rf_dagdegrd.c revision 1.10 1 /* $NetBSD: rf_dagdegrd.c,v 1.10 2001/11/13 07:11:12 lukem Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*
30 * rf_dagdegrd.c
31 *
32 * code for creating degraded read DAGs
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagdegrd.c,v 1.10 2001/11/13 07:11:12 lukem Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_raid.h"
42 #include "rf_dag.h"
43 #include "rf_dagutils.h"
44 #include "rf_dagfuncs.h"
45 #include "rf_debugMem.h"
46 #include "rf_memchunk.h"
47 #include "rf_general.h"
48 #include "rf_dagdegrd.h"
49
50
51 /******************************************************************************
52 *
53 * General comments on DAG creation:
54 *
55 * All DAGs in this file use roll-away error recovery. Each DAG has a single
56 * commit node, usually called "Cmt." If an error occurs before the Cmt node
57 * is reached, the execution engine will halt forward execution and work
58 * backward through the graph, executing the undo functions. Assuming that
59 * each node in the graph prior to the Cmt node are undoable and atomic - or -
60 * does not make changes to permanent state, the graph will fail atomically.
61 * If an error occurs after the Cmt node executes, the engine will roll-forward
62 * through the graph, blindly executing nodes until it reaches the end.
63 * If a graph reaches the end, it is assumed to have completed successfully.
64 *
65 * A graph has only 1 Cmt node.
66 *
67 */
68
69
70 /******************************************************************************
71 *
72 * The following wrappers map the standard DAG creation interface to the
73 * DAG creation routines. Additionally, these wrappers enable experimentation
74 * with new DAG structures by providing an extra level of indirection, allowing
75 * the DAG creation routines to be replaced at this single point.
76 */
77
78 void
79 rf_CreateRaidFiveDegradedReadDAG(
80 RF_Raid_t * raidPtr,
81 RF_AccessStripeMap_t * asmap,
82 RF_DagHeader_t * dag_h,
83 void *bp,
84 RF_RaidAccessFlags_t flags,
85 RF_AllocListElem_t * allocList)
86 {
87 rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
88 &rf_xorRecoveryFuncs);
89 }
90
91
92 /******************************************************************************
93 *
94 * DAG creation code begins here
95 */
96
97
98 /******************************************************************************
99 * Create a degraded read DAG for RAID level 1
100 *
101 * Hdr -> Nil -> R(p/s)d -> Commit -> Trm
102 *
103 * The "Rd" node reads data from the surviving disk in the mirror pair
104 * Rpd - read of primary copy
105 * Rsd - read of secondary copy
106 *
107 * Parameters: raidPtr - description of the physical array
108 * asmap - logical & physical addresses for this access
109 * bp - buffer ptr (for holding write data)
110 * flags - general flags (e.g. disk locking)
111 * allocList - list of memory allocated in DAG creation
112 *****************************************************************************/
113
114 void
115 rf_CreateRaidOneDegradedReadDAG(
116 RF_Raid_t * raidPtr,
117 RF_AccessStripeMap_t * asmap,
118 RF_DagHeader_t * dag_h,
119 void *bp,
120 RF_RaidAccessFlags_t flags,
121 RF_AllocListElem_t * allocList)
122 {
123 RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
124 RF_StripeNum_t parityStripeID;
125 RF_ReconUnitNum_t which_ru;
126 RF_PhysDiskAddr_t *pda;
127 int useMirror, i;
128
129 useMirror = 0;
130 parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
131 asmap->raidAddress, &which_ru);
132 if (rf_dagDebug) {
133 printf("[Creating RAID level 1 degraded read DAG]\n");
134 }
135 dag_h->creator = "RaidOneDegradedReadDAG";
136 /* alloc the Wnd nodes and the Wmir node */
137 if (asmap->numDataFailed == 0)
138 useMirror = RF_FALSE;
139 else
140 useMirror = RF_TRUE;
141
142 /* total number of nodes = 1 + (block + commit + terminator) */
143 RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
144 i = 0;
145 rdNode = &nodes[i];
146 i++;
147 blockNode = &nodes[i];
148 i++;
149 commitNode = &nodes[i];
150 i++;
151 termNode = &nodes[i];
152 i++;
153
154 /* this dag can not commit until the commit node is reached. errors
155 * prior to the commit point imply the dag has failed and must be
156 * retried */
157 dag_h->numCommitNodes = 1;
158 dag_h->numCommits = 0;
159 dag_h->numSuccedents = 1;
160
161 /* initialize the block, commit, and terminator nodes */
162 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
163 NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
164 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
165 NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
166 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
167 NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
168
169 pda = asmap->physInfo;
170 RF_ASSERT(pda != NULL);
171 /* parityInfo must describe entire parity unit */
172 RF_ASSERT(asmap->parityInfo->next == NULL);
173
174 /* initialize the data node */
