if_de.c revision 1.33 1 1.33 msaitoh /* $NetBSD: if_de.c,v 1.33 2018/06/22 04:17:42 msaitoh Exp $ */
2 1.5 ragge
3 1.1 ragge /*
4 1.1 ragge * Copyright (c) 1982, 1986, 1989 Regents of the University of California.
5 1.15 agc * All rights reserved.
6 1.15 agc *
7 1.15 agc *
8 1.15 agc * Redistribution and use in source and binary forms, with or without
9 1.15 agc * modification, are permitted provided that the following conditions
10 1.15 agc * are met:
11 1.15 agc * 1. Redistributions of source code must retain the above copyright
12 1.15 agc * notice, this list of conditions and the following disclaimer.
13 1.15 agc * 2. Redistributions in binary form must reproduce the above copyright
14 1.15 agc * notice, this list of conditions and the following disclaimer in the
15 1.15 agc * documentation and/or other materials provided with the distribution.
16 1.15 agc * 3. Neither the name of the University nor the names of its contributors
17 1.15 agc * may be used to endorse or promote products derived from this software
18 1.15 agc * without specific prior written permission.
19 1.15 agc *
20 1.15 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 1.15 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 1.15 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 1.15 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 1.15 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 1.15 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 1.15 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 1.15 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 1.15 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 1.15 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 1.15 agc * SUCH DAMAGE.
31 1.15 agc *
32 1.15 agc * @(#)if_de.c 7.12 (Berkeley) 12/16/90
33 1.15 agc */
34 1.15 agc
35 1.15 agc /*
36 1.1 ragge * Copyright (c) 2000 Ludd, University of Lule}, Sweden.
37 1.1 ragge * All rights reserved.
38 1.1 ragge *
39 1.1 ragge *
40 1.1 ragge * Redistribution and use in source and binary forms, with or without
41 1.1 ragge * modification, are permitted provided that the following conditions
42 1.1 ragge * are met:
43 1.1 ragge * 1. Redistributions of source code must retain the above copyright
44 1.1 ragge * notice, this list of conditions and the following disclaimer.
45 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
46 1.1 ragge * notice, this list of conditions and the following disclaimer in the
47 1.1 ragge * documentation and/or other materials provided with the distribution.
48 1.1 ragge *
49 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 1.1 ragge * SUCH DAMAGE.
60 1.1 ragge */
61 1.1 ragge
62 1.1 ragge /*
63 1.1 ragge * DEC DEUNA interface
64 1.1 ragge *
65 1.1 ragge * Lou Salkind
66 1.1 ragge * New York University
67 1.1 ragge *
68 1.2 ragge * Rewritten by Ragge 30 April 2000 to match new world.
69 1.1 ragge *
70 1.1 ragge * TODO:
71 1.1 ragge * timeout routine (get statistics)
72 1.1 ragge */
73 1.11 lukem
74 1.11 lukem #include <sys/cdefs.h>
75 1.33 msaitoh __KERNEL_RCSID(0, "$NetBSD: if_de.c,v 1.33 2018/06/22 04:17:42 msaitoh Exp $");
76 1.1 ragge
77 1.1 ragge #include "opt_inet.h"
78 1.1 ragge
79 1.1 ragge #include <sys/param.h>
80 1.1 ragge #include <sys/systm.h>
81 1.1 ragge #include <sys/mbuf.h>
82 1.1 ragge #include <sys/buf.h>
83 1.1 ragge #include <sys/protosw.h>
84 1.1 ragge #include <sys/socket.h>
85 1.1 ragge #include <sys/ioctl.h>
86 1.1 ragge #include <sys/errno.h>
87 1.1 ragge #include <sys/syslog.h>
88 1.1 ragge #include <sys/device.h>
89 1.1 ragge
90 1.1 ragge #include <net/if.h>
91 1.1 ragge #include <net/if_ether.h>
92 1.1 ragge #include <net/if_dl.h>
93 1.33 msaitoh #include <net/bpf.h>
94 1.1 ragge
95 1.1 ragge #ifdef INET
96 1.1 ragge #include <netinet/in.h>
97 1.1 ragge #include <netinet/if_inarp.h>
98 1.1 ragge #endif
99 1.1 ragge
100 1.22 ad #include <sys/bus.h>
101 1.1 ragge
102 1.1 ragge #include <dev/qbus/ubavar.h>
103 1.1 ragge #include <dev/qbus/if_dereg.h>
104 1.10 ragge #include <dev/qbus/if_uba.h>
105 1.1 ragge
106 1.1 ragge #include "ioconf.h"
107 1.1 ragge
108 1.1 ragge /*
109 1.1 ragge * Be careful with transmit/receive buffers, each entry steals 4 map
110 1.1 ragge * registers, and there is only 496 on one unibus...
