rf_dagdegrd.c revision 1.10 1 1.10 lukem /* $NetBSD: rf_dagdegrd.c,v 1.10 2001/11/13 07:11:12 lukem Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*
30 1.1 oster * rf_dagdegrd.c
31 1.1 oster *
32 1.1 oster * code for creating degraded read DAGs
33 1.1 oster */
34 1.10 lukem
35 1.10 lukem #include <sys/cdefs.h>
36 1.10 lukem __KERNEL_RCSID(0, "$NetBSD: rf_dagdegrd.c,v 1.10 2001/11/13 07:11:12 lukem Exp $");
37 1.1 oster
38 1.9 oster #include <dev/raidframe/raidframevar.h>
39 1.9 oster
40 1.6 oster #include "rf_archs.h"
41 1.1 oster #include "rf_raid.h"
42 1.1 oster #include "rf_dag.h"
43 1.1 oster #include "rf_dagutils.h"
44 1.1 oster #include "rf_dagfuncs.h"
45 1.1 oster #include "rf_debugMem.h"
46 1.1 oster #include "rf_memchunk.h"
47 1.1 oster #include "rf_general.h"
48 1.1 oster #include "rf_dagdegrd.h"
49 1.1 oster
50 1.1 oster
51 1.1 oster /******************************************************************************
52 1.1 oster *
53 1.1 oster * General comments on DAG creation:
54 1.3 oster *
55 1.1 oster * All DAGs in this file use roll-away error recovery. Each DAG has a single
56 1.1 oster * commit node, usually called "Cmt." If an error occurs before the Cmt node
57 1.1 oster * is reached, the execution engine will halt forward execution and work
58 1.1 oster * backward through the graph, executing the undo functions. Assuming that
59 1.1 oster * each node in the graph prior to the Cmt node are undoable and atomic - or -
60 1.1 oster * does not make changes to permanent state, the graph will fail atomically.
61 1.1 oster * If an error occurs after the Cmt node executes, the engine will roll-forward
62 1.1 oster * through the graph, blindly executing nodes until it reaches the end.
63 1.1 oster * If a graph reaches the end, it is assumed to have completed successfully.
64 1.1 oster *
65 1.1 oster * A graph has only 1 Cmt node.
66 1.1 oster *
67 1.1 oster */
68 1.1 oster
69 1.1 oster
70 1.1 oster /******************************************************************************
71 1.1 oster *
72 1.1 oster * The following wrappers map the standard DAG creation interface to the
73 1.1 oster * DAG creation routines. Additionally, these wrappers enable experimentation
74 1.1 oster * with new DAG structures by providing an extra level of indirection, allowing
75 1.1 oster * the DAG creation routines to be replaced at this single point.
76 1.1 oster */
77 1.1 oster
78 1.3 oster void
79 1.3 oster rf_CreateRaidFiveDegradedReadDAG(
80 1.3 oster RF_Raid_t * raidPtr,
81 1.3 oster RF_AccessStripeMap_t * asmap,
82 1.3 oster RF_DagHeader_t * dag_h,
83 1.3 oster void *bp,
84 1.3 oster RF_RaidAccessFlags_t flags,
85 1.3 oster RF_AllocListElem_t * allocList)
86 1.1 oster {
87 1.3 oster rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
88 1.3 oster &rf_xorRecoveryFuncs);
89 1.1 oster }
90 1.1 oster
91 1.1 oster
92 1.1 oster /******************************************************************************
93 1.1 oster *
94 1.1 oster * DAG creation code begins here
95 1.1 oster */
96 1.1 oster
97 1.1 oster
98 1.1 oster /******************************************************************************
99 1.1 oster * Create a degraded read DAG for RAID level 1
100 1.1 oster *
101 1.1 oster * Hdr -> Nil -> R(p/s)d -> Commit -> Trm
102 1.1 oster *
103 1.1 oster * The "Rd" node reads data from the surviving disk in the mirror pair
104 1.1 oster * Rpd - read of primary copy
105 1.1 oster * Rsd - read of secondary copy
106 1.1 oster *
107 1.1 oster * Parameters: raidPtr - description of the physical array
108 1.1 oster * asmap - logical & physical addresses for this access
109 1.1 oster * bp - buffer ptr (for holding write data)
110 1.3 oster * flags - general flags (e.g. disk locking)
111 1.1 oster * allocList - list of memory allocated in DAG creation
112 1.1 oster *****************************************************************************/
113 1.1 oster
114 1.3 oster void
115 1.3 oster rf_CreateRaidOneDegradedReadDAG(
116 1.3 oster RF_Raid_t * raidPtr,
117 1.3 oster RF_AccessStripeMap_t * asmap,
118 1.3 oster RF_DagHeader_t * dag_h,
119 1.3 oster void *bp,
120 1.3 oster RF_RaidAccessFlags_t flags,
121 1.3 oster RF_AllocListElem_t * allocList)
122 1.1 oster {
123 1.3 oster RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
124 1.3 oster RF_StripeNum_t parityStripeID;
125 1.3 oster RF_ReconUnitNum_t which_ru;
126 1.3 oster RF_PhysDiskAddr_t *pda;
127 1.3 oster int useMirror, i;
128 1.3 oster
129 1.3 oster useMirror = 0;
130 1.3 oster parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
131 1.3 oster asmap->raidAddress, &which_ru);
132 1.3 oster if (rf_dagDebug) {
133 1.3 oster printf("[Creating RAID level 1 degraded read DAG]\n");
134 1.3 oster }
135 1.3 oster dag_h->creator = "RaidOneDegradedReadDAG";
136 1.3 oster /* alloc the Wnd nodes and the Wmir node */
137 1.3 oster if (asmap->numDataFailed == 0)
138 1.3 oster useMirror = RF_FALSE;
139 1.3 oster else
140 1.3 oster useMirror = RF_TRUE;
141 1.3 oster
142 1.3 oster /* total number of nodes = 1 + (block + commit + terminator) */
143 1.3 oster RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
144 1.3 oster i = 0;
145 1.3 oster rdNode = &nodes[i];
146 1.3 oster i++;
147 1.3 oster blockNode = &nodes[i];
148 1.3 oster i++;
149 1.3 oster commitNode = &nodes[i];
150 1.3 oster i++;
151 1.3 oster termNode = &nodes[i];
152 1.3 oster i++;
153 1.3 oster
154 1.3 oster /* this dag can not commit until the commit node is reached. errors
155 1.3 oster * prior to the commit point imply the dag has failed and must be
156 1.3 oster * retried */
157 1.3 oster dag_h->numCommitNodes = 1;
158 1.3 oster dag_h->numCommits = 0;
159 1.3 oster dag_h->numSuccedents = 1;
160 1.3 oster
161 1.3 oster /* initialize the block, commit, and terminator nodes */
162 1.3 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
163 1.3 oster NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
164 1.3 oster rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
165 1.3 oster NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
166 1.3 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
167 1.3 oster NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
168 1.3 oster
169 1.3 oster pda = asmap->physInfo;
170 1.3 oster RF_ASSERT(pda != NULL);
