rf_aselect.c revision 1.9 1 /* $NetBSD: rf_aselect.c,v 1.9 2003/12/29 03:33:47 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*****************************************************************************
30 *
31 * aselect.c -- algorithm selection code
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_aselect.c,v 1.9 2003/12/29 03:33:47 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_raid.h"
42 #include "rf_dag.h"
43 #include "rf_dagutils.h"
44 #include "rf_dagfuncs.h"
45 #include "rf_general.h"
46 #include "rf_desc.h"
47 #include "rf_map.h"
48
49 #if defined(__NetBSD__) && defined(_KERNEL)
50 /* the function below is not used... so don't define it! */
51 #else
52 static void TransferDagMemory(RF_DagHeader_t *, RF_DagHeader_t *);
53 #endif
54
55 static int InitHdrNode(RF_DagHeader_t **, RF_Raid_t *);
56 int rf_SelectAlgorithm(RF_RaidAccessDesc_t *, RF_RaidAccessFlags_t);
57
58
59 /******************************************************************************
60 *
61 * Create and Initialiaze a dag header and termination node
62 *
63 *****************************************************************************/
64 static int
65 InitHdrNode(hdr, raidPtr)
66 RF_DagHeader_t **hdr;
67 RF_Raid_t *raidPtr;
68 {
69 /* create and initialize dag hdr */
70 *hdr = rf_AllocDAGHeader();
71 rf_MakeAllocList((*hdr)->allocList);
72 if ((*hdr)->allocList == NULL) {
73 rf_FreeDAGHeader(*hdr);
74 return (ENOMEM);
75 }
76 (*hdr)->status = rf_enable;
77 (*hdr)->numSuccedents = 0;
78 (*hdr)->raidPtr = raidPtr;
79 (*hdr)->next = NULL;
80 return (0);
81 }
82
83 /******************************************************************************
84 *
85 * Create a DAG to do a read or write operation.
86 *
87 * create an array of dagLists, one list per parity stripe.
88 * return the lists in the array desc->dagArray.
89 *
90 * Normally, each list contains one dag for the entire stripe. In some
91 * tricky cases, we break this into multiple dags, either one per stripe
92 * unit or one per block (sector). When this occurs, these dags are returned
93 * as a linked list (dagList) which is executed sequentially (to preserve
94 * atomic parity updates in the stripe).
95 *
96 * dags which operate on independent parity goups (stripes) are returned in
97 * independent dagLists (distinct elements in desc->dagArray) and may be
98 * executed concurrently.
99 *
100 * Finally, if the SelectionFunc fails to create a dag for a block, we punt
101 * and return 1.
102 *
103 * The above process is performed in two phases:
104 * 1) create an array(s) of creation functions (eg stripeFuncs)
105 * 2) create dags and concatenate/merge to form the final dag.
106 *
107 * Because dag's are basic blocks (single entry, single exit, unconditional
108 * control flow, we can add the following optimizations (future work):
109 * first-pass optimizer to allow max concurrency (need all data dependencies)
110 * second-pass optimizer to eliminate common subexpressions (need true
111 * data dependencies)
112 * third-pass optimizer to eliminate dead code (need true data dependencies)
113 *****************************************************************************/
114
115 #define MAXNSTRIPES 50
116
117 int
118 rf_SelectAlgorithm(desc, flags)
119 RF_RaidAccessDesc_t *desc;
120 RF_RaidAccessFlags_t flags;
121 {
122 RF_AccessStripeMapHeader_t *asm_h = desc->asmap;
123 RF_IoType_t type = desc->type;
124 RF_Raid_t *raidPtr = desc->raidPtr;
125 void *bp = desc->bp;
126
127 RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
128 RF_AccessStripeMap_t *asm_p;
129 RF_DagHeader_t *dag_h = NULL, *tempdag_h, *lastdag_h;
130 int i, j, k;
131 RF_VoidFuncPtr *stripeFuncs, normalStripeFuncs[MAXNSTRIPES];
132 RF_AccessStripeMap_t *asm_up, *asm_bp;
133 RF_AccessStripeMapHeader_t ***asmh_u, *endASMList;
134 RF_AccessStripeMapHeader_t ***asmh_b;
135 RF_VoidFuncPtr **stripeUnitFuncs, uFunc;
136 RF_VoidFuncPtr **blockFuncs, bFunc;
137 int numStripesBailed = 0, cantCreateDAGs = RF_FALSE;
138 int numStripeUnitsBailed = 0;
139 int stripeNum, numUnitDags = 0, stripeUnitNum, numBlockDags = 0;
140 RF_StripeNum_t numStripeUnits;
141 RF_SectorNum_t numBlocks;
142 RF_RaidAddr_t address;
143 int length;
144 RF_PhysDiskAddr_t *physPtr;
145 caddr_t buffer;
146
147 lastdag_h = NULL;
148 asmh_u = asmh_b = NULL;
149 stripeUnitFuncs = NULL;
150 blockFuncs = NULL;
151
152 /* get an array of dag-function creation pointers, try to avoid
153 * calling malloc */
154 if (asm_h->numStripes <= MAXNSTRIPES)
155 stripeFuncs = normalStripeFuncs;
156 else
157 RF_Malloc(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
