rf_aselect.c revision 1.7 1 /* $NetBSD: rf_aselect.c,v 1.7 2002/08/02 01:15:22 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*****************************************************************************
30 *
31 * aselect.c -- algorithm selection code
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_aselect.c,v 1.7 2002/08/02 01:15:22 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_raid.h"
42 #include "rf_dag.h"
43 #include "rf_dagutils.h"
44 #include "rf_dagfuncs.h"
45 #include "rf_general.h"
46 #include "rf_desc.h"
47 #include "rf_map.h"
48
49 #if defined(__NetBSD__) && defined(_KERNEL)
50 /* the function below is not used... so don't define it! */
51 #else
52 static void TransferDagMemory(RF_DagHeader_t *, RF_DagHeader_t *);
53 #endif
54
55 static int InitHdrNode(RF_DagHeader_t **, RF_Raid_t *);
56 static void UpdateNodeHdrPtr(RF_DagHeader_t *, RF_DagNode_t *);
57 int rf_SelectAlgorithm(RF_RaidAccessDesc_t *, RF_RaidAccessFlags_t);
58
59
60 /******************************************************************************
61 *
62 * Create and Initialiaze a dag header and termination node
63 *
64 *****************************************************************************/
65 static int
66 InitHdrNode(hdr, raidPtr)
67 RF_DagHeader_t **hdr;
68 RF_Raid_t *raidPtr;
69 {
70 /* create and initialize dag hdr */
71 *hdr = rf_AllocDAGHeader();
72 rf_MakeAllocList((*hdr)->allocList);
73 if ((*hdr)->allocList == NULL) {
74 rf_FreeDAGHeader(*hdr);
75 return (ENOMEM);
76 }
77 (*hdr)->status = rf_enable;
78 (*hdr)->numSuccedents = 0;
79 (*hdr)->raidPtr = raidPtr;
80 (*hdr)->next = NULL;
81 return (0);
82 }
83
84 /*****************************************************************************************
85 *
86 * Ensure that all node->dagHdr fields in a dag are consistent
87 *
88 * IMPORTANT: This routine recursively searches all succedents of the node. If a
89 * succedent is encountered whose dagHdr ptr does not require adjusting, that node's
90 * succedents WILL NOT BE EXAMINED.
91 *
92 ****************************************************************************************/
93 static void
94 UpdateNodeHdrPtr(hdr, node)
95 RF_DagHeader_t *hdr;
96 RF_DagNode_t *node;
97 {
98 int i;
99 RF_ASSERT(hdr != NULL && node != NULL);
100 for (i = 0; i < node->numSuccedents; i++)
101 if (node->succedents[i]->dagHdr != hdr)
102 UpdateNodeHdrPtr(hdr, node->succedents[i]);
103 node->dagHdr = hdr;
104 }
105 /******************************************************************************
106 *
107 * Create a DAG to do a read or write operation.
108 *
109 * create an array of dagLists, one list per parity stripe.
110 * return the lists in the array desc->dagArray.
111 *
112 * Normally, each list contains one dag for the entire stripe. In some
113 * tricky cases, we break this into multiple dags, either one per stripe
114 * unit or one per block (sector). When this occurs, these dags are returned
115 * as a linked list (dagList) which is executed sequentially (to preserve
116 * atomic parity updates in the stripe).
117 *
118 * dags which operate on independent parity goups (stripes) are returned in
119 * independent dagLists (distinct elements in desc->dagArray) and may be
120 * executed concurrently.
121 *
122 * Finally, if the SelectionFunc fails to create a dag for a block, we punt
123 * and return 1.
124 *
125 * The above process is performed in two phases:
126 * 1) create an array(s) of creation functions (eg stripeFuncs)
127 * 2) create dags and concatenate/merge to form the final dag.