171 1.3 oster /* parityInfo must describe entire parity unit */
172 1.3 oster RF_ASSERT(asmap->parityInfo->next == NULL);
173 1.3 oster
174 1.3 oster /* initialize the data node */
175 1.3 oster if (!useMirror) {
176 1.3 oster /* read primary copy of data */
177 1.3 oster rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
178 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
179 1.3 oster rdNode->params[0].p = pda;
180 1.3 oster rdNode->params[1].p = pda->bufPtr;
181 1.3 oster rdNode->params[2].v = parityStripeID;
182 1.3 oster rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
183 1.3 oster } else {
184 1.3 oster /* read secondary copy of data */
185 1.3 oster rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
186 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
187 1.3 oster rdNode->params[0].p = asmap->parityInfo;
188 1.3 oster rdNode->params[1].p = pda->bufPtr;
189 1.3 oster rdNode->params[2].v = parityStripeID;
190 1.3 oster rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
191 1.3 oster }
192 1.3 oster
193 1.3 oster /* connect header to block node */
194 1.3 oster RF_ASSERT(dag_h->numSuccedents == 1);
195 1.3 oster RF_ASSERT(blockNode->numAntecedents == 0);
196 1.3 oster dag_h->succedents[0] = blockNode;
197 1.3 oster
198 1.3 oster /* connect block node to rdnode */
199 1.3 oster RF_ASSERT(blockNode->numSuccedents == 1);
200 1.3 oster RF_ASSERT(rdNode->numAntecedents == 1);
201 1.3 oster blockNode->succedents[0] = rdNode;
202 1.3 oster rdNode->antecedents[0] = blockNode;
203 1.3 oster rdNode->antType[0] = rf_control;
204 1.3 oster
205 1.3 oster /* connect rdnode to commit node */
206 1.3 oster RF_ASSERT(rdNode->numSuccedents == 1);
207 1.3 oster RF_ASSERT(commitNode->numAntecedents == 1);
208 1.3 oster rdNode->succedents[0] = commitNode;
209 1.3 oster commitNode->antecedents[0] = rdNode;
210 1.3 oster commitNode->antType[0] = rf_control;
211 1.3 oster
212 1.3 oster /* connect commit node to terminator */
213 1.3 oster RF_ASSERT(commitNode->numSuccedents == 1);
214 1.3 oster RF_ASSERT(termNode->numAntecedents == 1);
215 1.3 oster RF_ASSERT(termNode->numSuccedents == 0);
216 1.3 oster commitNode->succedents[0] = termNode;
217 1.3 oster termNode->antecedents[0] = commitNode;
218 1.3 oster termNode->antType[0] = rf_control;
219 1.1 oster }
220 1.1 oster
221 1.1 oster
222 1.1 oster
223 1.1 oster /******************************************************************************
224 1.1 oster *
225 1.1 oster * creates a DAG to perform a degraded-mode read of data within one stripe.
226 1.1 oster * This DAG is as follows:
227 1.1 oster *
228 1.1 oster * Hdr -> Block -> Rud -> Xor -> Cmt -> T
229 1.1 oster * -> Rrd ->
230 1.1 oster * -> Rp -->
231 1.1 oster *
232 1.1 oster * Each R node is a successor of the L node
233 1.1 oster * One successor arc from each R node goes to C, and the other to X
234 1.1 oster * There is one Rud for each chunk of surviving user data requested by the
235 1.1 oster * user, and one Rrd for each chunk of surviving user data _not_ being read by
236 1.1 oster * the user
237 1.1 oster * R = read, ud = user data, rd = recovery (surviving) data, p = parity
238 1.1 oster * X = XOR, C = Commit, T = terminate
239 1.1 oster *
240 1.1 oster * The block node guarantees a single source node.
241 1.1 oster *
242 1.1 oster * Note: The target buffer for the XOR node is set to the actual user buffer
243 1.1 oster * where the failed data is supposed to end up. This buffer is zero'd by the
244 1.1 oster * code here. Thus, if you create a degraded read dag, use it, and then
245 1.1 oster * re-use, you have to be sure to zero the target buffer prior to the re-use.
246 1.1 oster *
247 1.1 oster * The recfunc argument at the end specifies the name and function used for
248 1.1 oster * the redundancy
249 1.3 oster * recovery function.
250 1.1 oster *
251 1.1 oster *****************************************************************************/
252 1.1 oster
253 1.3 oster void
254 1.3 oster rf_CreateDegradedReadDAG(
255 1.3 oster RF_Raid_t * raidPtr,
256 1.3 oster RF_AccessStripeMap_t * asmap,
257 1.3 oster RF_DagHeader_t * dag_h,
258 1.3 oster void *bp,
259 1.3 oster RF_RaidAccessFlags_t flags,
260 1.3 oster RF_AllocListElem_t * allocList,
261 1.3 oster RF_RedFuncs_t * recFunc)
262 1.1 oster {
263 1.3 oster RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *xorNode, *blockNode;
264 1.3 oster RF_DagNode_t *commitNode, *rpNode, *termNode;
265 1.3 oster int nNodes, nRrdNodes, nRudNodes, nXorBufs, i;
266 1.3 oster int j, paramNum;
267 1.3 oster RF_SectorCount_t sectorsPerSU;
268 1.3 oster RF_ReconUnitNum_t which_ru;
269 1.3 oster char *overlappingPDAs;/* a temporary array of flags */
270 1.3 oster RF_AccessStripeMapHeader_t *new_asm_h[2];
271 1.3 oster RF_PhysDiskAddr_t *pda, *parityPDA;
272 1.3 oster RF_StripeNum_t parityStripeID;
273 1.3 oster RF_PhysDiskAddr_t *failedPDA;
274 1.3 oster RF_RaidLayout_t *layoutPtr;
275 1.3 oster char *rpBuf;
276 1.3 oster
277 1.3 oster layoutPtr = &(raidPtr->Layout);
278 1.3 oster /* failedPDA points to the pda within the asm that targets the failed
279 1.3 oster * disk */
280 1.3 oster failedPDA = asmap->failedPDAs[0];
281 1.3 oster parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
282 1.3 oster asmap->raidAddress, &which_ru);
283 1.3 oster sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
284 1.3 oster
285 1.3 oster if (rf_dagDebug) {
286 1.3 oster printf("[Creating degraded read DAG]\n");
287 1.3 oster }
288 1.3 oster RF_ASSERT(asmap->numDataFailed == 1);
289 1.3 oster dag_h->creator = "DegradedReadDAG";
290 1.3 oster
291 1.3 oster /*
292 1.3 oster * generate two ASMs identifying the surviving data we need
293 1.3 oster * in order to recover the lost data
294 1.3 oster */
295 1.3 oster
296 1.3 oster /* overlappingPDAs array must be zero'd */
297 1.3 oster RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
298 1.3 oster rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs,
299 1.3 oster &rpBuf, overlappingPDAs, allocList);
300 1.3 oster
301 1.3 oster /*
302 1.3 oster * create all the nodes at once
303 1.3 oster *
304 1.3 oster * -1 because no access is generated for the failed pda
305 1.3 oster */
306 1.3 oster nRudNodes = asmap->numStripeUnitsAccessed - 1;
307 1.3 oster nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