111 1.1 ragge */
112 1.10 ragge #define NRCV 7 /* number of receive buffers (must be > 1) */
113 1.10 ragge #define NXMT 3 /* number of transmit buffers */
114 1.1 ragge
115 1.1 ragge /*
116 1.1 ragge * Structure containing the elements that must be in DMA-safe memory.
117 1.1 ragge */
118 1.1 ragge struct de_cdata {
119 1.1 ragge /* the following structures are always mapped in */
120 1.1 ragge struct de_pcbb dc_pcbb; /* port control block */
121 1.1 ragge struct de_ring dc_xrent[NXMT]; /* transmit ring entrys */
122 1.1 ragge struct de_ring dc_rrent[NRCV]; /* receive ring entrys */
123 1.1 ragge struct de_udbbuf dc_udbbuf; /* UNIBUS data buffer */
124 1.1 ragge /* end mapped area */
125 1.1 ragge };
126 1.1 ragge
127 1.1 ragge /*
128 1.1 ragge * Ethernet software status per interface.
129 1.1 ragge *
130 1.1 ragge * Each interface is referenced by a network interface structure,
131 1.1 ragge * ds_if, which the routing code uses to locate the interface.
132 1.1 ragge * This structure contains the output queue for the interface, its address, ...
133 1.1 ragge * We also have, for each interface, a UBA interface structure, which
134 1.1 ragge * contains information about the UNIBUS resources held by the interface:
135 1.1 ragge * map registers, buffered data paths, etc. Information is cached in this
136 1.1 ragge * structure for use by the if_uba.c routines in running the interface
137 1.1 ragge * efficiently.
138 1.1 ragge */
139 1.1 ragge struct de_softc {
140 1.23 matt device_t sc_dev; /* Configuration common part */
141 1.23 matt struct uba_softc *sc_uh; /* our parent */
142 1.23 matt struct evcnt sc_intrcnt; /* Interrupt counting */
143 1.23 matt struct ethercom sc_ec; /* Ethernet common part */
144 1.1 ragge #define sc_if sc_ec.ec_if /* network-visible interface */
145 1.1 ragge bus_space_tag_t sc_iot;
146 1.1 ragge bus_addr_t sc_ioh;
147 1.1 ragge bus_dma_tag_t sc_dmat;
148 1.23 matt int sc_flags;
149 1.10 ragge #define DSF_MAPPED 1
150 1.9 ragge struct ubinfo sc_ui;
151 1.1 ragge struct de_cdata *sc_dedata; /* Control structure */
152 1.1 ragge struct de_cdata *sc_pdedata; /* Bus-mapped control structure */
153 1.23 matt struct ifubinfo sc_ifuba; /* UNIBUS resources */
154 1.23 matt struct ifrw sc_ifr[NRCV]; /* UNIBUS receive buffer maps */
155 1.23 matt struct ifxmt sc_ifw[NXMT]; /* UNIBUS receive buffer maps */
156 1.23 matt
157 1.23 matt int sc_xindex; /* UNA index into transmit chain */
158 1.23 matt int sc_rindex; /* UNA index into receive chain */
159 1.23 matt int sc_xfree; /* index for next transmit buffer */
160 1.23 matt int sc_nxmit; /* # of transmits in progress */
161 1.2 ragge void *sc_sh; /* shutdownhook cookie */
162 1.1 ragge };
163 1.1 ragge
164 1.23 matt static int dematch(device_t, cfdata_t, void *);
165 1.23 matt static void deattach(device_t, device_t, void *);
166 1.17 ragge static void dewait(struct de_softc *, const char *);
167 1.10 ragge static int deinit(struct ifnet *);
168 1.21 christos static int deioctl(struct ifnet *, u_long, void *);
169 1.27 cegger static void dereset(device_t);
170 1.10 ragge static void destop(struct ifnet *, int);
171 1.1 ragge static void destart(struct ifnet *);
172 1.1 ragge static void derecv(struct de_softc *);
173 1.1 ragge static void deintr(void *);
174 1.2 ragge static void deshutdown(void *);
175 1.1 ragge
176 1.23 matt CFATTACH_DECL_NEW(de, sizeof(struct de_softc),
177 1.14 thorpej dematch, deattach, NULL, NULL);
178 1.1 ragge
179 1.1 ragge #define DE_WCSR(csr, val) \
180 1.1 ragge bus_space_write_2(sc->sc_iot, sc->sc_ioh, csr, val)
181 1.1 ragge #define DE_WLOW(val) \
182 1.1 ragge bus_space_write_1(sc->sc_iot, sc->sc_ioh, DE_PCSR0, val)
183 1.1 ragge #define DE_WHIGH(val) \
184 1.1 ragge bus_space_write_1(sc->sc_iot, sc->sc_ioh, DE_PCSR0 + 1, val)
185 1.1 ragge #define DE_RCSR(csr) \
186 1.1 ragge bus_space_read_2(sc->sc_iot, sc->sc_ioh, csr)
187 1.1 ragge
188 1.1 ragge #define LOWORD(x) ((int)(x) & 0xffff)
189 1.1 ragge #define HIWORD(x) (((int)(x) >> 16) & 0x3)
190 1.1 ragge /*
191 1.1 ragge * Interface exists: make available by filling in network interface
192 1.1 ragge * record. System will initialize the interface when it is ready
193 1.1 ragge * to accept packets. We get the ethernet address here.