128 *
129 * Because dag's are basic blocks (single entry, single exit, unconditional
130 * control flow, we can add the following optimizations (future work):
131 * first-pass optimizer to allow max concurrency (need all data dependencies)
132 * second-pass optimizer to eliminate common subexpressions (need true
133 * data dependencies)
134 * third-pass optimizer to eliminate dead code (need true data dependencies)
135 *****************************************************************************/
136
137 #define MAXNSTRIPES 50
138
139 int
140 rf_SelectAlgorithm(desc, flags)
141 RF_RaidAccessDesc_t *desc;
142 RF_RaidAccessFlags_t flags;
143 {
144 RF_AccessStripeMapHeader_t *asm_h = desc->asmap;
145 RF_IoType_t type = desc->type;
146 RF_Raid_t *raidPtr = desc->raidPtr;
147 void *bp = desc->bp;
148
149 RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
150 RF_AccessStripeMap_t *asm_p;
151 RF_DagHeader_t *dag_h = NULL, *tempdag_h, *lastdag_h;
152 int i, j, k;
153 RF_VoidFuncPtr *stripeFuncs, normalStripeFuncs[MAXNSTRIPES];
154 RF_AccessStripeMap_t *asm_up, *asm_bp;
155 RF_AccessStripeMapHeader_t ***asmh_u, *endASMList;
156 RF_AccessStripeMapHeader_t ***asmh_b;
157 RF_VoidFuncPtr **stripeUnitFuncs, uFunc;
158 RF_VoidFuncPtr **blockFuncs, bFunc;
159 int numStripesBailed = 0, cantCreateDAGs = RF_FALSE;
160 int numStripeUnitsBailed = 0;
161 int stripeNum, numUnitDags = 0, stripeUnitNum, numBlockDags = 0;
162 RF_StripeNum_t numStripeUnits;
163 RF_SectorNum_t numBlocks;
164 RF_RaidAddr_t address;
165 int length;
166 RF_PhysDiskAddr_t *physPtr;
167 caddr_t buffer;
168
169 lastdag_h = NULL;
170 asmh_u = asmh_b = NULL;
171 stripeUnitFuncs = NULL;
172 blockFuncs = NULL;
173
174 /* get an array of dag-function creation pointers, try to avoid
175 * calling malloc */
176 if (asm_h->numStripes <= MAXNSTRIPES)
177 stripeFuncs = normalStripeFuncs;
178 else
179 RF_Calloc(stripeFuncs, asm_h->numStripes, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
180
181 /* walk through the asm list once collecting information */
182 /* attempt to find a single creation function for each stripe */
183 desc->numStripes = 0;
184 for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) {
185 desc->numStripes++;
186 (raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_p, &stripeFuncs[i]);
187 /* check to see if we found a creation func for this stripe */
188 if (stripeFuncs[i] == (RF_VoidFuncPtr) NULL) {
189 /* could not find creation function for entire stripe
190 * so, let's see if we can find one for each stripe
191 * unit in the stripe */
192
193 if (numStripesBailed == 0) {
194 /* one stripe map header for each stripe we
195 * bail on */
196 RF_Malloc(asmh_u, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes, (RF_AccessStripeMapHeader_t ***));
197 /* create an array of ptrs to arrays of
198 * stripeFuncs */
199 RF_Calloc(stripeUnitFuncs, asm_h->numStripes, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **));
200 }
201 /* create an array of creation funcs (called
202 * stripeFuncs) for this stripe */
203 numStripeUnits = asm_p->numStripeUnitsAccessed;
204 RF_Calloc(stripeUnitFuncs[numStripesBailed], numStripeUnits, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
205 RF_Malloc(asmh_u[numStripesBailed], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **));
206
207 /* lookup array of stripeUnitFuncs for this stripe */
208 for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
209 /* remap for series of single stripe-unit
210 * accesses */
211 address = physPtr->raidAddress;
212 length = physPtr->numSector;
213 buffer = physPtr->bufPtr;
214
215 asmh_u[numStripesBailed][j] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP);