175 if (!useMirror) {
176 /* read primary copy of data */
177 rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
178 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
179 rdNode->params[0].p = pda;
180 rdNode->params[1].p = pda->bufPtr;
181 rdNode->params[2].v = parityStripeID;
182 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
183 } else {
184 /* read secondary copy of data */
185 rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
186 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
187 rdNode->params[0].p = asmap->parityInfo;
188 rdNode->params[1].p = pda->bufPtr;
189 rdNode->params[2].v = parityStripeID;
190 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
191 }
192
193 /* connect header to block node */
194 RF_ASSERT(dag_h->numSuccedents == 1);
195 RF_ASSERT(blockNode->numAntecedents == 0);
196 dag_h->succedents[0] = blockNode;
197
198 /* connect block node to rdnode */
199 RF_ASSERT(blockNode->numSuccedents == 1);
200 RF_ASSERT(rdNode->numAntecedents == 1);
201 blockNode->succedents[0] = rdNode;
202 rdNode->antecedents[0] = blockNode;
203 rdNode->antType[0] = rf_control;
204
205 /* connect rdnode to commit node */
206 RF_ASSERT(rdNode->numSuccedents == 1);
207 RF_ASSERT(commitNode->numAntecedents == 1);
208 rdNode->succedents[0] = commitNode;
209 commitNode->antecedents[0] = rdNode;
210 commitNode->antType[0] = rf_control;
211
212 /* connect commit node to terminator */
213 RF_ASSERT(commitNode->numSuccedents == 1);
214 RF_ASSERT(termNode->numAntecedents == 1);
215 RF_ASSERT(termNode->numSuccedents == 0);
216 commitNode->succedents[0] = termNode;
217 termNode->antecedents[0] = commitNode;
218 termNode->antType[0] = rf_control;
219 }
220
221
222
223 /******************************************************************************
224 *
225 * creates a DAG to perform a degraded-mode read of data within one stripe.
226 * This DAG is as follows:
227 *
228 * Hdr -> Block -> Rud -> Xor -> Cmt -> T
229 * -> Rrd ->
230 * -> Rp -->
231 *
232 * Each R node is a successor of the L node
233 * One successor arc from each R node goes to C, and the other to X
234 * There is one Rud for each chunk of surviving user data requested by the
235 * user, and one Rrd for each chunk of surviving user data _not_ being read by
236 * the user
237 * R = read, ud = user data, rd = recovery (surviving) data, p = parity
238 * X = XOR, C = Commit, T = terminate
239 *
240 * The block node guarantees a single source node.
241 *
242 * Note: The target buffer for the XOR node is set to the actual user buffer
243 * where the failed data is supposed to end up. This buffer is zero'd by the
244 * code here. Thus, if you create a degraded read dag, use it, and then
245 * re-use, you have to be sure to zero the target buffer prior to the re-use.
246 *
247 * The recfunc argument at the end specifies the name and function used for
248 * the redundancy
249 * recovery function.
250 *
251 *****************************************************************************/
252
253 void
254 rf_CreateDegradedReadDAG(
255 RF_Raid_t * raidPtr,
256 RF_AccessStripeMap_t * asmap,
257 RF_DagHeader_t * dag_h,
258 void *bp,
259 RF_RaidAccessFlags_t flags,
260 RF_AllocListElem_t * allocList,
261 RF_RedFuncs_t * recFunc)
262 {
263 RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *xorNode, *blockNode;
264 RF_DagNode_t *commitNode, *rpNode, *termNode;
265 int nNodes, nRrdNodes, nRudNodes, nXorBufs, i;
266 int j, paramNum;
267 RF_SectorCount_t sectorsPerSU;
268 RF_ReconUnitNum_t which_ru;
269 char *overlappingPDAs;/* a temporary array of flags */
270 RF_AccessStripeMapHeader_t *new_asm_h[2];
271 RF_PhysDiskAddr_t *pda, *parityPDA;
272 RF_StripeNum_t parityStripeID;
273 RF_PhysDiskAddr_t *failedPDA;
274 RF_RaidLayout_t *layoutPtr;
275 char *rpBuf;
276
277 layoutPtr = &(raidPtr->Layout);
278 /* failedPDA points to the pda within the asm that targets the failed
279 * disk */
280 failedPDA = asmap->failedPDAs[0];
281 parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
282 asmap->raidAddress, &which_ru);
283 sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
284
285 if (rf_dagDebug) {
286 printf("[Creating degraded read DAG]\n");
287 }
288 RF_ASSERT(asmap->numDataFailed == 1);
289 dag_h->creator = "DegradedReadDAG";
290
291 /*
292 * generate two ASMs identifying the surviving data we need
293 * in order to recover the lost data
294 */
295
296 /* overlappingPDAs array must be zero'd */
297 RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
298 rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs,
299 &rpBuf, overlappingPDAs, allocList);
300
301 /*
302 * create all the nodes at once
303 *
304 * -1 because no access is generated for the failed pda
305 */
306 nRudNodes = asmap->numStripeUnitsAccessed - 1;
307 nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
308 ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
309 nNodes = 5 + nRudNodes + nRrdNodes; /* lock, unlock, xor, Rp, Rud,
