rf_aselect.c revision 1.12 1 /* $NetBSD: rf_aselect.c,v 1.12 2004/02/27 02:55:18 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*****************************************************************************
30 *
31 * aselect.c -- algorithm selection code
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_aselect.c,v 1.12 2004/02/27 02:55:18 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_raid.h"
42 #include "rf_dag.h"
43 #include "rf_dagutils.h"
44 #include "rf_dagfuncs.h"
45 #include "rf_general.h"
46 #include "rf_desc.h"
47 #include "rf_map.h"
48
49 #if defined(__NetBSD__) && defined(_KERNEL)
50 /* the function below is not used... so don't define it! */
51 #else
52 static void TransferDagMemory(RF_DagHeader_t *, RF_DagHeader_t *);
53 #endif
54
55 static int InitHdrNode(RF_DagHeader_t **, RF_Raid_t *);
56 int rf_SelectAlgorithm(RF_RaidAccessDesc_t *, RF_RaidAccessFlags_t);
57
58
59 /******************************************************************************
60 *
61 * Create and Initialiaze a dag header and termination node
62 *
63 *****************************************************************************/
64 static int
65 InitHdrNode(RF_DagHeader_t **hdr, RF_Raid_t *raidPtr)
66 {
67 /* create and initialize dag hdr */
68 *hdr = rf_AllocDAGHeader();
69 rf_MakeAllocList((*hdr)->allocList);
70 if ((*hdr)->allocList == NULL) {
71 rf_FreeDAGHeader(*hdr);
72 return (ENOMEM);
73 }
74 (*hdr)->status = rf_enable;
75 (*hdr)->numSuccedents = 0;
76 (*hdr)->raidPtr = raidPtr;
77 (*hdr)->next = NULL;
78 return (0);
79 }
80
81 /******************************************************************************
82 *
83 * Create a DAG to do a read or write operation.
84 *
85 * create a list of dagLists, one list per parity stripe.
86 * return the lists in the desc->dagList (which is a list of lists).
87 *
88 * Normally, each list contains one dag for the entire stripe. In some
89 * tricky cases, we break this into multiple dags, either one per stripe
90 * unit or one per block (sector). When this occurs, these dags are returned
91 * as a linked list (dagList) which is executed sequentially (to preserve
92 * atomic parity updates in the stripe).
93 *
94 * dags which operate on independent parity goups (stripes) are returned in
95 * independent dagLists (distinct elements in desc->dagArray) and may be
96 * executed concurrently.
97 *
98 * Finally, if the SelectionFunc fails to create a dag for a block, we punt
99 * and return 1.
100 *
101 * The above process is performed in two phases:
102 * 1) create an array(s) of creation functions (eg stripeFuncs)
103 * 2) create dags and concatenate/merge to form the final dag.
104 *
105 * Because dag's are basic blocks (single entry, single exit, unconditional
106 * control flow, we can add the following optimizations (future work):
107 * first-pass optimizer to allow max concurrency (need all data dependencies)
108 * second-pass optimizer to eliminate common subexpressions (need true
109 * data dependencies)
110 * third-pass optimizer to eliminate dead code (need true data dependencies)
111 *****************************************************************************/
112
113 #define MAXNSTRIPES 50
114
115 int
116 rf_SelectAlgorithm(RF_RaidAccessDesc_t *desc, RF_RaidAccessFlags_t flags)
117 {
118 RF_AccessStripeMapHeader_t *asm_h = desc->asmap;
119 RF_IoType_t type = desc->type;
120 RF_Raid_t *raidPtr = desc->raidPtr;
121 void *bp = desc->bp;
122
123 RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
124 RF_AccessStripeMap_t *asm_p;
125 RF_DagHeader_t *dag_h = NULL, *tempdag_h, *lastdag_h;
126 RF_DagList_t *dagList, *dagListend;
127 int i, j, k;
128 RF_VoidFuncPtr *stripeFuncs, normalStripeFuncs[MAXNSTRIPES];
129 RF_AccessStripeMap_t *asm_up, *asm_bp;
130 RF_AccessStripeMapHeader_t ***asmh_u, *endASMList;
131 RF_AccessStripeMapHeader_t ***asmh_b;
132 RF_VoidFuncPtr **stripeUnitFuncs, uFunc;
133 RF_VoidFuncPtr **blockFuncs, bFunc;
134 int numStripesBailed = 0, cantCreateDAGs = RF_FALSE;
135 int numStripeUnitsBailed = 0;
136 int stripeNum, numUnitDags = 0, stripeUnitNum, numBlockDags = 0;
137 RF_StripeNum_t numStripeUnits;
138 RF_SectorNum_t numBlocks;
139 RF_RaidAddr_t address;
140 int length;
141 RF_PhysDiskAddr_t *physPtr;
142 caddr_t buffer;
143
144 lastdag_h = NULL;
145 asmh_u = asmh_b = NULL;
146 stripeUnitFuncs = NULL;
147 blockFuncs = NULL;
148
149 /* get an array of dag-function creation pointers, try to avoid
150 * calling malloc */
151 if (asm_h->numStripes <= MAXNSTRIPES)
152 stripeFuncs = normalStripeFuncs;
153 else
154 RF_Malloc(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
