xmm7360.c revision 1.7 1 // vim: noet ts=8 sts=8 sw=8
2 /*
3 * Device driver for Intel XMM7360 LTE modems, eg. Fibocom L850-GL.
4 * Written by James Wah
5 * james (at) laird-wah.net
6 *
7 * Development of this driver was supported by genua GmbH
8 *
9 * Copyright (c) 2020 genua GmbH <info (at) genua.de>
10 *Copyright (c) 2020 James Wah <james (at) laird-wah.net>
11 *
12 * The OpenBSD and NetBSD support was written by Jaromir Dolecek for
13 * Moritz Systems Technology Company Sp. z o.o.
14 *
15 * Permission to use, copy, modify, and/or distribute this software for any
16 * purpose with or without fee is hereby granted, provided that the above
17 * copyright notice and this permission notice appear in all copies.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
20 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES ON
21 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
22 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGE
23 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
24 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
25 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
26 */
27
28 #ifdef __linux__
29
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/delay.h>
36 #include <linux/uaccess.h>
37 #include <linux/cdev.h>
38 #include <linux/wait.h>
39 #include <linux/tty.h>
40 #include <linux/tty_flip.h>
41 #include <linux/poll.h>
42 #include <linux/skbuff.h>
43 #include <linux/netdevice.h>
44 #include <linux/if.h>
45 #include <linux/if_arp.h>
46 #include <net/rtnetlink.h>
47 #include <linux/hrtimer.h>
48 #include <linux/workqueue.h>
49
50 MODULE_LICENSE("Dual BSD/GPL");
51
52 static const struct pci_device_id xmm7360_ids[] = {
53 { PCI_DEVICE(0x8086, 0x7360), },
54 { 0, }
55 };
56 MODULE_DEVICE_TABLE(pci, xmm7360_ids);
57
58 /* Actually this ioctl not used for xmm0/rpc device by python code */
59 #define XMM7360_IOCTL_GET_PAGE_SIZE _IOC(_IOC_READ, 'x', 0xc0, sizeof(u32))
60
61 #define xmm7360_os_msleep(msec) msleep(msec)
62
63 #define __unused /* nothing */
64
65 #endif
66
67 #if defined(__OpenBSD__) || defined(__NetBSD__)
68
69 #ifdef __OpenBSD__
70 #include "bpfilter.h"
71 #endif
72 #ifdef __NetBSD__
73 #include "opt_inet.h"
74 #include "opt_gateway.h"
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: xmm7360.c,v 1.7 2021/04/24 23:36:57 thorpej Exp $");
78 #endif
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/sockio.h>
83 #include <sys/mbuf.h>
84 #include <sys/kernel.h>
85 #include <sys/device.h>
86 #include <sys/socket.h>
87 #include <sys/mutex.h>
88 #include <sys/tty.h>
89 #include <sys/conf.h>
90 #include <sys/kthread.h>
91 #include <sys/poll.h>
92 #include <sys/fcntl.h> /* for FREAD/FWRITE */
93 #include <sys/vnode.h>
94 #include <uvm/uvm_param.h>
95
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99
100 #include <net/if.h>
101 #include <net/if_types.h>
102
103 #include <netinet/in.h>
104 #include <netinet/ip.h>
105 #include <netinet/ip6.h>
106
107 #ifdef __OpenBSD__
108 #include <netinet/if_ether.h>
109 #include <sys/timeout.h>
110 #include <machine/bus.h>
111 #endif
112
113 #if NBPFILTER > 0 || defined(__NetBSD__)
114 #include <net/bpf.h>
115 #endif
116
117 #ifdef __NetBSD__
118 #include "ioconf.h"
119 #include <sys/cpu.h>
120 #endif
121
122 #ifdef INET
123 #include <netinet/in_var.h>
124 #endif
125 #ifdef INET6
126 #include <netinet6/in6_var.h>
127 #endif
128
129 typedef uint8_t u8;
130 typedef uint16_t u16;
131 typedef uint32_t u32;
132 typedef bus_addr_t dma_addr_t;
133 typedef void * wait_queue_head_t; /* just address for tsleep() */
134
135 #define WWAN_BAR0 PCI_MAPREG_START
136 #define WWAN_BAR1 (PCI_MAPREG_START + 4)
137 #define WWAN_BAR2 (PCI_MAPREG_START + 8)
138
139 #define BUG_ON(never_true) KASSERT(!(never_true))
140 #define WARN_ON(x) /* nothing */
141
142 #ifdef __OpenBSD__
143 typedef struct mutex spinlock_t;
144 #define dev_err(devp, fmt, ...) \
145 printf("%s: " fmt, (devp)->dv_xname, ##__VA_ARGS__)
146 #define dev_info(devp, fmt, ...) \
147 printf("%s: " fmt, (devp)->dv_xname, ##__VA_ARGS__)
148 #define kzalloc(size, flags) malloc(size, M_DEVBUF, M_WAITOK | M_ZERO)
149 #define kfree(addr) free(addr, M_DEVBUF, 0)
150 #define mutex_init(lock) mtx_init(lock, IPL_TTY)
151 #define mutex_lock(lock) mtx_enter(lock)
152 #define mutex_unlock(lock) mtx_leave(lock)
153 /* In OpenBSD every mutex is spin mutex, and it must not be held on sleep */
154 #define spin_lock_irqsave(lock, flags) mtx_enter(lock)
155 #define spin_unlock_irqrestore(lock, flags) mtx_leave(lock)
156
157 /* Compat defines for NetBSD API */
158 #define curlwp curproc
159 #define LINESW(tp) (linesw[(tp)->t_line])
160 #define selnotify(sel, band, note) selwakeup(sel)
161 #define cfdata_t void *
162 #define device_lookup_private(cdp, unit) \
163 (unit < (*cdp).cd_ndevs) ? (*cdp).cd_devs[unit] : NULL
164 #define IFQ_SET_READY(ifq) /* nothing */
165 #define device_private(devt) (void *)devt;
166 #define if_deferred_start_init(ifp, arg) /* nothing */
167 #define IF_OUTPUT_CONST /* nothing */
168 #define tty_lock() int s = spltty()
169 #define tty_unlock() splx(s)
170 #define tty_locked() /* nothing */
171 #define pmf_device_deregister(dev) /* nothing */
172 #if NBPFILTER > 0
173 #define BPF_MTAP_OUT(ifp, m) \
174 if (ifp->if_bpf) { \
175 bpf_mtap_af(ifp->if_bpf, m->m_pkthdr.ph_family, \
176 m, BPF_DIRECTION_OUT); \
177 }
178 #else
179 #define BPF_MTAP_OUT(ifp, m) /* nothing */
180 #endif
181
182 /* Copied from NetBSD <lib/libkern/libkern.h> */
183 #define __validate_container_of(PTR, TYPE, FIELD) \
184 (0 * sizeof((PTR) - &((TYPE *)(((char *)(PTR)) - \
185 offsetof(TYPE, FIELD)))->FIELD))
186 #define container_of(PTR, TYPE, FIELD) \
187 ((TYPE *)(((char *)(PTR)) - offsetof(TYPE, FIELD)) \
188 + __validate_container_of(PTR, TYPE, FIELD))
189
190 /* Copied from NetBSD <sys/cdefs.h> */
191 #define __UNVOLATILE(a) ((void *)(unsigned long)(volatile void *)(a))
192
193 #if OpenBSD <= 201911
194 /* Backward compat with OpenBSD 6.6 */
195 #define klist_insert(klist, kn) \
196 SLIST_INSERT_HEAD(klist, kn, kn_selnext)
197 #define klist_remove(klist, kn) \
198 SLIST_REMOVE(klist, kn, knote, kn_selnext)
199 #define XMM_KQ_ISFD_INITIALIZER .f_isfd = 1
200 #else
201 #define XMM_KQ_ISFD_INITIALIZER .f_flags = FILTEROP_ISFD
202 #endif /* OpenBSD <= 201911 */
203
204 #endif
205
206 #ifdef __NetBSD__
207 typedef struct kmutex spinlock_t;
208 #define dev_err aprint_error_dev
209 #define dev_info aprint_normal_dev
210 #define mutex kmutex
211 #define kzalloc(size, flags) malloc(size, M_DEVBUF, M_WAITOK | M_ZERO)
212 #define kfree(addr) free(addr, M_DEVBUF)
213 #define mutex_init(lock) mutex_init(lock, MUTEX_DEFAULT, IPL_TTY)
214 #define mutex_lock(lock) mutex_enter(lock)
215 #define mutex_unlock(lock) mutex_exit(lock)
216 #define spin_lock_irqsave(lock, flags) mutex_enter(lock)
217 #define spin_unlock_irqrestore(lock, flags) mutex_exit(lock)
218
219 /* Compat defines with OpenBSD API */
220 #define caddr_t void *
221 #define proc lwp
222 #define LINESW(tp) (*tp->t_linesw)
223 #define ttymalloc(speed) tty_alloc()
224 #define ttyfree(tp) tty_free(tp)
225 #define l_open(dev, tp, p) l_open(dev, tp)
226 #define l_close(tp, flag, p) l_close(tp, flag)
227 #define ttkqfilter(dev, kn) ttykqfilter(dev, kn)
228 #define msleep(ident, lock, prio, wmesg, timo) \
229 mtsleep(ident, prio, wmesg, timo, lock)
230 #define pci_mapreg_map(pa, reg, type, busfl, tp, hp, bp, szp, maxsize) \
231 pci_mapreg_map(pa, reg, type, busfl, tp, hp, bp, szp)
232 #define pci_intr_establish(pc, ih, lvl, func, arg, name) \
233 pci_intr_establish_xname(pc, ih, lvl, func, arg, name)
234 #define suser(l) \
235 kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp)
236 #define kthread_create(func, arg, lwpp, name) \
237 kthread_create(0, 0, NULL, func, arg, lwpp, "%s", name)
238 #define MUTEX_ASSERT_LOCKED(lock) KASSERT(mutex_owned(lock))
239 #define MCLGETI(m, how, m0, sz) MCLGET(m, how)
240 #define m_copyback(m, off, sz, buf, how) \
241 m_copyback(m, off, sz, buf)
242 #define ifq_deq_begin(ifq) ({ \
243 struct mbuf *m0; \
244 IFQ_DEQUEUE(ifq, m0); \
245 m0; \
246 })
247 #define ifq_deq_rollback(ifq, m) m_freem(m)
248 #define ifq_deq_commit(ifq, m) /* nothing to do */
249 #define ifq_is_oactive(ifq) true /* always restart queue */
250 #define ifq_clr_oactive(ifq) /* nothing to do */
251 #define ifq_empty(ifq) IFQ_IS_EMPTY(ifq)
252 #define ifq_purge(ifq) IF_PURGE(ifq)
253 #define if_enqueue(ifp, m) ifq_enqueue(ifp, m)
254 #define if_ih_insert(ifp, func, arg) (ifp)->_if_input = (func)
255 #define if_ih_remove(ifp, func, arg) /* nothing to do */
256 #define if_hardmtu if_mtu
257 #define IF_OUTPUT_CONST const
258 #define si_note sel_klist
259 #define klist_insert(klist, kn) \
260 SLIST_INSERT_HEAD(klist, kn, kn_selnext)
261 #define klist_remove(klist, kn) \
262 SLIST_REMOVE(klist, kn, knote, kn_selnext)
263 #define XMM_KQ_ISFD_INITIALIZER .f_isfd = 1
264 #define tty_lock() mutex_spin_enter(&tty_lock)
265 #define tty_unlock() mutex_spin_exit(&tty_lock)
266 #define tty_locked() KASSERT(mutex_owned(&tty_lock))
267 #define bpfattach(bpf, ifp, dlt, sz) bpf_attach(ifp, dlt, sz)
268 #define NBPFILTER 1
269 #define BPF_MTAP_OUT(ifp, m) bpf_mtap(ifp, m, BPF_D_OUT)
270 #endif /* __NetBSD__ */
271
272 #define __user /* nothing */
273 #define copy_from_user(kbuf, userbuf, sz) \
274 ({ \
275 int __ret = 0; \
276 int error = copyin(userbuf, kbuf, sz); \
277 if (error != 0) \
278 return -error; \
279 __ret; \
280 })
281 #define copy_to_user(kbuf, userbuf, sz) \
282 ({ \
283 int __ret = 0; \
284 int error = copyout(userbuf, kbuf, sz); \
285 if (error != 0) \
286 return -error; \
287 __ret; \
288 })
289 #define xmm7360_os_msleep(msec) \
290 do { \
291 KASSERT(!cold); \
292 tsleep(xmm, 0, "wwancsl", msec * hz / 1000); \
293 } while (0)
294
295 static void *dma_alloc_coherent(struct device *, size_t, dma_addr_t *, int);
296 static void dma_free_coherent(struct device *, size_t, volatile void *, dma_addr_t);
297
298 #ifndef PCI_PRODUCT_INTEL_XMM7360
299 #define PCI_PRODUCT_INTEL_XMM7360 0x7360
300 #endif
301
302 #define init_waitqueue_head(wqp) *(wqp) = (wqp)
303 #define wait_event_interruptible(wq, cond) \
304 ({ \
305 int __ret = 1; \
306 while (!(cond)) { \
307 KASSERT(!cold); \
308 int error = tsleep(wq, PCATCH, "xmmwq", 0); \
309 if (error) { \
310 __ret = (cond) ? 1 \
311 : ((error != ERESTART) ? -error : error); \
312 break; \
313 } \
314 } \
315 __ret; \
316 })
317
318 #define msecs_to_jiffies(msec) \
319 ({ \
320 KASSERT(hz < 1000); \
321 KASSERT(msec > (1000 / hz)); \
322 msec * hz / 1000; \
323 })
324
325 #define wait_event_interruptible_timeout(wq, cond, jiffies) \
326 ({ \
327 int __ret = 1; \
328 while (!(cond)) { \
329 if (cold) { \
330 for (int loop = 0; loop < 10; loop++) { \
331 delay(jiffies * 1000 * 1000 / hz / 10); \
332 if (cond) \
333 break; \
334 } \
335 __ret = (cond) ? 1 : 0; \
336 break; \
337 } \
338 int error = tsleep(wq, PCATCH, "xmmwq", jiffies); \
339 if (error) { \
340 __ret = (cond) ? 1 \
341 : ((error != ERESTART) ? -error : error); \
342 break; \
343 } \
344 } \
345 __ret; \
346 })
347
348 #define GFP_KERNEL 0
349
350 #endif /* __OpenBSD__ || __NetBSD__ */
351
352 /*
353 * The XMM7360 communicates via DMA ring buffers. It has one
354 * command ring, plus sixteen transfer descriptor (TD)
355 * rings. The command ring is mainly used to configure and
356 * deconfigure the TD rings.
357 *
358 * The 16 TD rings form 8 queue pairs (QP). For example, QP
359 * 0 uses ring 0 for host->device, and ring 1 for
360 * device->host.
