rf_dagdegrd.c revision 1.27 1 1.27 christos /* $NetBSD: rf_dagdegrd.c,v 1.27 2006/11/16 01:33:23 christos Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*
30 1.1 oster * rf_dagdegrd.c
31 1.1 oster *
32 1.1 oster * code for creating degraded read DAGs
33 1.1 oster */
34 1.10 lukem
35 1.10 lukem #include <sys/cdefs.h>
36 1.27 christos __KERNEL_RCSID(0, "$NetBSD: rf_dagdegrd.c,v 1.27 2006/11/16 01:33:23 christos Exp $");
37 1.1 oster
38 1.9 oster #include <dev/raidframe/raidframevar.h>
39 1.9 oster
40 1.6 oster #include "rf_archs.h"
41 1.1 oster #include "rf_raid.h"
42 1.1 oster #include "rf_dag.h"
43 1.1 oster #include "rf_dagutils.h"
44 1.1 oster #include "rf_dagfuncs.h"
45 1.1 oster #include "rf_debugMem.h"
46 1.1 oster #include "rf_general.h"
47 1.1 oster #include "rf_dagdegrd.h"
48 1.21 oster #include "rf_map.h"
49 1.1 oster
50 1.1 oster
51 1.1 oster /******************************************************************************
52 1.1 oster *
53 1.1 oster * General comments on DAG creation:
54 1.3 oster *
55 1.1 oster * All DAGs in this file use roll-away error recovery. Each DAG has a single
56 1.1 oster * commit node, usually called "Cmt." If an error occurs before the Cmt node
57 1.1 oster * is reached, the execution engine will halt forward execution and work
58 1.1 oster * backward through the graph, executing the undo functions. Assuming that
59 1.1 oster * each node in the graph prior to the Cmt node are undoable and atomic - or -
60 1.1 oster * does not make changes to permanent state, the graph will fail atomically.
61 1.1 oster * If an error occurs after the Cmt node executes, the engine will roll-forward
62 1.1 oster * through the graph, blindly executing nodes until it reaches the end.
63 1.1 oster * If a graph reaches the end, it is assumed to have completed successfully.
64 1.1 oster *
65 1.1 oster * A graph has only 1 Cmt node.
66 1.1 oster *
67 1.1 oster */
68 1.1 oster
69 1.1 oster
70 1.1 oster /******************************************************************************
71 1.1 oster *
72 1.1 oster * The following wrappers map the standard DAG creation interface to the
73 1.1 oster * DAG creation routines. Additionally, these wrappers enable experimentation
74 1.1 oster * with new DAG structures by providing an extra level of indirection, allowing
75 1.1 oster * the DAG creation routines to be replaced at this single point.
76 1.1 oster */
77 1.1 oster
78 1.23 perry void
79 1.16 oster rf_CreateRaidFiveDegradedReadDAG(RF_Raid_t *raidPtr,
80 1.16 oster RF_AccessStripeMap_t *asmap,
81 1.16 oster RF_DagHeader_t *dag_h,
82 1.16 oster void *bp,
83 1.16 oster RF_RaidAccessFlags_t flags,
84 1.16 oster RF_AllocListElem_t *allocList)
85 1.1 oster {
86 1.3 oster rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
87 1.3 oster &rf_xorRecoveryFuncs);
88 1.1 oster }
89 1.1 oster
90 1.1 oster
91 1.1 oster /******************************************************************************
92 1.1 oster *
93 1.1 oster * DAG creation code begins here
94 1.1 oster */
95 1.1 oster
96 1.1 oster
97 1.1 oster /******************************************************************************
98 1.1 oster * Create a degraded read DAG for RAID level 1
99 1.1 oster *
100 1.1 oster * Hdr -> Nil -> R(p/s)d -> Commit -> Trm
101 1.1 oster *
102 1.1 oster * The "Rd" node reads data from the surviving disk in the mirror pair
103 1.1 oster * Rpd - read of primary copy
104 1.1 oster * Rsd - read of secondary copy
105 1.1 oster *
106 1.1 oster * Parameters: raidPtr - description of the physical array
107 1.1 oster * asmap - logical & physical addresses for this access
108 1.1 oster * bp - buffer ptr (for holding write data)
109 1.3 oster * flags - general flags (e.g. disk locking)
110 1.1 oster * allocList - list of memory allocated in DAG creation
111 1.1 oster *****************************************************************************/
112 1.1 oster
113 1.23 perry void
114 1.16 oster rf_CreateRaidOneDegradedReadDAG(RF_Raid_t *raidPtr,
115 1.16 oster RF_AccessStripeMap_t *asmap,
116 1.16 oster RF_DagHeader_t *dag_h,
117 1.27 christos void *bp,
118 1.27 christos RF_RaidAccessFlags_t flags,
119 1.16 oster RF_AllocListElem_t *allocList)
120 1.1 oster {
121 1.20 oster RF_DagNode_t *rdNode, *blockNode, *commitNode, *termNode;
122 1.3 oster RF_StripeNum_t parityStripeID;
123 1.3 oster RF_ReconUnitNum_t which_ru;
124 1.3 oster RF_PhysDiskAddr_t *pda;
125 1.20 oster int useMirror;
126 1.3 oster
127 1.3 oster useMirror = 0;
128 1.3 oster parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
129 1.3 oster asmap->raidAddress, &which_ru);
130 1.19 oster #if RF_DEBUG_DAG
131 1.3 oster if (rf_dagDebug) {
132 1.3 oster printf("[Creating RAID level 1 degraded read DAG]\n");
133 1.3 oster }
134 1.19 oster #endif
135 1.3 oster dag_h->creator = "RaidOneDegradedReadDAG";
136 1.3 oster /* alloc the Wnd nodes and the Wmir node */
137 1.3 oster if (asmap->numDataFailed == 0)
138 1.3 oster useMirror = RF_FALSE;
139 1.3 oster else
140 1.3 oster useMirror = RF_TRUE;
141 1.3 oster
142 1.3 oster /* total number of nodes = 1 + (block + commit + terminator) */
143 1.20 oster
144 1.20 oster rdNode = rf_AllocDAGNode();
145 1.20 oster rdNode->list_next = dag_h->nodes;
146 1.20 oster dag_h->nodes = rdNode;
147 1.20 oster
148 1.20 oster blockNode = rf_AllocDAGNode();
149 1.20 oster blockNode->list_next = dag_h->nodes;
150 1.20 oster dag_h->nodes = blockNode;
151 1.20 oster
152 1.20 oster commitNode = rf_AllocDAGNode();
153 1.20 oster commitNode->list_next = dag_h->nodes;
154 1.20 oster dag_h->nodes = commitNode;
155 1.20 oster
156 1.20 oster termNode = rf_AllocDAGNode();
157 1.20 oster termNode->list_next = dag_h->nodes;
158 1.20 oster dag_h->nodes = termNode;
159 1.3 oster
160 1.3 oster /* this dag can not commit until the commit node is reached. errors
161 1.3 oster * prior to the commit point imply the dag has failed and must be
162 1.3 oster * retried */
163 1.3 oster dag_h->numCommitNodes = 1;
164 1.3 oster dag_h->numCommits = 0;
165 1.3 oster dag_h->numSuccedents = 1;
166 1.3 oster
167 1.3 oster /* initialize the block, commit, and terminator nodes */
168 1.3 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