308 1.3 oster ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
309 1.3 oster nNodes = 5 + nRudNodes + nRrdNodes; /* lock, unlock, xor, Rp, Rud,
310 1.3 oster * Rrd */
311 1.3 oster RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *),
312 1.3 oster allocList);
313 1.3 oster i = 0;
314 1.3 oster blockNode = &nodes[i];
315 1.3 oster i++;
316 1.3 oster commitNode = &nodes[i];
317 1.3 oster i++;
318 1.3 oster xorNode = &nodes[i];
319 1.3 oster i++;
320 1.3 oster rpNode = &nodes[i];
321 1.3 oster i++;
322 1.3 oster termNode = &nodes[i];
323 1.3 oster i++;
324 1.3 oster rudNodes = &nodes[i];
325 1.3 oster i += nRudNodes;
326 1.3 oster rrdNodes = &nodes[i];
327 1.3 oster i += nRrdNodes;
328 1.3 oster RF_ASSERT(i == nNodes);
329 1.3 oster
330 1.3 oster /* initialize nodes */
331 1.3 oster dag_h->numCommitNodes = 1;
332 1.3 oster dag_h->numCommits = 0;
333 1.3 oster /* this dag can not commit until the commit node is reached errors
334 1.3 oster * prior to the commit point imply the dag has failed */
335 1.3 oster dag_h->numSuccedents = 1;
336 1.3 oster
337 1.3 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
338 1.3 oster NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
339 1.3 oster rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
340 1.3 oster NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
341 1.3 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
342 1.3 oster NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
343 1.3 oster rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc,
344 1.3 oster NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h,
345 1.3 oster recFunc->SimpleName, allocList);
346 1.3 oster
347 1.3 oster /* fill in the Rud nodes */
348 1.3 oster for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) {
349 1.3 oster if (pda == failedPDA) {
350 1.3 oster i--;
351 1.3 oster continue;
352 1.3 oster }
353 1.3 oster rf_InitNode(&rudNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
354 1.3 oster rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
355 1.3 oster "Rud", allocList);
356 1.3 oster RF_ASSERT(pda);
357 1.3 oster rudNodes[i].params[0].p = pda;
358 1.3 oster rudNodes[i].params[1].p = pda->bufPtr;
359 1.3 oster rudNodes[i].params[2].v = parityStripeID;
360 1.3 oster rudNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
361 1.3 oster }
362 1.3 oster
363 1.3 oster /* fill in the Rrd nodes */
364 1.3 oster i = 0;
365 1.3 oster if (new_asm_h[0]) {
366 1.3 oster for (pda = new_asm_h[0]->stripeMap->physInfo;
367 1.3 oster i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
368 1.3 oster i++, pda = pda->next) {
369 1.3 oster rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
370 1.3 oster rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
371 1.3 oster dag_h, "Rrd", allocList);
372 1.3 oster RF_ASSERT(pda);
373 1.3 oster rrdNodes[i].params[0].p = pda;
374 1.3 oster rrdNodes[i].params[1].p = pda->bufPtr;
375 1.3 oster rrdNodes[i].params[2].v = parityStripeID;
376 1.3 oster rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
377 1.3 oster }
378 1.3 oster }
379 1.3 oster if (new_asm_h[1]) {
380 1.3 oster for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
381 1.3 oster j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
382 1.3 oster j++, pda = pda->next) {
383 1.3 oster rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc,
384 1.3 oster rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
385 1.3 oster dag_h, "Rrd", allocList);
386 1.3 oster RF_ASSERT(pda);
387 1.3 oster rrdNodes[i + j].params[0].p = pda;
388 1.3 oster rrdNodes[i + j].params[1].p = pda->bufPtr;
389 1.3 oster rrdNodes[i + j].params[2].v = parityStripeID;
390 1.3 oster rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
391 1.3 oster }
392 1.3 oster }
393 1.3 oster /* make a PDA for the parity unit */
394 1.3 oster RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
395 1.3 oster parityPDA->row = asmap->parityInfo->row;
396 1.3 oster parityPDA->col = asmap->parityInfo->col;
397 1.3 oster parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
398 1.3 oster * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
399 1.3 oster parityPDA->numSector = failedPDA->numSector;
400 1.3 oster
401 1.3 oster /* initialize the Rp node */
402 1.3 oster rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
403 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList);
404 1.3 oster rpNode->params[0].p = parityPDA;
405 1.3 oster rpNode->params[1].p = rpBuf;
406 1.3 oster rpNode->params[2].v = parityStripeID;
407 1.3 oster rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
408 1.3 oster
409 1.3 oster /*
410 1.3 oster * the last and nastiest step is to assign all
411 1.3 oster * the parameters of the Xor node
412 1.3 oster */
413 1.3 oster paramNum = 0;
414 1.3 oster for (i = 0; i < nRrdNodes; i++) {
415 1.3 oster /* all the Rrd nodes need to be xored together */
416 1.3 oster xorNode->params[paramNum++] = rrdNodes[i].params[0];
417 1.3 oster xorNode->params[paramNum++] = rrdNodes[i].params[1];
418 1.3 oster }
419 1.3 oster for (i = 0; i < nRudNodes; i++) {
420 1.3 oster /* any Rud nodes that overlap the failed access need to be
421 1.3 oster * xored in */
422 1.3 oster if (overlappingPDAs[i]) {
423 1.3 oster RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
424 1.3 oster bcopy((char *) rudNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t));
425 1.3 oster rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
426 1.3 oster xorNode->params[paramNum++].p = pda;
427 1.3 oster xorNode->params[paramNum++].p = pda->bufPtr;
428 1.3 oster }
429 1.3 oster }
430 1.3 oster RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
431 1.3 oster
432 1.3 oster /* install parity pda as last set of params to be xor'd */
433 1.3 oster xorNode->params[paramNum++].p = parityPDA;
434 1.3 oster xorNode->params[paramNum++].p = rpBuf;
435 1.3 oster
436 1.3 oster /*
437 1.3 oster * the last 2 params to the recovery xor node are
438 1.3 oster * the failed PDA and the raidPtr
439 1.3 oster */
440 1.3 oster xorNode->params[paramNum++].p = failedPDA;
441 1.3 oster xorNode->params[paramNum++].p = raidPtr;
442 1.3 oster RF_ASSERT(paramNum == 2 * nXorBufs + 2);
443 1.3 oster
444 1.3 oster /*
445 1.3 oster * The xor node uses results[0] as the target buffer.