194 1.1 ragge */
195 1.1 ragge void
196 1.23 matt deattach(device_t parent, device_t self, void *aux)
197 1.1 ragge {
198 1.1 ragge struct uba_attach_args *ua = aux;
199 1.20 thorpej struct de_softc *sc = device_private(self);
200 1.1 ragge struct ifnet *ifp = &sc->sc_if;
201 1.1 ragge u_int8_t myaddr[ETHER_ADDR_LEN];
202 1.10 ragge int csr1, error;
203 1.17 ragge const char *c;
204 1.1 ragge
205 1.23 matt sc->sc_dev = self;
206 1.23 matt sc->sc_uh = device_private(parent);
207 1.1 ragge sc->sc_iot = ua->ua_iot;
208 1.1 ragge sc->sc_ioh = ua->ua_ioh;
209 1.1 ragge sc->sc_dmat = ua->ua_dmat;
210 1.1 ragge
211 1.1 ragge /*
212 1.1 ragge * What kind of a board is this?
213 1.1 ragge * The error bits 4-6 in pcsr1 are a device id as long as
214 1.1 ragge * the high byte is zero.
215 1.1 ragge */
216 1.1 ragge csr1 = DE_RCSR(DE_PCSR1);
217 1.1 ragge if (csr1 & 0xff60)
218 1.1 ragge c = "broken";
219 1.1 ragge else if (csr1 & 0x10)
220 1.1 ragge c = "delua";
221 1.1 ragge else
222 1.1 ragge c = "deuna";
223 1.1 ragge
224 1.1 ragge /*
225 1.1 ragge * Reset the board and temporarily map
226 1.1 ragge * the pcbb buffer onto the Unibus.
227 1.1 ragge */
228 1.1 ragge DE_WCSR(DE_PCSR0, 0); /* reset INTE */
229 1.1 ragge DELAY(100);
230 1.1 ragge DE_WCSR(DE_PCSR0, PCSR0_RSET);
231 1.2 ragge dewait(sc, "reset");
232 1.1 ragge
233 1.9 ragge sc->sc_ui.ui_size = sizeof(struct de_cdata);
234 1.23 matt if ((error = ubmemalloc(sc->sc_uh, &sc->sc_ui, 0)))
235 1.10 ragge return printf(": failed ubmemalloc(), error = %d\n", error);
236 1.9 ragge sc->sc_dedata = (struct de_cdata *)sc->sc_ui.ui_vaddr;
237 1.2 ragge
238 1.1 ragge /*
239 1.1 ragge * Tell the DEUNA about our PCB
240 1.1 ragge */
241 1.10 ragge DE_WCSR(DE_PCSR2, LOWORD(sc->sc_ui.ui_baddr));
242 1.10 ragge DE_WCSR(DE_PCSR3, HIWORD(sc->sc_ui.ui_baddr));
243 1.1 ragge DE_WLOW(CMD_GETPCBB);
244 1.2 ragge dewait(sc, "pcbb");
245 1.1 ragge
246 1.1 ragge sc->sc_dedata->dc_pcbb.pcbb0 = FC_RDPHYAD;
247 1.1 ragge DE_WLOW(CMD_GETCMD);
248 1.2 ragge dewait(sc, "read addr ");
249 1.1 ragge
250 1.26 tsutsui memcpy(myaddr, (void *)&sc->sc_dedata->dc_pcbb.pcbb2, sizeof (myaddr));
251 1.23 matt printf(": %s, hardware address %s\n", c, ether_sprintf(myaddr));
252 1.1 ragge
253 1.16 simonb uba_intr_establish(ua->ua_icookie, ua->ua_cvec, deintr, sc,
254 1.5 ragge &sc->sc_intrcnt);
255 1.23 matt uba_reset_establish(dereset, sc->sc_dev);
256 1.4 matt evcnt_attach_dynamic(&sc->sc_intrcnt, EVCNT_TYPE_INTR, ua->ua_evcnt,
257 1.23 matt device_xname(sc->sc_dev), "intr");
258 1.1 ragge
259 1.23 matt strcpy(ifp->if_xname, device_xname(sc->sc_dev));
260 1.1 ragge ifp->if_softc = sc;
261 1.5 ragge ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_MULTICAST|IFF_ALLMULTI;