169 1.3 oster NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
170 1.3 oster rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
171 1.3 oster NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
172 1.3 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
173 1.3 oster NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
174 1.3 oster
175 1.3 oster pda = asmap->physInfo;
176 1.3 oster RF_ASSERT(pda != NULL);
177 1.3 oster /* parityInfo must describe entire parity unit */
178 1.3 oster RF_ASSERT(asmap->parityInfo->next == NULL);
179 1.3 oster
180 1.3 oster /* initialize the data node */
181 1.3 oster if (!useMirror) {
182 1.3 oster /* read primary copy of data */
183 1.3 oster rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
184 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
185 1.3 oster rdNode->params[0].p = pda;
186 1.3 oster rdNode->params[1].p = pda->bufPtr;
187 1.3 oster rdNode->params[2].v = parityStripeID;
188 1.18 oster rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
189 1.18 oster which_ru);
190 1.3 oster } else {
191 1.3 oster /* read secondary copy of data */
192 1.3 oster rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
193 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
194 1.3 oster rdNode->params[0].p = asmap->parityInfo;
195 1.3 oster rdNode->params[1].p = pda->bufPtr;
196 1.3 oster rdNode->params[2].v = parityStripeID;
197 1.18 oster rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
198 1.18 oster which_ru);
199 1.3 oster }
200 1.3 oster
201 1.3 oster /* connect header to block node */
202 1.3 oster RF_ASSERT(dag_h->numSuccedents == 1);
203 1.3 oster RF_ASSERT(blockNode->numAntecedents == 0);
204 1.3 oster dag_h->succedents[0] = blockNode;
205 1.3 oster
206 1.3 oster /* connect block node to rdnode */
207 1.3 oster RF_ASSERT(blockNode->numSuccedents == 1);
208 1.3 oster RF_ASSERT(rdNode->numAntecedents == 1);
209 1.3 oster blockNode->succedents[0] = rdNode;
210 1.3 oster rdNode->antecedents[0] = blockNode;
211 1.3 oster rdNode->antType[0] = rf_control;
212 1.3 oster
213 1.3 oster /* connect rdnode to commit node */
214 1.3 oster RF_ASSERT(rdNode->numSuccedents == 1);
215 1.3 oster RF_ASSERT(commitNode->numAntecedents == 1);
216 1.3 oster rdNode->succedents[0] = commitNode;
217 1.3 oster commitNode->antecedents[0] = rdNode;
218 1.3 oster commitNode->antType[0] = rf_control;
219 1.3 oster
220 1.3 oster /* connect commit node to terminator */
221 1.3 oster RF_ASSERT(commitNode->numSuccedents == 1);
222 1.3 oster RF_ASSERT(termNode->numAntecedents == 1);
223 1.3 oster RF_ASSERT(termNode->numSuccedents == 0);
224 1.3 oster commitNode->succedents[0] = termNode;
225 1.3 oster termNode->antecedents[0] = commitNode;
226 1.3 oster termNode->antType[0] = rf_control;
227 1.1 oster }
228 1.1 oster
229 1.1 oster
230 1.1 oster
231 1.1 oster /******************************************************************************
232 1.1 oster *
233 1.1 oster * creates a DAG to perform a degraded-mode read of data within one stripe.
234 1.1 oster * This DAG is as follows:
235 1.1 oster *
236 1.1 oster * Hdr -> Block -> Rud -> Xor -> Cmt -> T
237 1.1 oster * -> Rrd ->
238 1.1 oster * -> Rp -->
239 1.1 oster *
240 1.1 oster * Each R node is a successor of the L node
241 1.1 oster * One successor arc from each R node goes to C, and the other to X
242 1.1 oster * There is one Rud for each chunk of surviving user data requested by the
243 1.1 oster * user, and one Rrd for each chunk of surviving user data _not_ being read by
244 1.1 oster * the user
245 1.1 oster * R = read, ud = user data, rd = recovery (surviving) data, p = parity
246 1.1 oster * X = XOR, C = Commit, T = terminate
247 1.1 oster *
248 1.1 oster * The block node guarantees a single source node.
249 1.1 oster *
250 1.1 oster * Note: The target buffer for the XOR node is set to the actual user buffer
251 1.1 oster * where the failed data is supposed to end up. This buffer is zero'd by the
252 1.1 oster * code here. Thus, if you create a degraded read dag, use it, and then
253 1.1 oster * re-use, you have to be sure to zero the target buffer prior to the re-use.
254 1.1 oster *
255 1.1 oster * The recfunc argument at the end specifies the name and function used for
256 1.1 oster * the redundancy
257 1.3 oster * recovery function.
258 1.1 oster *
259 1.1 oster *****************************************************************************/
260 1.1 oster
261 1.23 perry void
262 1.16 oster rf_CreateDegradedReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
263 1.27 christos RF_DagHeader_t *dag_h, void *bp,
264 1.27 christos RF_RaidAccessFlags_t flags,
265 1.16 oster RF_AllocListElem_t *allocList,
266 1.16 oster const RF_RedFuncs_t *recFunc)
267 1.1 oster {
268 1.20 oster RF_DagNode_t *rudNodes, *rrdNodes, *xorNode, *blockNode;
269 1.3 oster RF_DagNode_t *commitNode, *rpNode, *termNode;
270 1.20 oster RF_DagNode_t *tmpNode, *tmprudNode, *tmprrdNode;
271 1.3 oster int nNodes, nRrdNodes, nRudNodes, nXorBufs, i;
272 1.3 oster int j, paramNum;
273 1.3 oster RF_SectorCount_t sectorsPerSU;
274 1.3 oster RF_ReconUnitNum_t which_ru;
275 1.21 oster char overlappingPDAs[RF_MAXCOL];/* a temporary array of flags */
276 1.3 oster RF_AccessStripeMapHeader_t *new_asm_h[2];
277 1.3 oster RF_PhysDiskAddr_t *pda, *parityPDA;
278 1.3 oster RF_StripeNum_t parityStripeID;
279 1.3 oster RF_PhysDiskAddr_t *failedPDA;
280 1.3 oster RF_RaidLayout_t *layoutPtr;
281 1.3 oster char *rpBuf;
282 1.3 oster
283 1.3 oster layoutPtr = &(raidPtr->Layout);
284 1.3 oster /* failedPDA points to the pda within the asm that targets the failed
285 1.3 oster * disk */
286 1.3 oster failedPDA = asmap->failedPDAs[0];
287 1.3 oster parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
288 1.3 oster asmap->raidAddress, &which_ru);
289 1.3 oster sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
290 1.3 oster
291 1.19 oster #if RF_DEBUG_DAG
292 1.3 oster if (rf_dagDebug) {
293 1.3 oster printf("[Creating degraded read DAG]\n");
294 1.3 oster }
295 1.19 oster #endif
296 1.3 oster RF_ASSERT(asmap->numDataFailed == 1);
297 1.3 oster dag_h->creator = "DegradedReadDAG";