216 asm_up = asmh_u[numStripesBailed][j]->stripeMap;
217
218 /* get the creation func for this stripe unit */
219 (raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_up, &(stripeUnitFuncs[numStripesBailed][j]));
220
221 /* check to see if we found a creation func
222 * for this stripe unit */
223 if (stripeUnitFuncs[numStripesBailed][j] == (RF_VoidFuncPtr) NULL) {
224 /* could not find creation function
225 * for stripe unit so, let's see if we
226 * can find one for each block in the
227 * stripe unit */
228 if (numStripeUnitsBailed == 0) {
229 /* one stripe map header for
230 * each stripe unit we bail on */
231 RF_Malloc(asmh_b, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes * raidPtr->Layout.numDataCol, (RF_AccessStripeMapHeader_t ***));
232 /* create an array of ptrs to
233 * arrays of blockFuncs */
234 RF_Calloc(blockFuncs, asm_h->numStripes * raidPtr->Layout.numDataCol, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **));
235 }
236 /* create an array of creation funcs
237 * (called blockFuncs) for this stripe
238 * unit */
239 numBlocks = physPtr->numSector;
240 numBlockDags += numBlocks;
241 RF_Calloc(blockFuncs[numStripeUnitsBailed], numBlocks, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
242 RF_Malloc(asmh_b[numStripeUnitsBailed], numBlocks * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **));
243
244 /* lookup array of blockFuncs for this
245 * stripe unit */
246 for (k = 0; k < numBlocks; k++) {
247 /* remap for series of single
248 * stripe-unit accesses */
249 address = physPtr->raidAddress + k;
250 length = 1;
251 buffer = physPtr->bufPtr + (k * (1 << raidPtr->logBytesPerSector));
252
253 asmh_b[numStripeUnitsBailed][k] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP);
254 asm_bp = asmh_b[numStripeUnitsBailed][k]->stripeMap;
255
256 /* get the creation func for
257 * this stripe unit */
258 (raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_bp, &(blockFuncs[numStripeUnitsBailed][k]));
259
260 /* check to see if we found a
261 * creation func for this
262 * stripe unit */
263 if (blockFuncs[numStripeUnitsBailed][k] == NULL)
264 cantCreateDAGs = RF_TRUE;
265 }
266 numStripeUnitsBailed++;
267 } else {
268 numUnitDags++;
269 }
270 }
271 RF_ASSERT(j == numStripeUnits);
272 numStripesBailed++;
273 }
274 }
275
276 if (cantCreateDAGs) {
277 /* free memory and punt */
278 if (asm_h->numStripes > MAXNSTRIPES)
279 RF_Free(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
280 if (numStripesBailed > 0) {
281 stripeNum = 0;
282 for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++)
283 if (stripeFuncs[i] == NULL) {
284 numStripeUnits = asm_p->numStripeUnitsAccessed;
285 for (j = 0; j < numStripeUnits; j++)
286 rf_FreeAccessStripeMap(asmh_u[stripeNum][j]);
287 RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *));
288 RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr));
289 stripeNum++;
290 }
291 RF_ASSERT(stripeNum == numStripesBailed);
292 RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
293 RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
294 }
295 return (1);
296 } else {
297 /* begin dag creation */
298 stripeNum = 0;
299 stripeUnitNum = 0;
300
301 /* create an array of dagLists and fill them in */
302 RF_CallocAndAdd(desc->dagArray, desc->numStripes, sizeof(RF_DagList_t), (RF_DagList_t *), desc->cleanupList);
303
304 for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) {
305 /* grab dag header for this stripe */
306 dag_h = NULL;
307 desc->dagArray[i].desc = desc;
308
309 if (stripeFuncs[i] == (RF_VoidFuncPtr) NULL) {
310 /* use bailout functions for this stripe */
311 for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
312 uFunc = stripeUnitFuncs[stripeNum][j];