361 *
362 * The known queue pair functions are as follows:
363 *
364 * 0: Mux (Raw IP packets, amongst others)
365 * 1: RPC (funky command protocol based in part on ASN.1 BER)
366 * 2: AT trace? port; does not accept commands after init
367 * 4: AT command port
368 * 7: AT command port
369 *
370 */
371
372 /* Command ring, which is used to configure the queue pairs */
373 struct cmd_ring_entry {
374 dma_addr_t ptr;
375 u16 len;
376 u8 parm;
377 u8 cmd;
378 u32 extra;
379 u32 unk, flags;
380 };
381
382 #define CMD_RING_OPEN 1
383 #define CMD_RING_CLOSE 2
384 #define CMD_RING_FLUSH 3
385 #define CMD_WAKEUP 4
386
387 #define CMD_FLAG_DONE 1
388 #define CMD_FLAG_READY 2
389
390 /* Transfer descriptors used on the Tx and Rx rings of each queue pair */
391 struct td_ring_entry {
392 dma_addr_t addr;
393 u16 length;
394 u16 flags;
395 u32 unk;
396 };
397
398 #define TD_FLAG_COMPLETE 0x200
399
400 /* Root configuration object. This contains pointers to all of the control
401 * structures that the modem will interact with.
402 */
403 struct control {
404 dma_addr_t status;
405 dma_addr_t s_wptr, s_rptr;
406 dma_addr_t c_wptr, c_rptr;
407 dma_addr_t c_ring;
408 u16 c_ring_size;
409 u16 unk;
410 };
411
412 struct status {
413 u32 code;
414 u32 mode;
415 u32 asleep;
416 u32 pad;
417 };
418
419 #define CMD_RING_SIZE 0x80
420
421 /* All of the control structures can be packed into one page of RAM. */
422 struct control_page {
423 struct control ctl;
424 // Status words - written by modem.
425 volatile struct status status;
426 // Slave ring write/read pointers.
427 volatile u32 s_wptr[16], s_rptr[16];
428 // Command ring write/read pointers.
429 volatile u32 c_wptr, c_rptr;
430 // Command ring entries.
431 volatile struct cmd_ring_entry c_ring[CMD_RING_SIZE];
432 };
433
434 #define BAR0_MODE 0x0c
435 #define BAR0_DOORBELL 0x04
436 #define BAR0_WAKEUP 0x14
437
438 #define DOORBELL_TD 0
439 #define DOORBELL_CMD 1
440
441 #define BAR2_STATUS 0x00
442 #define BAR2_MODE 0x18
443 #define BAR2_CONTROL 0x19
444 #define BAR2_CONTROLH 0x1a
445
446 #define BAR2_BLANK0 0x1b
447 #define BAR2_BLANK1 0x1c
448 #define BAR2_BLANK2 0x1d
449 #define BAR2_BLANK3 0x1e
450
451 #define XMM_MODEM_BOOTING 0xfeedb007
452 #define XMM_MODEM_READY 0x600df00d
453
454 #define XMM_TAG_ACBH 0x41434248 // 'ACBH'
455 #define XMM_TAG_CMDH 0x434d4448 // 'CMDH'
456 #define XMM_TAG_ADBH 0x41444248 // 'ADBH'
457 #define XMM_TAG_ADTH 0x41445448 // 'ADTH'
458
459 /* There are 16 TD rings: a Tx and Rx ring for each queue pair */
460 struct td_ring {
461 u8 depth;
462 u8 last_handled;
463 u16 page_size;
464
465 struct td_ring_entry *tds;
466 dma_addr_t tds_phys;
467
468 // One page of page_size per td
469 void **pages;
470 dma_addr_t *pages_phys;
471 };
472
473 #define TD_MAX_PAGE_SIZE 16384
474
475 struct queue_pair {
476 struct xmm_dev *xmm;
477 u8 depth;
478 u16 page_size;
479 int tty_index;
480 int tty_needs_wake;
481 struct device dev;
482 int num;
483 int open;
484 struct mutex lock;
485 unsigned char user_buf[TD_MAX_PAGE_SIZE];
486 wait_queue_head_t wq;
487
488 #ifdef __linux__
489 struct cdev cdev;
490 struct tty_port port;
491 #endif
492 #if defined(__OpenBSD__) || defined(__NetBSD__)
493 struct selinfo selr, selw;
494 #endif
495 };
496
497 #define XMM_QP_COUNT 8
498
499 struct xmm_dev {
500 struct device *dev;
501
502 volatile uint32_t *bar0, *bar2;
503
504 volatile struct control_page *cp;
505 dma_addr_t cp_phys;
506
507 struct td_ring td_ring[2 * XMM_QP_COUNT];
508
509 struct queue_pair qp[XMM_QP_COUNT];
510
511 struct xmm_net *net;
512 struct net_device *netdev;
513
514 int error;
515 int card_num;
516 int num_ttys;
517 wait_queue_head_t wq;
518
519 #ifdef __linux__
520 struct pci_dev *pci_dev;
521
522 int irq;
523
524 struct work_struct init_work; // XXX work not actually scheduled
525 #endif
526 };
527
528 struct mux_bounds {
529 uint32_t offset;
530 uint32_t length;
531 };
532
533 struct mux_first_header {
534 uint32_t tag;
535 uint16_t unknown;
536 uint16_t sequence;
537 uint16_t length;
538 uint16_t extra;
539 uint16_t next;
540 uint16_t pad;
541 };
542
543 struct mux_next_header {
544 uint32_t tag;
545 uint16_t length;
546 uint16_t extra;
547 uint16_t next;
548 uint16_t pad;
549 };
550
551 #define MUX_MAX_PACKETS 64
552
553 struct mux_frame {
554 int n_packets, n_bytes, max_size, sequence;
555 uint16_t *last_tag_length, *last_tag_next;
556 struct mux_bounds bounds[MUX_MAX_PACKETS];
557 uint8_t data[TD_MAX_PAGE_SIZE];
558 };
559
560 struct xmm_net {
561 struct xmm_dev *xmm;
562 struct queue_pair *qp;
563 int channel;
564
565 #ifdef __linux__
566 struct sk_buff_head queue;
567 struct hrtimer deadline;
568 #endif
569 int queued_packets, queued_bytes;
570
571 int sequence;
572 spinlock_t lock;
573 struct mux_frame frame;
574 };
575
576 static void xmm7360_os_handle_net_frame(struct xmm_dev *, const u8 *, size_t);
577 static void xmm7360_os_handle_net_dequeue(struct xmm_net *, struct mux_frame *);
578 static void xmm7360_os_handle_net_txwake(struct xmm_net *);
579 static void xmm7360_os_handle_tty_idata(struct queue_pair *, const u8 *, size_t);
580
581 static void xmm7360_poll(struct xmm_dev *xmm)
582 {
583 if (xmm->cp->status.code == 0xbadc0ded) {
584 dev_err(xmm->dev, "crashed but dma up\n");
585 xmm->error = -ENODEV;
586 }
587 if (xmm->bar2[BAR2_STATUS] != XMM_MODEM_READY) {
588 dev_err(xmm->dev, "bad status %x\n",xmm->bar2[BAR2_STATUS]);
589 xmm->error = -ENODEV;
590 }
591 }
592
593 static void xmm7360_ding(struct xmm_dev *xmm, int bell)
594 {
595 if (xmm->cp->status.asleep)
596 xmm->bar0[BAR0_WAKEUP] = 1;
597 xmm->bar0[BAR0_DOORBELL] = bell;
598 xmm7360_poll(xmm);
599 }
600
601 static int xmm7360_cmd_ring_wait(struct xmm_dev *xmm)
602 {
603 // Wait for all commands to complete
604 // XXX locking?
605 int ret = wait_event_interruptible_timeout(xmm->wq, (xmm->cp->c_rptr == xmm->cp->c_wptr) || xmm->error, msecs_to_jiffies(1000));
606 if (ret == 0)
607 return -ETIMEDOUT;
608 if (ret < 0)
609 return ret;
610 return xmm->error;
611 }
612
613 static int xmm7360_cmd_ring_execute(struct xmm_dev *xmm, u8 cmd, u8 parm, u16 len, dma_addr_t ptr, u32 extra)
614 {
615 u8 wptr = xmm->cp->c_wptr;
616 u8 new_wptr = (wptr + 1) % CMD_RING_SIZE;
617 if (xmm->error)
618 return xmm->error;
619 if (new_wptr == xmm->cp->c_rptr) // ring full
620 return -EAGAIN;
621
622 xmm->cp->c_ring[wptr].ptr = ptr;
623 xmm->cp->c_ring[wptr].cmd = cmd;
624 xmm->cp->c_ring[wptr].parm = parm;
625 xmm->cp->c_ring[wptr].len = len;
626 xmm->cp->c_ring[wptr].extra = extra;
627 xmm->cp->c_ring[wptr].unk = 0;
628 xmm->cp->c_ring[wptr].flags = CMD_FLAG_READY;
629
630 xmm->cp->c_wptr = new_wptr;
631
632 xmm7360_ding(xmm, DOORBELL_CMD);
633 return xmm7360_cmd_ring_wait(xmm);
634 }
635
636 static int xmm7360_cmd_ring_init(struct xmm_dev *xmm) {
637 int timeout;
638 int ret;
639
640 xmm->cp = dma_alloc_coherent(xmm->dev, sizeof(struct control_page), &xmm->cp_phys, GFP_KERNEL);
641 BUG_ON(xmm->cp == NULL);
642
643 xmm->cp->ctl.status = xmm->cp_phys + offsetof(struct control_page, status);
644 xmm->cp->ctl.s_wptr = xmm->cp_phys + offsetof(struct control_page, s_wptr);
645 xmm->cp->ctl.s_rptr = xmm->cp_phys + offsetof(struct control_page, s_rptr);
646 xmm->cp->ctl.c_wptr = xmm->cp_phys + offsetof(struct control_page, c_wptr);
647 xmm->cp->ctl.c_rptr = xmm->cp_phys + offsetof(struct control_page, c_rptr);
648 xmm->cp->ctl.c_ring = xmm->cp_phys + offsetof(struct control_page, c_ring);
649 xmm->cp->ctl.c_ring_size = CMD_RING_SIZE;
650
651 xmm->bar2[BAR2_CONTROL] = xmm->cp_phys;
652 xmm->bar2[BAR2_CONTROLH] = xmm->cp_phys >> 32;
653
654 xmm->bar0[BAR0_MODE] = 1;
655
656 timeout = 100;
657 while (xmm->bar2[BAR2_MODE] == 0 && --timeout)
658 xmm7360_os_msleep(10);
659
660 if (!timeout)
661 return -ETIMEDOUT;
662
663 xmm->bar2[BAR2_BLANK0] = 0;
664 xmm->bar2[BAR2_BLANK1] = 0;
665 xmm->bar2[BAR2_BLANK2] = 0;
666 xmm->bar2[BAR2_BLANK3] = 0;
667
668 xmm->bar0[BAR0_MODE] = 2; // enable intrs?
669
670 timeout = 100;
671 while (xmm->bar2[BAR2_MODE] != 2 && --timeout)
672 xmm7360_os_msleep(10);
673
674 if (!timeout)
675 return -ETIMEDOUT;
676
677 // enable going to sleep when idle
678 ret = xmm7360_cmd_ring_execute(xmm, CMD_WAKEUP, 0, 1, 0, 0);
679 if (ret)
680 return ret;
681
682 return 0;
683 }
684
685 static void xmm7360_cmd_ring_free(struct xmm_dev *xmm) {
686 if (xmm->bar0)
687 xmm->bar0[BAR0_MODE] = 0;
688 if (xmm->cp)
689 dma_free_coherent(xmm->dev, sizeof(struct control_page), (volatile void *)xmm->cp, xmm->cp_phys);
690 xmm->cp = NULL;
691 return;
692 }
693
694 static void xmm7360_td_ring_activate(struct xmm_dev *xmm, u8 ring_id)
695 {
696 struct td_ring *ring = &xmm->td_ring[ring_id];
697 int ret __diagused;
698
699 xmm->cp->s_rptr[ring_id] = xmm->cp->s_wptr[ring_id] = 0;
700 ring->last_handled = 0;
701 ret = xmm7360_cmd_ring_execute(xmm, CMD_RING_OPEN, ring_id, ring->depth, ring->tds_phys, 0x60);
702 BUG_ON(ret);
703 }
704
705 static void xmm7360_td_ring_create(struct xmm_dev *xmm, u8 ring_id, u8 depth, u16 page_size)
706 {
707 struct td_ring *ring = &xmm->td_ring[ring_id];
708 int i;
709
710 BUG_ON(ring->depth);
711 BUG_ON(depth & (depth-1));
712 BUG_ON(page_size > TD_MAX_PAGE_SIZE);
713
714 memset(ring, 0, sizeof(struct td_ring));
715 ring->depth = depth;
716 ring->page_size = page_size;
717 ring->tds = dma_alloc_coherent(xmm->dev, sizeof(struct td_ring_entry)*depth, &ring->tds_phys, GFP_KERNEL);
718
719 ring->pages = kzalloc(sizeof(void*)*depth, GFP_KERNEL);
720 ring->pages_phys = kzalloc(sizeof(dma_addr_t)*depth, GFP_KERNEL);
721
722 for (i=0; i<depth; i++) {
723 ring->pages[i] = dma_alloc_coherent(xmm->dev, ring->page_size, &ring->pages_phys[i], GFP_KERNEL);
724 ring->tds[i].addr = ring->pages_phys[i];
725 }
726
727 xmm7360_td_ring_activate(xmm, ring_id);
728 }
729
730 static void xmm7360_td_ring_deactivate(struct xmm_dev *xmm, u8 ring_id)
731 {
732 xmm7360_cmd_ring_execute(xmm, CMD_RING_CLOSE, ring_id, 0, 0, 0);
733 }
734
735 static void xmm7360_td_ring_destroy(struct xmm_dev *xmm, u8 ring_id)
736 {
737 struct td_ring *ring = &xmm->td_ring[ring_id];
738 int i, depth=ring->depth;
739
740 if (!depth) {
741 WARN_ON(1);
742 dev_err(xmm->dev, "Tried destroying empty ring!\n");
743 return;
744 }
745
746 xmm7360_td_ring_deactivate(xmm, ring_id);
747
748 for (i=0; i<depth; i++) {
749 dma_free_coherent(xmm->dev, ring->page_size, ring->pages[i], ring->pages_phys[i]);
750 }
751
752 kfree(ring->pages_phys);
753 kfree(ring->pages);
754
755 dma_free_coherent(xmm->dev, sizeof(struct td_ring_entry)*depth, ring->tds, ring->tds_phys);
756
757 ring->depth = 0;