298 1.3 oster
299 1.3 oster /*
300 1.3 oster * generate two ASMs identifying the surviving data we need
301 1.3 oster * in order to recover the lost data
302 1.3 oster */
303 1.3 oster
304 1.3 oster /* overlappingPDAs array must be zero'd */
305 1.21 oster memset(overlappingPDAs, 0, RF_MAXCOL);
306 1.3 oster rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs,
307 1.3 oster &rpBuf, overlappingPDAs, allocList);
308 1.3 oster
309 1.3 oster /*
310 1.3 oster * create all the nodes at once
311 1.3 oster *
312 1.3 oster * -1 because no access is generated for the failed pda
313 1.3 oster */
314 1.3 oster nRudNodes = asmap->numStripeUnitsAccessed - 1;
315 1.3 oster nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
316 1.3 oster ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
317 1.3 oster nNodes = 5 + nRudNodes + nRrdNodes; /* lock, unlock, xor, Rp, Rud,
318 1.3 oster * Rrd */
319 1.20 oster
320 1.20 oster blockNode = rf_AllocDAGNode();
321 1.20 oster blockNode->list_next = dag_h->nodes;
322 1.20 oster dag_h->nodes = blockNode;
323 1.20 oster
324 1.20 oster commitNode = rf_AllocDAGNode();
325 1.20 oster commitNode->list_next = dag_h->nodes;
326 1.20 oster dag_h->nodes = commitNode;
327 1.20 oster
328 1.20 oster xorNode = rf_AllocDAGNode();
329 1.20 oster xorNode->list_next = dag_h->nodes;
330 1.20 oster dag_h->nodes = xorNode;
331 1.20 oster
332 1.20 oster rpNode = rf_AllocDAGNode();
333 1.20 oster rpNode->list_next = dag_h->nodes;
334 1.20 oster dag_h->nodes = rpNode;
335 1.20 oster
336 1.20 oster termNode = rf_AllocDAGNode();
337 1.20 oster termNode->list_next = dag_h->nodes;
338 1.20 oster dag_h->nodes = termNode;
339 1.20 oster
340 1.20 oster for (i = 0; i < nRudNodes; i++) {
341 1.20 oster tmpNode = rf_AllocDAGNode();
342 1.20 oster tmpNode->list_next = dag_h->nodes;
343 1.20 oster dag_h->nodes = tmpNode;
344 1.20 oster }
345 1.20 oster rudNodes = dag_h->nodes;
346 1.20 oster
347 1.20 oster for (i = 0; i < nRrdNodes; i++) {
348 1.20 oster tmpNode = rf_AllocDAGNode();
349 1.20 oster tmpNode->list_next = dag_h->nodes;
350 1.20 oster dag_h->nodes = tmpNode;
351 1.20 oster }
352 1.20 oster rrdNodes = dag_h->nodes;
353 1.3 oster
354 1.3 oster /* initialize nodes */
355 1.3 oster dag_h->numCommitNodes = 1;
356 1.3 oster dag_h->numCommits = 0;
357 1.3 oster /* this dag can not commit until the commit node is reached errors
358 1.3 oster * prior to the commit point imply the dag has failed */
359 1.3 oster dag_h->numSuccedents = 1;
360 1.3 oster
361 1.3 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
362 1.3 oster NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
363 1.3 oster rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
364 1.3 oster NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
365 1.3 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
366 1.3 oster NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
367 1.3 oster rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc,
368 1.3 oster NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h,
369 1.3 oster recFunc->SimpleName, allocList);
370 1.3 oster
371 1.3 oster /* fill in the Rud nodes */
372 1.20 oster tmprudNode = rudNodes;
373 1.3 oster for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) {
374 1.3 oster if (pda == failedPDA) {
375 1.3 oster i--;
376 1.3 oster continue;
377 1.3 oster }
378 1.20 oster rf_InitNode(tmprudNode, rf_wait, RF_FALSE, rf_DiskReadFunc,
379 1.3 oster rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
380 1.3 oster "Rud", allocList);
381 1.3 oster RF_ASSERT(pda);
382 1.20 oster tmprudNode->params[0].p = pda;
383 1.20 oster tmprudNode->params[1].p = pda->bufPtr;
384 1.20 oster tmprudNode->params[2].v = parityStripeID;
385 1.20 oster tmprudNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
386 1.20 oster tmprudNode = tmprudNode->list_next;
387 1.3 oster }
388 1.3 oster
389 1.3 oster /* fill in the Rrd nodes */
390 1.3 oster i = 0;
391 1.20 oster tmprrdNode = rrdNodes;
392 1.3 oster if (new_asm_h[0]) {
393 1.3 oster for (pda = new_asm_h[0]->stripeMap->physInfo;
394 1.3 oster i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
395 1.3 oster i++, pda = pda->next) {
396 1.20 oster rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc,
397 1.3 oster rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
398 1.3 oster dag_h, "Rrd", allocList);
399 1.3 oster RF_ASSERT(pda);
400 1.20 oster tmprrdNode->params[0].p = pda;
401 1.20 oster tmprrdNode->params[1].p = pda->bufPtr;
402 1.20 oster tmprrdNode->params[2].v = parityStripeID;
403 1.20 oster tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
404 1.20 oster tmprrdNode = tmprrdNode->list_next;
405 1.3 oster }
406 1.3 oster }
407 1.3 oster if (new_asm_h[1]) {
408 1.20 oster /* tmprrdNode = rrdNodes; */ /* don't set this here -- old code was using i+j, which means
409 1.20 oster we need to just continue using tmprrdNode for the next 'j' elements. */
410 1.3 oster for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
411 1.3 oster j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
412 1.3 oster j++, pda = pda->next) {
413 1.20 oster rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc,
414 1.3 oster rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
415 1.3 oster dag_h, "Rrd", allocList);
416 1.3 oster RF_ASSERT(pda);
417 1.20 oster tmprrdNode->params[0].p = pda;
418 1.20 oster tmprrdNode->params[1].p = pda->bufPtr;
419 1.20 oster tmprrdNode->params[2].v = parityStripeID;
420 1.20 oster tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
421 1.20 oster tmprrdNode = tmprrdNode->list_next;
422 1.3 oster }
423 1.3 oster }
424 1.3 oster /* make a PDA for the parity unit */
425 1.21 oster parityPDA = rf_AllocPhysDiskAddr();
426 1.21 oster parityPDA->next = dag_h->pda_cleanup_list;
427 1.21 oster dag_h->pda_cleanup_list = parityPDA;
428 1.3 oster parityPDA->col = asmap->parityInfo->col;
429 1.3 oster parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
430 1.3 oster * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
431 1.3 oster parityPDA->numSector = failedPDA->numSector;
432 1.3 oster
433 1.3 oster /* initialize the Rp node */