310 * Rrd */
311 RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *),
312 allocList);
313 i = 0;
314 blockNode = &nodes[i];
315 i++;
316 commitNode = &nodes[i];
317 i++;
318 xorNode = &nodes[i];
319 i++;
320 rpNode = &nodes[i];
321 i++;
322 termNode = &nodes[i];
323 i++;
324 rudNodes = &nodes[i];
325 i += nRudNodes;
326 rrdNodes = &nodes[i];
327 i += nRrdNodes;
328 RF_ASSERT(i == nNodes);
329
330 /* initialize nodes */
331 dag_h->numCommitNodes = 1;
332 dag_h->numCommits = 0;
333 /* this dag can not commit until the commit node is reached errors
334 * prior to the commit point imply the dag has failed */
335 dag_h->numSuccedents = 1;
336
337 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
338 NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
339 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
340 NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
341 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
342 NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
343 rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc,
344 NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h,
345 recFunc->SimpleName, allocList);
346
347 /* fill in the Rud nodes */
348 for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) {
349 if (pda == failedPDA) {
350 i--;
351 continue;
352 }
353 rf_InitNode(&rudNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
354 rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
355 "Rud", allocList);
356 RF_ASSERT(pda);
357 rudNodes[i].params[0].p = pda;
358 rudNodes[i].params[1].p = pda->bufPtr;
359 rudNodes[i].params[2].v = parityStripeID;
360 rudNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
361 }
362
363 /* fill in the Rrd nodes */
364 i = 0;
365 if (new_asm_h[0]) {
366 for (pda = new_asm_h[0]->stripeMap->physInfo;
367 i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
368 i++, pda = pda->next) {
369 rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
370 rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
371 dag_h, "Rrd", allocList);
372 RF_ASSERT(pda);
373 rrdNodes[i].params[0].p = pda;
374 rrdNodes[i].params[1].p = pda->bufPtr;
375 rrdNodes[i].params[2].v = parityStripeID;
376 rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
377 }
378 }
379 if (new_asm_h[1]) {
380 for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
381 j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
382 j++, pda = pda->next) {
383 rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc,
384 rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
385 dag_h, "Rrd", allocList);
386 RF_ASSERT(pda);
387 rrdNodes[i + j].params[0].p = pda;
388 rrdNodes[i + j].params[1].p = pda->bufPtr;
389 rrdNodes[i + j].params[2].v = parityStripeID;
390 rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
391 }
392 }
393 /* make a PDA for the parity unit */
394 RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
395 parityPDA->row = asmap->parityInfo->row;
396 parityPDA->col = asmap->parityInfo->col;
397 parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
398 * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
399 parityPDA->numSector = failedPDA->numSector;
400
401 /* initialize the Rp node */
402 rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
403 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList);
404 rpNode->params[0].p = parityPDA;
405 rpNode->params[1].p = rpBuf;
406 rpNode->params[2].v = parityStripeID;
407 rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
408
409 /*
410 * the last and nastiest step is to assign all
411 * the parameters of the Xor node
412 */
413 paramNum = 0;
414 for (i = 0; i < nRrdNodes; i++) {
415 /* all the Rrd nodes need to be xored together */
416 xorNode->params[paramNum++] = rrdNodes[i].params[0];
417 xorNode->params[paramNum++] = rrdNodes[i].params[1];
418 }
419 for (i = 0; i < nRudNodes; i++) {
420 /* any Rud nodes that overlap the failed access need to be
421 * xored in */
422 if (overlappingPDAs[i]) {
423 RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
424 bcopy((char *) rudNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t));
425 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
426 xorNode->params[paramNum++].p = pda;
427 xorNode->params[paramNum++].p = pda->bufPtr;
428 }
429 }
430 RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
431
432 /* install parity pda as last set of params to be xor'd */
433 xorNode->params[paramNum++].p = parityPDA;
434 xorNode->params[paramNum++].p = rpBuf;
435
436 /*
437 * the last 2 params to the recovery xor node are
438 * the failed PDA and the raidPtr
439 */
440 xorNode->params[paramNum++].p = failedPDA;
441 xorNode->params[paramNum++].p = raidPtr;
442 RF_ASSERT(paramNum == 2 * nXorBufs + 2);
443
444 /*
445 * The xor node uses results[0] as the target buffer.
446 * Set pointer and zero the buffer. In the kernel, this
447 * may be a user buffer in which case we have to remap it.