446 1.3 oster * Set pointer and zero the buffer. In the kernel, this
447 1.3 oster * may be a user buffer in which case we have to remap it.
448 1.3 oster */
449 1.3 oster xorNode->results[0] = failedPDA->bufPtr;
450 1.3 oster RF_BZERO(bp, failedPDA->bufPtr, rf_RaidAddressToByte(raidPtr,
451 1.3 oster failedPDA->numSector));
452 1.3 oster
453 1.3 oster /* connect nodes to form graph */
454 1.3 oster /* connect the header to the block node */
455 1.3 oster RF_ASSERT(dag_h->numSuccedents == 1);
456 1.3 oster RF_ASSERT(blockNode->numAntecedents == 0);
457 1.3 oster dag_h->succedents[0] = blockNode;
458 1.3 oster
459 1.3 oster /* connect the block node to the read nodes */
460 1.3 oster RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes));
461 1.3 oster RF_ASSERT(rpNode->numAntecedents == 1);
462 1.3 oster blockNode->succedents[0] = rpNode;
463 1.3 oster rpNode->antecedents[0] = blockNode;
464 1.3 oster rpNode->antType[0] = rf_control;
465 1.3 oster for (i = 0; i < nRrdNodes; i++) {
466 1.3 oster RF_ASSERT(rrdNodes[i].numSuccedents == 1);
467 1.3 oster blockNode->succedents[1 + i] = &rrdNodes[i];
468 1.3 oster rrdNodes[i].antecedents[0] = blockNode;
469 1.3 oster rrdNodes[i].antType[0] = rf_control;
470 1.3 oster }
471 1.3 oster for (i = 0; i < nRudNodes; i++) {
472 1.3 oster RF_ASSERT(rudNodes[i].numSuccedents == 1);
473 1.3 oster blockNode->succedents[1 + nRrdNodes + i] = &rudNodes[i];
474 1.3 oster rudNodes[i].antecedents[0] = blockNode;
475 1.3 oster rudNodes[i].antType[0] = rf_control;
476 1.3 oster }
477 1.3 oster
478 1.3 oster /* connect the read nodes to the xor node */
479 1.3 oster RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes));
480 1.3 oster RF_ASSERT(rpNode->numSuccedents == 1);
481 1.3 oster rpNode->succedents[0] = xorNode;
482 1.3 oster xorNode->antecedents[0] = rpNode;
483 1.3 oster xorNode->antType[0] = rf_trueData;
484 1.3 oster for (i = 0; i < nRrdNodes; i++) {
485 1.3 oster RF_ASSERT(rrdNodes[i].numSuccedents == 1);
486 1.3 oster rrdNodes[i].succedents[0] = xorNode;
487 1.3 oster xorNode->antecedents[1 + i] = &rrdNodes[i];
488 1.3 oster xorNode->antType[1 + i] = rf_trueData;
489 1.3 oster }
490 1.3 oster for (i = 0; i < nRudNodes; i++) {
491 1.3 oster RF_ASSERT(rudNodes[i].numSuccedents == 1);
492 1.3 oster rudNodes[i].succedents[0] = xorNode;
493 1.3 oster xorNode->antecedents[1 + nRrdNodes + i] = &rudNodes[i];
494 1.3 oster xorNode->antType[1 + nRrdNodes + i] = rf_trueData;
495 1.3 oster }
496 1.3 oster
497 1.3 oster /* connect the xor node to the commit node */
498 1.3 oster RF_ASSERT(xorNode->numSuccedents == 1);
499 1.3 oster RF_ASSERT(commitNode->numAntecedents == 1);
500 1.3 oster xorNode->succedents[0] = commitNode;
501 1.3 oster commitNode->antecedents[0] = xorNode;
502 1.3 oster commitNode->antType[0] = rf_control;
503 1.3 oster
504 1.3 oster /* connect the termNode to the commit node */
505 1.3 oster RF_ASSERT(commitNode->numSuccedents == 1);
506 1.3 oster RF_ASSERT(termNode->numAntecedents == 1);
507 1.3 oster RF_ASSERT(termNode->numSuccedents == 0);
508 1.3 oster commitNode->succedents[0] = termNode;
509 1.3 oster termNode->antType[0] = rf_control;
510 1.3 oster termNode->antecedents[0] = commitNode;
511 1.1 oster }
512 1.1 oster
513 1.6 oster #if (RF_INCLUDE_CHAINDECLUSTER > 0)
514 1.1 oster /******************************************************************************
515 1.1 oster * Create a degraded read DAG for Chained Declustering
516 1.1 oster *
517 1.1 oster * Hdr -> Nil -> R(p/s)d -> Cmt -> Trm
518 1.1 oster *
519 1.1 oster * The "Rd" node reads data from the surviving disk in the mirror pair
520 1.1 oster * Rpd - read of primary copy
521 1.1 oster * Rsd - read of secondary copy
522 1.1 oster *
523 1.1 oster * Parameters: raidPtr - description of the physical array
524 1.1 oster * asmap - logical & physical addresses for this access
525 1.1 oster * bp - buffer ptr (for holding write data)
526 1.3 oster * flags - general flags (e.g. disk locking)
527 1.1 oster * allocList - list of memory allocated in DAG creation
528 1.1 oster *****************************************************************************/
529 1.1 oster
530 1.3 oster void
531 1.3 oster rf_CreateRaidCDegradedReadDAG(
532 1.3 oster RF_Raid_t * raidPtr,
533 1.3 oster RF_AccessStripeMap_t * asmap,
534 1.3 oster RF_DagHeader_t * dag_h,
535 1.3 oster void *bp,
536 1.3 oster RF_RaidAccessFlags_t flags,
537 1.3 oster RF_AllocListElem_t * allocList)
538 1.1 oster {
539 1.3 oster RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
540 1.3 oster RF_StripeNum_t parityStripeID;
541 1.3 oster int useMirror, i, shiftable;
542 1.3 oster RF_ReconUnitNum_t which_ru;
543 1.3 oster RF_PhysDiskAddr_t *pda;
544 1.3 oster
545 1.3 oster if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
546 1.3 oster shiftable = RF_TRUE;
547 1.3 oster } else {
548 1.3 oster shiftable = RF_FALSE;
549 1.3 oster }
550 1.3 oster useMirror = 0;
551 1.3 oster parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
552 1.3 oster asmap->raidAddress, &which_ru);
553 1.3 oster
554 1.3 oster if (rf_dagDebug) {
555 1.3 oster printf("[Creating RAID C degraded read DAG]\n");
556 1.3 oster }
557 1.3 oster dag_h->creator = "RaidCDegradedReadDAG";
558 1.3 oster /* alloc the Wnd nodes and the Wmir node */
559 1.3 oster if (asmap->numDataFailed == 0)
560 1.3 oster useMirror = RF_FALSE;
561 1.3 oster else
562 1.3 oster useMirror = RF_TRUE;
563 1.3 oster
564 1.3 oster /* total number of nodes = 1 + (block + commit + terminator) */
565 1.3 oster RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
566 1.3 oster i = 0;
567 1.3 oster rdNode = &nodes[i];
568 1.3 oster i++;
569 1.3 oster blockNode = &nodes[i];
570 1.3 oster i++;
571 1.3 oster commitNode = &nodes[i];
572 1.3 oster i++;
573 1.3 oster termNode = &nodes[i];
574 1.3 oster i++;
575 1.3 oster
576 1.3 oster /*
577 1.3 oster * This dag can not commit until the commit node is reached.