434 1.3 oster rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
435 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList);
436 1.3 oster rpNode->params[0].p = parityPDA;
437 1.3 oster rpNode->params[1].p = rpBuf;
438 1.3 oster rpNode->params[2].v = parityStripeID;
439 1.18 oster rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
440 1.3 oster
441 1.3 oster /*
442 1.3 oster * the last and nastiest step is to assign all
443 1.3 oster * the parameters of the Xor node
444 1.3 oster */
445 1.3 oster paramNum = 0;
446 1.20 oster tmprrdNode = rrdNodes;
447 1.3 oster for (i = 0; i < nRrdNodes; i++) {
448 1.3 oster /* all the Rrd nodes need to be xored together */
449 1.20 oster xorNode->params[paramNum++] = tmprrdNode->params[0];
450 1.20 oster xorNode->params[paramNum++] = tmprrdNode->params[1];
451 1.20 oster tmprrdNode = tmprrdNode->list_next;
452 1.3 oster }
453 1.20 oster tmprudNode = rudNodes;
454 1.3 oster for (i = 0; i < nRudNodes; i++) {
455 1.3 oster /* any Rud nodes that overlap the failed access need to be
456 1.3 oster * xored in */
457 1.3 oster if (overlappingPDAs[i]) {
458 1.21 oster pda = rf_AllocPhysDiskAddr();
459 1.20 oster memcpy((char *) pda, (char *) tmprudNode->params[0].p, sizeof(RF_PhysDiskAddr_t));
460 1.21 oster /* add it into the pda_cleanup_list *after* the copy, TYVM */
461 1.21 oster pda->next = dag_h->pda_cleanup_list;
462 1.21 oster dag_h->pda_cleanup_list = pda;
463 1.3 oster rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
464 1.3 oster xorNode->params[paramNum++].p = pda;
465 1.3 oster xorNode->params[paramNum++].p = pda->bufPtr;
466 1.3 oster }
467 1.20 oster tmprudNode = tmprudNode->list_next;
468 1.3 oster }
469 1.3 oster
470 1.3 oster /* install parity pda as last set of params to be xor'd */
471 1.3 oster xorNode->params[paramNum++].p = parityPDA;
472 1.3 oster xorNode->params[paramNum++].p = rpBuf;
473 1.3 oster
474 1.3 oster /*
475 1.3 oster * the last 2 params to the recovery xor node are
476 1.3 oster * the failed PDA and the raidPtr
477 1.3 oster */
478 1.3 oster xorNode->params[paramNum++].p = failedPDA;
479 1.3 oster xorNode->params[paramNum++].p = raidPtr;
480 1.3 oster RF_ASSERT(paramNum == 2 * nXorBufs + 2);
481 1.3 oster
482 1.3 oster /*
483 1.3 oster * The xor node uses results[0] as the target buffer.
484 1.3 oster * Set pointer and zero the buffer. In the kernel, this
485 1.3 oster * may be a user buffer in which case we have to remap it.
486 1.3 oster */
487 1.3 oster xorNode->results[0] = failedPDA->bufPtr;
488 1.17 oster memset(failedPDA->bufPtr, 0, rf_RaidAddressToByte(raidPtr,
489 1.3 oster failedPDA->numSector));
490 1.3 oster
491 1.3 oster /* connect nodes to form graph */
492 1.3 oster /* connect the header to the block node */
493 1.3 oster RF_ASSERT(dag_h->numSuccedents == 1);
494 1.3 oster RF_ASSERT(blockNode->numAntecedents == 0);
495 1.3 oster dag_h->succedents[0] = blockNode;
496 1.3 oster
497 1.3 oster /* connect the block node to the read nodes */
498 1.3 oster RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes));
499 1.3 oster RF_ASSERT(rpNode->numAntecedents == 1);
500 1.3 oster blockNode->succedents[0] = rpNode;
501 1.3 oster rpNode->antecedents[0] = blockNode;
502 1.3 oster rpNode->antType[0] = rf_control;
503 1.20 oster tmprrdNode = rrdNodes;
504 1.3 oster for (i = 0; i < nRrdNodes; i++) {
505 1.20 oster RF_ASSERT(tmprrdNode->numSuccedents == 1);
506 1.20 oster blockNode->succedents[1 + i] = tmprrdNode;
507 1.20 oster tmprrdNode->antecedents[0] = blockNode;
508 1.20 oster tmprrdNode->antType[0] = rf_control;
509 1.20 oster tmprrdNode = tmprrdNode->list_next;
510 1.3 oster }
511 1.20 oster tmprudNode = rudNodes;
512 1.3 oster for (i = 0; i < nRudNodes; i++) {
513 1.20 oster RF_ASSERT(tmprudNode->numSuccedents == 1);
514 1.20 oster blockNode->succedents[1 + nRrdNodes + i] = tmprudNode;
515 1.20 oster tmprudNode->antecedents[0] = blockNode;
516 1.20 oster tmprudNode->antType[0] = rf_control;
517 1.20 oster tmprudNode = tmprudNode->list_next;
518 1.3 oster }
519 1.3 oster
520 1.3 oster /* connect the read nodes to the xor node */
521 1.3 oster RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes));
522 1.3 oster RF_ASSERT(rpNode->numSuccedents == 1);
523 1.3 oster rpNode->succedents[0] = xorNode;
524 1.3 oster xorNode->antecedents[0] = rpNode;
525 1.3 oster xorNode->antType[0] = rf_trueData;
526 1.20 oster tmprrdNode = rrdNodes;
527 1.3 oster for (i = 0; i < nRrdNodes; i++) {
528 1.22 oster RF_ASSERT(tmprrdNode->numSuccedents == 1);
529 1.20 oster tmprrdNode->succedents[0] = xorNode;
530 1.20 oster xorNode->antecedents[1 + i] = tmprrdNode;
531 1.3 oster xorNode->antType[1 + i] = rf_trueData;
532 1.20 oster tmprrdNode = tmprrdNode->list_next;
533 1.3 oster }
534 1.20 oster tmprudNode = rudNodes;
535 1.3 oster for (i = 0; i < nRudNodes; i++) {
536 1.20 oster RF_ASSERT(tmprudNode->numSuccedents == 1);
537 1.20 oster tmprudNode->succedents[0] = xorNode;
538 1.20 oster xorNode->antecedents[1 + nRrdNodes + i] = tmprudNode;
539 1.3 oster xorNode->antType[1 + nRrdNodes + i] = rf_trueData;
540 1.20 oster tmprudNode = tmprudNode->list_next;
541 1.3 oster }
542 1.3 oster
543 1.3 oster /* connect the xor node to the commit node */
544 1.3 oster RF_ASSERT(xorNode->numSuccedents == 1);
545 1.3 oster RF_ASSERT(commitNode->numAntecedents == 1);
546 1.3 oster xorNode->succedents[0] = commitNode;
547 1.3 oster commitNode->antecedents[0] = xorNode;
548 1.3 oster commitNode->antType[0] = rf_control;
549 1.3 oster
550 1.3 oster /* connect the termNode to the commit node */
551 1.3 oster RF_ASSERT(commitNode->numSuccedents == 1);
552 1.3 oster RF_ASSERT(termNode->numAntecedents == 1);
553 1.3 oster RF_ASSERT(termNode->numSuccedents == 0);
554 1.3 oster commitNode->succedents[0] = termNode;
555 1.3 oster termNode->antType[0] = rf_control;
556 1.3 oster termNode->antecedents[0] = commitNode;
557 1.1 oster }
558 1.1 oster
559 1.6 oster #if (RF_INCLUDE_CHAINDECLUSTER > 0)
560 1.1 oster /******************************************************************************
561 1.1 oster * Create a degraded read DAG for Chained Declustering
562 1.1 oster *
563 1.1 oster * Hdr -> Nil -> R(p/s)d -> Cmt -> Trm