758 }
759
760 static void xmm7360_td_ring_write(struct xmm_dev *xmm, u8 ring_id, const void *buf, int len)
761 {
762 struct td_ring *ring = &xmm->td_ring[ring_id];
763 u8 wptr = xmm->cp->s_wptr[ring_id];
764
765 BUG_ON(!ring->depth);
766 BUG_ON(len > ring->page_size);
767 BUG_ON(ring_id & 1);
768
769 memcpy(ring->pages[wptr], buf, len);
770 ring->tds[wptr].length = len;
771 ring->tds[wptr].flags = 0;
772 ring->tds[wptr].unk = 0;
773
774 wptr = (wptr + 1) & (ring->depth - 1);
775 BUG_ON(wptr == xmm->cp->s_rptr[ring_id]);
776
777 xmm->cp->s_wptr[ring_id] = wptr;
778 }
779
780 static int xmm7360_td_ring_full(struct xmm_dev *xmm, u8 ring_id)
781 {
782 struct td_ring *ring = &xmm->td_ring[ring_id];
783 u8 wptr = xmm->cp->s_wptr[ring_id];
784 wptr = (wptr + 1) & (ring->depth - 1);
785 return wptr == xmm->cp->s_rptr[ring_id];
786 }
787
788 static void xmm7360_td_ring_read(struct xmm_dev *xmm, u8 ring_id)
789 {
790 struct td_ring *ring = &xmm->td_ring[ring_id];
791 u8 wptr = xmm->cp->s_wptr[ring_id];
792
793 if (!ring->depth) {
794 dev_err(xmm->dev, "read on disabled ring\n");
795 WARN_ON(1);
796 return;
797 }
798 if (!(ring_id & 1)) {
799 dev_err(xmm->dev, "read on write ring\n");
800 WARN_ON(1);
801 return;
802 }
803
804 ring->tds[wptr].length = ring->page_size;
805 ring->tds[wptr].flags = 0;
806 ring->tds[wptr].unk = 0;
807
808 wptr = (wptr + 1) & (ring->depth - 1);
809 BUG_ON(wptr == xmm->cp->s_rptr[ring_id]);
810
811 xmm->cp->s_wptr[ring_id] = wptr;
812 }
813
814 static struct queue_pair * xmm7360_init_qp(struct xmm_dev *xmm, int num, u8 depth, u16 page_size)
815 {
816 struct queue_pair *qp = &xmm->qp[num];
817
818 qp->xmm = xmm;
819 qp->num = num;
820 qp->open = 0;
821 qp->depth = depth;
822 qp->page_size = page_size;
823
824 mutex_init(&qp->lock);
825 init_waitqueue_head(&qp->wq);
826 return qp;
827 }
828
829 static void xmm7360_qp_arm(struct xmm_dev *xmm, struct queue_pair *qp)
830 {
831 while (!xmm7360_td_ring_full(xmm, qp->num*2+1))
832 xmm7360_td_ring_read(xmm, qp->num*2+1);
833 xmm7360_ding(xmm, DOORBELL_TD);
834 }
835
836 static int xmm7360_qp_start(struct queue_pair *qp)
837 {
838 struct xmm_dev *xmm = qp->xmm;
839 int ret;
840
841 mutex_lock(&qp->lock);
842 if (qp->open) {
843 ret = -EBUSY;
844 } else {
845 ret = 0;
846 qp->open = 1;
847 }
848 mutex_unlock(&qp->lock);
849
850 if (ret == 0) {
851 xmm7360_td_ring_create(xmm, qp->num*2, qp->depth, qp->page_size);
852 xmm7360_td_ring_create(xmm, qp->num*2+1, qp->depth, qp->page_size);
853 xmm7360_qp_arm(xmm, qp);
854 }
855
856 return ret;
857 }
858
859 static void xmm7360_qp_resume(struct queue_pair *qp)
860 {
861 struct xmm_dev *xmm = qp->xmm;
862
863 BUG_ON(!qp->open);
864 xmm7360_td_ring_activate(xmm, qp->num*2);
865 xmm7360_td_ring_activate(xmm, qp->num*2+1);
866 xmm7360_qp_arm(xmm, qp);
867 }
868
869 static int xmm7360_qp_stop(struct queue_pair *qp)
870 {
871 struct xmm_dev *xmm = qp->xmm;
872 int ret = 0;
873
874 mutex_lock(&qp->lock);
875 if (!qp->open) {
876 ret = -ENODEV;
877 } else {
878 ret = 0;
879 /* still holding qp->open to prevent concurrent access */
880 }
881 mutex_unlock(&qp->lock);
882
883 if (ret == 0) {
884 xmm7360_td_ring_destroy(xmm, qp->num*2);
885 xmm7360_td_ring_destroy(xmm, qp->num*2+1);
886
887 mutex_lock(&qp->lock);
888 qp->open = 0;
889 mutex_unlock(&qp->lock);
890 }
891
892 return ret;
893 }
894
895 static void xmm7360_qp_suspend(struct queue_pair *qp)
896 {
897 struct xmm_dev *xmm = qp->xmm;
898
899 BUG_ON(!qp->open);
900 xmm7360_td_ring_deactivate(xmm, qp->num*2);
901 }
902
903 static int xmm7360_qp_can_write(struct queue_pair *qp)
904 {
905 struct xmm_dev *xmm = qp->xmm;
906 return !xmm7360_td_ring_full(xmm, qp->num*2);
907 }
908
909 static ssize_t xmm7360_qp_write(struct queue_pair *qp, const char *buf, size_t size)
910 {
911 struct xmm_dev *xmm = qp->xmm;
912 int page_size = qp->xmm->td_ring[qp->num*2].page_size;
913 if (xmm->error)
914 return xmm->error;
915 if (!xmm7360_qp_can_write(qp))
916 return 0;
917 if (size > page_size)
918 size = page_size;
919 xmm7360_td_ring_write(xmm, qp->num*2, buf, size);
920 xmm7360_ding(xmm, DOORBELL_TD);
921 return size;
922 }
923
924 static ssize_t xmm7360_qp_write_user(struct queue_pair *qp, const char __user *buf, size_t size)
925 {
926 int page_size = qp->xmm->td_ring[qp->num*2].page_size;
927 int ret;
928
929 if (size > page_size)
930 size = page_size;
931
932 ret = copy_from_user(qp->user_buf, buf, size);
933 size = size - ret;
934 if (!size)
935 return 0;
936 return xmm7360_qp_write(qp, qp->user_buf, size);
937 }
938
939 static int xmm7360_qp_has_data(struct queue_pair *qp)
940 {
941 struct xmm_dev *xmm = qp->xmm;
942 struct td_ring *ring = &xmm->td_ring[qp->num*2+1];
943
944 return (xmm->cp->s_rptr[qp->num*2+1] != ring->last_handled);
945 }
946
947 static ssize_t xmm7360_qp_read_user(struct queue_pair *qp, char __user *buf, size_t size)
948 {
949 struct xmm_dev *xmm = qp->xmm;
950 struct td_ring *ring = &xmm->td_ring[qp->num*2+1];
951 int idx, nread, ret;
952 // XXX locking?
953 ret = wait_event_interruptible(qp->wq, xmm7360_qp_has_data(qp) || xmm->error);
954 if (ret < 0)
955 return ret;
956 if (xmm->error)
957 return xmm->error;
958
959 idx = ring->last_handled;
960 nread = ring->tds[idx].length;
961 if (nread > size)
962 nread = size;
963 ret = copy_to_user(buf, ring->pages[idx], nread);
964 nread -= ret;
965 if (nread == 0)
966 return 0;
967
968 // XXX all data not fitting into buf+size is discarded
969 xmm7360_td_ring_read(xmm, qp->num*2+1);
970 xmm7360_ding(xmm, DOORBELL_TD);
971 ring->last_handled = (idx + 1) & (ring->depth - 1);
972
973 return nread;
974 }
975
976 static void xmm7360_tty_poll_qp(struct queue_pair *qp)
977 {
978 struct xmm_dev *xmm = qp->xmm;
979 struct td_ring *ring = &xmm->td_ring[qp->num*2+1];
980 int idx, nread;
981 while (xmm7360_qp_has_data(qp)) {
982 idx = ring->last_handled;
983 nread = ring->tds[idx].length;
984 xmm7360_os_handle_tty_idata(qp, ring->pages[idx], nread);
985
986 xmm7360_td_ring_read(xmm, qp->num*2+1);
987 xmm7360_ding(xmm, DOORBELL_TD);
988 ring->last_handled = (idx + 1) & (ring->depth - 1);
989 }
990 }
991
992 #ifdef __linux__
993
994 static void xmm7360_os_handle_tty_idata(struct queue_pair *qp, const u8 *data, size_t nread)
995 {
996 tty_insert_flip_string(&qp->port, data, nread);
997 tty_flip_buffer_push(&qp->port);
998 }
999
1000 int xmm7360_cdev_open (struct inode *inode, struct file *file)
1001 {
1002 struct queue_pair *qp = container_of(inode->i_cdev, struct queue_pair, cdev);
1003 file->private_data = qp;
1004 return xmm7360_qp_start(qp);
1005 }
1006
1007 int xmm7360_cdev_release (struct inode *inode, struct file *file)
1008 {
1009 struct queue_pair *qp = file->private_data;
1010 return xmm7360_qp_stop(qp);
1011 }
1012
1013 ssize_t xmm7360_cdev_write (struct file *file, const char __user *buf, size_t size, loff_t *offset)
1014 {
1015 struct queue_pair *qp = file->private_data;
1016 int ret;
1017
1018 ret = xmm7360_qp_write_user(qp, buf, size);
1019 if (ret < 0)
1020 return ret;
1021
1022 *offset += ret;
1023 return ret;
1024 }
1025
1026 ssize_t xmm7360_cdev_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
1027 {
1028 struct queue_pair *qp = file->private_data;
1029 int ret;
1030
1031 ret = xmm7360_qp_read_user(qp, buf, size);
1032 if (ret < 0)
1033 return ret;
1034
1035 *offset += ret;
1036 return ret;
1037 }
1038
1039 static unsigned int xmm7360_cdev_poll(struct file *file, poll_table *wait)
1040 {
1041 struct queue_pair *qp = file->private_data;
1042 unsigned int mask = 0;
1043
1044 poll_wait(file, &qp->wq, wait);
1045
1046 if (qp->xmm->error)
1047 return POLLHUP;
1048
1049 if (xmm7360_qp_has_data(qp))
1050 mask |= POLLIN | POLLRDNORM;
1051
1052 if (xmm7360_qp_can_write(qp))
1053 mask |= POLLOUT | POLLWRNORM;
1054
1055 return mask;
1056 }
1057
1058 static long xmm7360_cdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1059 {
1060 struct queue_pair *qp = file->private_data;
1061
1062 u32 val;
1063
1064 switch (cmd) {
1065 case XMM7360_IOCTL_GET_PAGE_SIZE:
1066 val = qp->xmm->td_ring[qp->num*2].page_size;
1067 if (copy_to_user((u32*)arg, &val, sizeof(u32)))
1068 return -EFAULT;
1069 return 0;
1070 }
1071
1072 return -ENOTTY;
1073 }
1074
1075 static struct file_operations xmm7360_fops = {
1076 .read = xmm7360_cdev_read,
1077 .write = xmm7360_cdev_write,
1078 .poll = xmm7360_cdev_poll,
1079 .unlocked_ioctl = xmm7360_cdev_ioctl,
1080 .open = xmm7360_cdev_open,
1081 .release = xmm7360_cdev_release
1082 };
1083
1084 #endif /* __linux__ */
1085
1086 static void xmm7360_mux_frame_init(struct xmm_net *xn, struct mux_frame *frame, int sequence)
1087 {
1088 frame->sequence = xn->sequence;
1089 frame->max_size = xn->xmm->td_ring[0].page_size;
1090 frame->n_packets = 0;
1091 frame->n_bytes = 0;
1092 frame->last_tag_next = NULL;
1093 frame->last_tag_length = NULL;
1094 }
1095
1096 static void xmm7360_mux_frame_add_tag(struct mux_frame *frame, uint32_t tag, uint16_t extra, void *data, int data_len)
1097 {
1098 int total_length;
1099 if (frame->n_bytes == 0)
1100 total_length = sizeof(struct mux_first_header) + data_len;
1101 else
1102 total_length = sizeof(struct mux_next_header) + data_len;
1103
1104 while (frame->n_bytes & 3)
1105 frame->n_bytes++;
1106
1107 BUG_ON(frame->n_bytes + total_length > frame->max_size);
1108
1109 if (frame->last_tag_next)
1110 *frame->last_tag_next = frame->n_bytes;
1111
1112 if (frame->n_bytes == 0) {
1113 struct mux_first_header *hdr = (struct mux_first_header *)frame->data;
1114 memset(hdr, 0, sizeof(struct mux_first_header));
1115 hdr->tag = htonl(tag);
1116 hdr->sequence = frame->sequence;
1117 hdr->length = total_length;
1118 hdr->extra = extra;
1119 frame->last_tag_length = &hdr->length;
1120 frame->last_tag_next = &hdr->next;
1121 frame->n_bytes += sizeof(struct mux_first_header);
1122 } else {
1123 struct mux_next_header *hdr = (struct mux_next_header *)(&frame->data[frame->n_bytes]);
1124 memset(hdr, 0, sizeof(struct mux_next_header));
1125 hdr->tag = htonl(tag);
1126 hdr->length = total_length;
1127 hdr->extra = extra;
1128 frame->last_tag_length = &hdr->length;
1129 frame->last_tag_next = &hdr->next;
1130 frame->n_bytes += sizeof(struct mux_next_header);
1131 }
1132
1133 if (data_len) {
1134 memcpy(&frame->data[frame->n_bytes], data, data_len);
1135 frame->n_bytes += data_len;
1136 }
1137 }
1138
1139 static void xmm7360_mux_frame_append_data(struct mux_frame *frame, const void *data, int data_len)
1140 {
1141 BUG_ON(frame->n_bytes + data_len > frame->max_size);
1142 BUG_ON(!frame->last_tag_length);
1143