262 1.1 ragge ifp->if_ioctl = deioctl;
263 1.1 ragge ifp->if_start = destart;
264 1.10 ragge ifp->if_init = deinit;
265 1.10 ragge ifp->if_stop = destop;
266 1.8 thorpej IFQ_SET_READY(&ifp->if_snd);
267 1.8 thorpej
268 1.1 ragge if_attach(ifp);
269 1.1 ragge ether_ifattach(ifp, myaddr);
270 1.23 matt ubmemfree(sc->sc_uh, &sc->sc_ui);
271 1.7 thorpej
272 1.2 ragge sc->sc_sh = shutdownhook_establish(deshutdown, sc);
273 1.10 ragge }
274 1.1 ragge
275 1.10 ragge void
276 1.10 ragge destop(struct ifnet *ifp, int a)
277 1.10 ragge {
278 1.10 ragge struct de_softc *sc = ifp->if_softc;
279 1.10 ragge
280 1.10 ragge DE_WLOW(0);
281 1.10 ragge DELAY(5000);
282 1.10 ragge DE_WLOW(PCSR0_RSET);
283 1.1 ragge }
284 1.1 ragge
285 1.10 ragge
286 1.1 ragge /*
287 1.1 ragge * Reset of interface after UNIBUS reset.
288 1.1 ragge */
289 1.1 ragge void
290 1.23 matt dereset(device_t dev)
291 1.1 ragge {
292 1.1 ragge struct de_softc *sc = (void *)dev;
293 1.1 ragge
294 1.1 ragge sc->sc_if.if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
295 1.10 ragge sc->sc_flags &= ~DSF_MAPPED;
296 1.5 ragge sc->sc_pdedata = NULL; /* All mappings lost */
297 1.1 ragge DE_WCSR(DE_PCSR0, PCSR0_RSET);
298 1.2 ragge dewait(sc, "reset");
299 1.10 ragge deinit(&sc->sc_if);
300 1.1 ragge }
301 1.1 ragge
302 1.1 ragge /*
303 1.1 ragge * Initialization of interface; clear recorded pending
304 1.1 ragge * operations, and reinitialize UNIBUS usage.
305 1.1 ragge */
306 1.10 ragge int
307 1.10 ragge deinit(struct ifnet *ifp)
308 1.1 ragge {
309 1.10 ragge struct de_softc *sc = ifp->if_softc;
310 1.2 ragge struct de_cdata *dc, *pdc;
311 1.10 ragge struct ifrw *ifrw;
312 1.10 ragge struct ifxmt *ifxp;
313 1.10 ragge struct de_ring *rp;
314 1.10 ragge int s, error;
315 1.10 ragge
316 1.10 ragge if (ifp->if_flags & IFF_RUNNING)
317 1.10 ragge return 0;
318 1.10 ragge if ((sc->sc_flags & DSF_MAPPED) == 0) {
319 1.23 matt if (if_ubaminit(&sc->sc_ifuba, sc->sc_uh, MCLBYTES,
320 1.23 matt sc->sc_ifr, NRCV, sc->sc_ifw, NXMT)) {
321 1.23 matt aprint_error_dev(sc->sc_dev, " can't initialize\n");
322 1.10 ragge ifp->if_flags &= ~IFF_UP;
323 1.10 ragge return 0;
324 1.10 ragge }
325 1.10 ragge sc->sc_ui.ui_size = sizeof(struct de_cdata);
326 1.23 matt if ((error = ubmemalloc(sc->sc_uh, &sc->sc_ui, 0))) {
327 1.23 matt aprint_error(": unable to ubmemalloc(), error = %d\n",
328 1.23 matt error);
329 1.10 ragge return 0;
330 1.10 ragge }
331 1.10 ragge sc->sc_pdedata = (struct de_cdata *)sc->sc_ui.ui_baddr;
332 1.10 ragge sc->sc_dedata = (struct de_cdata *)sc->sc_ui.ui_vaddr;
333 1.10 ragge sc->sc_flags |= DSF_MAPPED;
334 1.10 ragge }
335 1.1 ragge
336 1.1 ragge /*