448 */
449 xorNode->results[0] = failedPDA->bufPtr;
450 RF_BZERO(bp, failedPDA->bufPtr, rf_RaidAddressToByte(raidPtr,
451 failedPDA->numSector));
452
453 /* connect nodes to form graph */
454 /* connect the header to the block node */
455 RF_ASSERT(dag_h->numSuccedents == 1);
456 RF_ASSERT(blockNode->numAntecedents == 0);
457 dag_h->succedents[0] = blockNode;
458
459 /* connect the block node to the read nodes */
460 RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes));
461 RF_ASSERT(rpNode->numAntecedents == 1);
462 blockNode->succedents[0] = rpNode;
463 rpNode->antecedents[0] = blockNode;
464 rpNode->antType[0] = rf_control;
465 for (i = 0; i < nRrdNodes; i++) {
466 RF_ASSERT(rrdNodes[i].numSuccedents == 1);
467 blockNode->succedents[1 + i] = &rrdNodes[i];
468 rrdNodes[i].antecedents[0] = blockNode;
469 rrdNodes[i].antType[0] = rf_control;
470 }
471 for (i = 0; i < nRudNodes; i++) {
472 RF_ASSERT(rudNodes[i].numSuccedents == 1);
473 blockNode->succedents[1 + nRrdNodes + i] = &rudNodes[i];
474 rudNodes[i].antecedents[0] = blockNode;
475 rudNodes[i].antType[0] = rf_control;
476 }
477
478 /* connect the read nodes to the xor node */
479 RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes));
480 RF_ASSERT(rpNode->numSuccedents == 1);
481 rpNode->succedents[0] = xorNode;
482 xorNode->antecedents[0] = rpNode;
483 xorNode->antType[0] = rf_trueData;
484 for (i = 0; i < nRrdNodes; i++) {
485 RF_ASSERT(rrdNodes[i].numSuccedents == 1);
486 rrdNodes[i].succedents[0] = xorNode;
487 xorNode->antecedents[1 + i] = &rrdNodes[i];
488 xorNode->antType[1 + i] = rf_trueData;
489 }
490 for (i = 0; i < nRudNodes; i++) {
491 RF_ASSERT(rudNodes[i].numSuccedents == 1);
492 rudNodes[i].succedents[0] = xorNode;
493 xorNode->antecedents[1 + nRrdNodes + i] = &rudNodes[i];
494 xorNode->antType[1 + nRrdNodes + i] = rf_trueData;
495 }
496
497 /* connect the xor node to the commit node */
498 RF_ASSERT(xorNode->numSuccedents == 1);
499 RF_ASSERT(commitNode->numAntecedents == 1);
500 xorNode->succedents[0] = commitNode;
501 commitNode->antecedents[0] = xorNode;
502 commitNode->antType[0] = rf_control;
503
504 /* connect the termNode to the commit node */
505 RF_ASSERT(commitNode->numSuccedents == 1);
506 RF_ASSERT(termNode->numAntecedents == 1);
507 RF_ASSERT(termNode->numSuccedents == 0);
508 commitNode->succedents[0] = termNode;
509 termNode->antType[0] = rf_control;
510 termNode->antecedents[0] = commitNode;
511 }
512
513 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
514 /******************************************************************************
515 * Create a degraded read DAG for Chained Declustering
516 *
517 * Hdr -> Nil -> R(p/s)d -> Cmt -> Trm
518 *
519 * The "Rd" node reads data from the surviving disk in the mirror pair
520 * Rpd - read of primary copy
521 * Rsd - read of secondary copy
522 *
523 * Parameters: raidPtr - description of the physical array
524 * asmap - logical & physical addresses for this access
525 * bp - buffer ptr (for holding write data)
526 * flags - general flags (e.g. disk locking)
527 * allocList - list of memory allocated in DAG creation
528 *****************************************************************************/
529
530 void
531 rf_CreateRaidCDegradedReadDAG(
532 RF_Raid_t * raidPtr,
533 RF_AccessStripeMap_t * asmap,
534 RF_DagHeader_t * dag_h,
535 void *bp,
536 RF_RaidAccessFlags_t flags,
537 RF_AllocListElem_t * allocList)
538 {
539 RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
540 RF_StripeNum_t parityStripeID;
541 int useMirror, i, shiftable;
542 RF_ReconUnitNum_t which_ru;
543 RF_PhysDiskAddr_t *pda;
544
545 if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
546 shiftable = RF_TRUE;
547 } else {
548 shiftable = RF_FALSE;
549 }
550 useMirror = 0;
551 parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
552 asmap->raidAddress, &which_ru);
553
554 if (rf_dagDebug) {
555 printf("[Creating RAID C degraded read DAG]\n");
556 }
557 dag_h->creator = "RaidCDegradedReadDAG";
558 /* alloc the Wnd nodes and the Wmir node */
559 if (asmap->numDataFailed == 0)
560 useMirror = RF_FALSE;
561 else
562 useMirror = RF_TRUE;
563
564 /* total number of nodes = 1 + (block + commit + terminator) */
565 RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
566 i = 0;
567 rdNode = &nodes[i];
568 i++;
569 blockNode = &nodes[i];
570 i++;
571 commitNode = &nodes[i];
572 i++;
573 termNode = &nodes[i];
574 i++;
575
576 /*
577 * This dag can not commit until the commit node is reached.