1144 memcpy(&frame->data[frame->n_bytes], data, data_len);
1145 *frame->last_tag_length += data_len;
1146 frame->n_bytes += data_len;
1147 }
1148
1149 static int xmm7360_mux_frame_append_packet(struct mux_frame *frame, const void *data, int data_len)
1150 {
1151 int expected_adth_size = sizeof(struct mux_next_header) + 4 + (frame->n_packets+1)*sizeof(struct mux_bounds);
1152 uint8_t pad[16];
1153
1154 if (frame->n_packets >= MUX_MAX_PACKETS)
1155 return -1;
1156
1157 if (frame->n_bytes + data_len + 16 + expected_adth_size > frame->max_size)
1158 return -1;
1159
1160 BUG_ON(!frame->last_tag_length);
1161
1162 frame->bounds[frame->n_packets].offset = frame->n_bytes;
1163 frame->bounds[frame->n_packets].length = data_len + 16;
1164 frame->n_packets++;
1165
1166 memset(pad, 0, sizeof(pad));
1167 xmm7360_mux_frame_append_data(frame, pad, 16);
1168 xmm7360_mux_frame_append_data(frame, data, data_len);
1169 return 0;
1170 }
1171
1172 static int xmm7360_mux_frame_push(struct xmm_dev *xmm, struct mux_frame *frame)
1173 {
1174 struct mux_first_header *hdr = (void*)&frame->data[0];
1175 int ret;
1176 hdr->length = frame->n_bytes;
1177
1178 ret = xmm7360_qp_write(xmm->net->qp, frame->data, frame->n_bytes);
1179 if (ret < 0)
1180 return ret;
1181 return 0;
1182 }
1183
1184 static int xmm7360_mux_control(struct xmm_net *xn, u32 arg1, u32 arg2, u32 arg3, u32 arg4)
1185 {
1186 struct mux_frame *frame = &xn->frame;
1187 int ret;
1188 uint32_t cmdh_args[] = {arg1, arg2, arg3, arg4};
1189 unsigned long flags __unused;
1190
1191 spin_lock_irqsave(&xn->lock, flags);
1192
1193 xmm7360_mux_frame_init(xn, frame, 0);
1194 xmm7360_mux_frame_add_tag(frame, XMM_TAG_ACBH, 0, NULL, 0);
1195 xmm7360_mux_frame_add_tag(frame, XMM_TAG_CMDH, xn->channel, cmdh_args, sizeof(cmdh_args));
1196 ret = xmm7360_mux_frame_push(xn->xmm, frame);
1197
1198 spin_unlock_irqrestore(&xn->lock, flags);
1199
1200 return ret;
1201 }
1202
1203 static void xmm7360_net_flush(struct xmm_net *xn)
1204 {
1205 struct mux_frame *frame = &xn->frame;
1206 int ret;
1207 u32 unknown = 0;
1208
1209 #ifdef __linux__
1210 /* Never called with empty queue */
1211 BUG_ON(skb_queue_empty(&xn->queue));
1212 #endif
1213 BUG_ON(!xmm7360_qp_can_write(xn->qp));
1214
1215 xmm7360_mux_frame_init(xn, frame, xn->sequence++);
1216 xmm7360_mux_frame_add_tag(frame, XMM_TAG_ADBH, 0, NULL, 0);
1217
1218 xmm7360_os_handle_net_dequeue(xn, frame);
1219 xn->queued_packets = xn->queued_bytes = 0;
1220
1221 xmm7360_mux_frame_add_tag(frame, XMM_TAG_ADTH, xn->channel, &unknown, sizeof(uint32_t));
1222 xmm7360_mux_frame_append_data(frame, &frame->bounds[0], sizeof(struct mux_bounds)*frame->n_packets);
1223
1224 ret = xmm7360_mux_frame_push(xn->xmm, frame);
1225 if (ret)
1226 goto drop;
1227
1228 return;
1229
1230 drop:
1231 dev_err(xn->xmm->dev, "Failed to ship coalesced frame");
1232 }
1233
1234 static int xmm7360_base_init(struct xmm_dev *xmm)
1235 {
1236 int ret, i;
1237 u32 status;
1238
1239 xmm->error = 0;
1240 xmm->num_ttys = 0;
1241
1242 status = xmm->bar2[BAR2_STATUS];
1243 if (status == XMM_MODEM_BOOTING) {
1244 dev_info(xmm->dev, "modem still booting, waiting...\n");
1245 for (i=0; i<100; i++) {
1246 status = xmm->bar2[BAR2_STATUS];
1247 if (status != XMM_MODEM_BOOTING)
1248 break;
1249 xmm7360_os_msleep(200);
1250 }
1251 }
1252
1253 if (status != XMM_MODEM_READY) {
1254 dev_err(xmm->dev, "unknown modem status: 0x%08x\n", status);
1255 return -EINVAL;
1256 }
1257
1258 dev_info(xmm->dev, "modem is ready\n");
1259
1260 ret = xmm7360_cmd_ring_init(xmm);
1261 if (ret) {
1262 dev_err(xmm->dev, "Could not bring up command ring %d\n",
1263 ret);
1264 return ret;
1265 }
1266
1267 return 0;
1268 }
1269
1270 static void xmm7360_net_mux_handle_frame(struct xmm_net *xn, u8 *data, int len)
1271 {
1272 struct mux_first_header *first;
1273 struct mux_next_header *adth;
1274 int n_packets, i;
1275 struct mux_bounds *bounds;
1276
1277 first = (void*)data;
1278 if (ntohl(first->tag) == XMM_TAG_ACBH)
1279 return;
1280
1281 if (ntohl(first->tag) != XMM_TAG_ADBH) {
1282 dev_info(xn->xmm->dev, "Unexpected tag %x\n", first->tag);
1283 return;
1284 }
1285
1286 adth = (void*)(&data[first->next]);
1287 if (ntohl(adth->tag) != XMM_TAG_ADTH) {
1288 dev_err(xn->xmm->dev, "Unexpected tag %x, expected ADTH\n", adth->tag);
1289 return;
1290 }
1291
1292 n_packets = (adth->length - sizeof(struct mux_next_header) - 4) / sizeof(struct mux_bounds);
1293
1294 bounds = (void*)&data[first->next + sizeof(struct mux_next_header) + 4];
1295
1296 for (i=0; i<n_packets; i++) {
1297 if (!bounds[i].length)
1298 continue;
1299
1300 xmm7360_os_handle_net_frame(xn->xmm,
1301 &data[bounds[i].offset], bounds[i].length);
1302 }
1303 }
1304
1305 static void xmm7360_net_poll(struct xmm_dev *xmm)
1306 {
1307 struct queue_pair *qp;
1308 struct td_ring *ring;
1309 int idx, nread;
1310 struct xmm_net *xn = xmm->net;
1311 unsigned long flags __unused;
1312
1313 BUG_ON(!xn);
1314
1315 qp = xn->qp;
1316 ring = &xmm->td_ring[qp->num*2+1];
1317
1318 spin_lock_irqsave(&xn->lock, flags);
1319
1320 if (xmm7360_qp_can_write(qp))
1321 xmm7360_os_handle_net_txwake(xn);
1322
1323 while (xmm7360_qp_has_data(qp)) {
1324 idx = ring->last_handled;
1325 nread = ring->tds[idx].length;
1326 xmm7360_net_mux_handle_frame(xn, ring->pages[idx], nread);
1327
1328 xmm7360_td_ring_read(xmm, qp->num*2+1);
1329 xmm7360_ding(xmm, DOORBELL_TD);
1330 ring->last_handled = (idx + 1) & (ring->depth - 1);
1331 }
1332
1333 spin_unlock_irqrestore(&xn->lock, flags);
1334 }
1335
1336 #ifdef __linux__
1337
1338 static void xmm7360_net_uninit(struct net_device *dev)
1339 {
1340 }
1341
1342 static int xmm7360_net_open(struct net_device *dev)
1343 {
1344 struct xmm_net *xn = netdev_priv(dev);
1345 xn->queued_packets = xn->queued_bytes = 0;
1346 skb_queue_purge(&xn->queue);
1347 netif_start_queue(dev);
1348 return xmm7360_mux_control(xn, 1, 0, 0, 0);
1349 }
1350
1351 static int xmm7360_net_close(struct net_device *dev)
1352 {
1353 netif_stop_queue(dev);
1354 return 0;
1355 }
1356
1357 static int xmm7360_net_must_flush(struct xmm_net *xn, int new_packet_bytes)
1358 {
1359 int frame_size;
1360 if (xn->queued_packets >= MUX_MAX_PACKETS)
1361 return 1;
1362
1363 frame_size = sizeof(struct mux_first_header) + xn->queued_bytes + sizeof(struct mux_next_header) + 4 + sizeof(struct mux_bounds)*xn->queued_packets;
1364
1365 frame_size += 16 + new_packet_bytes + sizeof(struct mux_bounds);
1366
1367 return frame_size > xn->frame.max_size;
1368 }
1369
1370 static enum hrtimer_restart xmm7360_net_deadline_cb(struct hrtimer *t)
1371 {
1372 struct xmm_net *xn = container_of(t, struct xmm_net, deadline);
1373 unsigned long flags;
1374 spin_lock_irqsave(&xn->lock, flags);
1375 if (!skb_queue_empty(&xn->queue) && xmm7360_qp_can_write(xn->qp))
1376 xmm7360_net_flush(xn);
1377 spin_unlock_irqrestore(&xn->lock, flags);
1378 return HRTIMER_NORESTART;
1379 }
1380
1381 static netdev_tx_t xmm7360_net_xmit(struct sk_buff *skb, struct net_device *dev)
1382 {
1383 struct xmm_net *xn = netdev_priv(dev);
1384 ktime_t kt;
1385 unsigned long flags;
1386
1387 if (netif_queue_stopped(dev))
1388 return NETDEV_TX_BUSY;
1389
1390 skb_orphan(skb);
1391
1392 spin_lock_irqsave(&xn->lock, flags);
1393 if (xmm7360_net_must_flush(xn, skb->len)) {
1394 if (xmm7360_qp_can_write(xn->qp)) {
1395 xmm7360_net_flush(xn);
1396 } else {
1397 netif_stop_queue(dev);
1398 spin_unlock_irqrestore(&xn->lock, flags);
1399 return NETDEV_TX_BUSY;
1400 }
1401 }
1402
1403 xn->queued_packets++;
1404 xn->queued_bytes += 16 + skb->len;
1405 skb_queue_tail(&xn->queue, skb);
1406
1407 spin_unlock_irqrestore(&xn->lock, flags);
1408
1409 if (!hrtimer_active(&xn->deadline)) {
1410 kt = ktime_set(0, 100000);
1411 hrtimer_start(&xn->deadline, kt, HRTIMER_MODE_REL);
1412 }
1413
1414 return NETDEV_TX_OK;
1415 }
1416
1417 static void xmm7360_os_handle_net_frame(struct xmm_dev *xmm, const u8 *buf, size_t sz)
1418 {
1419 struct sk_buff *skb;
1420 void *p;
1421 u8 ip_version;
1422
1423 skb = dev_alloc_skb(sz + NET_IP_ALIGN);
1424 if (!skb)
1425 return;
1426 skb_reserve(skb, NET_IP_ALIGN);
1427 p = skb_put(skb, sz);
1428 memcpy(p, buf, sz);
1429
1430 skb->dev = xmm->netdev;
1431
1432 ip_version = skb->data[0] >> 4;
1433 if (ip_version == 4) {
1434 skb->protocol = htons(ETH_P_IP);
1435 } else if (ip_version == 6) {
1436 skb->protocol = htons(ETH_P_IPV6);
1437 } else {
1438 kfree_skb(skb);
1439 return;
1440 }
1441
1442 netif_rx(skb);
1443 }
1444
1445 static void xmm7360_os_handle_net_dequeue(struct xmm_net *xn, struct mux_frame *frame)
1446 {
1447 struct sk_buff *skb;
1448 int ret;
1449
1450 while ((skb = skb_dequeue(&xn->queue))) {
1451 ret = xmm7360_mux_frame_append_packet(frame,
1452 skb->data, skb->len);
1453 kfree_skb(skb);
1454 if (ret) {
1455 /* No more space in the frame */
1456 break;
1457 }
1458 }
1459 }
1460
1461 static void xmm7360_os_handle_net_txwake(struct xmm_net *xn)
1462 {
1463 BUG_ON(!xmm7360_qp_can_write(xn->qp));
1464
1465 if (netif_queue_stopped(xn->xmm->netdev))
1466 netif_wake_queue(xn->xmm->netdev);
1467 }
1468
1469 static const struct net_device_ops xmm7360_netdev_ops = {
1470 .ndo_uninit = xmm7360_net_uninit,
1471 .ndo_open = xmm7360_net_open,
1472 .ndo_stop = xmm7360_net_close,
1473 .ndo_start_xmit = xmm7360_net_xmit,
1474 };
1475
1476 static void xmm7360_net_setup(struct net_device *dev)
1477 {
1478 struct xmm_net *xn = netdev_priv(dev);
1479 spin_lock_init(&xn->lock);
1480 hrtimer_init(&xn->deadline, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1481 xn->deadline.function = xmm7360_net_deadline_cb;
1482 skb_queue_head_init(&xn->queue);
1483
1484 dev->netdev_ops = &xmm7360_netdev_ops;
1485
1486 dev->hard_header_len = 0;
1487 dev->addr_len = 0;
1488 dev->mtu = 1500;
1489 dev->min_mtu = 1500;
1490 dev->max_mtu = 1500;
1491
1492 dev->tx_queue_len = 1000;
1493
1494 dev->type = ARPHRD_NONE;
1495 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1496 }
1497
1498 static int xmm7360_create_net(struct xmm_dev *xmm, int num)
1499 {
1500 struct net_device *netdev;
1501 struct xmm_net *xn;
1502 int ret;
1503
1504 netdev = alloc_netdev(sizeof(struct xmm_net), "wwan%d", NET_NAME_UNKNOWN, xmm7360_net_setup);
1505
1506 if (!netdev)
1507 return -ENOMEM;
1508
1509 SET_NETDEV_DEV(netdev, xmm->dev);
1510
1511 xmm->netdev = netdev;
1512
1513 xn = netdev_priv(netdev);
1514 xn->xmm = xmm;
1515 xmm->net = xn;
1516
1517 rtnl_lock();
1518 ret = register_netdevice(netdev);
1519 rtnl_unlock();
1520
1521 xn->qp = xmm7360_init_qp(xmm, num, 128, TD_MAX_PAGE_SIZE);
1522
1523 if (!ret)
1524 ret = xmm7360_qp_start(xn->qp);