337 1.1 ragge * Tell the DEUNA about our PCB
338 1.1 ragge */
339 1.1 ragge DE_WCSR(DE_PCSR2, LOWORD(sc->sc_pdedata));
340 1.1 ragge DE_WCSR(DE_PCSR3, HIWORD(sc->sc_pdedata));
341 1.1 ragge DE_WLOW(0); /* reset INTE */
342 1.1 ragge DELAY(500);
343 1.1 ragge DE_WLOW(CMD_GETPCBB);
344 1.2 ragge dewait(sc, "pcbb");
345 1.1 ragge
346 1.1 ragge dc = sc->sc_dedata;
347 1.2 ragge pdc = sc->sc_pdedata;
348 1.1 ragge /* set the transmit and receive ring header addresses */
349 1.1 ragge dc->dc_pcbb.pcbb0 = FC_WTRING;
350 1.2 ragge dc->dc_pcbb.pcbb2 = LOWORD(&pdc->dc_udbbuf);
351 1.2 ragge dc->dc_pcbb.pcbb4 = HIWORD(&pdc->dc_udbbuf);
352 1.1 ragge
353 1.2 ragge dc->dc_udbbuf.b_tdrbl = LOWORD(&pdc->dc_xrent[0]);
354 1.2 ragge dc->dc_udbbuf.b_tdrbh = HIWORD(&pdc->dc_xrent[0]);
355 1.1 ragge dc->dc_udbbuf.b_telen = sizeof (struct de_ring) / sizeof(u_int16_t);
356 1.1 ragge dc->dc_udbbuf.b_trlen = NXMT;
357 1.2 ragge dc->dc_udbbuf.b_rdrbl = LOWORD(&pdc->dc_rrent[0]);
358 1.2 ragge dc->dc_udbbuf.b_rdrbh = HIWORD(&pdc->dc_rrent[0]);
359 1.1 ragge dc->dc_udbbuf.b_relen = sizeof (struct de_ring) / sizeof(u_int16_t);
360 1.1 ragge dc->dc_udbbuf.b_rrlen = NRCV;
361 1.1 ragge
362 1.1 ragge DE_WLOW(CMD_GETCMD);
363 1.2 ragge dewait(sc, "wtring");
364 1.1 ragge
365 1.5 ragge sc->sc_dedata->dc_pcbb.pcbb0 = FC_WTMODE;
366 1.5 ragge sc->sc_dedata->dc_pcbb.pcbb2 = MOD_TPAD|MOD_HDX|MOD_DRDC|MOD_ENAL;
367 1.5 ragge DE_WLOW(CMD_GETCMD);
368 1.5 ragge dewait(sc, "wtmode");
369 1.1 ragge
370 1.5 ragge /* set up the receive and transmit ring entries */
371 1.10 ragge ifxp = &sc->sc_ifw[0];
372 1.10 ragge for (rp = &dc->dc_xrent[0]; rp < &dc->dc_xrent[NXMT]; rp++) {
373 1.10 ragge rp->r_segbl = LOWORD(ifxp->ifw_info);
374 1.10 ragge rp->r_segbh = HIWORD(ifxp->ifw_info);
375 1.10 ragge rp->r_flags = 0;
376 1.10 ragge ifxp++;
377 1.10 ragge }
378 1.10 ragge ifrw = &sc->sc_ifr[0];
379 1.10 ragge for (rp = &dc->dc_rrent[0]; rp < &dc->dc_rrent[NRCV]; rp++) {
380 1.10 ragge rp->r_slen = MCLBYTES - 2;
381 1.10 ragge rp->r_segbl = LOWORD(ifrw->ifrw_info);
382 1.10 ragge rp->r_segbh = HIWORD(ifrw->ifrw_info);
383 1.10 ragge rp->r_flags = RFLG_OWN;
384 1.10 ragge ifrw++;
385 1.10 ragge }
386 1.1 ragge
387 1.1 ragge /* start up the board (rah rah) */
388 1.1 ragge s = splnet();
389 1.5 ragge sc->sc_rindex = sc->sc_xindex = sc->sc_xfree = sc->sc_nxmit = 0;
390 1.1 ragge sc->sc_if.if_flags |= IFF_RUNNING;
391 1.5 ragge DE_WLOW(PCSR0_INTE); /* avoid interlock */
392 1.5 ragge destart(&sc->sc_if); /* queue output packets */
393 1.1 ragge DE_WLOW(CMD_START|PCSR0_INTE);
394 1.1 ragge splx(s);
395 1.10 ragge return 0;
396 1.1 ragge }
397 1.1 ragge
398 1.1 ragge /*
399 1.1 ragge * Setup output on interface.
