Home | History | Annotate | Line # | Download | only in raidframe
rf_aselect.c revision 1.3
      1 /*	$NetBSD: rf_aselect.c,v 1.3 1999/02/05 00:06:06 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*****************************************************************************
     30  *
     31  * aselect.c -- algorithm selection code
     32  *
     33  *****************************************************************************/
     34 
     35 
     36 #include "rf_archs.h"
     37 #include "rf_types.h"
     38 #include "rf_raid.h"
     39 #include "rf_dag.h"
     40 #include "rf_dagutils.h"
     41 #include "rf_dagfuncs.h"
     42 #include "rf_general.h"
     43 #include "rf_desc.h"
     44 #include "rf_map.h"
     45 
     46 #if defined(__NetBSD__) && defined(_KERNEL)
     47 /* the function below is not used... so don't define it! */
     48 #else
     49 static void TransferDagMemory(RF_DagHeader_t *, RF_DagHeader_t *);
     50 #endif
     51 
     52 static int InitHdrNode(RF_DagHeader_t **, RF_Raid_t *, int);
     53 static void UpdateNodeHdrPtr(RF_DagHeader_t *, RF_DagNode_t *);
     54 int     rf_SelectAlgorithm(RF_RaidAccessDesc_t *, RF_RaidAccessFlags_t);
     55 
     56 
     57 /******************************************************************************
     58  *
     59  * Create and Initialiaze a dag header and termination node
     60  *
     61  *****************************************************************************/
     62 static int
     63 InitHdrNode(hdr, raidPtr, memChunkEnable)
     64 	RF_DagHeader_t **hdr;
     65 	RF_Raid_t *raidPtr;
     66 	int     memChunkEnable;
     67 {
     68 	/* create and initialize dag hdr */
     69 	*hdr = rf_AllocDAGHeader();
     70 	rf_MakeAllocList((*hdr)->allocList);
     71 	if ((*hdr)->allocList == NULL) {
     72 		rf_FreeDAGHeader(*hdr);
     73 		return (ENOMEM);
     74 	}
     75 	(*hdr)->status = rf_enable;
     76 	(*hdr)->numSuccedents = 0;
     77 	(*hdr)->raidPtr = raidPtr;
     78 	(*hdr)->next = NULL;
     79 	return (0);
     80 }
     81 /******************************************************************************
     82  *
     83  * Transfer allocation list and mem chunks from one dag to another
     84  *
     85  *****************************************************************************/
     86 #if defined(__NetBSD__) && defined(_KERNEL)
     87 /* the function below is not used... so don't define it! */
     88 #else
     89 static void
     90 TransferDagMemory(daga, dagb)
     91 	RF_DagHeader_t *daga;
     92 	RF_DagHeader_t *dagb;
     93 {
     94 	RF_AccessStripeMapHeader_t *end;
     95 	RF_AllocListElem_t *p;
     96 	int     i, memChunksXfrd = 0, xtraChunksXfrd = 0;
     97 
     98 	/* transfer allocList from dagb to daga */
     99 	for (p = dagb->allocList; p; p = p->next) {
    100 		for (i = 0; i < p->numPointers; i++) {
    101 			rf_AddToAllocList(daga->allocList, p->pointers[i], p->sizes[i]);
    102 			p->pointers[i] = NULL;
    103 			p->sizes[i] = 0;
    104 		}
    105 		p->numPointers = 0;
    106 	}
    107 
    108 	/* transfer chunks from dagb to daga */
    109 	while ((memChunksXfrd + xtraChunksXfrd < dagb->chunkIndex + dagb->xtraChunkIndex) && (daga->chunkIndex < RF_MAXCHUNKS)) {
    110 		/* stuff chunks into daga's memChunk array */
    111 		if (memChunksXfrd < dagb->chunkIndex) {
    112 			daga->memChunk[daga->chunkIndex++] = dagb->memChunk[memChunksXfrd];
    113 			dagb->memChunk[memChunksXfrd++] = NULL;
    114 		} else {