1525
1526 if (ret < 0) {
1527 free_netdev(netdev);
1528 xmm->netdev = NULL;
1529 xmm7360_qp_stop(xn->qp);
1530 }
1531
1532 return ret;
1533 }
1534
1535 static void xmm7360_destroy_net(struct xmm_dev *xmm)
1536 {
1537 if (xmm->netdev) {
1538 xmm7360_qp_stop(xmm->net->qp);
1539 rtnl_lock();
1540 unregister_netdevice(xmm->netdev);
1541 rtnl_unlock();
1542 free_netdev(xmm->netdev);
1543 xmm->net = NULL;
1544 xmm->netdev = NULL;
1545 }
1546 }
1547
1548 static irqreturn_t xmm7360_irq0(int irq, void *dev_id) {
1549 struct xmm_dev *xmm = dev_id;
1550 struct queue_pair *qp;
1551 int id;
1552
1553 xmm7360_poll(xmm);
1554 wake_up(&xmm->wq);
1555 if (xmm->td_ring) {
1556 if (xmm->net)
1557 xmm7360_net_poll(xmm);
1558
1559 for (id=1; id<XMM_QP_COUNT; id++) {
1560 qp = &xmm->qp[id];
1561
1562 /* wake _cdev_read() */
1563 if (qp->open)
1564 wake_up(&qp->wq);
1565
1566 /* tty tasks */
1567 if (qp->open && qp->port.ops) {
1568 xmm7360_tty_poll_qp(qp);
1569 if (qp->tty_needs_wake && xmm7360_qp_can_write(qp) && qp->port.tty) {
1570 struct tty_ldisc *ldisc = tty_ldisc_ref(qp->port.tty);
1571 if (ldisc) {
1572 if (ldisc->ops->write_wakeup)
1573 ldisc->ops->write_wakeup(qp->port.tty);
1574 tty_ldisc_deref(ldisc);
1575 }
1576 qp->tty_needs_wake = 0;
1577 }
1578 }
1579 }
1580 }
1581
1582 return IRQ_HANDLED;
1583 }
1584
1585 static dev_t xmm_base;
1586
1587 static struct tty_driver *xmm7360_tty_driver;
1588
1589 static void xmm7360_dev_deinit(struct xmm_dev *xmm)
1590 {
1591 int i;
1592 xmm->error = -ENODEV;
1593
1594 cancel_work_sync(&xmm->init_work);
1595
1596 xmm7360_destroy_net(xmm);
1597
1598 for (i=0; i<XMM_QP_COUNT; i++) {
1599 if (xmm->qp[i].xmm) {
1600 if (xmm->qp[i].cdev.owner) {
1601 cdev_del(&xmm->qp[i].cdev);
1602 device_unregister(&xmm->qp[i].dev);
1603 }
1604 if (xmm->qp[i].port.ops) {
1605 tty_unregister_device(xmm7360_tty_driver, xmm->qp[i].tty_index);
1606 tty_port_destroy(&xmm->qp[i].port);
1607 }
1608 }
1609 memset(&xmm->qp[i], 0, sizeof(struct queue_pair));
1610 }
1611 xmm7360_cmd_ring_free(xmm);
1612
1613 }
1614
1615 static void xmm7360_remove(struct pci_dev *dev)
1616 {
1617 struct xmm_dev *xmm = pci_get_drvdata(dev);
1618
1619 xmm7360_dev_deinit(xmm);
1620
1621 if (xmm->irq)
1622 free_irq(xmm->irq, xmm);
1623 pci_free_irq_vectors(dev);
1624 pci_release_region(dev, 0);
1625 pci_release_region(dev, 2);
1626 pci_disable_device(dev);
1627 kfree(xmm);
1628 }
1629
1630 static void xmm7360_cdev_dev_release(struct device *dev)
1631 {
1632 }
1633
1634 static int xmm7360_tty_open(struct tty_struct *tty, struct file *filp)
1635 {
1636 struct queue_pair *qp = tty->driver_data;
1637 return tty_port_open(&qp->port, tty, filp);
1638 }
1639
1640 static void xmm7360_tty_close(struct tty_struct *tty, struct file *filp)
1641 {
1642 struct queue_pair *qp = tty->driver_data;
1643 if (qp)
1644 tty_port_close(&qp->port, tty, filp);
1645 }
1646
1647 static int xmm7360_tty_write(struct tty_struct *tty, const unsigned char *buffer,
1648 int count)
1649 {
1650 struct queue_pair *qp = tty->driver_data;
1651 int written;
1652 written = xmm7360_qp_write(qp, buffer, count);
1653 if (written < count)
1654 qp->tty_needs_wake = 1;
1655 return written;
1656 }
1657
1658 static int xmm7360_tty_write_room(struct tty_struct *tty)
1659 {
1660 struct queue_pair *qp = tty->driver_data;
1661 if (!xmm7360_qp_can_write(qp))
1662 return 0;
1663 else
1664 return qp->xmm->td_ring[qp->num*2].page_size;
1665 }
1666
1667 static int xmm7360_tty_install(struct tty_driver *driver, struct tty_struct *tty)
1668 {
1669 struct queue_pair *qp;
1670 int ret;
1671
1672 ret = tty_standard_install(driver, tty);
1673 if (ret)
1674 return ret;
1675
1676 tty->port = driver->ports[tty->index];
1677 qp = container_of(tty->port, struct queue_pair, port);
1678 tty->driver_data = qp;
1679 return 0;
1680 }
1681
1682
1683 static int xmm7360_tty_port_activate(struct tty_port *tport, struct tty_struct *tty)
1684 {
1685 struct queue_pair *qp = tty->driver_data;
1686 return xmm7360_qp_start(qp);
1687 }
1688
1689 static void xmm7360_tty_port_shutdown(struct tty_port *tport)
1690 {
1691 struct queue_pair *qp = tport->tty->driver_data;
1692 xmm7360_qp_stop(qp);
1693 }
1694
1695
1696 static const struct tty_port_operations xmm7360_tty_port_ops = {
1697 .activate = xmm7360_tty_port_activate,
1698 .shutdown = xmm7360_tty_port_shutdown,
1699 };
1700
1701 static const struct tty_operations xmm7360_tty_ops = {
1702 .open = xmm7360_tty_open,
1703 .close = xmm7360_tty_close,
1704 .write = xmm7360_tty_write,
1705 .write_room = xmm7360_tty_write_room,
1706 .install = xmm7360_tty_install,
1707 };
1708
1709 static int xmm7360_create_tty(struct xmm_dev *xmm, int num)
1710 {
1711 struct device *tty_dev;
1712 struct queue_pair *qp = xmm7360_init_qp(xmm, num, 8, 4096);
1713 int ret;
1714 tty_port_init(&qp->port);
1715 qp->port.low_latency = 1;
1716 qp->port.ops = &xmm7360_tty_port_ops;
1717 qp->tty_index = xmm->num_ttys++;
1718 tty_dev = tty_port_register_device(&qp->port, xmm7360_tty_driver, qp->tty_index, xmm->dev);
1719
1720 if (IS_ERR(tty_dev)) {
1721 qp->port.ops = NULL; // prevent calling unregister
1722 ret = PTR_ERR(tty_dev);
1723 dev_err(xmm->dev, "Could not allocate tty?\n");
1724 tty_port_destroy(&qp->port);
1725 return ret;
1726 }
1727
1728 return 0;
1729 }
1730
1731 static int xmm7360_create_cdev(struct xmm_dev *xmm, int num, const char *name, int cardnum)
1732 {
1733 struct queue_pair *qp = xmm7360_init_qp(xmm, num, 16, TD_MAX_PAGE_SIZE);
1734 int ret;
1735
1736 cdev_init(&qp->cdev, &xmm7360_fops);
1737 qp->cdev.owner = THIS_MODULE;
1738 device_initialize(&qp->dev);
1739 qp->dev.devt = MKDEV(MAJOR(xmm_base), num); // XXX multiple cards
1740 qp->dev.parent = &xmm->pci_dev->dev;
1741 qp->dev.release = xmm7360_cdev_dev_release;
1742 dev_set_name(&qp->dev, name, cardnum);
1743 dev_set_drvdata(&qp->dev, qp);
1744 ret = cdev_device_add(&qp->cdev, &qp->dev);
1745 if (ret) {
1746 dev_err(xmm->dev, "cdev_device_add: %d\n", ret);
1747 return ret;
1748 }
1749 return 0;
1750 }
1751
1752 static int xmm7360_dev_init(struct xmm_dev *xmm)
1753 {
1754 int ret;
1755
1756 ret = xmm7360_base_init(xmm);
1757 if (ret)
1758 return ret;
1759
1760 ret = xmm7360_create_cdev(xmm, 1, "xmm%d/rpc", xmm->card_num);
1761 if (ret)
1762 return ret;
1763 ret = xmm7360_create_cdev(xmm, 3, "xmm%d/trace", xmm->card_num);
1764 if (ret)
1765 return ret;
1766 ret = xmm7360_create_tty(xmm, 2);
1767 if (ret)
1768 return ret;
1769 ret = xmm7360_create_tty(xmm, 4);
1770 if (ret)
1771 return ret;
1772 ret = xmm7360_create_tty(xmm, 7);
1773 if (ret)
1774 return ret;
1775 ret = xmm7360_create_net(xmm, 0);
1776 if (ret)
1777 return ret;
1778
1779 return 0;
1780 }
1781
1782 void xmm7360_dev_init_work(struct work_struct *work)
1783 {
1784 struct xmm_dev *xmm = container_of(work, struct xmm_dev, init_work);
1785 xmm7360_dev_init(xmm);
1786 }
1787
1788 static int xmm7360_probe(struct pci_dev *dev, const struct pci_device_id *id)
1789 {
1790 struct xmm_dev *xmm = kzalloc(sizeof(struct xmm_dev), GFP_KERNEL);
1791 int ret;
1792
1793 xmm->pci_dev = dev;
1794 xmm->dev = &dev->dev;
1795
1796 if (!xmm) {
1797 dev_err(&(dev->dev), "kzalloc\n");
1798 return -ENOMEM;
1799 }
1800
1801 ret = pci_enable_device(dev);
1802 if (ret) {
1803 dev_err(&(dev->dev), "pci_enable_device\n");
1804 goto fail;
1805 }
1806 pci_set_master(dev);
1807
1808 ret = pci_set_dma_mask(dev, 0xffffffffffffffff);
1809 if (ret) {
1810 dev_err(xmm->dev, "Cannot set DMA mask\n");
1811 goto fail;
1812 }
1813 dma_set_coherent_mask(xmm->dev, 0xffffffffffffffff);
1814
1815
1816 ret = pci_request_region(dev, 0, "xmm0");
1817 if (ret) {
1818 dev_err(&(dev->dev), "pci_request_region(0)\n");
1819 goto fail;
1820 }
1821 xmm->bar0 = pci_iomap(dev, 0, pci_resource_len(dev, 0));
1822
1823 ret = pci_request_region(dev, 2, "xmm2");
1824 if (ret) {
1825 dev_err(&(dev->dev), "pci_request_region(2)\n");
1826 goto fail;
1827 }
1828 xmm->bar2 = pci_iomap(dev, 2, pci_resource_len(dev, 2));
1829
1830 ret = pci_alloc_irq_vectors(dev, 1, 1, PCI_IRQ_MSI | PCI_IRQ_MSIX);
1831 if (ret < 0) {
1832 dev_err(&(dev->dev), "pci_alloc_irq_vectors\n");
1833 goto fail;
1834 }
1835
1836 init_waitqueue_head(&xmm->wq);
1837 INIT_WORK(&xmm->init_work, xmm7360_dev_init_work);
1838
1839 pci_set_drvdata(dev, xmm);
1840
1841 ret = xmm7360_dev_init(xmm);
1842 if (ret)
1843 goto fail;
1844
1845 xmm->irq = pci_irq_vector(dev, 0);
1846 ret = request_irq(xmm->irq, xmm7360_irq0, 0, "xmm7360", xmm);
1847 if (ret) {
1848 dev_err(&(dev->dev), "request_irq\n");
1849 goto fail;
1850 }
1851
1852 return ret;
1853
1854 fail:
1855 xmm7360_dev_deinit(xmm);
1856 xmm7360_remove(dev);
1857 return ret;
1858 }
1859
1860 static struct pci_driver xmm7360_driver = {
1861 .name = "xmm7360",
1862 .id_table = xmm7360_ids,
1863 .probe = xmm7360_probe,
1864 .remove = xmm7360_remove,
1865 };
1866
1867 static int xmm7360_init(void)
1868 {
1869 int ret;
1870 ret = alloc_chrdev_region(&xmm_base, 0, 8, "xmm");
1871 if (ret)
1872 return ret;
1873
1874 xmm7360_tty_driver = alloc_tty_driver(8);
1875 if (!xmm7360_tty_driver)
1876 return -ENOMEM;
1877
1878 xmm7360_tty_driver->driver_name = "xmm7360";
1879 xmm7360_tty_driver->name = "ttyXMM";
1880 xmm7360_tty_driver->major = 0;
1881 xmm7360_tty_driver->type = TTY_DRIVER_TYPE_SERIAL;
1882 xmm7360_tty_driver->subtype = SERIAL_TYPE_NORMAL;
1883 xmm7360_tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1884 xmm7360_tty_driver->init_termios = tty_std_termios;
1885 xmm7360_tty_driver->init_termios.c_cflag = B115200 | CS8 | CREAD | \
1886 HUPCL | CLOCAL;
1887 xmm7360_tty_driver->init_termios.c_lflag &= ~ECHO;
1888 xmm7360_tty_driver->init_termios.c_ispeed = 115200;
1889 xmm7360_tty_driver->init_termios.c_ospeed = 115200;
1890 tty_set_operations(xmm7360_tty_driver, &xmm7360_tty_ops);
1891
1892 ret = tty_register_driver(xmm7360_tty_driver);
1893 if (ret) {
1894 pr_err("xmm7360: failed to register xmm7360_tty driver\n");
1895 return ret;
1896 }
1897
1898
1899 ret = pci_register_driver(&xmm7360_driver);
1900 if (ret)
1901 return ret;
1902
1903 return 0;
1904 }
1905
1906 static void xmm7360_exit(void)
1907 {
1908 pci_unregister_driver(&xmm7360_driver);
1909 unregister_chrdev_region(xmm_base, 8);
1910 tty_unregister_driver(xmm7360_tty_driver);
1911 put_tty_driver(xmm7360_tty_driver);
1912 }
1913
1914 module_init(xmm7360_init);
1915 module_exit(xmm7360_exit);
1916
1917 #endif /* __linux__ */
1918
1919 #if defined(__OpenBSD__) || defined(__NetBSD__)
1920
1921 /*
1922 * RPC and trace devices behave as regular character device,
1923 * other devices behave as terminal.