578 1.3 oster * Errors prior to the commit point imply the dag has failed
579 1.3 oster * and must be retried.
580 1.3 oster */
581 1.3 oster dag_h->numCommitNodes = 1;
582 1.3 oster dag_h->numCommits = 0;
583 1.3 oster dag_h->numSuccedents = 1;
584 1.3 oster
585 1.3 oster /* initialize the block, commit, and terminator nodes */
586 1.3 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
587 1.3 oster NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
588 1.3 oster rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
589 1.3 oster NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
590 1.3 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
591 1.3 oster NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
592 1.3 oster
593 1.3 oster pda = asmap->physInfo;
594 1.3 oster RF_ASSERT(pda != NULL);
595 1.3 oster /* parityInfo must describe entire parity unit */
596 1.3 oster RF_ASSERT(asmap->parityInfo->next == NULL);
597 1.3 oster
598 1.3 oster /* initialize the data node */
599 1.3 oster if (!useMirror) {
600 1.3 oster rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
601 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
602 1.3 oster if (shiftable && rf_compute_workload_shift(raidPtr, pda)) {
603 1.3 oster /* shift this read to the next disk in line */
604 1.3 oster rdNode->params[0].p = asmap->parityInfo;
605 1.3 oster rdNode->params[1].p = pda->bufPtr;
606 1.3 oster rdNode->params[2].v = parityStripeID;
607 1.3 oster rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
608 1.3 oster } else {
609 1.3 oster /* read primary copy */
610 1.3 oster rdNode->params[0].p = pda;
611 1.3 oster rdNode->params[1].p = pda->bufPtr;
612 1.3 oster rdNode->params[2].v = parityStripeID;
613 1.3 oster rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
614 1.3 oster }
615 1.3 oster } else {
616 1.3 oster /* read secondary copy of data */
617 1.3 oster rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
618 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
619 1.3 oster rdNode->params[0].p = asmap->parityInfo;
620 1.3 oster rdNode->params[1].p = pda->bufPtr;
621 1.3 oster rdNode->params[2].v = parityStripeID;
622 1.3 oster rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
623 1.3 oster }
624 1.3 oster
625 1.3 oster /* connect header to block node */
626 1.3 oster RF_ASSERT(dag_h->numSuccedents == 1);
627 1.3 oster RF_ASSERT(blockNode->numAntecedents == 0);
628 1.3 oster dag_h->succedents[0] = blockNode;
629 1.3 oster
630 1.3 oster /* connect block node to rdnode */
631 1.3 oster RF_ASSERT(blockNode->numSuccedents == 1);
632 1.3 oster RF_ASSERT(rdNode->numAntecedents == 1);
633 1.3 oster blockNode->succedents[0] = rdNode;
634 1.3 oster rdNode->antecedents[0] = blockNode;
635 1.3 oster rdNode->antType[0] = rf_control;
636 1.3 oster
637 1.3 oster /* connect rdnode to commit node */
638 1.3 oster RF_ASSERT(rdNode->numSuccedents == 1);
639 1.3 oster RF_ASSERT(commitNode->numAntecedents == 1);
640 1.3 oster rdNode->succedents[0] = commitNode;
641 1.3 oster commitNode->antecedents[0] = rdNode;
642 1.3 oster commitNode->antType[0] = rf_control;
643 1.3 oster
644 1.3 oster /* connect commit node to terminator */
645 1.3 oster RF_ASSERT(commitNode->numSuccedents == 1);
646 1.3 oster RF_ASSERT(termNode->numAntecedents == 1);
647 1.3 oster RF_ASSERT(termNode->numSuccedents == 0);
648 1.3 oster commitNode->succedents[0] = termNode;
649 1.3 oster termNode->antecedents[0] = commitNode;
650 1.3 oster termNode->antType[0] = rf_control;
651 1.1 oster }
652 1.8 mrg #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
653 1.6 oster
654 1.7 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
655 1.1 oster /*
656 1.1 oster * XXX move this elsewhere?