578 * Errors prior to the commit point imply the dag has failed
579 * and must be retried.
580 */
581 dag_h->numCommitNodes = 1;
582 dag_h->numCommits = 0;
583 dag_h->numSuccedents = 1;
584
585 /* initialize the block, commit, and terminator nodes */
586 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
587 NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
588 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
589 NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
590 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
591 NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
592
593 pda = asmap->physInfo;
594 RF_ASSERT(pda != NULL);
595 /* parityInfo must describe entire parity unit */
596 RF_ASSERT(asmap->parityInfo->next == NULL);
597
598 /* initialize the data node */
599 if (!useMirror) {
600 rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
601 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
602 if (shiftable && rf_compute_workload_shift(raidPtr, pda)) {
603 /* shift this read to the next disk in line */
604 rdNode->params[0].p = asmap->parityInfo;
605 rdNode->params[1].p = pda->bufPtr;
606 rdNode->params[2].v = parityStripeID;
607 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
608 } else {
609 /* read primary copy */
610 rdNode->params[0].p = pda;
611 rdNode->params[1].p = pda->bufPtr;
612 rdNode->params[2].v = parityStripeID;
613 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
614 }
615 } else {
616 /* read secondary copy of data */
617 rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
618 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
619 rdNode->params[0].p = asmap->parityInfo;
620 rdNode->params[1].p = pda->bufPtr;
621 rdNode->params[2].v = parityStripeID;
622 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
623 }
624
625 /* connect header to block node */
626 RF_ASSERT(dag_h->numSuccedents == 1);
627 RF_ASSERT(blockNode->numAntecedents == 0);
628 dag_h->succedents[0] = blockNode;
629
630 /* connect block node to rdnode */
631 RF_ASSERT(blockNode->numSuccedents == 1);
632 RF_ASSERT(rdNode->numAntecedents == 1);
633 blockNode->succedents[0] = rdNode;
634 rdNode->antecedents[0] = blockNode;
635 rdNode->antType[0] = rf_control;
636
637 /* connect rdnode to commit node */
638 RF_ASSERT(rdNode->numSuccedents == 1);
639 RF_ASSERT(commitNode->numAntecedents == 1);
640 rdNode->succedents[0] = commitNode;
641 commitNode->antecedents[0] = rdNode;
642 commitNode->antType[0] = rf_control;
643
644 /* connect commit node to terminator */
645 RF_ASSERT(commitNode->numSuccedents == 1);
646 RF_ASSERT(termNode->numAntecedents == 1);
647 RF_ASSERT(termNode->numSuccedents == 0);
648 commitNode->succedents[0] = termNode;
649 termNode->antecedents[0] = commitNode;
650 termNode->antType[0] = rf_control;
651 }
652 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
653
654 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
655 /*
656 * XXX move this elsewhere?
657 */
658 void
659 rf_DD_GenerateFailedAccessASMs(
660 RF_Raid_t * raidPtr,
661 RF_AccessStripeMap_t * asmap,
662 RF_PhysDiskAddr_t ** pdap,
663 int *nNodep,
664 RF_PhysDiskAddr_t ** pqpdap,
665 int *nPQNodep,
666 RF_AllocListElem_t * allocList)
667 {
668 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
669 int PDAPerDisk, i;
670 RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
671 int numDataCol = layoutPtr->numDataCol;
672 int state;
673 RF_SectorNum_t suoff, suend;
674 unsigned firstDataCol, napdas, count;
675 RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0;
676 RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
677 RF_PhysDiskAddr_t *pda_p;
678 RF_PhysDiskAddr_t *phys_p;
679 RF_RaidAddr_t sosAddr;
680
681 /* determine how many pda's we will have to generate per unaccess
682 * stripe. If there is only one failed data unit, it is one; if two,
683 * possibly two, depending wether they overlap. */
684
685 fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
686 fone_end = fone_start + fone->numSector;
687
688 #define CONS_PDA(if,start,num) \
689 pda_p->row = asmap->if->row; pda_p->col = asmap->if->col; \
690 pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
691 pda_p->numSector = num; \
692 pda_p->next = NULL; \
693 RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
694
695 if (asmap->numDataFailed == 1) {
696 PDAPerDisk = 1;
697 state = 1;
698 RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
699 pda_p = *pqpdap;
700 /* build p */
701 CONS_PDA(parityInfo, fone_start, fone->numSector);
702 pda_p->type = RF_PDA_TYPE_PARITY;
703 pda_p++;
704 /* build q */
705 CONS_PDA(qInfo, fone_start, fone->numSector);
706 pda_p->type = RF_PDA_TYPE_Q;
707 } else {
708 ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