564 1.1 oster *
565 1.1 oster * The "Rd" node reads data from the surviving disk in the mirror pair
566 1.1 oster * Rpd - read of primary copy
567 1.1 oster * Rsd - read of secondary copy
568 1.1 oster *
569 1.1 oster * Parameters: raidPtr - description of the physical array
570 1.1 oster * asmap - logical & physical addresses for this access
571 1.1 oster * bp - buffer ptr (for holding write data)
572 1.3 oster * flags - general flags (e.g. disk locking)
573 1.1 oster * allocList - list of memory allocated in DAG creation
574 1.1 oster *****************************************************************************/
575 1.1 oster
576 1.23 perry void
577 1.16 oster rf_CreateRaidCDegradedReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
578 1.27 christos RF_DagHeader_t *dag_h, void *bp,
579 1.27 christos RF_RaidAccessFlags_t flags,
580 1.16 oster RF_AllocListElem_t *allocList)
581 1.1 oster {
582 1.3 oster RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
583 1.3 oster RF_StripeNum_t parityStripeID;
584 1.3 oster int useMirror, i, shiftable;
585 1.3 oster RF_ReconUnitNum_t which_ru;
586 1.3 oster RF_PhysDiskAddr_t *pda;
587 1.3 oster
588 1.3 oster if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
589 1.3 oster shiftable = RF_TRUE;
590 1.3 oster } else {
591 1.3 oster shiftable = RF_FALSE;
592 1.3 oster }
593 1.3 oster useMirror = 0;
594 1.3 oster parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
595 1.3 oster asmap->raidAddress, &which_ru);
596 1.3 oster
597 1.19 oster #if RF_DEBUG_DAG
598 1.3 oster if (rf_dagDebug) {
599 1.3 oster printf("[Creating RAID C degraded read DAG]\n");
600 1.3 oster }
601 1.19 oster #endif
602 1.3 oster dag_h->creator = "RaidCDegradedReadDAG";
603 1.3 oster /* alloc the Wnd nodes and the Wmir node */
604 1.3 oster if (asmap->numDataFailed == 0)
605 1.3 oster useMirror = RF_FALSE;
606 1.3 oster else
607 1.3 oster useMirror = RF_TRUE;
608 1.3 oster
609 1.3 oster /* total number of nodes = 1 + (block + commit + terminator) */
610 1.15 oster RF_MallocAndAdd(nodes, 4 * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
611 1.3 oster i = 0;
612 1.3 oster rdNode = &nodes[i];
613 1.3 oster i++;
614 1.3 oster blockNode = &nodes[i];
615 1.3 oster i++;
616 1.3 oster commitNode = &nodes[i];
617 1.3 oster i++;
618 1.3 oster termNode = &nodes[i];
619 1.3 oster i++;
620 1.3 oster
621 1.3 oster /*
622 1.3 oster * This dag can not commit until the commit node is reached.
623 1.3 oster * Errors prior to the commit point imply the dag has failed
624 1.3 oster * and must be retried.
625 1.3 oster */
626 1.3 oster dag_h->numCommitNodes = 1;
627 1.3 oster dag_h->numCommits = 0;
628 1.3 oster dag_h->numSuccedents = 1;
629 1.3 oster
630 1.3 oster /* initialize the block, commit, and terminator nodes */
631 1.3 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
632 1.3 oster NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
633 1.3 oster rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
634 1.3 oster NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
635 1.3 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
636 1.3 oster NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
637 1.3 oster
638 1.3 oster pda = asmap->physInfo;
639 1.3 oster RF_ASSERT(pda != NULL);
640 1.3 oster /* parityInfo must describe entire parity unit */
641 1.3 oster RF_ASSERT(asmap->parityInfo->next == NULL);
642 1.3 oster
643 1.3 oster /* initialize the data node */
644 1.3 oster if (!useMirror) {
645 1.3 oster rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
646 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
647 1.3 oster if (shiftable && rf_compute_workload_shift(raidPtr, pda)) {
648 1.3 oster /* shift this read to the next disk in line */
649 1.3 oster rdNode->params[0].p = asmap->parityInfo;
650 1.3 oster rdNode->params[1].p = pda->bufPtr;
651 1.3 oster rdNode->params[2].v = parityStripeID;
652 1.18 oster rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
653 1.3 oster } else {
654 1.3 oster /* read primary copy */
655 1.3 oster rdNode->params[0].p = pda;
656 1.3 oster rdNode->params[1].p = pda->bufPtr;
657 1.3 oster rdNode->params[2].v = parityStripeID;
658 1.18 oster rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
659 1.3 oster }
660 1.3 oster } else {
661 1.3 oster /* read secondary copy of data */
662 1.3 oster rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
663 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
664 1.3 oster rdNode->params[0].p = asmap->parityInfo;
665 1.3 oster rdNode->params[1].p = pda->bufPtr;
666 1.3 oster rdNode->params[2].v = parityStripeID;
667 1.18 oster rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
668 1.3 oster }
669 1.3 oster
670 1.3 oster /* connect header to block node */
671 1.3 oster RF_ASSERT(dag_h->numSuccedents == 1);
672 1.3 oster RF_ASSERT(blockNode->numAntecedents == 0);
673 1.3 oster dag_h->succedents[0] = blockNode;
674 1.3 oster
675 1.3 oster /* connect block node to rdnode */
676 1.3 oster RF_ASSERT(blockNode->numSuccedents == 1);
677 1.3 oster RF_ASSERT(rdNode->numAntecedents == 1);
678 1.3 oster blockNode->succedents[0] = rdNode;
679 1.3 oster rdNode->antecedents[0] = blockNode;
680 1.3 oster rdNode->antType[0] = rf_control;
681 1.3 oster
682 1.3 oster /* connect rdnode to commit node */
683 1.3 oster RF_ASSERT(rdNode->numSuccedents == 1);
684 1.3 oster RF_ASSERT(commitNode->numAntecedents == 1);
685 1.3 oster rdNode->succedents[0] = commitNode;
686 1.3 oster commitNode->antecedents[0] = rdNode;
687 1.3 oster commitNode->antType[0] = rf_control;
688 1.3 oster
689 1.3 oster /* connect commit node to terminator */
690 1.3 oster RF_ASSERT(commitNode->numSuccedents == 1);
691 1.3 oster RF_ASSERT(termNode->numAntecedents == 1);
692 1.3 oster RF_ASSERT(termNode->numSuccedents == 0);
693 1.3 oster commitNode->succedents[0] = termNode;
694 1.3 oster termNode->antecedents[0] = commitNode;
695 1.3 oster termNode->antType[0] = rf_control;
696 1.1 oster }
697 1.8 mrg #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
698 1.6 oster
699 1.7 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
700 1.1 oster /*
701 1.1 oster * XXX move this elsewhere?