657 1.1 oster */
658 1.3 oster void
659 1.3 oster rf_DD_GenerateFailedAccessASMs(
660 1.3 oster RF_Raid_t * raidPtr,
661 1.3 oster RF_AccessStripeMap_t * asmap,
662 1.3 oster RF_PhysDiskAddr_t ** pdap,
663 1.3 oster int *nNodep,
664 1.3 oster RF_PhysDiskAddr_t ** pqpdap,
665 1.3 oster int *nPQNodep,
666 1.3 oster RF_AllocListElem_t * allocList)
667 1.1 oster {
668 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
669 1.3 oster int PDAPerDisk, i;
670 1.3 oster RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
671 1.3 oster int numDataCol = layoutPtr->numDataCol;
672 1.3 oster int state;
673 1.3 oster RF_SectorNum_t suoff, suend;
674 1.3 oster unsigned firstDataCol, napdas, count;
675 1.3 oster RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0;
676 1.3 oster RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
677 1.3 oster RF_PhysDiskAddr_t *pda_p;
678 1.3 oster RF_PhysDiskAddr_t *phys_p;
679 1.3 oster RF_RaidAddr_t sosAddr;
680 1.3 oster
681 1.3 oster /* determine how many pda's we will have to generate per unaccess
682 1.3 oster * stripe. If there is only one failed data unit, it is one; if two,
683 1.3 oster * possibly two, depending wether they overlap. */
684 1.1 oster
685 1.3 oster fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
686 1.3 oster fone_end = fone_start + fone->numSector;
687 1.1 oster
688 1.1 oster #define CONS_PDA(if,start,num) \
689 1.1 oster pda_p->row = asmap->if->row; pda_p->col = asmap->if->col; \
690 1.1 oster pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
691 1.1 oster pda_p->numSector = num; \
692 1.1 oster pda_p->next = NULL; \
693 1.1 oster RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
694 1.1 oster
695 1.3 oster if (asmap->numDataFailed == 1) {
696 1.3 oster PDAPerDisk = 1;
697 1.3 oster state = 1;
698 1.3 oster RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
699 1.3 oster pda_p = *pqpdap;
700 1.3 oster /* build p */
701 1.3 oster CONS_PDA(parityInfo, fone_start, fone->numSector);
702 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
703 1.1 oster pda_p++;
704 1.3 oster /* build q */
705 1.3 oster CONS_PDA(qInfo, fone_start, fone->numSector);
706 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
707 1.3 oster } else {
708 1.3 oster ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
709 1.3 oster ftwo_end = ftwo_start + ftwo->numSector;
710 1.3 oster if (fone->numSector + ftwo->numSector > secPerSU) {
711 1.3 oster PDAPerDisk = 1;
712 1.3 oster state = 2;
713 1.3 oster RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
714 1.3 oster pda_p = *pqpdap;
715 1.3 oster CONS_PDA(parityInfo, 0, secPerSU);
716 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
717 1.3 oster pda_p++;
718 1.3 oster CONS_PDA(qInfo, 0, secPerSU);
719 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
720 1.3 oster } else {
721 1.3 oster PDAPerDisk = 2;
722 1.3 oster state = 3;
723 1.3 oster /* four of them, fone, then ftwo */
724 1.3 oster RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
725 1.3 oster pda_p = *pqpdap;
726 1.3 oster CONS_PDA(parityInfo, fone_start, fone->numSector);
727 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
728 1.3 oster pda_p++;
729 1.3 oster CONS_PDA(qInfo, fone_start, fone->numSector);
730 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
731 1.3 oster pda_p++;
732 1.3 oster CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
733 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
734 1.3 oster pda_p++;
735 1.3 oster CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
736 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
737 1.1 oster }
738 1.3 oster }
739 1.3 oster /* figure out number of nonaccessed pda */
740 1.3 oster napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0));
741 1.3 oster *nPQNodep = PDAPerDisk;
742 1.3 oster
743 1.3 oster /* sweep over the over accessed pda's, figuring out the number of
744 1.3 oster * additional pda's to generate. Of course, skip the failed ones */
745 1.3 oster
746 1.3 oster count = 0;
747 1.3 oster for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) {
748 1.3 oster if ((pda_p == fone) || (pda_p == ftwo))
749 1.3 oster continue;
750 1.3 oster suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector);
751 1.3 oster suend = suoff + pda_p->numSector;
752 1.3 oster switch (state) {
753 1.3 oster case 1: /* one failed PDA to overlap */
754 1.3 oster /* if a PDA doesn't contain the failed unit, it can
755 1.3 oster * only miss the start or end, not both */
756 1.3 oster if ((suoff > fone_start) || (suend < fone_end))
757 1.3 oster count++;
758 1.3 oster break;
759 1.3 oster case 2: /* whole stripe */
760 1.3 oster if (suoff) /* leak at begining */
761 1.3 oster count++;
762 1.3 oster if (suend < numDataCol) /* leak at end */
763 1.3 oster count++;
764 1.3 oster break;
765 1.3 oster case 3: /* two disjoint units */
766 1.3 oster if ((suoff > fone_start) || (suend < fone_end))
767 1.3 oster count++;
768 1.3 oster if ((suoff > ftwo_start) || (suend < ftwo_end))
769 1.3 oster count++;
770 1.3 oster break;
771 1.3 oster default:
772 1.3 oster RF_PANIC();
773 1.1 oster }
774 1.3 oster }
775 1.3 oster
776 1.3 oster napdas += count;
777 1.3 oster *nNodep = napdas;
778 1.3 oster if (napdas == 0)
779 1.3 oster return; /* short circuit */
780 1.3 oster
781 1.3 oster /* allocate up our list of pda's */
782 1.3 oster
783 1.3 oster RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
784 1.3 oster *pdap = pda_p;
785 1.3 oster
786 1.3 oster /* linkem together */
787 1.3 oster for (i = 0; i < (napdas - 1); i++)
788 1.3 oster pda_p[i].next = pda_p + (i + 1);
789 1.3 oster
790 1.3 oster /* march through the one's up to the first accessed disk */
791 1.3 oster firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol;
792 1.3 oster sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
793 1.3 oster for (i = 0; i < firstDataCol; i++) {
794 1.3 oster if ((pda_p - (*pdap)) == napdas)
795 1.3 oster continue;
796 1.3 oster pda_p->type = RF_PDA_TYPE_DATA;
797 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU);
798 1.3 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
799 1.3 oster /* skip over dead disks */
800 1.3 oster if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
801 1.3 oster continue;
802 1.3 oster switch (state) {
803 1.3 oster case 1: /* fone */
804 1.3 oster pda_p->numSector = fone->numSector;
805 1.3 oster pda_p->raidAddress += fone_start;
806 1.3 oster pda_p->startSector += fone_start;
807 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
808 1.3 oster break;
809 1.3 oster case 2: /* full stripe */
810 1.3 oster pda_p->numSector = secPerSU;
811 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
812 1.3 oster break;
813 1.3 oster case 3: /* two slabs */
814 1.3 oster pda_p->numSector = fone->numSector;
815 1.3 oster pda_p->raidAddress += fone_start;