709 ftwo_end = ftwo_start + ftwo->numSector;
710 if (fone->numSector + ftwo->numSector > secPerSU) {
711 PDAPerDisk = 1;
712 state = 2;
713 RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
714 pda_p = *pqpdap;
715 CONS_PDA(parityInfo, 0, secPerSU);
716 pda_p->type = RF_PDA_TYPE_PARITY;
717 pda_p++;
718 CONS_PDA(qInfo, 0, secPerSU);
719 pda_p->type = RF_PDA_TYPE_Q;
720 } else {
721 PDAPerDisk = 2;
722 state = 3;
723 /* four of them, fone, then ftwo */
724 RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
725 pda_p = *pqpdap;
726 CONS_PDA(parityInfo, fone_start, fone->numSector);
727 pda_p->type = RF_PDA_TYPE_PARITY;
728 pda_p++;
729 CONS_PDA(qInfo, fone_start, fone->numSector);
730 pda_p->type = RF_PDA_TYPE_Q;
731 pda_p++;
732 CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
733 pda_p->type = RF_PDA_TYPE_PARITY;
734 pda_p++;
735 CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
736 pda_p->type = RF_PDA_TYPE_Q;
737 }
738 }
739 /* figure out number of nonaccessed pda */
740 napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0));
741 *nPQNodep = PDAPerDisk;
742
743 /* sweep over the over accessed pda's, figuring out the number of
744 * additional pda's to generate. Of course, skip the failed ones */
745
746 count = 0;
747 for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) {
748 if ((pda_p == fone) || (pda_p == ftwo))
749 continue;
750 suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector);
751 suend = suoff + pda_p->numSector;
752 switch (state) {
753 case 1: /* one failed PDA to overlap */
754 /* if a PDA doesn't contain the failed unit, it can
755 * only miss the start or end, not both */
756 if ((suoff > fone_start) || (suend < fone_end))
757 count++;
758 break;
759 case 2: /* whole stripe */
760 if (suoff) /* leak at begining */
761 count++;
762 if (suend < numDataCol) /* leak at end */
763 count++;
764 break;
765 case 3: /* two disjoint units */
766 if ((suoff > fone_start) || (suend < fone_end))
767 count++;
768 if ((suoff > ftwo_start) || (suend < ftwo_end))
769 count++;
770 break;
771 default:
772 RF_PANIC();
773 }
774 }
775
776 napdas += count;
777 *nNodep = napdas;
778 if (napdas == 0)
779 return; /* short circuit */
780
781 /* allocate up our list of pda's */
782
783 RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
784 *pdap = pda_p;
785
786 /* linkem together */
787 for (i = 0; i < (napdas - 1); i++)
788 pda_p[i].next = pda_p + (i + 1);
789
790 /* march through the one's up to the first accessed disk */
791 firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol;
792 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
793 for (i = 0; i < firstDataCol; i++) {
794 if ((pda_p - (*pdap)) == napdas)
795 continue;
796 pda_p->type = RF_PDA_TYPE_DATA;
797 pda_p->raidAddress = sosAddr + (i * secPerSU);
798 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
799 /* skip over dead disks */
800 if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
801 continue;
802 switch (state) {
803 case 1: /* fone */
804 pda_p->numSector = fone->numSector;
805 pda_p->raidAddress += fone_start;
806 pda_p->startSector += fone_start;
807 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
808 break;
809 case 2: /* full stripe */
810 pda_p->numSector = secPerSU;
811 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
812 break;
813 case 3: /* two slabs */
814 pda_p->numSector = fone->numSector;
815 pda_p->raidAddress += fone_start;
816 pda_p->startSector += fone_start;
817 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
818 pda_p++;
819 pda_p->type = RF_PDA_TYPE_DATA;
820 pda_p->raidAddress = sosAddr + (i * secPerSU);
821 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
822 pda_p->numSector = ftwo->numSector;
823 pda_p->raidAddress += ftwo_start;
824 pda_p->startSector += ftwo_start;
825 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
826 break;
827 default:
828 RF_PANIC();
829 }
830 pda_p++;
831 }
832
833 /* march through the touched stripe units */
834 for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) {
835 if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1]))
836 continue;
837 suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector);
838 suend = suoff + phys_p->numSector;
839 switch (state) {
840 case 1: /* single buffer */
841 if (suoff > fone_start) {
842 RF_ASSERT(suend >= fone_end);
843 /* The data read starts after the mapped
844 * access, snip off the begining */
845 pda_p->numSector = suoff - fone_start;
846 pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
847 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
848 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
849 pda_p++;
850 }
851 if (suend < fone_end) {
852 RF_ASSERT(suoff <= fone_start);
853 /* The data read stops before the end of the
