
3215 xmm = sc_if->sc_xmm_net.xmm = &sc_if->sc_parent->sc_xmm;
3216 xn = &sc_if->sc_xmm_net;
3217 mutex_init(&xn->lock);
3218
3219 /* QP already initialized in parent, just set pointers and start */
3220 xn->qp = &xmm->qp[0];
3221 xmm7360_qp_start(xn->qp);
3222 xmm->net = xn;
3223
3224 ifp->if_softc = sc_if;
3225 ifp->if_flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST \
3226 | IFF_SIMPLEX;
3227 ifp->if_ioctl = wwan_if_ioctl;
3228 ifp->if_start = wwan_if_start;
3229 ifp->if_mtu = 1500;
3230 ifp->if_hardmtu = 1500;
3231 ifp->if_type = IFT_OTHER;
3232 IFQ_SET_MAXLEN(&ifp->if_snd, xn->qp->depth);
3233 IFQ_SET_READY(&ifp->if_snd);
3234 bcopy(sc_if->sc_dev->dv_xname, ifp->if_xname, IFNAMSIZ);
3235
3236 /* Call MI attach routines. */
3237 if_attach(ifp);
3238
3239 /* Hook custom input and output processing, and dummy sadl */
3240 ifp->if_output = wwan_if_output;
3241 if_ih_insert(ifp, wwan_if_input, NULL);
3242 if_deferred_start_init(ifp, NULL);
3243 if_alloc_sadl(ifp);
3244 #if NBPFILTER > 0
3245 bpfattach(&ifp->if_bpf, ifp, DLT_RAW, 0);
3246 #endif
3247
3248 printf("\n");
3249
3250 #ifdef __NetBSD__
3251 if (pmf_device_register(self, wwan_pmf_suspend, NULL))
3252 pmf_class_network_register(self, ifp);
3253 else
3254 aprint_error_dev(self, "couldn't establish power handler\n");
3255 #endif
3256 }
3257
3258 static int
3259 wwan_detach(struct device *self, int flags)
3260 {
3261 struct wwan_softc *sc_if = device_private(self);
3262 struct ifnet *ifp = &sc_if->sc_ifnet;
3263
3264 if (ifp->if_flags & (IFF_UP|IFF_RUNNING))
3265 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
3266
3267 pmf_device_deregister(self);
3268
3269 if_ih_remove(ifp, wwan_if_input, NULL);
3270 if_detach(ifp);
3271
3272 xmm7360_qp_stop(sc_if->sc_xmm_net.qp);
3273
3274 sc_if->sc_xmm_net.xmm->net = NULL;
3275
3276 return 0;
3277 }
3278
3279 static void
3280 wwan_suspend(struct device *self)
3281 {
3282 struct wwan_softc *sc_if = device_private(self);
3283 struct ifnet *ifp = &sc_if->sc_ifnet;
3284
3285 /*
3286 * Interface is marked down on suspend, and needs to be reconfigured
3287 * after resume.
3288 */
3289 if (ifp->if_flags & (IFF_UP|IFF_RUNNING))
3290 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
3291
3292 ifq_purge(&ifp->if_snd);
3293 }
3294
3295 #ifdef __OpenBSD__
3296 static int
3297 wwan_activate(struct device *self, int act)
3298 {
3299 switch (act) {
3300 case DVACT_QUIESCE:
3301 case DVACT_SUSPEND:
3302 wwan_suspend(self);
3303 break;
3304 case DVACT_RESUME:
3305 /* Nothing to do */
3306 break;
3307 }
3308
3309 return 0;
3310 }
3311
3312 struct cfattach wwan_ca = {
3313 sizeof(struct wwan_softc), wwan_match, wwan_attach,
3314 wwan_detach, wwan_activate
3315 };
3316
3317 struct cfdriver wwan_cd = {
3318 NULL, "wwan", DV_IFNET
3319 };
3320 #endif /* __OpenBSD__ */
3321
3322 #ifdef __NetBSD__
3323 static bool
3324 wwan_pmf_suspend(device_t self, const pmf_qual_t *qual)
3325 {
3326 wwan_suspend(self);
3327 return true;
3328 }
3329
3330 CFATTACH_DECL3_NEW(wwan, sizeof(struct wwan_softc),
3331 wwan_match, wwan_attach, wwan_detach, NULL,
3332 NULL, NULL, DVF_DETACH_SHUTDOWN);
3333 #endif /* __NetBSD__ */
3334
3335 #endif /* __OpenBSD__ || __NetBSD__ */
3336