Home | History | Annotate | Line # | Download | only in raidframe
rf_aselect.c revision 1.3.22.1
      1 /*	$NetBSD: rf_aselect.c,v 1.3.22.1 2002/01/10 19:57:37 thorpej Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*****************************************************************************
     30  *
     31  * aselect.c -- algorithm selection code
     32  *
     33  *****************************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_aselect.c,v 1.3.22.1 2002/01/10 19:57:37 thorpej Exp $");
     37 
     38 #include <dev/raidframe/raidframevar.h>
     39 
     40 #include "rf_archs.h"
     41 #include "rf_raid.h"
     42 #include "rf_dag.h"
     43 #include "rf_dagutils.h"
     44 #include "rf_dagfuncs.h"
     45 #include "rf_general.h"
     46 #include "rf_desc.h"
     47 #include "rf_map.h"
     48 
     49 #if defined(__NetBSD__) && defined(_KERNEL)
     50 /* the function below is not used... so don't define it! */
     51 #else
     52 static void TransferDagMemory(RF_DagHeader_t *, RF_DagHeader_t *);
     53 #endif
     54 
     55 static int InitHdrNode(RF_DagHeader_t **, RF_Raid_t *, int);
     56 static void UpdateNodeHdrPtr(RF_DagHeader_t *, RF_DagNode_t *);
     57 int     rf_SelectAlgorithm(RF_RaidAccessDesc_t *, RF_RaidAccessFlags_t);
     58 
     59 
     60 /******************************************************************************
     61  *
     62  * Create and Initialiaze a dag header and termination node
     63  *
     64  *****************************************************************************/
     65 static int
     66 InitHdrNode(hdr, raidPtr, memChunkEnable)
     67 	RF_DagHeader_t **hdr;
     68 	RF_Raid_t *raidPtr;
     69 	int     memChunkEnable;
     70 {
     71 	/* create and initialize dag hdr */
     72 	*hdr = rf_AllocDAGHeader();
     73 	rf_MakeAllocList((*hdr)->allocList);
     74 	if ((*hdr)->allocList == NULL) {
     75 		rf_FreeDAGHeader(*hdr);
     76 		return (ENOMEM);
     77 	}
     78 	(*hdr)->status = rf_enable;
     79 	(*hdr)->numSuccedents = 0;
     80 	(*hdr)->raidPtr = raidPtr;
     81 	(*hdr)->next = NULL;
     82 	return (0);
     83 }
     84 /******************************************************************************
     85  *
     86  * Transfer allocation list and mem chunks from one dag to another
     87  *
     88  *****************************************************************************/
     89 #if defined(__NetBSD__) && defined(_KERNEL)
     90 /* the function below is not used... so don't define it! */
     91 #else
     92 static void
     93 TransferDagMemory(daga, dagb)
     94 	RF_DagHeader_t *daga;
     95 	RF_DagHeader_t *dagb;
     96 {
     97 	RF_AccessStripeMapHeader_t *end;
     98 	RF_AllocListElem_t *p;
     99 	int     i, memChunksXfrd = 0, xtraChunksXfrd = 0;
    100 
    101 	/* transfer allocList from dagb to daga */
    102 	for (p = dagb->allocList; p; p = p->next) {
    103 		for (i = 0; i < p->numPointers; i++) {
    104 			rf_AddToAllocList(daga->allocList, p->pointers[i], p->sizes[i]);
    105 			p->pointers[i] = NULL;
    106 			p->sizes[i] = 0;
    107 		}
    108 		p->numPointers = 0;
    109 	}
    110 
    111 	/* transfer chunks from dagb to daga */
    112 	while ((memChunksXfrd + xtraChunksXfrd < dagb->chunkIndex + dagb->xtraChunkIndex) && (daga->chunkIndex < RF_MAXCHUNKS)) {
    113 		/* stuff chunks into daga's memChunk array */
    114 		if (memChunksXfrd < dagb->chunkIndex) {
    115 			daga->memChunk[daga->chunkIndex++] = dagb->memChunk[memChunksXfrd];