313 if (uFunc == (RF_VoidFuncPtr) NULL) {
314 /* use bailout functions for
315 * this stripe unit */
316 for (k = 0; k < physPtr->numSector; k++) {
317 /* create a dag for
318 * this block */
319 InitHdrNode(&tempdag_h, raidPtr);
320 desc->dagArray[i].numDags++;
321 if (dag_h == NULL) {
322 dag_h = tempdag_h;
323 } else {
324 lastdag_h->next = tempdag_h;
325 }
326 lastdag_h = tempdag_h;
327
328 bFunc = blockFuncs[stripeUnitNum][k];
329 RF_ASSERT(bFunc);
330 asm_bp = asmh_b[stripeUnitNum][k]->stripeMap;
331 (*bFunc) (raidPtr, asm_bp, tempdag_h, bp, flags, tempdag_h->allocList);
332 }
333 stripeUnitNum++;
334 } else {
335 /* create a dag for this unit */
336 InitHdrNode(&tempdag_h, raidPtr);
337 desc->dagArray[i].numDags++;
338 if (dag_h == NULL) {
339 dag_h = tempdag_h;
340 } else {
341 lastdag_h->next = tempdag_h;
342 }
343 lastdag_h = tempdag_h;
344
345 asm_up = asmh_u[stripeNum][j]->stripeMap;
346 (*uFunc) (raidPtr, asm_up, tempdag_h, bp, flags, tempdag_h->allocList);
347 }
348 }
349 RF_ASSERT(j == asm_p->numStripeUnitsAccessed);
350 /* merge linked bailout dag to existing dag
351 * collection */
352 stripeNum++;
353 } else {
354 /* Create a dag for this parity stripe */
355 InitHdrNode(&tempdag_h, raidPtr);
356 desc->dagArray[i].numDags++;
357 if (dag_h == NULL) {
358 dag_h = tempdag_h;
359 } else {
360 lastdag_h->next = tempdag_h;
361 }
362 lastdag_h = tempdag_h;
363
364 (stripeFuncs[i]) (raidPtr, asm_p, tempdag_h, bp, flags, tempdag_h->allocList);
365 }
366 desc->dagArray[i].dags = dag_h;
367 }
368 RF_ASSERT(i == desc->numStripes);
369
370 /* free memory */
371 if (asm_h->numStripes > MAXNSTRIPES)
372 RF_Free(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
373 if ((numStripesBailed > 0) || (numStripeUnitsBailed > 0)) {
374 stripeNum = 0;
375 stripeUnitNum = 0;
376 if (dag_h->asmList) {
377 endASMList = dag_h->asmList;
378 while (endASMList->next)
379 endASMList = endASMList->next;
380 } else
381 endASMList = NULL;
382 /* walk through io, stripe by stripe */
383 for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++)
384 if (stripeFuncs[i] == NULL) {
385 numStripeUnits = asm_p->numStripeUnitsAccessed;
386 /* walk through stripe, stripe unit by
387 * stripe unit */
388 for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
389 if (stripeUnitFuncs[stripeNum][j] == NULL) {
390 numBlocks = physPtr->numSector;
391 /* walk through stripe
392 * unit, block by
393 * block */
394 for (k = 0; k < numBlocks; k++)
395 if (dag_h->asmList == NULL) {
396 dag_h->asmList = asmh_b[stripeUnitNum][k];
397 endASMList = dag_h->asmList;
398 } else {
399 endASMList->next = asmh_b[stripeUnitNum][k];
400 endASMList = endASMList->next;
401 }
402 RF_Free(asmh_b[stripeUnitNum], numBlocks * sizeof(RF_AccessStripeMapHeader_t *));
403 RF_Free(blockFuncs[stripeUnitNum], numBlocks * sizeof(RF_VoidFuncPtr));
404 stripeUnitNum++;
405 }
406 if (dag_h->asmList == NULL) {
407 dag_h->asmList = asmh_u[stripeNum][j];
408 endASMList = dag_h->asmList;
409 } else {
410 endASMList->next = asmh_u[stripeNum][j];
411 endASMList = endASMList->next;
412 }
413 }
414 RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *));
415 RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr));
416 stripeNum++;
417 }
418 RF_ASSERT(stripeNum == numStripesBailed);
419 RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
420 RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
421 if (numStripeUnitsBailed > 0) {
422 RF_ASSERT(stripeUnitNum == numStripeUnitsBailed);
423 RF_Free(blockFuncs, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_VoidFuncPtr));
424 RF_Free(asmh_b, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
425 }
426 }
427 return (0);
428 }
429 }
430