854 * failed access, extend */
855 pda_p->numSector = fone_end - suend;
856 pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
857 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
858 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
859 pda_p++;
860 }
861 break;
862 case 2: /* whole stripe unit */
863 RF_ASSERT((suoff == 0) || (suend == secPerSU));
864 if (suend < secPerSU) { /* short read, snip from end
865 * on */
866 pda_p->numSector = secPerSU - suend;
867 pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
868 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
869 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
870 pda_p++;
871 } else
872 if (suoff > 0) { /* short at front */
873 pda_p->numSector = suoff;
874 pda_p->raidAddress = sosAddr + (i * secPerSU);
875 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
876 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
877 pda_p++;
878 }
879 break;
880 case 3: /* two nonoverlapping failures */
881 if ((suoff > fone_start) || (suend < fone_end)) {
882 if (suoff > fone_start) {
883 RF_ASSERT(suend >= fone_end);
884 /* The data read starts after the
885 * mapped access, snip off the
886 * begining */
887 pda_p->numSector = suoff - fone_start;
888 pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
889 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
890 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
891 pda_p++;
892 }
893 if (suend < fone_end) {
894 RF_ASSERT(suoff <= fone_start);
895 /* The data read stops before the end
896 * of the failed access, extend */
897 pda_p->numSector = fone_end - suend;
898 pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
899 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
900 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
901 pda_p++;
902 }
903 }
904 if ((suoff > ftwo_start) || (suend < ftwo_end)) {
905 if (suoff > ftwo_start) {
906 RF_ASSERT(suend >= ftwo_end);
907 /* The data read starts after the
908 * mapped access, snip off the
909 * begining */
910 pda_p->numSector = suoff - ftwo_start;
911 pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start;
912 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
913 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
914 pda_p++;
915 }
916 if (suend < ftwo_end) {
917 RF_ASSERT(suoff <= ftwo_start);
918 /* The data read stops before the end
919 * of the failed access, extend */
920 pda_p->numSector = ftwo_end - suend;
921 pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
922 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
923 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
924 pda_p++;
925 }
926 }
927 break;
928 default:
929 RF_PANIC();
930 }
931 }
932
933 /* after the last accessed disk */
934 for (; i < numDataCol; i++) {
935 if ((pda_p - (*pdap)) == napdas)
936 continue;
937 pda_p->type = RF_PDA_TYPE_DATA;
938 pda_p->raidAddress = sosAddr + (i * secPerSU);
939 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
940 /* skip over dead disks */
941 if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
942 continue;
943 switch (state) {
944 case 1: /* fone */
945 pda_p->numSector = fone->numSector;
946 pda_p->raidAddress += fone_start;
947 pda_p->startSector += fone_start;
948 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
949 break;
950 case 2: /* full stripe */
951 pda_p->numSector = secPerSU;
952 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
953 break;
954 case 3: /* two slabs */
955 pda_p->numSector = fone->numSector;
956 pda_p->raidAddress += fone_start;
957 pda_p->startSector += fone_start;
958 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
959 pda_p++;
960 pda_p->type = RF_PDA_TYPE_DATA;
961 pda_p->raidAddress = sosAddr + (i * secPerSU);
962 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
963 pda_p->numSector = ftwo->numSector;
964 pda_p->raidAddress += ftwo_start;
965 pda_p->startSector += ftwo_start;
966 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
967 break;
968 default:
969 RF_PANIC();
970 }
971 pda_p++;
972 }
973
974 RF_ASSERT(pda_p - *pdap == napdas);
975 return;
976 }
977 #define INIT_DISK_NODE(node,name) \
978 rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
979 (node)->succedents[0] = unblockNode; \
980 (node)->succedents[1] = recoveryNode; \
981 (node)->antecedents[0] = blockNode; \
982 (node)->antType[0] = rf_control
983
984 #define DISK_NODE_PARAMS(_node_,_p_) \
985 (_node_).params[0].p = _p_ ; \
986 (_node_).params[1].p = (_p_)->bufPtr; \
987 (_node_).params[2].v = parityStripeID; \
988 (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
989
990 void
991 rf_DoubleDegRead(
992 RF_Raid_t * raidPtr,
993 RF_AccessStripeMap_t * asmap,
994 RF_DagHeader_t * dag_h,
995 void *bp,