    116 			dagb->memChunk[memChunksXfrd++] = NULL;
    117 		} else {
    118 			daga->memChunk[daga->xtraChunkIndex++] = dagb->xtraMemChunk[xtraChunksXfrd];
    119 			dagb->xtraMemChunk[xtraChunksXfrd++] = NULL;
    120 		}
    121 	}
    122 	/* use escape hatch to hold excess chunks */
    123 	while (memChunksXfrd + xtraChunksXfrd < dagb->chunkIndex + dagb->xtraChunkIndex) {
    124 		if (memChunksXfrd < dagb->chunkIndex) {
    125 			daga->xtraMemChunk[daga->xtraChunkIndex++] = dagb->memChunk[memChunksXfrd];
    126 			dagb->memChunk[memChunksXfrd++] = NULL;
    127 		} else {
    128 			daga->xtraMemChunk[daga->xtraChunkIndex++] = dagb->xtraMemChunk[xtraChunksXfrd];
    129 			dagb->xtraMemChunk[xtraChunksXfrd++] = NULL;
    130 		}
    131 	}
    132 	RF_ASSERT((memChunksXfrd == dagb->chunkIndex) && (xtraChunksXfrd == dagb->xtraChunkIndex));
    133 	RF_ASSERT(daga->chunkIndex <= RF_MAXCHUNKS);
    134 	RF_ASSERT(daga->xtraChunkIndex <= daga->xtraChunkCnt);
    135 	dagb->chunkIndex = 0;
    136 	dagb->xtraChunkIndex = 0;
    137 
    138 	/* transfer asmList from dagb to daga */
    139 	if (dagb->asmList) {
    140 		if (daga->asmList) {
    141 			end = daga->asmList;
    142 			while (end->next)
    143 				end = end->next;
    144 			end->next = dagb->asmList;
    145 		} else
    146 			daga->asmList = dagb->asmList;
    147 		dagb->asmList = NULL;
    148 	}
    149 }
    150 #endif				/* __NetBSD__ */
    151 
    152 /*****************************************************************************************
    153  *
    154  * Ensure that all node->dagHdr fields in a dag are consistent
    155  *
    156  * IMPORTANT: This routine recursively searches all succedents of the node.  If a
    157  * succedent is encountered whose dagHdr ptr does not require adjusting, that node's
    158  * succedents WILL NOT BE EXAMINED.
    159  *
    160  ****************************************************************************************/
    161 static void
    162 UpdateNodeHdrPtr(hdr, node)
    163 	RF_DagHeader_t *hdr;
    164 	RF_DagNode_t *node;
    165 {
    166 	int     i;
    167 	RF_ASSERT(hdr != NULL && node != NULL);
    168 	for (i = 0; i < node->numSuccedents; i++)
    169 		if (node->succedents[i]->dagHdr != hdr)
    170 			UpdateNodeHdrPtr(hdr, node->succedents[i]);
    171 	node->dagHdr = hdr;
    172 }
    173 /******************************************************************************
    174  *
    175  * Create a DAG to do a read or write operation.
    176  *
    177  * create an array of dagLists, one list per parity stripe.
    178  * return the lists in the array desc->dagArray.
    179  *
    180  * Normally, each list contains one dag for the entire stripe.  In some
    181  * tricky cases, we break this into multiple dags, either one per stripe
    182  * unit or one per block (sector).  When this occurs, these dags are returned
    183  * as a linked list (dagList) which is executed sequentially (to preserve
    184  * atomic parity updates in the stripe).
    185  *
    186  * dags which operate on independent parity goups (stripes) are returned in
    187  * independent dagLists (distinct elements in desc->dagArray) and may be
    188  * executed concurrently.
    189  *
    190  * Finally, if the SelectionFunc fails to create a dag for a block, we punt
    191  * and return 1.
    192  *
    193  * The above process is performed in two phases:
    194  *   1) create an array(s) of creation functions (eg stripeFuncs)
    195  *   2) create dags and concatenate/merge to form the final dag.