400 1.1 ragge * Get another datagram to send off of the interface queue,
401 1.1 ragge * and map it to the interface before starting the output.
402 1.1 ragge * Must be called from ipl >= our interrupt level.
403 1.1 ragge */
404 1.1 ragge void
405 1.1 ragge destart(struct ifnet *ifp)
406 1.1 ragge {
407 1.1 ragge struct de_softc *sc = ifp->if_softc;
408 1.2 ragge struct de_cdata *dc;
409 1.10 ragge struct de_ring *rp;
410 1.2 ragge struct mbuf *m;
411 1.10 ragge int nxmit, len;
412 1.1 ragge
413 1.1 ragge /*
414 1.1 ragge * the following test is necessary, since
415 1.1 ragge * the code is not reentrant and we have
416 1.1 ragge * multiple transmission buffers.
417 1.1 ragge */
418 1.5 ragge if (sc->sc_if.if_flags & IFF_OACTIVE)
419 1.1 ragge return;
420 1.2 ragge dc = sc->sc_dedata;
421 1.5 ragge for (nxmit = sc->sc_nxmit; nxmit < NXMT; nxmit++) {
422 1.8 thorpej IFQ_DEQUEUE(&ifp->if_snd, m);
423 1.1 ragge if (m == 0)
424 1.5 ragge break;
425 1.10 ragge
426 1.10 ragge rp = &dc->dc_xrent[sc->sc_xfree];
427 1.5 ragge if (rp->r_flags & XFLG_OWN)
428 1.5 ragge panic("deuna xmit in progress");
429 1.29 joerg bpf_mtap(ifp, m);
430 1.5 ragge
431 1.10 ragge len = if_ubaput(&sc->sc_ifuba, &sc->sc_ifw[sc->sc_xfree], m);
432 1.10 ragge rp->r_slen = len;
433 1.10 ragge rp->r_tdrerr = 0;
434 1.10 ragge rp->r_flags = XFLG_STP|XFLG_ENP|XFLG_OWN;
435 1.10 ragge
436 1.5 ragge sc->sc_xfree++;
437 1.5 ragge if (sc->sc_xfree == NXMT)
438 1.5 ragge sc->sc_xfree = 0;
439 1.5 ragge }
440 1.10 ragge if (sc->sc_nxmit != nxmit) {
441 1.5 ragge sc->sc_nxmit = nxmit;
442 1.5 ragge if (ifp->if_flags & IFF_RUNNING)
443 1.5 ragge DE_WLOW(PCSR0_INTE|CMD_PDMD);
444 1.1 ragge }
445 1.1 ragge }
446 1.1 ragge
447 1.1 ragge /*
448 1.1 ragge * Command done interrupt.
449 1.1 ragge */
450 1.1 ragge void
451 1.1 ragge deintr(void *arg)
452 1.1 ragge {
453 1.10 ragge struct ifxmt *ifxp;
454 1.5 ragge struct de_cdata *dc;
455 1.1 ragge struct de_softc *sc = arg;
456 1.5 ragge struct de_ring *rp;
457 1.5 ragge short csr0;
458 1.1 ragge
459 1.1 ragge /* save flags right away - clear out interrupt bits */
460 1.1 ragge csr0 = DE_RCSR(DE_PCSR0);
461 1.1 ragge DE_WHIGH(csr0 >> 8);
462 1.1 ragge
463 1.1 ragge
464 1.5 ragge sc->sc_if.if_flags |= IFF_OACTIVE; /* prevent entering destart */
465 1.5 ragge /*
466 1.5 ragge * if receive, put receive buffer on mbuf
467 1.5 ragge * and hang the request again
468 1.5 ragge */
469 1.5 ragge derecv(sc);
470 1.1 ragge
471 1.1 ragge /*
472 1.1 ragge * Poll transmit ring and check status.
473 1.5 ragge * Be careful about loopback requests.
474 1.1 ragge * Then free buffer space and check for
475 1.1 ragge * more transmit requests.