816 1.3 oster pda_p->startSector += fone_start;
817 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
818 1.3 oster pda_p++;
819 1.3 oster pda_p->type = RF_PDA_TYPE_DATA;
820 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU);
821 1.3 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
822 1.3 oster pda_p->numSector = ftwo->numSector;
823 1.3 oster pda_p->raidAddress += ftwo_start;
824 1.3 oster pda_p->startSector += ftwo_start;
825 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
826 1.3 oster break;
827 1.3 oster default:
828 1.3 oster RF_PANIC();
829 1.1 oster }
830 1.3 oster pda_p++;
831 1.3 oster }
832 1.3 oster
833 1.3 oster /* march through the touched stripe units */
834 1.3 oster for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) {
835 1.3 oster if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1]))
836 1.3 oster continue;
837 1.3 oster suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector);
838 1.3 oster suend = suoff + phys_p->numSector;
839 1.3 oster switch (state) {
840 1.3 oster case 1: /* single buffer */
841 1.3 oster if (suoff > fone_start) {
842 1.3 oster RF_ASSERT(suend >= fone_end);
843 1.3 oster /* The data read starts after the mapped
844 1.3 oster * access, snip off the begining */
845 1.3 oster pda_p->numSector = suoff - fone_start;
846 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
847 1.3 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
848 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
849 1.3 oster pda_p++;
850 1.3 oster }
851 1.3 oster if (suend < fone_end) {
852 1.3 oster RF_ASSERT(suoff <= fone_start);
853 1.3 oster /* The data read stops before the end of the
854 1.3 oster * failed access, extend */
855 1.3 oster pda_p->numSector = fone_end - suend;
856 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
857 1.3 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
858 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
859 1.3 oster pda_p++;
860 1.3 oster }
861 1.3 oster break;
862 1.3 oster case 2: /* whole stripe unit */
863 1.3 oster RF_ASSERT((suoff == 0) || (suend == secPerSU));
864 1.3 oster if (suend < secPerSU) { /* short read, snip from end
865 1.3 oster * on */
866 1.3 oster pda_p->numSector = secPerSU - suend;
867 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
868 1.3 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
869 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
870 1.3 oster pda_p++;
871 1.3 oster } else
872 1.3 oster if (suoff > 0) { /* short at front */
873 1.3 oster pda_p->numSector = suoff;
874 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU);
875 1.3 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
876 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
877 1.3 oster pda_p++;
878 1.3 oster }
879 1.3 oster break;
880 1.3 oster case 3: /* two nonoverlapping failures */
881 1.3 oster if ((suoff > fone_start) || (suend < fone_end)) {
882 1.3 oster if (suoff > fone_start) {
883 1.3 oster RF_ASSERT(suend >= fone_end);
884 1.3 oster /* The data read starts after the
885 1.3 oster * mapped access, snip off the
886 1.3 oster * begining */
887 1.3 oster pda_p->numSector = suoff - fone_start;
888 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
889 1.3 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
890 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
891 1.3 oster pda_p++;
892 1.3 oster }
893 1.3 oster if (suend < fone_end) {
894 1.3 oster RF_ASSERT(suoff <= fone_start);
895 1.3 oster /* The data read stops before the end
896 1.3 oster * of the failed access, extend */
897 1.3 oster pda_p->numSector = fone_end - suend;
898 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
899 1.3 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
900 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
901 1.3 oster pda_p++;
902 1.3 oster }
903 1.3 oster }
904 1.3 oster if ((suoff > ftwo_start) || (suend < ftwo_end)) {
905 1.3 oster if (suoff > ftwo_start) {
906 1.3 oster RF_ASSERT(suend >= ftwo_end);
907 1.3 oster /* The data read starts after the
908 1.3 oster * mapped access, snip off the
909 1.3 oster * begining */
910 1.3 oster pda_p->numSector = suoff - ftwo_start;
911 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start;
912 1.3 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
913 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
914 1.3 oster pda_p++;
915 1.3 oster }
916 1.3 oster if (suend < ftwo_end) {
917 1.3 oster RF_ASSERT(suoff <= ftwo_start);
918 1.3 oster /* The data read stops before the end
919 1.3 oster * of the failed access, extend */
920 1.3 oster pda_p->numSector = ftwo_end - suend;
921 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
922 1.3 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
923 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
924 1.3 oster pda_p++;
925 1.3 oster }
926 1.3 oster }
927 1.3 oster break;
928 1.3 oster default:
929 1.3 oster RF_PANIC();
930 1.1 oster }
931 1.1 oster }
932 1.1 oster
933 1.3 oster /* after the last accessed disk */
934 1.3 oster for (; i < numDataCol; i++) {
935 1.3 oster if ((pda_p - (*pdap)) == napdas)
936 1.3 oster continue;
937 1.3 oster pda_p->type = RF_PDA_TYPE_DATA;
938 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU);
939 1.3 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
940 1.3 oster /* skip over dead disks */
941 1.3 oster if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
942 1.3 oster continue;
943 1.3 oster switch (state) {
944 1.3 oster case 1: /* fone */
945 1.3 oster pda_p->numSector = fone->numSector;
946 1.3 oster pda_p->raidAddress += fone_start;
947 1.3 oster pda_p->startSector += fone_start;
948 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
949 1.3 oster break;
950 1.3 oster case 2: /* full stripe */
951 1.3 oster pda_p->numSector = secPerSU;
952 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
953 1.3 oster break;
954 1.3 oster case 3: /* two slabs */
955 1.3 oster pda_p->numSector = fone->numSector;
956 1.3 oster pda_p->raidAddress += fone_start;
957 1.3 oster pda_p->startSector += fone_start;
958 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
959 1.3 oster pda_p++;
960 1.3 oster pda_p->type = RF_PDA_TYPE_DATA;
961 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU);
962 1.3 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
963 1.3 oster pda_p->numSector = ftwo->numSector;
964 1.3 oster pda_p->raidAddress += ftwo_start;
965 1.3 oster pda_p->startSector += ftwo_start;
966 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
967 1.3 oster break;
968 1.3 oster default:
969 1.3 oster RF_PANIC();
970 1.3 oster }
971 1.3 oster pda_p++;
972 1.3 oster }
973 1.3 oster
974 1.3 oster RF_ASSERT(pda_p - *pdap == napdas);
975 1.3 oster return;
976 1.1 oster }
977 1.1 oster #define INIT_DISK_NODE(node,name) \