    115 			daga->memChunk[daga->xtraChunkIndex++] = dagb->xtraMemChunk[xtraChunksXfrd];
    116 			dagb->xtraMemChunk[xtraChunksXfrd++] = NULL;
    117 		}
    118 	}
    119 	/* use escape hatch to hold excess chunks */
    120 	while (memChunksXfrd + xtraChunksXfrd < dagb->chunkIndex + dagb->xtraChunkIndex) {
    121 		if (memChunksXfrd < dagb->chunkIndex) {
    122 			daga->xtraMemChunk[daga->xtraChunkIndex++] = dagb->memChunk[memChunksXfrd];
    123 			dagb->memChunk[memChunksXfrd++] = NULL;
    124 		} else {
    125 			daga->xtraMemChunk[daga->xtraChunkIndex++] = dagb->xtraMemChunk[xtraChunksXfrd];
    126 			dagb->xtraMemChunk[xtraChunksXfrd++] = NULL;
    127 		}
    128 	}
    129 	RF_ASSERT((memChunksXfrd == dagb->chunkIndex) && (xtraChunksXfrd == dagb->xtraChunkIndex));
    130 	RF_ASSERT(daga->chunkIndex <= RF_MAXCHUNKS);
    131 	RF_ASSERT(daga->xtraChunkIndex <= daga->xtraChunkCnt);
    132 	dagb->chunkIndex = 0;
    133 	dagb->xtraChunkIndex = 0;
    134 
    135 	/* transfer asmList from dagb to daga */
    136 	if (dagb->asmList) {
    137 		if (daga->asmList) {
    138 			end = daga->asmList;
    139 			while (end->next)
    140 				end = end->next;
    141 			end->next = dagb->asmList;
    142 		} else
    143 			daga->asmList = dagb->asmList;
    144 		dagb->asmList = NULL;
    145 	}
    146 }
    147 #endif				/* __NetBSD__ */
    148 
    149 /*****************************************************************************************
    150  *
    151  * Ensure that all node->dagHdr fields in a dag are consistent
    152  *
    153  * IMPORTANT: This routine recursively searches all succedents of the node.  If a
    154  * succedent is encountered whose dagHdr ptr does not require adjusting, that node's
    155  * succedents WILL NOT BE EXAMINED.
    156  *
    157  ****************************************************************************************/
    158 static void
    159 UpdateNodeHdrPtr(hdr, node)
    160 	RF_DagHeader_t *hdr;
    161 	RF_DagNode_t *node;
    162 {
    163 	int     i;
    164 	RF_ASSERT(hdr != NULL && node != NULL);
    165 	for (i = 0; i < node->numSuccedents; i++)
    166 		if (node->succedents[i]->dagHdr != hdr)
    167 			UpdateNodeHdrPtr(hdr, node->succedents[i]);
    168 	node->dagHdr = hdr;
    169 }
    170 /******************************************************************************
    171  *
    172  * Create a DAG to do a read or write operation.
    173  *
    174  * create an array of dagLists, one list per parity stripe.
    175  * return the lists in the array desc->dagArray.
    176  *
    177  * Normally, each list contains one dag for the entire stripe.  In some
    178  * tricky cases, we break this into multiple dags, either one per stripe
    179  * unit or one per block (sector).  When this occurs, these dags are returned
    180  * as a linked list (dagList) which is executed sequentially (to preserve
    181  * atomic parity updates in the stripe).
    182  *
    183  * dags which operate on independent parity goups (stripes) are returned in
    184  * independent dagLists (distinct elements in desc->dagArray) and may be
    185  * executed concurrently.
    186  *
    187  * Finally, if the SelectionFunc fails to create a dag for a block, we punt
    188  * and return 1.
    189  *
    190  * The above process is performed in two phases:
    191  *   1) create an array(s) of creation functions (eg stripeFuncs)
    192  *   2) create dags and concatenate/merge to form the final dag.