    196  *
    197  * Because dag's are basic blocks (single entry, single exit, unconditional
    198  * control flow, we can add the following optimizations (future work):
    199  *   first-pass optimizer to allow max concurrency (need all data dependencies)
    200  *   second-pass optimizer to eliminate common subexpressions (need true
    201  *                         data dependencies)
    202  *   third-pass optimizer to eliminate dead code (need true data dependencies)
    203  *****************************************************************************/
    204 
    205 #define MAXNSTRIPES 50
    206 
    207 int
    208 rf_SelectAlgorithm(desc, flags)
    209 	RF_RaidAccessDesc_t *desc;
    210 	RF_RaidAccessFlags_t flags;
    211 {
    212 	RF_AccessStripeMapHeader_t *asm_h = desc->asmap;
    213 	RF_IoType_t type = desc->type;
    214 	RF_Raid_t *raidPtr = desc->raidPtr;
    215 	void   *bp = desc->bp;
    216 
    217 	RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
    218 	RF_AccessStripeMap_t *asm_p;
    219 	RF_DagHeader_t *dag_h = NULL, *tempdag_h, *lastdag_h;
    220 	int     i, j, k;
    221 	RF_VoidFuncPtr *stripeFuncs, normalStripeFuncs[MAXNSTRIPES];
    222 	RF_AccessStripeMap_t *asm_up, *asm_bp;
    223 	RF_AccessStripeMapHeader_t ***asmh_u, *endASMList;
    224 	RF_AccessStripeMapHeader_t ***asmh_b;
    225 	RF_VoidFuncPtr **stripeUnitFuncs, uFunc;
    226 	RF_VoidFuncPtr **blockFuncs, bFunc;
    227 	int     numStripesBailed = 0, cantCreateDAGs = RF_FALSE;
    228 	int     numStripeUnitsBailed = 0;
    229 	int     stripeNum, numUnitDags = 0, stripeUnitNum, numBlockDags = 0;
    230 	RF_StripeNum_t numStripeUnits;
    231 	RF_SectorNum_t numBlocks;
    232 	RF_RaidAddr_t address;
    233 	int     length;
    234 	RF_PhysDiskAddr_t *physPtr;
    235 	caddr_t buffer;
    236 
    237 	lastdag_h = NULL;
    238 	asmh_u = asmh_b = NULL;
    239 	stripeUnitFuncs = NULL;
    240 	blockFuncs = NULL;
    241 
    242 	/* get an array of dag-function creation pointers, try to avoid
    243 	 * calling malloc */
    244 	if (asm_h->numStripes <= MAXNSTRIPES)
    245 		stripeFuncs = normalStripeFuncs;
    246 	else
    247 		RF_Calloc(stripeFuncs, asm_h->numStripes, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
    248 
    249 	/* walk through the asm list once collecting information */
    250 	/* attempt to find a single creation function for each stripe */
    251 	desc->numStripes = 0;
    252 	for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) {
    253 		desc->numStripes++;
    254 		(raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_p, &stripeFuncs[i]);
    255 		/* check to see if we found a creation func for this stripe */
    256 		if (stripeFuncs[i] == (RF_VoidFuncPtr) NULL) {
    257 			/* could not find creation function for entire stripe
    258 			 * so, let's see if we can find one for each stripe
    259 			 * unit in the stripe */
    260 
    261 			if (numStripesBailed == 0) {
    262 				/* one stripe map header for each stripe we
    263 				 * bail on */
    264 				RF_Malloc(asmh_u, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes, (RF_AccessStripeMapHeader_t ***));
    265 				/* create an array of ptrs to arrays of
    266 				 * stripeFuncs */
    267 				RF_Calloc(stripeUnitFuncs, asm_h->numStripes, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **));
    268 			}
    269 			/* create an array of creation funcs (called
    270 			 * stripeFuncs) for this stripe */
    271 			numStripeUnits = asm_p->numStripeUnitsAccessed;
    272 			RF_Calloc(stripeUnitFuncs[numStripesBailed], numStripeUnits, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
    273 			RF_Malloc(asmh_u[numStripesBailed], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **));
    274 
    275 			/* lookup array of stripeUnitFuncs for this stripe */
    276 			for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
    277 				/* remap for series of single stripe-unit
    278 				 * accesses */
    279 				address = physPtr->raidAddress;
    280 				length = physPtr->numSector;
    281 				buffer = physPtr->bufPtr;
    282 
    283 				asmh_u[numStripesBailed][j] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP);
    284 				asm_up = asmh_u[numStripesBailed][j]->stripeMap;
    285 
    286 				/* get the creation func for this stripe unit */
    287 				(raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_up, &(stripeUnitFuncs[numStripesBailed][j]));
    288 