978 1.1 oster rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
979 1.1 oster (node)->succedents[0] = unblockNode; \
980 1.1 oster (node)->succedents[1] = recoveryNode; \
981 1.1 oster (node)->antecedents[0] = blockNode; \
982 1.1 oster (node)->antType[0] = rf_control
983 1.1 oster
984 1.1 oster #define DISK_NODE_PARAMS(_node_,_p_) \
985 1.1 oster (_node_).params[0].p = _p_ ; \
986 1.1 oster (_node_).params[1].p = (_p_)->bufPtr; \
987 1.1 oster (_node_).params[2].v = parityStripeID; \
988 1.1 oster (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
989 1.1 oster
990 1.3 oster void
991 1.3 oster rf_DoubleDegRead(
992 1.3 oster RF_Raid_t * raidPtr,
993 1.3 oster RF_AccessStripeMap_t * asmap,
994 1.3 oster RF_DagHeader_t * dag_h,
995 1.3 oster void *bp,
996 1.3 oster RF_RaidAccessFlags_t flags,
997 1.3 oster RF_AllocListElem_t * allocList,
998 1.3 oster char *redundantReadNodeName,
999 1.3 oster char *recoveryNodeName,
1000 1.3 oster int (*recovFunc) (RF_DagNode_t *))
1001 1.1 oster {
1002 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1003 1.3 oster RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode,
1004 1.3 oster *unblockNode, *rpNodes, *rqNodes, *termNode;
1005 1.3 oster RF_PhysDiskAddr_t *pda, *pqPDAs;
1006 1.3 oster RF_PhysDiskAddr_t *npdas;
1007 1.3 oster int nNodes, nRrdNodes, nRudNodes, i;
1008 1.3 oster RF_ReconUnitNum_t which_ru;
1009 1.3 oster int nReadNodes, nPQNodes;
1010 1.3 oster RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
1011 1.3 oster RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1];
1012 1.3 oster RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
1013 1.3 oster
1014 1.3 oster if (rf_dagDebug)
1015 1.3 oster printf("[Creating Double Degraded Read DAG]\n");
1016 1.3 oster rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
1017 1.3 oster
1018 1.3 oster nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
1019 1.3 oster nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes;
1020 1.3 oster nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes;
1021 1.3 oster
1022 1.3 oster RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
1023 1.3 oster i = 0;
1024 1.3 oster blockNode = &nodes[i];
1025 1.3 oster i += 1;
1026 1.3 oster unblockNode = &nodes[i];
1027 1.3 oster i += 1;
1028 1.3 oster recoveryNode = &nodes[i];
1029 1.3 oster i += 1;
1030 1.3 oster termNode = &nodes[i];
1031 1.3 oster i += 1;
1032 1.3 oster rudNodes = &nodes[i];
1033 1.3 oster i += nRudNodes;
1034 1.3 oster rrdNodes = &nodes[i];
1035 1.3 oster i += nRrdNodes;
1036 1.3 oster rpNodes = &nodes[i];
1037 1.3 oster i += nPQNodes;
1038 1.3 oster rqNodes = &nodes[i];
1039 1.3 oster i += nPQNodes;
1040 1.3 oster RF_ASSERT(i == nNodes);
1041 1.3 oster
1042 1.3 oster dag_h->numSuccedents = 1;
1043 1.3 oster dag_h->succedents[0] = blockNode;
1044 1.3 oster dag_h->creator = "DoubleDegRead";
1045 1.3 oster dag_h->numCommits = 0;
1046 1.3 oster dag_h->numCommitNodes = 1; /* unblock */
1047 1.3 oster
1048 1.3 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList);
1049 1.3 oster termNode->antecedents[0] = unblockNode;
1050 1.3 oster termNode->antType[0] = rf_control;
1051 1.3 oster termNode->antecedents[1] = recoveryNode;
1052 1.3 oster termNode->antType[1] = rf_control;
1053 1.3 oster
1054 1.3 oster /* init the block and unblock nodes */
1055 1.3 oster /* The block node has all nodes except itself, unblock and recovery as
1056 1.3 oster * successors. Similarly for predecessors of the unblock. */
1057 1.3 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
1058 1.3 oster rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList);
1059 1.3 oster
1060 1.3 oster for (i = 0; i < nReadNodes; i++) {
1061 1.3 oster blockNode->succedents[i] = rudNodes + i;
1062 1.3 oster unblockNode->antecedents[i] = rudNodes + i;
1063 1.3 oster unblockNode->antType[i] = rf_control;
1064 1.3 oster }
1065 1.3 oster unblockNode->succedents[0] = termNode;
1066 1.3 oster
1067 1.3 oster /* The recovery node has all the reads as predecessors, and the term
1068 1.3 oster * node as successors. It gets a pda as a param from each of the read
1069 1.3 oster * nodes plus the raidPtr. For each failed unit is has a result pda. */
1070 1.3 oster rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
1071 1.3 oster 1, /* succesors */
1072 1.3 oster nReadNodes, /* preds */
1073 1.3 oster nReadNodes + 2, /* params */
1074 1.3 oster asmap->numDataFailed, /* results */
1075 1.3 oster dag_h, recoveryNodeName, allocList);
1076 1.3 oster
1077 1.3 oster recoveryNode->succedents[0] = termNode;
1078 1.3 oster for (i = 0; i < nReadNodes; i++) {
1079 1.3 oster recoveryNode->antecedents[i] = rudNodes + i;
1080 1.3 oster recoveryNode->antType[i] = rf_trueData;
1081 1.3 oster }
1082 1.3 oster
1083 1.3 oster /* build the read nodes, then come back and fill in recovery params
1084 1.3 oster * and results */
1085 1.3 oster pda = asmap->physInfo;
1086 1.3 oster for (i = 0; i < nRudNodes; pda = pda->next) {
1087 1.3 oster if ((pda == failedPDA) || (pda == failedPDAtwo))
1088 1.3 oster continue;
1089 1.3 oster INIT_DISK_NODE(rudNodes + i, "Rud");
1090 1.3 oster RF_ASSERT(pda);
1091 1.3 oster DISK_NODE_PARAMS(rudNodes[i], pda);
1092 1.3 oster i++;
1093 1.3 oster }
1094 1.3 oster
1095 1.3 oster pda = npdas;
1096 1.3 oster for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
1097 1.3 oster INIT_DISK_NODE(rrdNodes + i, "Rrd");
1098 1.3 oster RF_ASSERT(pda);
1099 1.3 oster DISK_NODE_PARAMS(rrdNodes[i], pda);
1100 1.3 oster }
1101 1.3 oster
1102 1.3 oster /* redundancy pdas */
1103 1.3 oster pda = pqPDAs;
1104 1.3 oster INIT_DISK_NODE(rpNodes, "Rp");
1105 1.3 oster RF_ASSERT(pda);
1106 1.3 oster DISK_NODE_PARAMS(rpNodes[0], pda);
1107 1.3 oster pda++;
1108 1.3 oster INIT_DISK_NODE(rqNodes, redundantReadNodeName);
1109 1.3 oster RF_ASSERT(pda);
1110 1.3 oster DISK_NODE_PARAMS(rqNodes[0], pda);
1111 1.3 oster if (nPQNodes == 2) {
1112 1.3 oster pda++;
1113 1.3 oster INIT_DISK_NODE(rpNodes + 1, "Rp");
1114 1.3 oster RF_ASSERT(pda);
1115 1.3 oster DISK_NODE_PARAMS(rpNodes[1], pda);
1116 1.3 oster pda++;
1117 1.3 oster INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName);
1118 1.3 oster RF_ASSERT(pda);
1119 1.3 oster DISK_NODE_PARAMS(rqNodes[1], pda);
1120 1.3 oster }
1121 1.3 oster /* fill in recovery node params */
1122 1.3 oster for (i = 0; i < nReadNodes; i++)
1123 1.3 oster recoveryNode->params[i] = rudNodes[i].params[0]; /* pda */
1124 1.3 oster recoveryNode->params[i++].p = (void *) raidPtr;
1125 1.3 oster recoveryNode->params[i++].p = (void *) asmap;
1126 1.3 oster recoveryNode->results[0] = failedPDA;
1127 1.3 oster if (asmap->numDataFailed == 2)
1128 1.3 oster recoveryNode->results[1] = failedPDAtwo;
1129 1.1 oster
1130 1.3 oster /* zero fill the target data buffers? */
1131 1.1 oster }
1132 1.6 oster
1133 1.7 oster #endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */
1134