996 RF_RaidAccessFlags_t flags,
997 RF_AllocListElem_t * allocList,
998 char *redundantReadNodeName,
999 char *recoveryNodeName,
1000 int (*recovFunc) (RF_DagNode_t *))
1001 {
1002 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1003 RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode,
1004 *unblockNode, *rpNodes, *rqNodes, *termNode;
1005 RF_PhysDiskAddr_t *pda, *pqPDAs;
1006 RF_PhysDiskAddr_t *npdas;
1007 int nNodes, nRrdNodes, nRudNodes, i;
1008 RF_ReconUnitNum_t which_ru;
1009 int nReadNodes, nPQNodes;
1010 RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
1011 RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1];
1012 RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
1013
1014 if (rf_dagDebug)
1015 printf("[Creating Double Degraded Read DAG]\n");
1016 rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
1017
1018 nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
1019 nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes;
1020 nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes;
1021
1022 RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
1023 i = 0;
1024 blockNode = &nodes[i];
1025 i += 1;
1026 unblockNode = &nodes[i];
1027 i += 1;
1028 recoveryNode = &nodes[i];
1029 i += 1;
1030 termNode = &nodes[i];
1031 i += 1;
1032 rudNodes = &nodes[i];
1033 i += nRudNodes;
1034 rrdNodes = &nodes[i];
1035 i += nRrdNodes;
1036 rpNodes = &nodes[i];
1037 i += nPQNodes;
1038 rqNodes = &nodes[i];
1039 i += nPQNodes;
1040 RF_ASSERT(i == nNodes);
1041
1042 dag_h->numSuccedents = 1;
1043 dag_h->succedents[0] = blockNode;
1044 dag_h->creator = "DoubleDegRead";
1045 dag_h->numCommits = 0;
1046 dag_h->numCommitNodes = 1; /* unblock */
1047
1048 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList);
1049 termNode->antecedents[0] = unblockNode;
1050 termNode->antType[0] = rf_control;
1051 termNode->antecedents[1] = recoveryNode;
1052 termNode->antType[1] = rf_control;
1053
1054 /* init the block and unblock nodes */
1055 /* The block node has all nodes except itself, unblock and recovery as
1056 * successors. Similarly for predecessors of the unblock. */
1057 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
1058 rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList);
1059
1060 for (i = 0; i < nReadNodes; i++) {
1061 blockNode->succedents[i] = rudNodes + i;
1062 unblockNode->antecedents[i] = rudNodes + i;
1063 unblockNode->antType[i] = rf_control;
1064 }
1065 unblockNode->succedents[0] = termNode;
1066
1067 /* The recovery node has all the reads as predecessors, and the term
1068 * node as successors. It gets a pda as a param from each of the read
1069 * nodes plus the raidPtr. For each failed unit is has a result pda. */
1070 rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
1071 1, /* succesors */
1072 nReadNodes, /* preds */
1073 nReadNodes + 2, /* params */
1074 asmap->numDataFailed, /* results */
1075 dag_h, recoveryNodeName, allocList);
1076
1077 recoveryNode->succedents[0] = termNode;
1078 for (i = 0; i < nReadNodes; i++) {
1079 recoveryNode->antecedents[i] = rudNodes + i;
1080 recoveryNode->antType[i] = rf_trueData;
1081 }
1082
1083 /* build the read nodes, then come back and fill in recovery params
1084 * and results */
1085 pda = asmap->physInfo;
1086 for (i = 0; i < nRudNodes; pda = pda->next) {
1087 if ((pda == failedPDA) || (pda == failedPDAtwo))
1088 continue;
1089 INIT_DISK_NODE(rudNodes + i, "Rud");
1090 RF_ASSERT(pda);
1091 DISK_NODE_PARAMS(rudNodes[i], pda);
1092 i++;
1093 }
1094
1095 pda = npdas;
1096 for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
1097 INIT_DISK_NODE(rrdNodes + i, "Rrd");
1098 RF_ASSERT(pda);
1099 DISK_NODE_PARAMS(rrdNodes[i], pda);
1100 }
1101
1102 /* redundancy pdas */
1103 pda = pqPDAs;
1104 INIT_DISK_NODE(rpNodes, "Rp");
1105 RF_ASSERT(pda);
1106 DISK_NODE_PARAMS(rpNodes[0], pda);
1107 pda++;
1108 INIT_DISK_NODE(rqNodes, redundantReadNodeName);
1109 RF_ASSERT(pda);
1110 DISK_NODE_PARAMS(rqNodes[0], pda);
1111 if (nPQNodes == 2) {
1112 pda++;
1113 INIT_DISK_NODE(rpNodes + 1, "Rp");
1114 RF_ASSERT(pda);
1115 DISK_NODE_PARAMS(rpNodes[1], pda);
1116 pda++;
1117 INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName);
1118 RF_ASSERT(pda);
1119 DISK_NODE_PARAMS(rqNodes[1], pda);
1120 }
1121 /* fill in recovery node params */
1122 for (i = 0; i < nReadNodes; i++)
1123 recoveryNode->params[i] = rudNodes[i].params[0]; /* pda */
1124 recoveryNode->params[i++].p = (void *) raidPtr;
1125 recoveryNode->params[i++].p = (void *) asmap;
1126 recoveryNode->results[0] = failedPDA;
1127 if (asmap->numDataFailed == 2)
1128 recoveryNode->results[1] = failedPDAtwo;
1129
1130 /* zero fill the target data buffers? */
1131 }
1132
1133 #endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */
1134