476 1.1 ragge */
477 1.5 ragge dc = sc->sc_dedata;
478 1.5 ragge for ( ; sc->sc_nxmit > 0; sc->sc_nxmit--) {
479 1.5 ragge rp = &dc->dc_xrent[sc->sc_xindex];
480 1.5 ragge if (rp->r_flags & XFLG_OWN)
481 1.2 ragge break;
482 1.10 ragge
483 1.5 ragge sc->sc_if.if_opackets++;
484 1.10 ragge ifxp = &sc->sc_ifw[sc->sc_xindex];
485 1.5 ragge /* check for unusual conditions */
486 1.1 ragge if (rp->r_flags & (XFLG_ERRS|XFLG_MTCH|XFLG_ONE|XFLG_MORE)) {
487 1.1 ragge if (rp->r_flags & XFLG_ERRS) {
488 1.5 ragge /* output error */
489 1.5 ragge sc->sc_if.if_oerrors++;
490 1.1 ragge } else if (rp->r_flags & XFLG_ONE) {
491 1.5 ragge /* one collision */
492 1.5 ragge sc->sc_if.if_collisions++;
493 1.1 ragge } else if (rp->r_flags & XFLG_MORE) {
494 1.5 ragge /* more than one collision */
495 1.5 ragge sc->sc_if.if_collisions += 2; /* guess */
496 1.1 ragge }
497 1.1 ragge }
498 1.10 ragge if_ubaend(&sc->sc_ifuba, ifxp);
499 1.5 ragge /* check if next transmit buffer also finished */
500 1.5 ragge sc->sc_xindex++;
501 1.5 ragge if (sc->sc_xindex == NXMT)
502 1.5 ragge sc->sc_xindex = 0;
503 1.5 ragge }
504 1.5 ragge sc->sc_if.if_flags &= ~IFF_OACTIVE;
505 1.5 ragge destart(&sc->sc_if);
506 1.5 ragge
507 1.5 ragge if (csr0 & PCSR0_RCBI) {
508 1.5 ragge DE_WLOW(PCSR0_INTE|CMD_PDMD);
509 1.5 ragge }
510 1.1 ragge }
511 1.1 ragge
512 1.1 ragge /*
513 1.1 ragge * Ethernet interface receiver interface.
514 1.1 ragge * If input error just drop packet.
515 1.16 simonb * Otherwise purge input buffered data path and examine
516 1.1 ragge * packet to determine type. If can't determine length
517 1.1 ragge * from type, then have to drop packet. Othewise decapsulate
518 1.1 ragge * packet based on type and pass to type specific higher-level
519 1.1 ragge * input routine.
520 1.1 ragge */
521 1.1 ragge void
522 1.1 ragge derecv(struct de_softc *sc)
523 1.1 ragge {
524 1.1 ragge struct ifnet *ifp = &sc->sc_if;
525 1.1 ragge struct de_ring *rp;
526 1.5 ragge struct de_cdata *dc;
527 1.1 ragge struct mbuf *m;
528 1.1 ragge int len;
529 1.1 ragge
530 1.5 ragge dc = sc->sc_dedata;
531 1.5 ragge rp = &dc->dc_rrent[sc->sc_rindex];
532 1.1 ragge while ((rp->r_flags & RFLG_OWN) == 0) {
533 1.5 ragge len = (rp->r_lenerr&RERR_MLEN) - ETHER_CRC_LEN;
534 1.1 ragge /* check for errors */
535 1.1 ragge if ((rp->r_flags & (RFLG_ERRS|RFLG_FRAM|RFLG_OFLO|RFLG_CRC)) ||
536 1.2 ragge (rp->r_lenerr & (RERR_BUFL|RERR_UBTO))) {
537 1.5 ragge sc->sc_if.if_ierrors++;
538 1.1 ragge goto next;
539 1.1 ragge }
540 1.10 ragge m = if_ubaget(&sc->sc_ifuba, &sc->sc_ifr[sc->sc_rindex],
541 1.10 ragge ifp, len);
542 1.10 ragge if (m == 0) {
543 1.10 ragge sc->sc_if.if_ierrors++;
544 1.10 ragge goto next;
545 1.10 ragge }
546 1.5 ragge
547 1.30 ozaki if_percpuq_enqueue(ifp->if_percpuq, m);
548 1.1 ragge
549 1.1 ragge /* hang the receive buffer again */
550 1.1 ragge next: rp->r_lenerr = 0;
551 1.1 ragge rp->r_flags = RFLG_OWN;
552 1.1 ragge
553 1.1 ragge /* check next receive buffer */
554 1.5 ragge sc->sc_rindex++;
555 1.5 ragge if (sc->sc_rindex == NRCV)
556 1.5 ragge sc->sc_rindex = 0;
557 1.5 ragge rp = &dc->dc_rrent[sc->sc_rindex];
558 1.1 ragge }
559 1.1 ragge }
560 1.1 ragge
561 1.1 ragge /*
562 1.1 ragge * Process an ioctl request.