155
156 /* walk through the asm list once collecting information */
157 /* attempt to find a single creation function for each stripe */
158 desc->numStripes = 0;
159 for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) {
160 desc->numStripes++;
161 (raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_p, &stripeFuncs[i]);
162 /* check to see if we found a creation func for this stripe */
163 if (stripeFuncs[i] == (RF_VoidFuncPtr) NULL) {
164 /* could not find creation function for entire stripe
165 * so, let's see if we can find one for each stripe
166 * unit in the stripe */
167
168 if (numStripesBailed == 0) {
169 /* one stripe map header for each stripe we
170 * bail on */
171 RF_Malloc(asmh_u, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes, (RF_AccessStripeMapHeader_t ***));
172 /* create an array of ptrs to arrays of
173 * stripeFuncs */
174 RF_Malloc(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **));
175 }
176 /* create an array of creation funcs (called
177 * stripeFuncs) for this stripe */
178 numStripeUnits = asm_p->numStripeUnitsAccessed;
179 RF_Malloc(stripeUnitFuncs[numStripesBailed], numStripeUnits * sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
180 RF_Malloc(asmh_u[numStripesBailed], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **));
181
182 /* lookup array of stripeUnitFuncs for this stripe */
183 for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
184 /* remap for series of single stripe-unit
185 * accesses */
186 address = physPtr->raidAddress;
187 length = physPtr->numSector;
188 buffer = physPtr->bufPtr;
189
190 asmh_u[numStripesBailed][j] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP);
191 asm_up = asmh_u[numStripesBailed][j]->stripeMap;
192
193 /* get the creation func for this stripe unit */
194 (raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_up, &(stripeUnitFuncs[numStripesBailed][j]));
195
196 /* check to see if we found a creation func
197 * for this stripe unit */
198 if (stripeUnitFuncs[numStripesBailed][j] == (RF_VoidFuncPtr) NULL) {
199 /* could not find creation function
200 * for stripe unit so, let's see if we
201 * can find one for each block in the
202 * stripe unit */
203 if (numStripeUnitsBailed == 0) {
204 /* one stripe map header for
205 * each stripe unit we bail on */
206 RF_Malloc(asmh_b, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes * raidPtr->Layout.numDataCol, (RF_AccessStripeMapHeader_t ***));
207 /* create an array of ptrs to
208 * arrays of blockFuncs */
209 RF_Malloc(blockFuncs, asm_h->numStripes * raidPtr->Layout.numDataCol * sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **));
210 }
211 /* create an array of creation funcs
212 * (called blockFuncs) for this stripe
213 * unit */
214 numBlocks = physPtr->numSector;
215 numBlockDags += numBlocks;
216 RF_Malloc(blockFuncs[numStripeUnitsBailed], numBlocks * sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
217 RF_Malloc(asmh_b[numStripeUnitsBailed], numBlocks * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **));
218
219 /* lookup array of blockFuncs for this
220 * stripe unit */
221 for (k = 0; k < numBlocks; k++) {
222 /* remap for series of single
223 * stripe-unit accesses */
224 address = physPtr->raidAddress + k;
225 length = 1;
226 buffer = physPtr->bufPtr + (k * (1 << raidPtr->logBytesPerSector));
227
228 asmh_b[numStripeUnitsBailed][k] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP);
229 asm_bp = asmh_b[numStripeUnitsBailed][k]->stripeMap;
230
231 /* get the creation func for
232 * this stripe unit */
233 (raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_bp, &(blockFuncs[numStripeUnitsBailed][k]));
234
235 /* check to see if we found a
236 * creation func for this
237 * stripe unit */
238 if (blockFuncs[numStripeUnitsBailed][k] == NULL)
239 cantCreateDAGs = RF_TRUE;
240 }
241 numStripeUnitsBailed++;
242 } else {
243 numUnitDags++;
244 }
245 }
246 RF_ASSERT(j == numStripeUnits);
247 numStripesBailed++;
248 }
249 }
250
251 if (cantCreateDAGs) {
252 /* free memory and punt */
253 if (asm_h->numStripes > MAXNSTRIPES)
254 RF_Free(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
255 if (numStripesBailed > 0) {
256 stripeNum = 0;
257 for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++)
258 if (stripeFuncs[i] == NULL) {
259 numStripeUnits = asm_p->numStripeUnitsAccessed;
260 for (j = 0; j < numStripeUnits; j++)
261 rf_FreeAccessStripeMap(asmh_u[stripeNum][j]);
262 RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *));
263 RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr));
264 stripeNum++;
265 }
266 RF_ASSERT(stripeNum == numStripesBailed);