    193  *
    194  * Because dag's are basic blocks (single entry, single exit, unconditional
    195  * control flow, we can add the following optimizations (future work):
    196  *   first-pass optimizer to allow max concurrency (need all data dependencies)
    197  *   second-pass optimizer to eliminate common subexpressions (need true
    198  *                         data dependencies)
    199  *   third-pass optimizer to eliminate dead code (need true data dependencies)
    200  *****************************************************************************/
    201 
    202 #define MAXNSTRIPES 50
    203 
    204 int
    205 rf_SelectAlgorithm(desc, flags)
    206 	RF_RaidAccessDesc_t *desc;
    207 	RF_RaidAccessFlags_t flags;
    208 {
    209 	RF_AccessStripeMapHeader_t *asm_h = desc->asmap;
    210 	RF_IoType_t type = desc->type;
    211 	RF_Raid_t *raidPtr = desc->raidPtr;
    212 	void   *bp = desc->bp;
    213 
    214 	RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
    215 	RF_AccessStripeMap_t *asm_p;
    216 	RF_DagHeader_t *dag_h = NULL, *tempdag_h, *lastdag_h;
    217 	int     i, j, k;
    218 	RF_VoidFuncPtr *stripeFuncs, normalStripeFuncs[MAXNSTRIPES];
    219 	RF_AccessStripeMap_t *asm_up, *asm_bp;
    220 	RF_AccessStripeMapHeader_t ***asmh_u, *endASMList;
    221 	RF_AccessStripeMapHeader_t ***asmh_b;
    222 	RF_VoidFuncPtr **stripeUnitFuncs, uFunc;
    223 	RF_VoidFuncPtr **blockFuncs, bFunc;
    224 	int     numStripesBailed = 0, cantCreateDAGs = RF_FALSE;
    225 	int     numStripeUnitsBailed = 0;
    226 	int     stripeNum, numUnitDags = 0, stripeUnitNum, numBlockDags = 0;
    227 	RF_StripeNum_t numStripeUnits;
    228 	RF_SectorNum_t numBlocks;
    229 	RF_RaidAddr_t address;
    230 	int     length;
    231 	RF_PhysDiskAddr_t *physPtr;
    232 	caddr_t buffer;
    233 
    234 	lastdag_h = NULL;
    235 	asmh_u = asmh_b = NULL;
    236 	stripeUnitFuncs = NULL;
    237 	blockFuncs = NULL;
    238 
    239 	/* get an array of dag-function creation pointers, try to avoid
    240 	 * calling malloc */
    241 	if (asm_h->numStripes <= MAXNSTRIPES)
    242 		stripeFuncs = normalStripeFuncs;
    243 	else
    244 		RF_Calloc(stripeFuncs, asm_h->numStripes, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
    245 
    246 	/* walk through the asm list once collecting information */
    247 	/* attempt to find a single creation function for each stripe */
    248 	desc->numStripes = 0;
    249 	for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) {
    250 		desc->numStripes++;
    251 		(raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_p, &stripeFuncs[i]);
    252 		/* check to see if we found a creation func for this stripe */
    253 		if (stripeFuncs[i] == (RF_VoidFuncPtr) NULL) {
    254 			/* could not find creation function for entire stripe
    255 			 * so, let's see if we can find one for each stripe
    256 			 * unit in the stripe */
    257 
    258 			if (numStripesBailed == 0) {
    259 				/* one stripe map header for each stripe we
    260 				 * bail on */
    261 				RF_Malloc(asmh_u, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes, (RF_AccessStripeMapHeader_t ***));
    262 				/* create an array of ptrs to arrays of
    263 				 * stripeFuncs */
    264 				RF_Calloc(stripeUnitFuncs, asm_h->numStripes, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **));
    265 			}
    266 			/* create an array of creation funcs (called
    267 			 * stripeFuncs) for this stripe */
    268 			numStripeUnits = asm_p->numStripeUnitsAccessed;
    269 			RF_Calloc(stripeUnitFuncs[numStripesBailed], numStripeUnits, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
    270 			RF_Malloc(asmh_u[numStripesBailed], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **));
    271 
    272 			/* lookup array of stripeUnitFuncs for this stripe */
    273 			for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
    274 				/* remap for series of single stripe-unit
    275 				 * accesses */
    276 				address = physPtr->raidAddress;
    277 				length = physPtr->numSector;
    278 				buffer = physPtr->bufPtr;
    279 
    280 				asmh_u[numStripesBailed][j] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP);
    281 				asm_up = asmh_u[numStripesBailed][j]->stripeMap;
    282 
    283 				/* get the creation func for this stripe unit */
    284 				(raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_up, &(stripeUnitFuncs[numStripesBailed][j]));
    285 