1924 */
1925 #define DEVCUA(x) (minor(x) & 0x80)
1926 #define DEVUNIT(x) ((minor(x) & 0x70) >> 4)
1927 #define DEVFUNC_MASK 0x0f
1928 #define DEVFUNC(x) (minor(x) & DEVFUNC_MASK)
1929 #define DEV_IS_TTY(x) (DEVFUNC(x) == 2 || DEVFUNC(x) > 3)
1930
1931 struct wwanc_softc {
1932 #ifdef __OpenBSD__
1933 struct device sc_devx; /* gen. device info storage */
1934 #endif
1935 struct device *sc_dev; /* generic device information */
1936 pci_chipset_tag_t sc_pc;
1937 pcitag_t sc_tag;
1938 bus_dma_tag_t sc_dmat;
1939 pci_intr_handle_t sc_pih;
1940 void *sc_ih; /* interrupt vectoring */
1941
1942 bus_space_tag_t sc_bar0_tag;
1943 bus_space_handle_t sc_bar0_handle;
1944 bus_size_t sc_bar0_sz;
1945 bus_space_tag_t sc_bar2_tag;
1946 bus_space_handle_t sc_bar2_handle;
1947 bus_size_t sc_bar2_sz;
1948
1949 struct xmm_dev sc_xmm;
1950 struct tty *sc_tty[XMM_QP_COUNT];
1951 struct device *sc_net;
1952 struct selinfo sc_selr, sc_selw;
1953 bool sc_resume;
1954 };
1955
1956 struct wwanc_attach_args {
1957 enum wwanc_type {
1958 WWMC_TYPE_RPC,
1959 WWMC_TYPE_TRACE,
1960 WWMC_TYPE_TTY,
1961 WWMC_TYPE_NET
1962 } aa_type;
1963 };
1964
1965 static int wwanc_match(struct device *, cfdata_t, void *);
1966 static void wwanc_attach(struct device *, struct device *, void *);
1967 static int wwanc_detach(struct device *, int);
1968
1969 #ifdef __OpenBSD__
1970 static int wwanc_activate(struct device *, int);
1971
1972 struct cfattach wwanc_ca = {
1973 sizeof(struct wwanc_softc), wwanc_match, wwanc_attach,
1974 wwanc_detach, wwanc_activate
1975 };
1976
1977 struct cfdriver wwanc_cd = {
1978 NULL, "wwanc", DV_DULL
1979 };
1980 #endif
1981
1982 #ifdef __NetBSD__
1983 CFATTACH_DECL3_NEW(wwanc, sizeof(struct wwanc_softc),
1984 wwanc_match, wwanc_attach, wwanc_detach, NULL,
1985 NULL, NULL, DVF_DETACH_SHUTDOWN);
1986
1987 static bool wwanc_pmf_suspend(device_t, const pmf_qual_t *);
1988 static bool wwanc_pmf_resume(device_t, const pmf_qual_t *);
1989 #endif /* __NetBSD__ */
1990
1991 static int
1992 wwanc_match(struct device *parent, cfdata_t match, void *aux)
1993 {
1994 struct pci_attach_args *pa = aux;
1995
1996 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
1997 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_XMM7360);
1998 }
1999
2000 static int xmm7360_dev_init(struct xmm_dev *xmm)
2001 {
2002 int ret;
2003 int depth, page_size;
2004
2005 ret = xmm7360_base_init(xmm);
2006 if (ret)
2007 return ret;
2008
2009 /* Initialize queue pairs for later use */
2010 for (int num = 0; num < XMM_QP_COUNT; num++) {
2011 switch (num) {
2012 case 0: /* net */
2013 depth = 128;
2014 page_size = TD_MAX_PAGE_SIZE;
2015 break;
2016 case 1: /* rpc */
2017 case 3: /* trace */
2018 depth = 16;
2019 page_size = TD_MAX_PAGE_SIZE;
2020 break;
2021 default: /* tty */
2022 depth = 8;
2023 page_size = 4096;
2024 break;
2025 }
2026
2027 xmm7360_init_qp(xmm, num, depth, page_size);
2028 }
2029
2030 return 0;
2031 }
2032
2033 static void xmm7360_dev_deinit(struct xmm_dev *xmm)
2034 {
2035 struct wwanc_softc *sc = device_private(xmm->dev);
2036 bool devgone = false;
2037 struct tty *tp;
2038
2039 xmm->error = -ENODEV;
2040
2041 /* network device should be gone by now */
2042 KASSERT(sc->sc_net == NULL);
2043 KASSERT(xmm->net == NULL);
2044
2045 /* free ttys */
2046 for (int i=0; i<XMM_QP_COUNT; i++) {
2047 tp = sc->sc_tty[i];
2048 if (tp) {
2049 KASSERT(DEV_IS_TTY(i));
2050 if (!devgone) {
2051 vdevgone(major(tp->t_dev), 0, DEVFUNC_MASK,
2052 VCHR);
2053 devgone = true;
2054 }
2055 ttyfree(tp);
2056 sc->sc_tty[i] = NULL;
2057 }
2058 }
2059
2060 xmm7360_cmd_ring_free(xmm);
2061 }
2062
2063 static void
2064 wwanc_io_wakeup(struct queue_pair *qp, int flag)
2065 {
2066 if (flag & FREAD) {
2067 selnotify(&qp->selr, POLLIN|POLLRDNORM, NOTE_SUBMIT);
2068 wakeup(qp->wq);
2069 }
2070 if (flag & FWRITE) {
2071 selnotify(&qp->selw, POLLOUT|POLLWRNORM, NOTE_SUBMIT);
2072 wakeup(qp->wq);
2073 }
2074 }
2075
2076 static int
2077 wwanc_intr(void *xsc)
2078 {
2079 struct wwanc_softc *sc = xsc;
2080 struct xmm_dev *xmm = &sc->sc_xmm;
2081 struct queue_pair *qp;
2082
2083 xmm7360_poll(xmm);
2084 wakeup(&xmm->wq);
2085
2086 if (xmm->net && xmm->net->qp->open && xmm7360_qp_has_data(xmm->net->qp))
2087 xmm7360_net_poll(xmm);
2088
2089 for (int func = 1; func < XMM_QP_COUNT; func++) {
2090 qp = &xmm->qp[func];
2091 if (!qp->open)
2092 continue;
2093
2094 /* Check for input, wwancstart()/wwancwrite() does output */
2095 if (xmm7360_qp_has_data(qp)) {
2096 if (DEV_IS_TTY(func)) {
2097 int s = spltty();
2098 xmm7360_tty_poll_qp(qp);
2099 splx(s);
2100 }
2101 wwanc_io_wakeup(qp, FREAD);
2102 }
2103
2104 /* Wakeup/notify eventual writers */
2105 if (xmm7360_qp_can_write(qp))
2106 wwanc_io_wakeup(qp, FWRITE);
2107 }
2108
2109 return 1;
2110 }
2111
2112 static int
2113 wwancprint(void *aux, const char *pnp)
2114 {
2115 struct wwanc_attach_args *wa = aux;
2116
2117 if (pnp)
2118 printf("wwanc type %s at %s",
2119 (wa->aa_type == WWMC_TYPE_NET) ? "net" : "unk", pnp);
2120 else
2121 printf(" type %s",
2122 (wa->aa_type == WWMC_TYPE_NET) ? "net" : "unk");
2123
2124 return (UNCONF);
2125 }
2126
2127 static void
2128 wwanc_attach_finish(struct device *self)
2129 {
2130 struct wwanc_softc *sc = device_private(self);
2131
2132 if (xmm7360_dev_init(&sc->sc_xmm)) {
2133 /* error already printed */
2134 return;
2135 }
2136
2137 /* Attach the network device */
2138 struct wwanc_attach_args wa;
2139 memset(&wa, 0, sizeof(wa));
2140 wa.aa_type = WWMC_TYPE_NET;
2141 sc->sc_net = config_found(self, &wa, wwancprint, CFARG_EOL);
2142 }
2143
2144 static void
2145 wwanc_attach(struct device *parent, struct device *self, void *aux)
2146 {
2147 struct wwanc_softc *sc = device_private(self);
2148 struct pci_attach_args *pa = aux;
2149 bus_space_tag_t memt;
2150 bus_space_handle_t memh;
2151 bus_size_t sz;
2152 int error;
2153 const char *intrstr;
2154 #ifdef __OpenBSD__
2155 pci_intr_handle_t ih;
2156 #endif
2157 #ifdef __NetBSD__
2158 pci_intr_handle_t *ih;
2159 char intrbuf[PCI_INTRSTR_LEN];
2160 #endif
2161
2162 sc->sc_dev = self;
2163 sc->sc_pc = pa->pa_pc;
2164 sc->sc_tag = pa->pa_tag;
2165 sc->sc_dmat = pa->pa_dmat;
2166
2167 /* map the register window, memory mapped 64-bit non-prefetchable */
2168 error = pci_mapreg_map(pa, WWAN_BAR0,
2169 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT,
2170 BUS_SPACE_MAP_LINEAR, &memt, &memh, NULL, &sz, 0);
2171 if (error != 0) {
2172 printf(": can't map mem space for BAR0 %d\n", error);
2173 return;
2174 }
2175 sc->sc_bar0_tag = memt;
2176 sc->sc_bar0_handle = memh;
2177 sc->sc_bar0_sz = sz;
2178
2179 error = pci_mapreg_map(pa, WWAN_BAR2,
2180 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT,
2181 BUS_SPACE_MAP_LINEAR, &memt, &memh, NULL, &sz, 0);
2182 if (error != 0) {
2183 bus_space_unmap(sc->sc_bar0_tag, sc->sc_bar0_handle,
2184 sc->sc_bar0_sz);
2185 printf(": can't map mem space for BAR2\n");
2186 return;
2187 }
2188 sc->sc_bar2_tag = memt;
2189 sc->sc_bar2_handle = memh;
2190 sc->sc_bar2_sz = sz;
2191
2192 /* Set xmm members needed for xmm7360_dev_init() */
2193 sc->sc_xmm.dev = self;
2194 sc->sc_xmm.bar0 = bus_space_vaddr(sc->sc_bar0_tag, sc->sc_bar0_handle);
2195 sc->sc_xmm.bar2 = bus_space_vaddr(sc->sc_bar0_tag, sc->sc_bar2_handle);
2196 init_waitqueue_head(&sc->sc_xmm.wq);
2197
2198 #ifdef __OpenBSD__
2199 if (pci_intr_map_msi(pa, &ih) && pci_intr_map(pa, &ih)) {
2200 printf(": can't map interrupt\n");
2201 goto fail;
2202 }
2203 sc->sc_pih = ih;
2204 intrstr = pci_intr_string(sc->sc_pc, ih);
2205 printf(": %s\n", intrstr);
2206 #endif
2207 #ifdef __NetBSD__
2208 if (pci_intr_alloc(pa, &ih, NULL, 0)) {
2209 printf(": can't map interrupt\n");
2210 goto fail;
2211 }
2212 sc->sc_pih = ih[0];
2213 intrstr = pci_intr_string(pa->pa_pc, ih[0], intrbuf, sizeof(intrbuf));
2214 aprint_normal(": LTE modem\n");
2215 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
2216 #endif
2217
2218 /* Device initialized, can establish the interrupt now */
2219 sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_pih, IPL_NET,
2220 wwanc_intr, sc, sc->sc_dev->dv_xname);
2221 if (sc->sc_ih == NULL) {
2222 printf("%s: can't establish interrupt\n", self->dv_xname);
2223 return;
2224 }
2225
2226 #ifdef __NetBSD__
2227 if (!pmf_device_register(self, wwanc_pmf_suspend, wwanc_pmf_resume))
2228 aprint_error_dev(self, "couldn't establish power handler\n");
2229 #endif
2230
2231 /*
2232 * Device initialization requires working interrupts, so need
2233 * to postpone this until they are enabled.
2234 */
2235 config_mountroot(self, wwanc_attach_finish);
2236 return;
2237
2238 fail:
2239 bus_space_unmap(sc->sc_bar0_tag, sc->sc_bar0_handle, sc->sc_bar0_sz);
2240 sc->sc_bar0_tag = 0;
2241 bus_space_unmap(sc->sc_bar2_tag, sc->sc_bar2_handle, sc->sc_bar2_sz);
2242 sc->sc_bar2_tag = 0;
2243 return;
2244 }
2245
2246 static int
2247 wwanc_detach(struct device *self, int flags)
2248 {
2249 int error;
2250 struct wwanc_softc *sc = device_private(self);
2251
2252 if (sc->sc_ih) {
2253 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
2254 sc->sc_ih = NULL;
2255 }
2256
2257 if (sc->sc_net) {
2258 error = config_detach_children(self, flags);
2259 if (error)
2260 return error;
2261 sc->sc_net = NULL;
2262 }
2263
2264 pmf_device_deregister(self);
2265
2266 xmm7360_dev_deinit(&sc->sc_xmm);
2267
2268 if (sc->sc_bar0_tag) {
2269 bus_space_unmap(sc->sc_bar0_tag, sc->sc_bar0_handle,
2270 sc->sc_bar0_sz);
2271 sc->sc_bar0_tag = 0;
2272 }
2273 sc->sc_xmm.bar0 = NULL;
2274
2275 if (sc->sc_bar2_tag) {
2276 bus_space_unmap(sc->sc_bar2_tag, sc->sc_bar2_handle,
2277 sc->sc_bar2_sz);
2278 sc->sc_bar2_tag = 0;
2279 }
2280 sc->sc_xmm.bar2 = NULL;
2281
2282 return 0;
2283 }
2284
2285 static void
2286 wwanc_suspend(struct device *self)
2287 {
2288 struct wwanc_softc *sc = device_private(self);
2289 struct xmm_dev *xmm = &sc->sc_xmm;
2290 struct queue_pair *qp;
2291
2292 KASSERT(!sc->sc_resume);
2293 KASSERT(xmm->cp != NULL);
2294
2295 for (int i = 0; i < XMM_QP_COUNT; i++) {
2296 qp = &xmm->qp[i];
2297 if (qp->open)
2298 xmm7360_qp_suspend(qp);
2299 }
2300
2301 xmm7360_cmd_ring_free(xmm);
2302 KASSERT(xmm->cp == NULL);
2303 }
2304
2305 static void
2306 wwanc_resume(struct device *self)
2307 {
2308 struct wwanc_softc *sc = device_private(self);
2309 struct xmm_dev *xmm = &sc->sc_xmm;
2310 struct queue_pair *qp;
2311
2312 KASSERT(xmm->cp == NULL);
2313
2314 xmm7360_base_init(xmm);
2315
2316 for (int i = 0; i < XMM_QP_COUNT; i++) {
2317 qp = &xmm->qp[i];
2318 if (qp->open)
2319 xmm7360_qp_resume(qp);
2320 }
2321 }
2322
2323 #ifdef __OpenBSD__
2324
2325 static void
2326 wwanc_defer_resume(void *xarg)
2327 {
2328 struct device *self = xarg;
2329 struct wwanc_softc *sc = device_private(self);
2330
2331 tsleep(&sc->sc_resume, 0, "wwancdr", 2 * hz);
2332
2333 wwanc_resume(self);
2334
2335 (void)config_activate_children(self, DVACT_RESUME);
2336
2337 sc->sc_resume = false;
2338 kthread_exit(0);
2339 }
2340
2341 static int
2342 wwanc_activate(struct device *self, int act)
2343 {
2344 struct wwanc_softc *sc = device_private(self);
2345
2346 switch (act) {
2347 case DVACT_QUIESCE:
2348 (void)config_activate_children(self, act);
2349 break;
2350 case DVACT_SUSPEND:
2351 if (sc->sc_resume) {
2352 /* Refuse to suspend if resume still ongoing */
2353 printf("%s: not suspending, resume still ongoing\n",
2354 self->dv_xname);
2355 return EBUSY;
2356 }
2357
2358 (void)config_activate_children(self, act);
2359 wwanc_suspend(self);
2360 break;
2361 case DVACT_RESUME:
2362 /*
2363 * Modem reinitialization can take several seconds, defer
2364 * it via kernel thread to avoid blocking the resume.
2365 */
2366 sc->sc_resume = true;
2367 kthread_create(wwanc_defer_resume, self, NULL, "wwancres");
2368 break;
2369 default:
2370 break;
2371 }
2372
2373 return 0;
2374 }
2375
2376 cdev_decl(wwanc);
2377 #endif /* __OpenBSD__ */
2378
2379 #ifdef __NetBSD__
2380 static bool
2381 wwanc_pmf_suspend(device_t self, const pmf_qual_t *qual)
2382 {
2383 wwanc_suspend(self);
2384 return true;
2385 }
2386
2387 static bool
2388 wwanc_pmf_resume(device_t self, const pmf_qual_t *qual)
2389 {
2390 wwanc_resume(self);
2391 return true;
2392 }
2393
2394 static dev_type_open(wwancopen);
2395 static dev_type_close(wwancclose);
2396 static dev_type_read(wwancread);
2397 static dev_type_write(wwancwrite);
2398 static dev_type_ioctl(wwancioctl);
2399 static dev_type_poll(wwancpoll);
2400 static dev_type_kqfilter(wwanckqfilter);
2401 static dev_type_tty(wwanctty);
2402
2403 const struct cdevsw wwanc_cdevsw = {
2404 .d_open = wwancopen,
2405 .d_close = wwancclose,
2406 .d_read = wwancread,
2407 .d_write = wwancwrite,
2408 .d_ioctl = wwancioctl,
2409 .d_stop = nullstop,
2410 .d_tty = wwanctty,
2411 .d_poll = wwancpoll,
2412 .d_mmap = nommap,
2413 .d_kqfilter = wwanckqfilter,
2414 .d_discard = nodiscard,
2415 .d_flag = D_TTY
2416 };
2417 #endif
2418
2419 static int wwancparam(struct tty *, struct termios *);
2420 static void wwancstart(struct tty *);
2421
2422 static void xmm7360_os_handle_tty_idata(struct queue_pair *qp, const u8 *data, size_t nread)
2423 {
2424 struct xmm_dev *xmm = qp->xmm;
2425 struct wwanc_softc *sc = device_private(xmm->dev);
2426 int func = qp->num;
2427 struct tty *tp = sc->sc_tty[func];
2428
2429 KASSERT(DEV_IS_TTY(func));
2430 KASSERT(tp);
2431
2432 for (int i = 0; i < nread; i++)
2433 LINESW(tp).l_rint(data[i], tp);
2434 }
2435
2436 int
2437 wwancopen(dev_t dev, int flags, int mode, struct proc *p)
2438 {
2439 int unit = DEVUNIT(dev);
2440 struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, unit);
2441 struct tty *tp;
2442 int func, error;
2443
2444 if (sc == NULL)
2445 return ENXIO;
2446
2447 /* Only allow opening the rpc/trace/AT queue pairs */
2448 func = DEVFUNC(dev);
2449 if (func < 1 || func > 7)
2450 return ENXIO;
2451
2452 if (DEV_IS_TTY(dev)) {
2453 if (!sc->sc_tty[func]) {
2454 tp = sc->sc_tty[func] = ttymalloc(1000000);
2455
2456 tp->t_oproc = wwancstart;
2457 tp->t_param = wwancparam;
2458 tp->t_dev = dev;
2459 tp->t_sc = (void *)sc;
2460 } else
2461 tp = sc->sc_tty[func];
2462
2463 if (!ISSET(tp->t_state, TS_ISOPEN)) {
2464 ttychars(tp);
2465 tp->t_iflag = TTYDEF_IFLAG;
2466 tp->t_oflag = TTYDEF_OFLAG;
2467 tp->t_lflag = TTYDEF_LFLAG;
2468 tp->t_cflag = TTYDEF_CFLAG;
2469 tp->t_ispeed = tp->t_ospeed = B115200;
2470 SET(tp->t_cflag, CS8 | CREAD | HUPCL | CLOCAL);
2471
2472 SET(tp->t_state, TS_CARR_ON);
2473 } else if (suser(p) != 0) {
2474 return EBUSY;
2475 }
2476
2477 error = LINESW(tp).l_open(dev, tp, p);
2478 if (error)
2479 return error;
2480 }
2481
2482 /* Initialize ring if qp not open yet */
2483 xmm7360_qp_start(&sc->sc_xmm.qp[func]);
2484
2485 return 0;
2486 }
2487
2488 int
2489 wwancread(dev_t dev, struct uio *uio, int flag)
2490 {
2491 struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2492 int func = DEVFUNC(dev);
2493
2494 KASSERT(sc != NULL);
2495
2496 if (DEV_IS_TTY(dev)) {
2497 struct tty *tp = sc->sc_tty[func];
2498
2499 return (LINESW(tp).l_read(tp, uio, flag));
2500 } else {
2501 struct queue_pair *qp = &sc->sc_xmm.qp[func];
2502 ssize_t ret;
2503 char *buf;
2504 size_t size, read = 0;
2505
2506 #ifdef __OpenBSD__
2507 KASSERT(uio->uio_segflg == UIO_USERSPACE);
2508 #endif
2509
2510 for (int i = 0; i < uio->uio_iovcnt; i++) {
2511 buf = uio->uio_iov[i].iov_base;
2512 size = uio->uio_iov[i].iov_len;
2513
2514 while (size > 0) {
2515 ret = xmm7360_qp_read_user(qp, buf, size);
2516 if (ret < 0) {
2517 /*
2518 * This shadows -EPERM, but that is
2519 * not returned by the call stack,
2520 * so this condition is safe.