702 1.1 oster */
703 1.23 perry void
704 1.16 oster rf_DD_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
705 1.16 oster RF_PhysDiskAddr_t **pdap, int *nNodep,
706 1.16 oster RF_PhysDiskAddr_t **pqpdap, int *nPQNodep,
707 1.16 oster RF_AllocListElem_t *allocList)
708 1.1 oster {
709 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
710 1.3 oster int PDAPerDisk, i;
711 1.3 oster RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
712 1.3 oster int numDataCol = layoutPtr->numDataCol;
713 1.3 oster int state;
714 1.3 oster RF_SectorNum_t suoff, suend;
715 1.3 oster unsigned firstDataCol, napdas, count;
716 1.3 oster RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0;
717 1.3 oster RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
718 1.3 oster RF_PhysDiskAddr_t *pda_p;
719 1.3 oster RF_PhysDiskAddr_t *phys_p;
720 1.3 oster RF_RaidAddr_t sosAddr;
721 1.3 oster
722 1.3 oster /* determine how many pda's we will have to generate per unaccess
723 1.3 oster * stripe. If there is only one failed data unit, it is one; if two,
724 1.3 oster * possibly two, depending wether they overlap. */
725 1.1 oster
726 1.3 oster fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
727 1.3 oster fone_end = fone_start + fone->numSector;
728 1.1 oster
729 1.1 oster #define CONS_PDA(if,start,num) \
730 1.14 oster pda_p->col = asmap->if->col; \
731 1.1 oster pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
732 1.1 oster pda_p->numSector = num; \
733 1.1 oster pda_p->next = NULL; \
734 1.1 oster RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
735 1.1 oster
736 1.3 oster if (asmap->numDataFailed == 1) {
737 1.3 oster PDAPerDisk = 1;
738 1.3 oster state = 1;
739 1.3 oster RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
740 1.3 oster pda_p = *pqpdap;
741 1.3 oster /* build p */
742 1.3 oster CONS_PDA(parityInfo, fone_start, fone->numSector);
743 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
744 1.1 oster pda_p++;
745 1.3 oster /* build q */
746 1.3 oster CONS_PDA(qInfo, fone_start, fone->numSector);
747 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
748 1.3 oster } else {
749 1.3 oster ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
750 1.3 oster ftwo_end = ftwo_start + ftwo->numSector;
751 1.3 oster if (fone->numSector + ftwo->numSector > secPerSU) {
752 1.3 oster PDAPerDisk = 1;
753 1.3 oster state = 2;
754 1.3 oster RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
755 1.3 oster pda_p = *pqpdap;
756 1.3 oster CONS_PDA(parityInfo, 0, secPerSU);
757 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
758 1.3 oster pda_p++;
759 1.3 oster CONS_PDA(qInfo, 0, secPerSU);
760 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
761 1.3 oster } else {
762 1.3 oster PDAPerDisk = 2;
763 1.3 oster state = 3;
764 1.3 oster /* four of them, fone, then ftwo */
765 1.3 oster RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
766 1.3 oster pda_p = *pqpdap;
767 1.3 oster CONS_PDA(parityInfo, fone_start, fone->numSector);
768 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
769 1.3 oster pda_p++;
770 1.3 oster CONS_PDA(qInfo, fone_start, fone->numSector);
771 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
772 1.3 oster pda_p++;
773 1.3 oster CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
774 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
775 1.3 oster pda_p++;
776 1.3 oster CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
777 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
778 1.1 oster }
779 1.3 oster }
780 1.3 oster /* figure out number of nonaccessed pda */
781 1.3 oster napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0));
782 1.3 oster *nPQNodep = PDAPerDisk;
783 1.3 oster
784 1.3 oster /* sweep over the over accessed pda's, figuring out the number of
785 1.3 oster * additional pda's to generate. Of course, skip the failed ones */
786 1.3 oster
787 1.3 oster count = 0;
788 1.3 oster for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) {
789 1.3 oster if ((pda_p == fone) || (pda_p == ftwo))
790 1.3 oster continue;
791 1.3 oster suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector);
792 1.3 oster suend = suoff + pda_p->numSector;
793 1.3 oster switch (state) {
794 1.3 oster case 1: /* one failed PDA to overlap */
795 1.3 oster /* if a PDA doesn't contain the failed unit, it can
796 1.3 oster * only miss the start or end, not both */
797 1.3 oster if ((suoff > fone_start) || (suend < fone_end))
798 1.3 oster count++;
799 1.3 oster break;
800 1.3 oster case 2: /* whole stripe */
801 1.3 oster if (suoff) /* leak at begining */
802 1.3 oster count++;
803 1.3 oster if (suend < numDataCol) /* leak at end */
804 1.3 oster count++;
805 1.3 oster break;
806 1.3 oster case 3: /* two disjoint units */
807 1.3 oster if ((suoff > fone_start) || (suend < fone_end))
808 1.3 oster count++;
809 1.3 oster if ((suoff > ftwo_start) || (suend < ftwo_end))
810 1.3 oster count++;
811 1.3 oster break;
812 1.3 oster default:
813 1.3 oster RF_PANIC();
814 1.1 oster }
815 1.3 oster }
816 1.3 oster
817 1.3 oster napdas += count;
818 1.3 oster *nNodep = napdas;
819 1.3 oster if (napdas == 0)
820 1.3 oster return; /* short circuit */
821 1.3 oster
822 1.3 oster /* allocate up our list of pda's */
823 1.3 oster
824 1.23 perry RF_MallocAndAdd(pda_p, napdas * sizeof(RF_PhysDiskAddr_t),
825 1.15 oster (RF_PhysDiskAddr_t *), allocList);
826 1.3 oster *pdap = pda_p;
827 1.3 oster
828 1.3 oster /* linkem together */
829 1.3 oster for (i = 0; i < (napdas - 1); i++)
830 1.3 oster pda_p[i].next = pda_p + (i + 1);
831 1.3 oster
832 1.3 oster /* march through the one's up to the first accessed disk */
833 1.3 oster firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol;
834 1.3 oster sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
835 1.3 oster for (i = 0; i < firstDataCol; i++) {
836 1.3 oster if ((pda_p - (*pdap)) == napdas)
837 1.3 oster continue;
838 1.3 oster pda_p->type = RF_PDA_TYPE_DATA;
839 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU);
840 1.14 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
841 1.3 oster /* skip over dead disks */
842 1.14 oster if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
843 1.3 oster continue;
844 1.3 oster switch (state) {
845 1.3 oster case 1: /* fone */
846 1.3 oster pda_p->numSector = fone->numSector;
847 1.3 oster pda_p->raidAddress += fone_start;
848 1.3 oster pda_p->startSector += fone_start;
849 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
850 1.3 oster break;
851 1.3 oster case 2: /* full stripe */
852 1.3 oster pda_p->numSector = secPerSU;
853 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
854 1.3 oster break;
855 1.3 oster case 3: /* two slabs */
856 1.3 oster pda_p->numSector = fone->numSector;
857 1.3 oster pda_p->raidAddress += fone_start;
858 1.3 oster pda_p->startSector += fone_start;