267 RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
268 RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
269 }
270 desc->numStripes = 0;
271 return (1);
272 } else {
273 /* begin dag creation */
274 stripeNum = 0;
275 stripeUnitNum = 0;
276
277 /* create a list of dagLists and fill them in */
278
279 dagListend = NULL;
280
281 for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) {
282 /* grab dag header for this stripe */
283 dag_h = NULL;
284
285 dagList = rf_AllocDAGList();
286
287 /* always tack the new dagList onto the end of the list... */
288 if (dagListend == NULL) {
289 desc->dagList = dagList;
290 } else {
291 dagListend->next = dagList;
292 }
293 dagListend = dagList;
294
295 dagList->desc = desc;
296
297 if (stripeFuncs[i] == (RF_VoidFuncPtr) NULL) {
298 /* use bailout functions for this stripe */
299 for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
300 uFunc = stripeUnitFuncs[stripeNum][j];
301 if (uFunc == (RF_VoidFuncPtr) NULL) {
302 /* use bailout functions for
303 * this stripe unit */
304 for (k = 0; k < physPtr->numSector; k++) {
305 /* create a dag for
306 * this block */
307 InitHdrNode(&tempdag_h, raidPtr);
308 dagList->numDags++;
309 if (dag_h == NULL) {
310 dag_h = tempdag_h;
311 } else {
312 lastdag_h->next = tempdag_h;
313 }
314 lastdag_h = tempdag_h;
315
316 bFunc = blockFuncs[stripeUnitNum][k];
317 RF_ASSERT(bFunc);
318 asm_bp = asmh_b[stripeUnitNum][k]->stripeMap;
319 (*bFunc) (raidPtr, asm_bp, tempdag_h, bp, flags, tempdag_h->allocList);
320 }
321 stripeUnitNum++;
322 } else {
323 /* create a dag for this unit */
324 InitHdrNode(&tempdag_h, raidPtr);
325 dagList->numDags++;
326 if (dag_h == NULL) {
327 dag_h = tempdag_h;
328 } else {
329 lastdag_h->next = tempdag_h;
330 }
331 lastdag_h = tempdag_h;
332
333 asm_up = asmh_u[stripeNum][j]->stripeMap;
334 (*uFunc) (raidPtr, asm_up, tempdag_h, bp, flags, tempdag_h->allocList);
335 }
336 }
337 RF_ASSERT(j == asm_p->numStripeUnitsAccessed);
338 /* merge linked bailout dag to existing dag
339 * collection */
340 stripeNum++;
341 } else {
342 /* Create a dag for this parity stripe */
343 InitHdrNode(&tempdag_h, raidPtr);
344 dagList->numDags++;
345 if (dag_h == NULL) {
346 dag_h = tempdag_h;
347 } else {
348 lastdag_h->next = tempdag_h;
349 }
350 lastdag_h = tempdag_h;
351
352 (stripeFuncs[i]) (raidPtr, asm_p, tempdag_h, bp, flags, tempdag_h->allocList);
353 }
354 dagList->dags = dag_h;
355 }
356 RF_ASSERT(i == desc->numStripes);
357
358 /* free memory */
359 if (asm_h->numStripes > MAXNSTRIPES)
360 RF_Free(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
361 if ((numStripesBailed > 0) || (numStripeUnitsBailed > 0)) {
362 stripeNum = 0;
363 stripeUnitNum = 0;
364 if (dag_h->asmList) {
365 endASMList = dag_h->asmList;
366 while (endASMList->next)
367 endASMList = endASMList->next;
368 } else
369 endASMList = NULL;
370 /* walk through io, stripe by stripe */
371 for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++)
372 if (stripeFuncs[i] == NULL) {
373 numStripeUnits = asm_p->numStripeUnitsAccessed;
374 /* walk through stripe, stripe unit by
375 * stripe unit */
376 for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
377 if (stripeUnitFuncs[stripeNum][j] == NULL) {
378 numBlocks = physPtr->numSector;
379 /* walk through stripe
380 * unit, block by
381 * block */
382 for (k = 0; k < numBlocks; k++)
383 if (dag_h->asmList == NULL) {
384 dag_h->asmList = asmh_b[stripeUnitNum][k];
385 endASMList = dag_h->asmList;
386 } else {
387 endASMList->next = asmh_b[stripeUnitNum][k];
388 endASMList = endASMList->next;
389 }
390 RF_Free(asmh_b[stripeUnitNum], numBlocks * sizeof(RF_AccessStripeMapHeader_t *));
391 RF_Free(blockFuncs[stripeUnitNum], numBlocks * sizeof(RF_VoidFuncPtr));
392 stripeUnitNum++;
393 }
394 if (dag_h->asmList == NULL) {
395 dag_h->asmList = asmh_u[stripeNum][j];
396 endASMList = dag_h->asmList;
397 } else {
398 endASMList->next = asmh_u[stripeNum][j];
399 endASMList = endASMList->next;
400 }
401 }
402 RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *));
403 RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr));
404 stripeNum++;
405 }
406 RF_ASSERT(stripeNum == numStripesBailed);
407 RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
408 RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
409 if (numStripeUnitsBailed > 0) {
410 RF_ASSERT(stripeUnitNum == numStripeUnitsBailed);
411 RF_Free(blockFuncs, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_VoidFuncPtr));
412 RF_Free(asmh_b, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
413 }
414 }
415 return (0);
416 }
417 }
418