    286 				/* check to see if we found a creation func
    287 				 * for this stripe unit */
    288 				if (stripeUnitFuncs[numStripesBailed][j] == (RF_VoidFuncPtr) NULL) {
    289 					/* could not find creation function
    290 					 * for stripe unit so, let's see if we
    291 					 * can find one for each block in the
    292 					 * stripe unit */
    293 					if (numStripeUnitsBailed == 0) {
    294 						/* one stripe map header for
    295 						 * each stripe unit we bail on */
    296 						RF_Malloc(asmh_b, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes * raidPtr->Layout.numDataCol, (RF_AccessStripeMapHeader_t ***));
    297 						/* create an array of ptrs to
    298 						 * arrays of blockFuncs */
    299 						RF_Calloc(blockFuncs, asm_h->numStripes * raidPtr->Layout.numDataCol, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **));
    300 					}
    301 					/* create an array of creation funcs
    302 					 * (called blockFuncs) for this stripe
    303 					 * unit */
    304 					numBlocks = physPtr->numSector;
    305 					numBlockDags += numBlocks;
    306 					RF_Calloc(blockFuncs[numStripeUnitsBailed], numBlocks, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
    307 					RF_Malloc(asmh_b[numStripeUnitsBailed], numBlocks * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **));
    308 
    309 					/* lookup array of blockFuncs for this
    310 					 * stripe unit */
    311 					for (k = 0; k < numBlocks; k++) {
    312 						/* remap for series of single
    313 						 * stripe-unit accesses */
    314 						address = physPtr->raidAddress + k;
    315 						length = 1;
    316 						buffer = physPtr->bufPtr + (k * (1 << raidPtr->logBytesPerSector));
    317 
    318 						asmh_b[numStripeUnitsBailed][k] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP);
    319 						asm_bp = asmh_b[numStripeUnitsBailed][k]->stripeMap;
    320 
    321 						/* get the creation func for
    322 						 * this stripe unit */
    323 						(raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_bp, &(blockFuncs[numStripeUnitsBailed][k]));
    324 
    325 						/* check to see if we found a
    326 						 * creation func for this
    327 						 * stripe unit */
    328 						if (blockFuncs[numStripeUnitsBailed][k] == NULL)
    329 							cantCreateDAGs = RF_TRUE;
    330 					}
    331 					numStripeUnitsBailed++;
    332 				} else {
    333 					numUnitDags++;
    334 				}
    335 			}
    336 			RF_ASSERT(j == numStripeUnits);
    337 			numStripesBailed++;
    338 		}
    339 	}
    340 
    341 	if (cantCreateDAGs) {
    342 		/* free memory and punt */
    343 		if (asm_h->numStripes > MAXNSTRIPES)
    344 			RF_Free(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
    345 		if (numStripesBailed > 0) {
    346 			stripeNum = 0;
    347 			for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++)
    348 				if (stripeFuncs[i] == NULL) {
    349 					numStripeUnits = asm_p->numStripeUnitsAccessed;
    350 					for (j = 0; j < numStripeUnits; j++)
    351 						rf_FreeAccessStripeMap(asmh_u[stripeNum][j]);
    352 					RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *));
    353 					RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr));
    354 					stripeNum++;
    355 				}
    356 			RF_ASSERT(stripeNum == numStripesBailed);
    357 			RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
    358 			RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
    359 		}
    360 		return (1);
    361 	} else {
    362 		/* begin dag creation */
    363 		stripeNum = 0;
    364 		stripeUnitNum = 0;
    365 
    366 		/* create an array of dagLists and fill them in */
    367 		RF_CallocAndAdd(desc->dagArray, desc->numStripes, sizeof(RF_DagList_t), (RF_DagList_t *), desc->cleanupList);
    368 
    369 		for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) {
    370 			/* grab dag header for this stripe */
    371 			dag_h = NULL;
    372 			desc->dagArray[i].desc = desc;
    373 
    374 			if (stripeFuncs[i] == (RF_VoidFuncPtr) NULL) {
    375 				/* use bailout functions for this stripe */
    376 				for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
    377 					uFunc = stripeUnitFuncs[stripeNum][j];
    378 					if (uFunc == (RF_VoidFuncPtr) NULL) {
    379 						/* use bailout functions for
    380 						 * this stripe unit */
    381 						for (k = 0; k < physPtr->numSector; k++) {
    382 							/* create a dag for
    383 							 * this block */
    384 							InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks);