859 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
860 1.3 oster pda_p++;
861 1.3 oster pda_p->type = RF_PDA_TYPE_DATA;
862 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU);
863 1.14 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
864 1.3 oster pda_p->numSector = ftwo->numSector;
865 1.3 oster pda_p->raidAddress += ftwo_start;
866 1.3 oster pda_p->startSector += ftwo_start;
867 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
868 1.3 oster break;
869 1.3 oster default:
870 1.3 oster RF_PANIC();
871 1.1 oster }
872 1.3 oster pda_p++;
873 1.3 oster }
874 1.3 oster
875 1.3 oster /* march through the touched stripe units */
876 1.3 oster for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) {
877 1.3 oster if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1]))
878 1.3 oster continue;
879 1.3 oster suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector);
880 1.3 oster suend = suoff + phys_p->numSector;
881 1.3 oster switch (state) {
882 1.3 oster case 1: /* single buffer */
883 1.3 oster if (suoff > fone_start) {
884 1.3 oster RF_ASSERT(suend >= fone_end);
885 1.3 oster /* The data read starts after the mapped
886 1.3 oster * access, snip off the begining */
887 1.3 oster pda_p->numSector = suoff - fone_start;
888 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
889 1.14 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
890 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
891 1.3 oster pda_p++;
892 1.3 oster }
893 1.3 oster if (suend < fone_end) {
894 1.3 oster RF_ASSERT(suoff <= fone_start);
895 1.3 oster /* The data read stops before the end of the
896 1.3 oster * failed access, extend */
897 1.3 oster pda_p->numSector = fone_end - suend;
898 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
899 1.14 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
900 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
901 1.3 oster pda_p++;
902 1.3 oster }
903 1.3 oster break;
904 1.3 oster case 2: /* whole stripe unit */
905 1.3 oster RF_ASSERT((suoff == 0) || (suend == secPerSU));
906 1.3 oster if (suend < secPerSU) { /* short read, snip from end
907 1.3 oster * on */
908 1.3 oster pda_p->numSector = secPerSU - suend;
909 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
910 1.14 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
911 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
912 1.3 oster pda_p++;
913 1.3 oster } else
914 1.3 oster if (suoff > 0) { /* short at front */
915 1.3 oster pda_p->numSector = suoff;
916 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU);
917 1.14 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
918 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
919 1.3 oster pda_p++;
920 1.3 oster }
921 1.3 oster break;
922 1.3 oster case 3: /* two nonoverlapping failures */
923 1.3 oster if ((suoff > fone_start) || (suend < fone_end)) {
924 1.3 oster if (suoff > fone_start) {
925 1.3 oster RF_ASSERT(suend >= fone_end);
926 1.3 oster /* The data read starts after the
927 1.3 oster * mapped access, snip off the
928 1.3 oster * begining */
929 1.3 oster pda_p->numSector = suoff - fone_start;
930 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
931 1.14 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
932 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
933 1.3 oster pda_p++;
934 1.3 oster }
935 1.3 oster if (suend < fone_end) {
936 1.3 oster RF_ASSERT(suoff <= fone_start);
937 1.3 oster /* The data read stops before the end
938 1.3 oster * of the failed access, extend */
939 1.3 oster pda_p->numSector = fone_end - suend;
940 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
941 1.14 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
942 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
943 1.3 oster pda_p++;
944 1.3 oster }
945 1.3 oster }
946 1.3 oster if ((suoff > ftwo_start) || (suend < ftwo_end)) {
947 1.3 oster if (suoff > ftwo_start) {
948 1.3 oster RF_ASSERT(suend >= ftwo_end);
949 1.3 oster /* The data read starts after the
950 1.3 oster * mapped access, snip off the
951 1.3 oster * begining */
952 1.3 oster pda_p->numSector = suoff - ftwo_start;
953 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start;
954 1.14 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
955 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
956 1.3 oster pda_p++;
957 1.3 oster }
958 1.3 oster if (suend < ftwo_end) {
959 1.3 oster RF_ASSERT(suoff <= ftwo_start);
960 1.3 oster /* The data read stops before the end
961 1.3 oster * of the failed access, extend */
962 1.3 oster pda_p->numSector = ftwo_end - suend;
963 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
964 1.14 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
965 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
966 1.3 oster pda_p++;
967 1.3 oster }
968 1.3 oster }
969 1.3 oster break;
970 1.3 oster default:
971 1.3 oster RF_PANIC();
972 1.1 oster }
973 1.1 oster }
974 1.1 oster
975 1.3 oster /* after the last accessed disk */
976 1.3 oster for (; i < numDataCol; i++) {
977 1.3 oster if ((pda_p - (*pdap)) == napdas)
978 1.3 oster continue;
979 1.3 oster pda_p->type = RF_PDA_TYPE_DATA;
980 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU);
981 1.14 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
982 1.3 oster /* skip over dead disks */
983 1.14 oster if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
984 1.3 oster continue;
985 1.3 oster switch (state) {
986 1.3 oster case 1: /* fone */
987 1.3 oster pda_p->numSector = fone->numSector;
988 1.3 oster pda_p->raidAddress += fone_start;
989 1.3 oster pda_p->startSector += fone_start;
990 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
991 1.3 oster break;
992 1.3 oster case 2: /* full stripe */
993 1.3 oster pda_p->numSector = secPerSU;
994 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
995 1.3 oster break;
996 1.3 oster case 3: /* two slabs */
997 1.3 oster pda_p->numSector = fone->numSector;
998 1.3 oster pda_p->raidAddress += fone_start;
999 1.3 oster pda_p->startSector += fone_start;
1000 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
1001 1.3 oster pda_p++;
1002 1.3 oster pda_p->type = RF_PDA_TYPE_DATA;
1003 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU);
1004 1.14 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
1005 1.3 oster pda_p->numSector = ftwo->numSector;
1006 1.3 oster pda_p->raidAddress += ftwo_start;
1007 1.3 oster pda_p->startSector += ftwo_start;
1008 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
1009 1.3 oster break;
1010 1.3 oster default:
1011 1.3 oster RF_PANIC();
1012 1.3 oster }
1013 1.3 oster pda_p++;
1014 1.3 oster }
1015 1.3 oster
1016 1.3 oster RF_ASSERT(pda_p - *pdap == napdas);
1017 1.3 oster return;
1018 1.1 oster }
1019 1.1 oster #define INIT_DISK_NODE(node,name) \
1020 1.1 oster rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