2521 */
2522 return (ret == ERESTART) ? ret : -ret;
2523 }
2524
2525 KASSERT(ret > 0 && ret <= size);
2526 size -= ret;
2527 buf += ret;
2528 read += ret;
2529
2530 /* Reader will re-try if they want more */
2531 goto out;
2532 }
2533 }
2534
2535 out:
2536 uio->uio_resid -= read;
2537 uio->uio_offset += read;
2538
2539 return 0;
2540 }
2541 }
2542
2543 int
2544 wwancwrite(dev_t dev, struct uio *uio, int flag)
2545 {
2546 struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2547 int func = DEVFUNC(dev);
2548
2549 if (DEV_IS_TTY(dev)) {
2550 struct tty *tp = sc->sc_tty[func];
2551
2552 return (LINESW(tp).l_write(tp, uio, flag));
2553 } else {
2554 struct queue_pair *qp = &sc->sc_xmm.qp[func];
2555 ssize_t ret;
2556 const char *buf;
2557 size_t size, wrote = 0;
2558
2559 #ifdef __OpenBSD__
2560 KASSERT(uio->uio_segflg == UIO_USERSPACE);
2561 #endif
2562
2563 for (int i = 0; i < uio->uio_iovcnt; i++) {
2564 buf = uio->uio_iov[i].iov_base;
2565 size = uio->uio_iov[i].iov_len;
2566
2567 while (size > 0) {
2568 ret = xmm7360_qp_write_user(qp, buf, size);
2569 if (ret < 0) {
2570 /*
2571 * This shadows -EPERM, but that is
2572 * not returned by the call stack,
2573 * so this condition is safe.
2574 */
2575 return (ret == ERESTART) ? ret : -ret;
2576 }
2577
2578 KASSERT(ret > 0 && ret <= size);
2579 size -= ret;
2580 buf += ret;
2581 wrote += ret;
2582 }
2583 }
2584
2585 uio->uio_resid -= wrote;
2586 uio->uio_offset += wrote;
2587
2588 return 0;
2589 }
2590 }
2591
2592 int
2593 wwancioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
2594 {
2595 struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2596 int error;
2597
2598 if (DEV_IS_TTY(dev)) {
2599 struct tty *tp = sc->sc_tty[DEVFUNC(dev)];
2600 KASSERT(tp);
2601
2602 error = LINESW(tp).l_ioctl(tp, cmd, data, flag, p);
2603 if (error >= 0)
2604 return error;
2605 error = ttioctl(tp, cmd, data, flag, p);
2606 if (error >= 0)
2607 return error;
2608 }
2609
2610 return ENOTTY;
2611 }
2612
2613 int
2614 wwancclose(dev_t dev, int flag, int mode, struct proc *p)
2615 {
2616 struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2617 int func = DEVFUNC(dev);
2618
2619 if (DEV_IS_TTY(dev)) {
2620 struct tty *tp = sc->sc_tty[func];
2621 KASSERT(tp);
2622
2623 CLR(tp->t_state, TS_BUSY | TS_FLUSH);
2624 LINESW(tp).l_close(tp, flag, p);
2625 ttyclose(tp);
2626 }
2627
2628 xmm7360_qp_stop(&sc->sc_xmm.qp[func]);
2629
2630 return 0;
2631 }
2632
2633 struct tty *
2634 wwanctty(dev_t dev)
2635 {
2636 struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2637 struct tty *tp = sc->sc_tty[DEVFUNC(dev)];
2638
2639 KASSERT(DEV_IS_TTY(dev));
2640 KASSERT(tp);
2641
2642 return tp;
2643 }
2644
2645 static int
2646 wwancparam(struct tty *tp, struct termios *t)
2647 {
2648 struct wwanc_softc *sc __diagused = (struct wwanc_softc *)tp->t_sc;
2649 dev_t dev = tp->t_dev;
2650 int func __diagused = DEVFUNC(dev);
2651
2652 KASSERT(DEV_IS_TTY(dev));
2653 KASSERT(tp == sc->sc_tty[func]);
2654 /* Can't assert tty_locked(), it's not taken when called via ttioctl()*/
2655
2656 /* Nothing to set on hardware side, just copy values */
2657 tp->t_ispeed = t->c_ispeed;
2658 tp->t_ospeed = t->c_ospeed;
2659 tp->t_cflag = t->c_cflag;
2660
2661 return 0;
2662 }
2663
2664 static void
2665 wwancstart(struct tty *tp)
2666 {
2667 struct wwanc_softc *sc = (struct wwanc_softc *)tp->t_sc;
2668 dev_t dev = tp->t_dev;
2669 int func = DEVFUNC(dev);
2670 struct queue_pair *qp = &sc->sc_xmm.qp[func];
2671 int n, written;
2672
2673 KASSERT(DEV_IS_TTY(dev));
2674 KASSERT(tp == sc->sc_tty[func]);
2675 tty_locked();
2676
2677 if (ISSET(tp->t_state, TS_BUSY) || !xmm7360_qp_can_write(qp))
2678 return;
2679 if (tp->t_outq.c_cc == 0)
2680 return;
2681
2682 /*
2683 * If we can write, we can write full qb page_size amount of data.
2684 * Once q_to_b() is called, the data must be trasmitted - q_to_b()
2685 * removes them from the tty output queue. Partial write is not
2686 * possible.
2687 */
2688 KASSERT(sizeof(qp->user_buf) >= qp->page_size);
2689 SET(tp->t_state, TS_BUSY);
2690 n = q_to_b(&tp->t_outq, qp->user_buf, qp->page_size);
2691 KASSERT(n > 0);
2692 KASSERT(n <= qp->page_size);
2693 written = xmm7360_qp_write(qp, qp->user_buf, n);
2694 CLR(tp->t_state, TS_BUSY);
2695
2696 if (written != n) {
2697 dev_err(sc->sc_dev, "xmm7360_qp_write(%d) failed %d != %d\n",
2698 func, written, n);
2699 /* nothing to recover, just return */
2700 }
2701 }
2702
2703 int
2704 wwancpoll(dev_t dev, int events, struct proc *p)
2705 {
2706 struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2707 int func = DEVFUNC(dev);
2708 struct queue_pair *qp = &sc->sc_xmm.qp[func];
2709 int mask = 0;
2710
2711 if (DEV_IS_TTY(dev)) {
2712 #ifdef __OpenBSD__
2713 return ttpoll(dev, events, p);
2714 #endif
2715 #ifdef __NetBSD__
2716 struct tty *tp = sc->sc_tty[func];
2717
2718 return LINESW(tp).l_poll(tp, events, p);
2719 #endif
2720 }
2721
2722 KASSERT(!DEV_IS_TTY(dev));
2723
2724 if (qp->xmm->error) {
2725 mask |= POLLHUP;
2726 goto out;
2727 }
2728
2729 if (xmm7360_qp_has_data(qp))
2730 mask |= POLLIN | POLLRDNORM;
2731
2732 if (xmm7360_qp_can_write(qp))
2733 mask |= POLLOUT | POLLWRNORM;
2734
2735 out:
2736 if ((mask & events) == 0) {
2737 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND))
2738 selrecord(p, &sc->sc_selr);
2739 if (events & (POLLOUT | POLLWRNORM))
2740 selrecord(p, &sc->sc_selw);
2741 }
2742
2743 return mask & events;
2744 }
2745
2746 static void
2747 filt_wwancrdetach(struct knote *kn)
2748 {
2749 struct queue_pair *qp = (struct queue_pair *)kn->kn_hook;
2750
2751 tty_lock();
2752 klist_remove(&qp->selr.si_note, kn);
2753 tty_unlock();
2754 }
2755
2756 static int
2757 filt_wwancread(struct knote *kn, long hint)
2758 {
2759 struct queue_pair *qp = (struct queue_pair *)kn->kn_hook;
2760
2761 kn->kn_data = 0;
2762
2763 if (!qp->open) {
2764 kn->kn_flags |= EV_EOF;
2765 return (1);
2766 } else {
2767 kn->kn_data = xmm7360_qp_has_data(qp) ? 1 : 0;
2768 }
2769
2770 return (kn->kn_data > 0);
2771 }
2772
2773 static void
2774 filt_wwancwdetach(struct knote *kn)
2775 {
2776 struct queue_pair *qp = (struct queue_pair *)kn->kn_hook;
2777
2778 tty_lock();
2779 klist_remove(&qp->selw.si_note, kn);
2780 tty_unlock();
2781 }
2782
2783 static int
2784 filt_wwancwrite(struct knote *kn, long hint)
2785 {
2786 struct queue_pair *qp = (struct queue_pair *)kn->kn_hook;
2787
2788 kn->kn_data = 0;
2789
2790 if (qp->open) {
2791 if (xmm7360_qp_can_write(qp))
2792 kn->kn_data = qp->page_size;
2793 }
2794
2795 return (kn->kn_data > 0);
2796 }
2797
2798 static const struct filterops wwancread_filtops = {
2799 XMM_KQ_ISFD_INITIALIZER,
2800 .f_attach = NULL,
2801 .f_detach = filt_wwancrdetach,
2802 .f_event = filt_wwancread,
2803 };
2804
2805 static const struct filterops wwancwrite_filtops = {
2806 XMM_KQ_ISFD_INITIALIZER,
2807 .f_attach = NULL,
2808 .f_detach = filt_wwancwdetach,
2809 .f_event = filt_wwancwrite,
2810 };
2811
2812 int
2813 wwanckqfilter(dev_t dev, struct knote *kn)
2814 {
2815 struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2816 int func = DEVFUNC(dev);
2817 struct queue_pair *qp = &sc->sc_xmm.qp[func];
2818 struct klist *klist;
2819
2820 if (DEV_IS_TTY(func))
2821 return ttkqfilter(dev, kn);
2822
2823 KASSERT(!DEV_IS_TTY(func));
2824
2825 switch (kn->kn_filter) {
2826 case EVFILT_READ:
2827 klist = &qp->selr.si_note;
2828 kn->kn_fop = &wwancread_filtops;
2829 break;
2830 case EVFILT_WRITE:
2831 klist = &qp->selw.si_note;
2832 kn->kn_fop = &wwancwrite_filtops;
2833 break;
2834 default:
2835 return (EINVAL);
2836 }
2837
2838 kn->kn_hook = (void *)qp;
2839
2840 tty_lock();
2841 klist_insert(klist, kn);
2842 tty_unlock();
2843
2844 return (0);
2845 }
2846
2847 static void *
2848 dma_alloc_coherent(struct device *self, size_t sz, dma_addr_t *physp, int flags)
2849 {
2850 struct wwanc_softc *sc = device_private(self);
2851 bus_dma_segment_t seg;
2852 int nsegs;
2853 int error;
2854 caddr_t kva;
2855
2856 error = bus_dmamem_alloc(sc->sc_dmat, sz, 0, 0, &seg, 1, &nsegs,
2857 BUS_DMA_WAITOK);
2858 if (error) {
2859 panic("%s: bus_dmamem_alloc(%lu) failed %d\n",
2860 self->dv_xname, (unsigned long)sz, error);
2861 /* NOTREACHED */
2862 }
2863
2864 KASSERT(nsegs == 1);
2865 KASSERT(seg.ds_len == round_page(sz));
2866
2867 error = bus_dmamem_map(sc->sc_dmat, &seg, nsegs, sz, &kva,
2868 BUS_DMA_WAITOK | BUS_DMA_COHERENT);
2869 if (error) {
2870 panic("%s: bus_dmamem_alloc(%lu) failed %d\n",
2871 self->dv_xname, (unsigned long)sz, error);
2872 /* NOTREACHED */
2873 }
2874
2875 memset(kva, 0, sz);
2876 *physp = seg.ds_addr;
2877 return (void *)kva;
2878 }
2879
2880 static void
2881 dma_free_coherent(struct device *self, size_t sz, volatile void *vaddr, dma_addr_t phys)
2882 {
2883 struct wwanc_softc *sc = device_private(self);
2884 bus_dma_segment_t seg;
2885
2886 sz = round_page(sz);
2887
2888 bus_dmamem_unmap(sc->sc_dmat, __UNVOLATILE(vaddr), sz);
2889
2890 /* this does't need the exact seg returned by bus_dmamem_alloc() */
2891 memset(&seg, 0, sizeof(seg));
2892 seg.ds_addr = phys;
2893 seg.ds_len = sz;
2894 bus_dmamem_free(sc->sc_dmat, &seg, 1);
2895 }
2896
2897 struct wwan_softc {
2898 #ifdef __OpenBSD__
2899 struct device sc_devx; /* gen. device info storage */
2900 #endif
2901 struct device *sc_dev; /* generic device */
2902 struct wwanc_softc *sc_parent; /* parent device */
2903 struct ifnet sc_ifnet; /* network-visible interface */
2904 struct xmm_net sc_xmm_net;
2905 };
2906
2907 static void xmm7360_os_handle_net_frame(struct xmm_dev *xmm, const u8 *buf, size_t sz)
2908 {
2909 struct wwanc_softc *sc = device_private(xmm->dev);
2910 struct wwan_softc *sc_if = device_private(sc->sc_net);
2911 struct ifnet *ifp = &sc_if->sc_ifnet;
2912 struct mbuf *m;
2913
2914 KASSERT(sz <= MCLBYTES);
2915
2916 MGETHDR(m, M_DONTWAIT, MT_DATA);
2917 if (!m)
2918 return;
2919 if (sz > MHLEN) {
2920 MCLGETI(m, M_DONTWAIT, NULL, sz);
2921 if ((m->m_flags & M_EXT) == 0) {
2922 m_freem(m);
2923 return;
2924 }
2925 }
2926 m->m_len = m->m_pkthdr.len = sz;
2927
2928 /*
2929 * No explicit alignment necessary - there is no ethernet header,
2930 * so IP address is already aligned.