563 1.1 ragge */
564 1.1 ragge int
565 1.21 christos deioctl(struct ifnet *ifp, u_long cmd, void *data)
566 1.1 ragge {
567 1.10 ragge int s, error = 0;
568 1.1 ragge
569 1.10 ragge s = splnet();
570 1.1 ragge
571 1.10 ragge error = ether_ioctl(ifp, cmd, data);
572 1.10 ragge if (error == ENETRESET)
573 1.10 ragge error = 0;
574 1.2 ragge
575 1.1 ragge splx(s);
576 1.1 ragge return (error);
577 1.1 ragge }
578 1.1 ragge
579 1.1 ragge /*
580 1.1 ragge * Await completion of the named function
581 1.1 ragge * and check for errors.
582 1.1 ragge */
583 1.2 ragge void
584 1.17 ragge dewait(struct de_softc *sc, const char *fn)
585 1.1 ragge {
586 1.23 matt int csr0, csr1;
587 1.1 ragge
588 1.1 ragge while ((DE_RCSR(DE_PCSR0) & PCSR0_INTR) == 0)
589 1.1 ragge ;
590 1.1 ragge csr0 = DE_RCSR(DE_PCSR0);
591 1.1 ragge DE_WHIGH(csr0 >> 8);
592 1.1 ragge if (csr0 & PCSR0_PCEI) {
593 1.23 matt char bits0[64];
594 1.23 matt char bits1[64];
595 1.23 matt csr1 = DE_RCSR(DE_PCSR1);
596 1.24 christos snprintb(bits0, sizeof(bits0), PCSR0_BITS, csr0);
597 1.24 christos snprintb(bits1, sizeof(bits1), PCSR1_BITS, csr1);
598 1.23 matt aprint_error_dev(sc->sc_dev, "%s failed, csr0=%s csr1=%s\n",
599 1.24 christos fn, bits0, bits1);
600 1.1 ragge }
601 1.1 ragge }
602 1.1 ragge
603 1.1 ragge int
604 1.23 matt dematch(device_t parent, cfdata_t cf, void *aux)
605 1.1 ragge {
606 1.1 ragge struct uba_attach_args *ua = aux;
607 1.1 ragge struct de_softc ssc;
608 1.1 ragge struct de_softc *sc = &ssc;
609 1.1 ragge int i;
610 1.1 ragge
611 1.1 ragge sc->sc_iot = ua->ua_iot;
612 1.1 ragge sc->sc_ioh = ua->ua_ioh;
613 1.1 ragge /*
614 1.1 ragge * Make sure self-test is finished before we screw with the board.
615 1.1 ragge * Self-test on a DELUA can take 15 seconds (argh).
616 1.1 ragge */
617 1.1 ragge for (i = 0;
618 1.1 ragge (i < 160) &&
619 1.1 ragge (DE_RCSR(DE_PCSR0) & PCSR0_FATI) == 0 &&
620 1.1 ragge (DE_RCSR(DE_PCSR1) & PCSR1_STMASK) == STAT_RESET;
621 1.1 ragge ++i)
622 1.1 ragge DELAY(50000);
623 1.1 ragge if (((DE_RCSR(DE_PCSR0) & PCSR0_FATI) != 0) ||
624 1.1 ragge (((DE_RCSR(DE_PCSR1) & PCSR1_STMASK) != STAT_READY) &&
625 1.1 ragge ((DE_RCSR(DE_PCSR1) & PCSR1_STMASK) != STAT_RUN)))
626 1.1 ragge return(0);
627 1.1 ragge
628 1.1 ragge DE_WCSR(DE_PCSR0, 0);
629 1.1 ragge DELAY(5000);
630 1.1 ragge DE_WCSR(DE_PCSR0, PCSR0_RSET);
631 1.1 ragge while ((DE_RCSR(DE_PCSR0) & PCSR0_INTR) == 0)
632 1.1 ragge ;
633 1.1 ragge /* make board interrupt by executing a GETPCBB command */
634 1.1 ragge DE_WCSR(DE_PCSR0, PCSR0_INTE);
635 1.1 ragge DE_WCSR(DE_PCSR2, 0);
636 1.1 ragge DE_WCSR(DE_PCSR3, 0);
637 1.1 ragge DE_WCSR(DE_PCSR0, PCSR0_INTE|CMD_GETPCBB);
638 1.1 ragge DELAY(50000);
639 1.1 ragge
640 1.1 ragge return 1;
641 1.1 ragge }
642 1.2 ragge
643 1.2 ragge void
644 1.2 ragge deshutdown(void *arg)
645 1.2 ragge {
646 1.2 ragge struct de_softc *sc = arg;
647 1.2 ragge
648 1.5 ragge DE_WCSR(DE_PCSR0, 0);
649 1.5 ragge DELAY(1000);
650 1.2 ragge DE_WCSR(DE_PCSR0, PCSR0_RSET);
651 1.2 ragge dewait(sc, "shutdown");
652 1.2 ragge }
653