1021 1.1 oster (node)->succedents[0] = unblockNode; \
1022 1.1 oster (node)->succedents[1] = recoveryNode; \
1023 1.1 oster (node)->antecedents[0] = blockNode; \
1024 1.1 oster (node)->antType[0] = rf_control
1025 1.1 oster
1026 1.1 oster #define DISK_NODE_PARAMS(_node_,_p_) \
1027 1.1 oster (_node_).params[0].p = _p_ ; \
1028 1.1 oster (_node_).params[1].p = (_p_)->bufPtr; \
1029 1.1 oster (_node_).params[2].v = parityStripeID; \
1030 1.18 oster (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru)
1031 1.1 oster
1032 1.23 perry void
1033 1.16 oster rf_DoubleDegRead(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1034 1.27 christos RF_DagHeader_t *dag_h, void *bp,
1035 1.27 christos RF_RaidAccessFlags_t flags,
1036 1.16 oster RF_AllocListElem_t *allocList,
1037 1.26 christos const char *redundantReadNodeName,
1038 1.26 christos const char *recoveryNodeName,
1039 1.16 oster int (*recovFunc) (RF_DagNode_t *))
1040 1.1 oster {
1041 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1042 1.3 oster RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode,
1043 1.3 oster *unblockNode, *rpNodes, *rqNodes, *termNode;
1044 1.3 oster RF_PhysDiskAddr_t *pda, *pqPDAs;
1045 1.3 oster RF_PhysDiskAddr_t *npdas;
1046 1.3 oster int nNodes, nRrdNodes, nRudNodes, i;
1047 1.3 oster RF_ReconUnitNum_t which_ru;
1048 1.3 oster int nReadNodes, nPQNodes;
1049 1.3 oster RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
1050 1.3 oster RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1];
1051 1.3 oster RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
1052 1.3 oster
1053 1.19 oster #if RF_DEBUG_DAG
1054 1.3 oster if (rf_dagDebug)
1055 1.3 oster printf("[Creating Double Degraded Read DAG]\n");
1056 1.19 oster #endif
1057 1.3 oster rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
1058 1.3 oster
1059 1.3 oster nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
1060 1.3 oster nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes;
1061 1.3 oster nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes;
1062 1.3 oster
1063 1.15 oster RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
1064 1.3 oster i = 0;
1065 1.3 oster blockNode = &nodes[i];
1066 1.3 oster i += 1;
1067 1.3 oster unblockNode = &nodes[i];
1068 1.3 oster i += 1;
1069 1.3 oster recoveryNode = &nodes[i];
1070 1.3 oster i += 1;
1071 1.3 oster termNode = &nodes[i];
1072 1.3 oster i += 1;
1073 1.3 oster rudNodes = &nodes[i];
1074 1.3 oster i += nRudNodes;
1075 1.3 oster rrdNodes = &nodes[i];
1076 1.3 oster i += nRrdNodes;
1077 1.3 oster rpNodes = &nodes[i];
1078 1.3 oster i += nPQNodes;
1079 1.3 oster rqNodes = &nodes[i];
1080 1.3 oster i += nPQNodes;
1081 1.3 oster RF_ASSERT(i == nNodes);
1082 1.3 oster
1083 1.3 oster dag_h->numSuccedents = 1;
1084 1.3 oster dag_h->succedents[0] = blockNode;
1085 1.3 oster dag_h->creator = "DoubleDegRead";
1086 1.3 oster dag_h->numCommits = 0;
1087 1.3 oster dag_h->numCommitNodes = 1; /* unblock */
1088 1.3 oster
1089 1.3 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList);
1090 1.3 oster termNode->antecedents[0] = unblockNode;
1091 1.3 oster termNode->antType[0] = rf_control;
1092 1.3 oster termNode->antecedents[1] = recoveryNode;
1093 1.3 oster termNode->antType[1] = rf_control;
1094 1.3 oster
1095 1.3 oster /* init the block and unblock nodes */
1096 1.3 oster /* The block node has all nodes except itself, unblock and recovery as
1097 1.3 oster * successors. Similarly for predecessors of the unblock. */
1098 1.3 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
1099 1.3 oster rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList);
1100 1.3 oster
1101 1.3 oster for (i = 0; i < nReadNodes; i++) {
1102 1.3 oster blockNode->succedents[i] = rudNodes + i;
1103 1.3 oster unblockNode->antecedents[i] = rudNodes + i;
1104 1.3 oster unblockNode->antType[i] = rf_control;
1105 1.3 oster }
1106 1.3 oster unblockNode->succedents[0] = termNode;
1107 1.3 oster
1108 1.3 oster /* The recovery node has all the reads as predecessors, and the term
1109 1.3 oster * node as successors. It gets a pda as a param from each of the read
1110 1.3 oster * nodes plus the raidPtr. For each failed unit is has a result pda. */
1111 1.3 oster rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
1112 1.3 oster 1, /* succesors */
1113 1.3 oster nReadNodes, /* preds */
1114 1.3 oster nReadNodes + 2, /* params */
1115 1.3 oster asmap->numDataFailed, /* results */
1116 1.3 oster dag_h, recoveryNodeName, allocList);
1117 1.3 oster
1118 1.3 oster recoveryNode->succedents[0] = termNode;
1119 1.3 oster for (i = 0; i < nReadNodes; i++) {
1120 1.3 oster recoveryNode->antecedents[i] = rudNodes + i;
1121 1.3 oster recoveryNode->antType[i] = rf_trueData;
1122 1.3 oster }
1123 1.3 oster
1124 1.3 oster /* build the read nodes, then come back and fill in recovery params
1125 1.3 oster * and results */
1126 1.3 oster pda = asmap->physInfo;
1127 1.3 oster for (i = 0; i < nRudNodes; pda = pda->next) {
1128 1.3 oster if ((pda == failedPDA) || (pda == failedPDAtwo))
1129 1.3 oster continue;
1130 1.3 oster INIT_DISK_NODE(rudNodes + i, "Rud");
1131 1.3 oster RF_ASSERT(pda);
1132 1.3 oster DISK_NODE_PARAMS(rudNodes[i], pda);
1133 1.3 oster i++;
1134 1.3 oster }
1135 1.3 oster
1136 1.3 oster pda = npdas;
1137 1.3 oster for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
1138 1.3 oster INIT_DISK_NODE(rrdNodes + i, "Rrd");
1139 1.3 oster RF_ASSERT(pda);
1140 1.3 oster DISK_NODE_PARAMS(rrdNodes[i], pda);
1141 1.3 oster }
1142 1.3 oster
1143 1.3 oster /* redundancy pdas */
1144 1.3 oster pda = pqPDAs;
1145 1.3 oster INIT_DISK_NODE(rpNodes, "Rp");
1146 1.3 oster RF_ASSERT(pda);
1147 1.3 oster DISK_NODE_PARAMS(rpNodes[0], pda);
1148 1.3 oster pda++;
1149 1.3 oster INIT_DISK_NODE(rqNodes, redundantReadNodeName);
1150 1.3 oster RF_ASSERT(pda);
1151 1.3 oster DISK_NODE_PARAMS(rqNodes[0], pda);
1152 1.3 oster if (nPQNodes == 2) {
1153 1.3 oster pda++;
1154 1.3 oster INIT_DISK_NODE(rpNodes + 1, "Rp");
1155 1.3 oster RF_ASSERT(pda);
1156 1.3 oster DISK_NODE_PARAMS(rpNodes[1], pda);
1157 1.3 oster pda++;
1158 1.3 oster INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName);
1159 1.3 oster RF_ASSERT(pda);
1160 1.3 oster DISK_NODE_PARAMS(rqNodes[1], pda);
1161 1.3 oster }
1162 1.3 oster /* fill in recovery node params */
1163 1.3 oster for (i = 0; i < nReadNodes; i++)
1164 1.3 oster recoveryNode->params[i] = rudNodes[i].params[0]; /* pda */
1165 1.3 oster recoveryNode->params[i++].p = (void *) raidPtr;
1166 1.3 oster recoveryNode->params[i++].p = (void *) asmap;
1167 1.3 oster recoveryNode->results[0] = failedPDA;
1168 1.3 oster if (asmap->numDataFailed == 2)
1169 1.3 oster recoveryNode->results[1] = failedPDAtwo;
1170 1.1 oster
1171 1.3 oster /* zero fill the target data buffers? */
1172 1.1 oster }
1173 1.6 oster
1174 1.7 oster #endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */
1175