2931 */
2932 KASSERT(m->m_pkthdr.len == sz);
2933 m_copyback(m, 0, sz, (const void *)buf, M_NOWAIT);
2934
2935 #ifdef __OpenBSD__
2936 struct mbuf_list ml = MBUF_LIST_INITIALIZER();
2937 ml_enqueue(&ml, m);
2938 if_input(ifp, &ml);
2939 #endif
2940 #ifdef __NetBSD__
2941 if_percpuq_enqueue(ifp->if_percpuq, m);
2942 #endif
2943 }
2944
2945 static void
2946 xmm7360_os_handle_net_dequeue(struct xmm_net *xn, struct mux_frame *frame)
2947 {
2948 struct wwan_softc *sc_if =
2949 container_of(xn, struct wwan_softc, sc_xmm_net);
2950 struct ifnet *ifp = &sc_if->sc_ifnet;
2951 struct mbuf *m;
2952 int ret;
2953
2954 MUTEX_ASSERT_LOCKED(&xn->lock);
2955
2956 while ((m = ifq_deq_begin(&ifp->if_snd))) {
2957 /*
2958 * xmm7360_mux_frame_append_packet() requires single linear
2959 * buffer, so try m_defrag(). Another option would be
2960 * using m_copydata() into an intermediate buffer.
2961 */
2962 if (m->m_next) {
2963 if (m_defrag(m, M_DONTWAIT) != 0 || m->m_next) {
2964 /* Can't defrag, drop and continue */
2965 ifq_deq_commit(&ifp->if_snd, m);
2966 m_freem(m);
2967 continue;
2968 }
2969 }
2970
2971 ret = xmm7360_mux_frame_append_packet(frame,
2972 mtod(m, void *), m->m_pkthdr.len);
2973 if (ret) {
2974 /* No more space in the frame */
2975 ifq_deq_rollback(&ifp->if_snd, m);
2976 break;
2977 }
2978 ifq_deq_commit(&ifp->if_snd, m);
2979
2980 /* Send a copy of the frame to the BPF listener */
2981 BPF_MTAP_OUT(ifp, m);
2982
2983 m_freem(m);
2984 }
2985 }
2986
2987 static void xmm7360_os_handle_net_txwake(struct xmm_net *xn)
2988 {
2989 struct wwan_softc *sc_if =
2990 container_of(xn, struct wwan_softc, sc_xmm_net);
2991 struct ifnet *ifp = &sc_if->sc_ifnet;
2992
2993 MUTEX_ASSERT_LOCKED(&xn->lock);
2994
2995 KASSERT(xmm7360_qp_can_write(xn->qp));
2996 if (ifq_is_oactive(&ifp->if_snd)) {
2997 ifq_clr_oactive(&ifp->if_snd);
2998 #ifdef __OpenBSD__
2999 ifq_restart(&ifp->if_snd);
3000 #endif
3001 #ifdef __NetBSD__
3002 if_schedule_deferred_start(ifp);
3003 #endif
3004 }
3005 }
3006
3007 #ifdef __OpenBSD__
3008 /*
3009 * Process received raw IPv4/IPv6 packet. There is no encapsulation.
3010 */
3011 static int
3012 wwan_if_input(struct ifnet *ifp, struct mbuf *m, void *cookie)
3013 {
3014 const uint8_t *data = mtod(m, uint8_t *);
3015 void (*input)(struct ifnet *, struct mbuf *);
3016 u8 ip_version;
3017
3018 ip_version = data[0] >> 4;
3019
3020 switch (ip_version) {
3021 case IPVERSION:
3022 input = ipv4_input;
3023 break;
3024 case (IPV6_VERSION >> 4):
3025 input = ipv6_input;
3026 break;
3027 default:
3028 /* Unknown protocol, just drop packet */
3029 m_freem(m);
3030 return 1;
3031 /* NOTREACHED */
3032 }
3033
3034 /* Needed for tcpdump(1) et.al */
3035 m->m_pkthdr.ph_rtableid = ifp->if_rdomain;
3036 m_adj(m, sizeof(u_int32_t));
3037
3038 (*input)(ifp, m);
3039 return 1;
3040 }
3041 #endif /* __OpenBSD__ */
3042
3043 #ifdef __NetBSD__
3044 static bool wwan_pmf_suspend(device_t, const pmf_qual_t *);
3045
3046 /*
3047 * Process received raw IPv4/IPv6 packet. There is no encapsulation.
3048 */
3049 static void
3050 wwan_if_input(struct ifnet *ifp, struct mbuf *m)
3051 {
3052 const uint8_t *data = mtod(m, uint8_t *);
3053 pktqueue_t *pktq = NULL;
3054 u8 ip_version;
3055
3056 KASSERT(!cpu_intr_p());
3057 KASSERT((m->m_flags & M_PKTHDR) != 0);
3058
3059 if ((ifp->if_flags & IFF_UP) == 0) {
3060 m_freem(m);
3061 return;
3062 }
3063
3064 if_statadd(ifp, if_ibytes, m->m_pkthdr.len);
3065
3066 /*
3067 * The interface can't receive packets for other host, so never
3068 * really IFF_PROMISC even if bpf listener is attached.
3069 */
3070 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
3071 return;
3072 if (m == NULL)
3073 return;
3074
3075 ip_version = data[0] >> 4;
3076 switch (ip_version) {
3077 #ifdef INET
3078 case IPVERSION:
3079 #ifdef GATEWAY
3080 if (ipflow_fastforward(m))
3081 return;
3082 #endif
3083 pktq = ip_pktq;
3084 break;
3085 #endif /* INET */
3086 #ifdef INET6
3087 case (IPV6_VERSION >> 4):
3088 if (__predict_false(!in6_present)) {
3089 m_freem(m);
3090 return;
3091 }
3092 #ifdef GATEWAY
3093 if (ip6flow_fastforward(&m))
3094 return;
3095 #endif
3096 pktq = ip6_pktq;
3097 break;
3098 #endif /* INET6 */
3099 default:
3100 /* Unknown protocol, just drop packet */
3101 m_freem(m);
3102 return;
3103 /* NOTREACHED */
3104 }
3105
3106 KASSERT(pktq != NULL);
3107
3108 /* No errors. Receive the packet. */
3109 m_set_rcvif(m, ifp);
3110
3111 #ifdef NET_MPSAFE
3112 const u_int h = curcpu()->ci_index;
3113 #else
3114 const uint32_t h = pktq_rps_hash(m);
3115 #endif
3116 if (__predict_false(!pktq_enqueue(pktq, m, h))) {
3117 m_freem(m);
3118 }
3119 }
3120 #endif
3121
3122 /*
3123 * Transmit raw IPv4/IPv6 packet. No encapsulation necessary.
3124 */
3125 static int
3126 wwan_if_output(struct ifnet *ifp, struct mbuf *m,
3127 IF_OUTPUT_CONST struct sockaddr *dst, IF_OUTPUT_CONST struct rtentry *rt)
3128 {
3129 // there is no ethernet frame, this means no bridge(4) handling
3130 return (if_enqueue(ifp, m));
3131 }
3132
3133 static int
3134 wwan_if_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3135 {
3136 struct wwan_softc *sc_if = ifp->if_softc;
3137 int error = 0;
3138 int s;
3139
3140 s = splnet();
3141
3142 switch (cmd) {
3143 #ifdef __NetBSD__
3144 case SIOCINITIFADDR:
3145 #endif
3146 #ifdef __OpenBSD__
3147 case SIOCAIFADDR:
3148 case SIOCAIFADDR_IN6:
3149 case SIOCSIFADDR:
3150 #endif
3151 /* Make interface ready to run if address is assigned */
3152 ifp->if_flags |= IFF_UP;
3153 if (!(ifp->if_flags & IFF_RUNNING)) {
3154 ifp->if_flags |= IFF_RUNNING;
3155 xmm7360_mux_control(&sc_if->sc_xmm_net, 1, 0, 0, 0);
3156 }
3157 break;
3158 case SIOCSIFFLAGS:
3159 case SIOCADDMULTI:
3160 case SIOCDELMULTI:
3161 /* nothing special to do */
3162 break;
3163 case SIOCSIFMTU:
3164 error = ENOTTY;
3165 break;
3166 default:
3167 #ifdef __NetBSD__
3168 /*
3169 * Call common code for SIOCG* ioctls. In OpenBSD those ioctls
3170 * are handled in ifioctl(), and the if_ioctl is not called
3171 * for them at all.
3172 */
3173 error = ifioctl_common(ifp, cmd, data);
3174 if (error == ENETRESET)
3175 error = 0;
3176 #endif
3177 #ifdef __OpenBSD__
3178 error = ENOTTY;
3179 #endif
3180 break;
3181 }
3182
3183 splx(s);
3184
3185 return error;
3186 }
3187
3188 static void
3189 wwan_if_start(struct ifnet *ifp)
3190 {
3191 struct wwan_softc *sc = ifp->if_softc;
3192
3193 mutex_lock(&sc->sc_xmm_net.lock);
3194 while (!ifq_empty(&ifp->if_snd)) {
3195 if (!xmm7360_qp_can_write(sc->sc_xmm_net.qp)) {
3196 break;
3197 }
3198 xmm7360_net_flush(&sc->sc_xmm_net);
3199 }
3200 mutex_unlock(&sc->sc_xmm_net.lock);
3201 }
3202
3203 static int
3204 wwan_match(struct device *parent, cfdata_t match, void *aux)
3205 {
3206 struct wwanc_attach_args *wa = aux;
3207
3208 return (wa->aa_type == WWMC_TYPE_NET);
3209 }
3210
3211 static void
3212 wwan_attach(struct device *parent, struct device *self, void *aux)
3213 {
3214 struct wwan_softc *sc_if = device_private(self);
3215 struct ifnet *ifp = &sc_if->sc_ifnet;
3216 struct xmm_dev *xmm;
3217 struct xmm_net *xn;
3218
3219 sc_if->sc_dev = self;
3220 sc_if->sc_parent = device_private(parent);
3221 xmm = sc_if->sc_xmm_net.xmm = &sc_if->sc_parent->sc_xmm;
3222 xn = &sc_if->sc_xmm_net;
3223 mutex_init(&xn->lock);
3224
3225 /* QP already initialized in parent, just set pointers and start */
3226 xn->qp = &xmm->qp[0];
3227 xmm7360_qp_start(xn->qp);
3228 xmm->net = xn;
3229
3230 ifp->if_softc = sc_if;
3231 ifp->if_flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST \
3232 | IFF_SIMPLEX;
3233 ifp->if_ioctl = wwan_if_ioctl;
3234 ifp->if_start = wwan_if_start;
3235 ifp->if_mtu = 1500;
3236 ifp->if_hardmtu = 1500;
3237 ifp->if_type = IFT_OTHER;
3238 IFQ_SET_MAXLEN(&ifp->if_snd, xn->qp->depth);
3239 IFQ_SET_READY(&ifp->if_snd);
3240 bcopy(sc_if->sc_dev->dv_xname, ifp->if_xname, IFNAMSIZ);
3241
3242 /* Call MI attach routines. */
3243 if_attach(ifp);
3244
3245 /* Hook custom input and output processing, and dummy sadl */
3246 ifp->if_output = wwan_if_output;
3247 if_ih_insert(ifp, wwan_if_input, NULL);
3248 if_deferred_start_init(ifp, NULL);
3249 if_alloc_sadl(ifp);
3250 #if NBPFILTER > 0
3251 #ifdef __OpenBSD__
3252 bpfattach(&ifp->if_bpf, ifp, DLT_LOOP, sizeof(u_int32_t));
3253 #endif
3254 #ifdef __NetBSD__
3255 bpfattach(&ifp->if_bpf, ifp, DLT_RAW, 0);
3256 #endif
3257 #endif
3258
3259 printf("\n");
3260
3261 #ifdef __NetBSD__
3262 if (pmf_device_register(self, wwan_pmf_suspend, NULL))
3263 pmf_class_network_register(self, ifp);
3264 else
3265 aprint_error_dev(self, "couldn't establish power handler\n");
3266 #endif
3267 }
3268
3269 static int
3270 wwan_detach(struct device *self, int flags)
3271 {
3272 struct wwan_softc *sc_if = device_private(self);
3273 struct ifnet *ifp = &sc_if->sc_ifnet;
3274
3275 if (ifp->if_flags & (IFF_UP|IFF_RUNNING))
3276 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
3277
3278 pmf_device_deregister(self);
3279
3280 if_ih_remove(ifp, wwan_if_input, NULL);
3281 if_detach(ifp);
3282
3283 xmm7360_qp_stop(sc_if->sc_xmm_net.qp);
3284
3285 sc_if->sc_xmm_net.xmm->net = NULL;
3286
3287 return 0;
3288 }
3289
3290 static void
3291 wwan_suspend(struct device *self)
3292 {
3293 struct wwan_softc *sc_if = device_private(self);
3294 struct ifnet *ifp = &sc_if->sc_ifnet;
3295
3296 /*
3297 * Interface is marked down on suspend, and needs to be reconfigured
3298 * after resume.
3299 */
3300 if (ifp->if_flags & (IFF_UP|IFF_RUNNING))
3301 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
3302
3303 ifq_purge(&ifp->if_snd);
3304 }
3305
3306 #ifdef __OpenBSD__
3307 static int
3308 wwan_activate(struct device *self, int act)
3309 {
3310 switch (act) {
3311 case DVACT_QUIESCE:
3312 case DVACT_SUSPEND:
3313 wwan_suspend(self);
3314 break;
3315 case DVACT_RESUME:
3316 /* Nothing to do */
3317 break;
3318 }
3319
3320 return 0;
3321 }
3322
3323 struct cfattach wwan_ca = {
3324 sizeof(struct wwan_softc), wwan_match, wwan_attach,
3325 wwan_detach, wwan_activate
3326 };
3327
3328 struct cfdriver wwan_cd = {
3329 NULL, "wwan", DV_IFNET
3330 };
3331 #endif /* __OpenBSD__ */
3332
3333 #ifdef __NetBSD__
3334 static bool
3335 wwan_pmf_suspend(device_t self, const pmf_qual_t *qual)
3336 {
3337 wwan_suspend(self);
3338 return true;
3339 }
3340
3341 CFATTACH_DECL3_NEW(wwan, sizeof(struct wwan_softc),
3342 wwan_match, wwan_attach, wwan_detach, NULL,
3343 NULL, NULL, DVF_DETACH_SHUTDOWN);
3344 #endif /* __NetBSD__ */
3345
3346 #endif /* __OpenBSD__ || __NetBSD__ */
3347