158
159 /* walk through the asm list once collecting information */
160 /* attempt to find a single creation function for each stripe */
161 desc->numStripes = 0;
162 for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) {
163 desc->numStripes++;
164 (raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_p, &stripeFuncs[i]);
165 /* check to see if we found a creation func for this stripe */
166 if (stripeFuncs[i] == (RF_VoidFuncPtr) NULL) {
167 /* could not find creation function for entire stripe
168 * so, let's see if we can find one for each stripe
169 * unit in the stripe */
170
171 if (numStripesBailed == 0) {
172 /* one stripe map header for each stripe we
173 * bail on */
174 RF_Malloc(asmh_u, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes, (RF_AccessStripeMapHeader_t ***));
175 /* create an array of ptrs to arrays of
176 * stripeFuncs */
177 RF_Malloc(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **));
178 }
179 /* create an array of creation funcs (called
180 * stripeFuncs) for this stripe */
181 numStripeUnits = asm_p->numStripeUnitsAccessed;
182 RF_Malloc(stripeUnitFuncs[numStripesBailed], numStripeUnits * sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
183 RF_Malloc(asmh_u[numStripesBailed], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **));
184
185 /* lookup array of stripeUnitFuncs for this stripe */
186 for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
187 /* remap for series of single stripe-unit
188 * accesses */
189 address = physPtr->raidAddress;
190 length = physPtr->numSector;
191 buffer = physPtr->bufPtr;
192
193 asmh_u[numStripesBailed][j] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP);
194 asm_up = asmh_u[numStripesBailed][j]->stripeMap;
195
196 /* get the creation func for this stripe unit */
197 (raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_up, &(stripeUnitFuncs[numStripesBailed][j]));
198
199 /* check to see if we found a creation func
200 * for this stripe unit */
201 if (stripeUnitFuncs[numStripesBailed][j] == (RF_VoidFuncPtr) NULL) {
202 /* could not find creation function
203 * for stripe unit so, let's see if we
204 * can find one for each block in the
205 * stripe unit */
206 if (numStripeUnitsBailed == 0) {
207 /* one stripe map header for
208 * each stripe unit we bail on */
209 RF_Malloc(asmh_b, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes * raidPtr->Layout.numDataCol, (RF_AccessStripeMapHeader_t ***));
210 /* create an array of ptrs to
211 * arrays of blockFuncs */
212 RF_Malloc(blockFuncs, asm_h->numStripes * raidPtr->Layout.numDataCol * sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **));
213 }
214 /* create an array of creation funcs
215 * (called blockFuncs) for this stripe
216 * unit */
217 numBlocks = physPtr->numSector;
218 numBlockDags += numBlocks;
219 RF_Malloc(blockFuncs[numStripeUnitsBailed], numBlocks * sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
220 RF_Malloc(asmh_b[numStripeUnitsBailed], numBlocks * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **));
221
222 /* lookup array of blockFuncs for this
223 * stripe unit */
224 for (k = 0; k < numBlocks; k++) {
225 /* remap for series of single
226 * stripe-unit accesses */
227 address = physPtr->raidAddress + k;
228 length = 1;
229 buffer = physPtr->bufPtr + (k * (1 << raidPtr->logBytesPerSector));
230
231 asmh_b[numStripeUnitsBailed][k] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP);
232 asm_bp = asmh_b[numStripeUnitsBailed][k]->stripeMap;
233
234 /* get the creation func for
235 * this stripe unit */
236 (raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_bp, &(blockFuncs[numStripeUnitsBailed][k]));
237
238 /* check to see if we found a
239 * creation func for this
240 * stripe unit */
241 if (blockFuncs[numStripeUnitsBailed][k] == NULL)
242 cantCreateDAGs = RF_TRUE;
243 }
244 numStripeUnitsBailed++;
245 } else {
246 numUnitDags++;
247 }
248 }
249 RF_ASSERT(j == numStripeUnits);
250 numStripesBailed++;
251 }
252 }
253
254 if (cantCreateDAGs) {
255 /* free memory and punt */
256 if (asm_h->numStripes > MAXNSTRIPES)
257 RF_Free(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
258 if (numStripesBailed > 0) {
259 stripeNum = 0;
260 for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++)
261 if (stripeFuncs[i] == NULL) {
262 numStripeUnits = asm_p->numStripeUnitsAccessed;
263 for (j = 0; j < numStripeUnits; j++)
264 rf_FreeAccessStripeMap(asmh_u[stripeNum][j]);
265 RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *));