    385 							desc->dagArray[i].numDags++;
    386 							if (dag_h == NULL) {
    387 								dag_h = tempdag_h;
    388 							} else {
    389 								lastdag_h->next = tempdag_h;
    390 							}
    391 							lastdag_h = tempdag_h;
    392 
    393 							bFunc = blockFuncs[stripeUnitNum][k];
    394 							RF_ASSERT(bFunc);
    395 							asm_bp = asmh_b[stripeUnitNum][k]->stripeMap;
    396 							(*bFunc) (raidPtr, asm_bp, tempdag_h, bp, flags, tempdag_h->allocList);
    397 						}
    398 						stripeUnitNum++;
    399 					} else {
    400 						/* create a dag for this unit */
    401 						InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks);
    402 						desc->dagArray[i].numDags++;
    403 						if (dag_h == NULL) {
    404 							dag_h = tempdag_h;
    405 						} else {
    406 							lastdag_h->next = tempdag_h;
    407 						}
    408 						lastdag_h = tempdag_h;
    409 
    410 						asm_up = asmh_u[stripeNum][j]->stripeMap;
    411 						(*uFunc) (raidPtr, asm_up, tempdag_h, bp, flags, tempdag_h->allocList);
    412 					}
    413 				}
    414 				RF_ASSERT(j == asm_p->numStripeUnitsAccessed);
    415 				/* merge linked bailout dag to existing dag
    416 				 * collection */
    417 				stripeNum++;
    418 			} else {
    419 				/* Create a dag for this parity stripe */
    420 				InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks);
    421 				desc->dagArray[i].numDags++;
    422 				if (dag_h == NULL) {
    423 					dag_h = tempdag_h;
    424 				} else {
    425 					lastdag_h->next = tempdag_h;
    426 				}
    427 				lastdag_h = tempdag_h;
    428 
    429 				(stripeFuncs[i]) (raidPtr, asm_p, tempdag_h, bp, flags, tempdag_h->allocList);
    430 			}
    431 			desc->dagArray[i].dags = dag_h;
    432 		}
    433 		RF_ASSERT(i == desc->numStripes);
    434 
    435 		/* free memory */
    436 		if (asm_h->numStripes > MAXNSTRIPES)
    437 			RF_Free(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
    438 		if ((numStripesBailed > 0) || (numStripeUnitsBailed > 0)) {
    439 			stripeNum = 0;
    440 			stripeUnitNum = 0;
    441 			if (dag_h->asmList) {
    442 				endASMList = dag_h->asmList;
    443 				while (endASMList->next)
    444 					endASMList = endASMList->next;
    445 			} else
    446 				endASMList = NULL;
    447 			/* walk through io, stripe by stripe */
    448 			for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++)
    449 				if (stripeFuncs[i] == NULL) {
    450 					numStripeUnits = asm_p->numStripeUnitsAccessed;
    451 					/* walk through stripe, stripe unit by
    452 					 * stripe unit */
    453 					for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
    454 						if (stripeUnitFuncs[stripeNum][j] == NULL) {
    455 							numBlocks = physPtr->numSector;
    456 							/* walk through stripe
    457 							 * unit, block by
    458 							 * block */
    459 							for (k = 0; k < numBlocks; k++)
    460 								if (dag_h->asmList == NULL) {
    461 									dag_h->asmList = asmh_b[stripeUnitNum][k];
    462 									endASMList = dag_h->asmList;
    463 								} else {
    464 									endASMList->next = asmh_b[stripeUnitNum][k];
    465 									endASMList = endASMList->next;
    466 								}
    467 							RF_Free(asmh_b[stripeUnitNum], numBlocks * sizeof(RF_AccessStripeMapHeader_t *));
    468 							RF_Free(blockFuncs[stripeUnitNum], numBlocks * sizeof(RF_VoidFuncPtr));
    469 							stripeUnitNum++;
    470 						}
    471 						if (dag_h->asmList == NULL) {
    472 							dag_h->asmList = asmh_u[stripeNum][j];
    473 							endASMList = dag_h->asmList;
    474 						} else {
    475 							endASMList->next = asmh_u[stripeNum][j];
    476 							endASMList = endASMList->next;
    477 						}
    478 					}
    479 					RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *));
    480 					RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr));
    481 					stripeNum++;
    482 				}
    483 			RF_ASSERT(stripeNum == numStripesBailed);
    484 			RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
    485 			RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
    486 			if (numStripeUnitsBailed > 0) {
    487 				RF_ASSERT(stripeUnitNum == numStripeUnitsBailed);
    488 				RF_Free(blockFuncs, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_VoidFuncPtr));
    489 				RF_Free(asmh_b, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
    490 			}
    491 		}
    492 		return (0);
    493 	}
    494 }
    495