    289 				/* check to see if we found a creation func
    290 				 * for this stripe unit */
    291 				if (stripeUnitFuncs[numStripesBailed][j] == (RF_VoidFuncPtr) NULL) {
    292 					/* could not find creation function
    293 					 * for stripe unit so, let's see if we
    294 					 * can find one for each block in the
    295 					 * stripe unit */
    296 					if (numStripeUnitsBailed == 0) {
    297 						/* one stripe map header for
    298 						 * each stripe unit we bail on */
    299 						RF_Malloc(asmh_b, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes * raidPtr->Layout.numDataCol, (RF_AccessStripeMapHeader_t ***));
    300 						/* create an array of ptrs to
    301 						 * arrays of blockFuncs */
    302 						RF_Calloc(blockFuncs, asm_h->numStripes * raidPtr->Layout.numDataCol, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **));
    303 					}
    304 					/* create an array of creation funcs
    305 					 * (called blockFuncs) for this stripe
    306 					 * unit */
    307 					numBlocks = physPtr->numSector;
    308 					numBlockDags += numBlocks;
    309 					RF_Calloc(blockFuncs[numStripeUnitsBailed], numBlocks, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
    310 					RF_Malloc(asmh_b[numStripeUnitsBailed], numBlocks * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **));
    311 
    312 					/* lookup array of blockFuncs for this
    313 					 * stripe unit */
    314 					for (k = 0; k < numBlocks; k++) {
    315 						/* remap for series of single
    316 						 * stripe-unit accesses */
    317 						address = physPtr->raidAddress + k;
    318 						length = 1;
    319 						buffer = physPtr->bufPtr + (k * (1 << raidPtr->logBytesPerSector));
    320 
    321 						asmh_b[numStripeUnitsBailed][k] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP);
    322 						asm_bp = asmh_b[numStripeUnitsBailed][k]->stripeMap;
    323 
    324 						/* get the creation func for
    325 						 * this stripe unit */
    326 						(raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_bp, &(blockFuncs[numStripeUnitsBailed][k]));
    327 
    328 						/* check to see if we found a
    329 						 * creation func for this
    330 						 * stripe unit */
    331 						if (blockFuncs[numStripeUnitsBailed][k] == NULL)
    332 							cantCreateDAGs = RF_TRUE;
    333 					}
    334 					numStripeUnitsBailed++;
    335 				} else {
    336 					numUnitDags++;
    337 				}
    338 			}
    339 			RF_ASSERT(j == numStripeUnits);
    340 			numStripesBailed++;
    341 		}
    342 	}
    343 
    344 	if (cantCreateDAGs) {
    345 		/* free memory and punt */
    346 		if (asm_h->numStripes > MAXNSTRIPES)
    347 			RF_Free(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
    348 		if (numStripesBailed > 0) {
    349 			stripeNum = 0;
    350 			for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++)
    351 				if (stripeFuncs[i] == NULL) {
    352 					numStripeUnits = asm_p->numStripeUnitsAccessed;
    353 					for (j = 0; j < numStripeUnits; j++)
    354 						rf_FreeAccessStripeMap(asmh_u[stripeNum][j]);
    355 					RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *));
    356 					RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr));
    357 					stripeNum++;
    358 				}
    359 			RF_ASSERT(stripeNum == numStripesBailed);
    360 			RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
    361 			RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
    362 		}
    363 		return (1);
    364 	} else {
    365 		/* begin dag creation */
    366 		stripeNum = 0;
    367 		stripeUnitNum = 0;
    368 
    369 		/* create an array of dagLists and fill them in */
    370 		RF_CallocAndAdd(desc->dagArray, desc->numStripes, sizeof(RF_DagList_t), (RF_DagList_t *), desc->cleanupList);
    371 
    372 		for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) {
    373 			/* grab dag header for this stripe */
    374 			dag_h = NULL;
    375 			desc->dagArray[i].desc = desc;
    376 
    377 			if (stripeFuncs[i] == (RF_VoidFuncPtr) NULL) {
    378 				/* use bailout functions for this stripe */
    379 				for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
    380 					uFunc = stripeUnitFuncs[stripeNum][j];
    381 					if (uFunc == (RF_VoidFuncPtr) NULL) {
    382 						/* use bailout functions for
    383 						 * this stripe unit */
    384 						for (k = 0; k < physPtr->numSector; k++) {
    385 							/* create a dag for
    386 							 * this block */
    387 							InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks);