266 RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr));
267 stripeNum++;
268 }
269 RF_ASSERT(stripeNum == numStripesBailed);
270 RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
271 RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
272 }
273 return (1);
274 } else {
275 /* begin dag creation */
276 stripeNum = 0;
277 stripeUnitNum = 0;
278
279 /* create an array of dagLists and fill them in */
280 RF_MallocAndAdd(desc->dagArray, desc->numStripes * sizeof(RF_DagList_t), (RF_DagList_t *), desc->cleanupList);
281
282 for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) {
283 /* grab dag header for this stripe */
284 dag_h = NULL;
285 desc->dagArray[i].desc = desc;
286
287 if (stripeFuncs[i] == (RF_VoidFuncPtr) NULL) {
288 /* use bailout functions for this stripe */
289 for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
290 uFunc = stripeUnitFuncs[stripeNum][j];
291 if (uFunc == (RF_VoidFuncPtr) NULL) {
292 /* use bailout functions for
293 * this stripe unit */
294 for (k = 0; k < physPtr->numSector; k++) {
295 /* create a dag for
296 * this block */
297 InitHdrNode(&tempdag_h, raidPtr);
298 desc->dagArray[i].numDags++;
299 if (dag_h == NULL) {
300 dag_h = tempdag_h;
301 } else {
302 lastdag_h->next = tempdag_h;
303 }
304 lastdag_h = tempdag_h;
305
306 bFunc = blockFuncs[stripeUnitNum][k];
307 RF_ASSERT(bFunc);
308 asm_bp = asmh_b[stripeUnitNum][k]->stripeMap;
309 (*bFunc) (raidPtr, asm_bp, tempdag_h, bp, flags, tempdag_h->allocList);
310 }
311 stripeUnitNum++;
312 } else {
313 /* create a dag for this unit */
314 InitHdrNode(&tempdag_h, raidPtr);
315 desc->dagArray[i].numDags++;
316 if (dag_h == NULL) {
317 dag_h = tempdag_h;
318 } else {
319 lastdag_h->next = tempdag_h;
320 }
321 lastdag_h = tempdag_h;
322
323 asm_up = asmh_u[stripeNum][j]->stripeMap;
324 (*uFunc) (raidPtr, asm_up, tempdag_h, bp, flags, tempdag_h->allocList);
325 }
326 }
327 RF_ASSERT(j == asm_p->numStripeUnitsAccessed);
328 /* merge linked bailout dag to existing dag
329 * collection */
330 stripeNum++;
331 } else {
332 /* Create a dag for this parity stripe */
333 InitHdrNode(&tempdag_h, raidPtr);
334 desc->dagArray[i].numDags++;
335 if (dag_h == NULL) {
336 dag_h = tempdag_h;
337 } else {
338 lastdag_h->next = tempdag_h;
339 }
340 lastdag_h = tempdag_h;
341
342 (stripeFuncs[i]) (raidPtr, asm_p, tempdag_h, bp, flags, tempdag_h->allocList);
343 }
344 desc->dagArray[i].dags = dag_h;
345 }
346 RF_ASSERT(i == desc->numStripes);
347
348 /* free memory */
349 if (asm_h->numStripes > MAXNSTRIPES)
350 RF_Free(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
351 if ((numStripesBailed > 0) || (numStripeUnitsBailed > 0)) {
352 stripeNum = 0;
353 stripeUnitNum = 0;
354 if (dag_h->asmList) {
355 endASMList = dag_h->asmList;
356 while (endASMList->next)
357 endASMList = endASMList->next;
358 } else
359 endASMList = NULL;
360 /* walk through io, stripe by stripe */
361 for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++)
362 if (stripeFuncs[i] == NULL) {
363 numStripeUnits = asm_p->numStripeUnitsAccessed;
364 /* walk through stripe, stripe unit by
365 * stripe unit */
366 for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
367 if (stripeUnitFuncs[stripeNum][j] == NULL) {
368 numBlocks = physPtr->numSector;
369 /* walk through stripe
370 * unit, block by
371 * block */
372 for (k = 0; k < numBlocks; k++)
373 if (dag_h->asmList == NULL) {
374 dag_h->asmList = asmh_b[stripeUnitNum][k];
375 endASMList = dag_h->asmList;
376 } else {
377 endASMList->next = asmh_b[stripeUnitNum][k];
378 endASMList = endASMList->next;
379 }
380 RF_Free(asmh_b[stripeUnitNum], numBlocks * sizeof(RF_AccessStripeMapHeader_t *));
381 RF_Free(blockFuncs[stripeUnitNum], numBlocks * sizeof(RF_VoidFuncPtr));
382 stripeUnitNum++;
383 }
384 if (dag_h->asmList == NULL) {
385 dag_h->asmList = asmh_u[stripeNum][j];
386 endASMList = dag_h->asmList;
387 } else {
388 endASMList->next = asmh_u[stripeNum][j];
389 endASMList = endASMList->next;
390 }
391 }
392 RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *));
393 RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr));
394 stripeNum++;
395 }
396 RF_ASSERT(stripeNum == numStripesBailed);
397 RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
398 RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
399 if (numStripeUnitsBailed > 0) {
400 RF_ASSERT(stripeUnitNum == numStripeUnitsBailed);
401 RF_Free(blockFuncs, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_VoidFuncPtr));
402 RF_Free(asmh_b, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
403 }
404 }
405 return (0);
406 }
407 }
408