    388 							desc->dagArray[i].numDags++;
    389 							if (dag_h == NULL) {
    390 								dag_h = tempdag_h;
    391 							} else {
    392 								lastdag_h->next = tempdag_h;
    393 							}
    394 							lastdag_h = tempdag_h;
    395 
    396 							bFunc = blockFuncs[stripeUnitNum][k];
    397 							RF_ASSERT(bFunc);
    398 							asm_bp = asmh_b[stripeUnitNum][k]->stripeMap;
    399 							(*bFunc) (raidPtr, asm_bp, tempdag_h, bp, flags, tempdag_h->allocList);
    400 						}
    401 						stripeUnitNum++;
    402 					} else {
    403 						/* create a dag for this unit */
    404 						InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks);
    405 						desc->dagArray[i].numDags++;
    406 						if (dag_h == NULL) {
    407 							dag_h = tempdag_h;
    408 						} else {
    409 							lastdag_h->next = tempdag_h;
    410 						}
    411 						lastdag_h = tempdag_h;
    412 
    413 						asm_up = asmh_u[stripeNum][j]->stripeMap;
    414 						(*uFunc) (raidPtr, asm_up, tempdag_h, bp, flags, tempdag_h->allocList);
    415 					}
    416 				}
    417 				RF_ASSERT(j == asm_p->numStripeUnitsAccessed);
    418 				/* merge linked bailout dag to existing dag
    419 				 * collection */
    420 				stripeNum++;
    421 			} else {
    422 				/* Create a dag for this parity stripe */
    423 				InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks);
    424 				desc->dagArray[i].numDags++;
    425 				if (dag_h == NULL) {
    426 					dag_h = tempdag_h;
    427 				} else {
    428 					lastdag_h->next = tempdag_h;
    429 				}
    430 				lastdag_h = tempdag_h;
    431 
    432 				(stripeFuncs[i]) (raidPtr, asm_p, tempdag_h, bp, flags, tempdag_h->allocList);
    433 			}
    434 			desc->dagArray[i].dags = dag_h;
    435 		}
    436 		RF_ASSERT(i == desc->numStripes);
    437 
    438 		/* free memory */
    439 		if (asm_h->numStripes > MAXNSTRIPES)
    440 			RF_Free(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
    441 		if ((numStripesBailed > 0) || (numStripeUnitsBailed > 0)) {
    442 			stripeNum = 0;
    443 			stripeUnitNum = 0;
    444 			if (dag_h->asmList) {
    445 				endASMList = dag_h->asmList;
    446 				while (endASMList->next)
    447 					endASMList = endASMList->next;
    448 			} else
    449 				endASMList = NULL;
    450 			/* walk through io, stripe by stripe */
    451 			for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++)
    452 				if (stripeFuncs[i] == NULL) {
    453 					numStripeUnits = asm_p->numStripeUnitsAccessed;
    454 					/* walk through stripe, stripe unit by
    455 					 * stripe unit */
    456 					for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
    457 						if (stripeUnitFuncs[stripeNum][j] == NULL) {
    458 							numBlocks = physPtr->numSector;
    459 							/* walk through stripe
    460 							 * unit, block by
    461 							 * block */
    462 							for (k = 0; k < numBlocks; k++)
    463 								if (dag_h->asmList == NULL) {
    464 									dag_h->asmList = asmh_b[stripeUnitNum][k];
    465 									endASMList = dag_h->asmList;
    466 								} else {
    467 									endASMList->next = asmh_b[stripeUnitNum][k];
    468 									endASMList = endASMList->next;
    469 								}
    470 							RF_Free(asmh_b[stripeUnitNum], numBlocks * sizeof(RF_AccessStripeMapHeader_t *));
    471 							RF_Free(blockFuncs[stripeUnitNum], numBlocks * sizeof(RF_VoidFuncPtr));
    472 							stripeUnitNum++;
    473 						}
    474 						if (dag_h->asmList == NULL) {
    475 							dag_h->asmList = asmh_u[stripeNum][j];
    476 							endASMList = dag_h->asmList;
    477 						} else {
    478 							endASMList->next = asmh_u[stripeNum][j];
    479 							endASMList = endASMList->next;
    480 						}
    481 					}
    482 					RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *));
    483 					RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr));
    484 					stripeNum++;
    485 				}
    486 			RF_ASSERT(stripeNum == numStripesBailed);
    487 			RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
    488 			RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
    489 			if (numStripeUnitsBailed > 0) {
    490 				RF_ASSERT(stripeUnitNum == numStripeUnitsBailed);
    491 				RF_Free(blockFuncs, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_VoidFuncPtr));
    492 				RF_Free(asmh_b, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
    493 			}
    494 		}
    495 		return (0);
    496 	}
    497 }
    498