Home | History | Annotate | Line # | Download | only in raidframe
rf_dagdegrd.c revision 1.10
      1 /*	$NetBSD: rf_dagdegrd.c,v 1.10 2001/11/13 07:11:12 lukem Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * rf_dagdegrd.c
     31  *
     32  * code for creating degraded read DAGs
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_dagdegrd.c,v 1.10 2001/11/13 07:11:12 lukem Exp $");
     37 
     38 #include <dev/raidframe/raidframevar.h>
     39 
     40 #include "rf_archs.h"
     41 #include "rf_raid.h"
     42 #include "rf_dag.h"
     43 #include "rf_dagutils.h"
     44 #include "rf_dagfuncs.h"
     45 #include "rf_debugMem.h"
     46 #include "rf_memchunk.h"
     47 #include "rf_general.h"
     48 #include "rf_dagdegrd.h"
     49 
     50 
     51 /******************************************************************************
     52  *
     53  * General comments on DAG creation:
     54  *
     55  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     56  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     57  * is reached, the execution engine will halt forward execution and work
     58  * backward through the graph, executing the undo functions.  Assuming that
     59  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     60  * does not make changes to permanent state, the graph will fail atomically.
     61  * If an error occurs after the Cmt node executes, the engine will roll-forward
     62  * through the graph, blindly executing nodes until it reaches the end.
     63  * If a graph reaches the end, it is assumed to have completed successfully.
     64  *
     65  * A graph has only 1 Cmt node.
     66  *
     67  */
     68 
     69 
     70 /******************************************************************************
     71  *
     72  * The following wrappers map the standard DAG creation interface to the
     73  * DAG creation routines.  Additionally, these wrappers enable experimentation
     74  * with new DAG structures by providing an extra level of indirection, allowing
     75  * the DAG creation routines to be replaced at this single point.
     76  */
     77 
     78 void
     79 rf_CreateRaidFiveDegradedReadDAG(
     80     RF_Raid_t * raidPtr,
     81     RF_AccessStripeMap_t * asmap,
     82     RF_DagHeader_t * dag_h,
     83     void *bp,
     84     RF_RaidAccessFlags_t flags,
     85     RF_AllocListElem_t * allocList)
     86 {
     87 	rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
     88 	    &rf_xorRecoveryFuncs);
     89 }
     90 
     91 
     92 /******************************************************************************
     93  *
     94  * DAG creation code begins here
     95  */
     96 
     97 
     98 /******************************************************************************
     99  * Create a degraded read DAG for RAID level 1
    100  *
    101  * Hdr -> Nil -> R(p/s)d -> Commit -> Trm
    102  *
    103  * The "Rd" node reads data from the surviving disk in the mirror pair
    104  *   Rpd - read of primary copy
    105  *   Rsd - read of secondary copy
    106  *
    107  * Parameters:  raidPtr   - description of the physical array
    108  *              asmap     - logical & physical addresses for this access
    109  *              bp        - buffer ptr (for holding write data)
    110  *              flags     - general flags (e.g. disk locking)
    111  *              allocList - list of memory allocated in DAG creation
    112  *****************************************************************************/
    113 
    114 void
    115 rf_CreateRaidOneDegradedReadDAG(
    116     RF_Raid_t * raidPtr,
    117     RF_AccessStripeMap_t * asmap,
    118     RF_DagHeader_t * dag_h,
    119     void *bp,
    120     RF_RaidAccessFlags_t flags,
    121     RF_AllocListElem_t * allocList)
    122 {
    123 	RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
    124 	RF_StripeNum_t parityStripeID;
    125 	RF_ReconUnitNum_t which_ru;
    126 	RF_PhysDiskAddr_t *pda;
    127 	int     useMirror, i;
    128 
    129 	useMirror = 0;
    130 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
    131 	    asmap->raidAddress, &which_ru);
    132 	if (rf_dagDebug) {
    133 		printf("[Creating RAID level 1 degraded read DAG]\n");
    134 	}
    135 	dag_h->creator = "RaidOneDegradedReadDAG";
    136 	/* alloc the Wnd nodes and the Wmir node */
    137 	if (asmap->numDataFailed == 0)
    138 		useMirror = RF_FALSE;
    139 	else
    140 		useMirror = RF_TRUE;
    141 
    142 	/* total number of nodes = 1 + (block + commit + terminator) */
    143 	RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
    144 	i = 0;
    145 	rdNode = &nodes[i];
    146 	i++;
    147 	blockNode = &nodes[i];
    148 	i++;
    149 	commitNode = &nodes[i];
    150 	i++;
    151 	termNode = &nodes[i];
    152 	i++;
    153 
    154 	/* this dag can not commit until the commit node is reached.   errors
    155 	 * prior to the commit point imply the dag has failed and must be
    156 	 * retried */
    157 	dag_h->numCommitNodes = 1;
    158 	dag_h->numCommits = 0;
    159 	dag_h->numSuccedents = 1;
    160 
    161 	/* initialize the block, commit, and terminator nodes */
    162 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    163 	    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
    164 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    165 	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
    166 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    167 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    168 
    169 	pda = asmap->physInfo;
    170 	RF_ASSERT(pda != NULL);
    171 	/* parityInfo must describe entire parity unit */
    172 	RF_ASSERT(asmap->parityInfo->next == NULL);
    173 
    174 	/* initialize the data node */
    175 	if (!useMirror) {
    176 		/* read primary copy of data */
    177 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    178 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
    179 		rdNode->params[0].p = pda;
    180 		rdNode->params[1].p = pda->bufPtr;
    181 		rdNode->params[2].v = parityStripeID;
    182 		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    183 	} else {
    184 		/* read secondary copy of data */
    185 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    186 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
    187 		rdNode->params[0].p = asmap->parityInfo;
    188 		rdNode->params[1].p = pda->bufPtr;
    189 		rdNode->params[2].v = parityStripeID;
    190 		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    191 	}
    192 
    193 	/* connect header to block node */
    194 	RF_ASSERT(dag_h->numSuccedents == 1);
    195 	RF_ASSERT(blockNode->numAntecedents == 0);
    196 	dag_h->succedents[0] = blockNode;
    197 
    198 	/* connect block node to rdnode */
    199 	RF_ASSERT(blockNode->numSuccedents == 1);
    200 	RF_ASSERT(rdNode->numAntecedents == 1);
    201 	blockNode->succedents[0] = rdNode;
    202 	rdNode->antecedents[0] = blockNode;
    203 	rdNode->antType[0] = rf_control;
    204 
    205 	/* connect rdnode to commit node */
    206 	RF_ASSERT(rdNode->numSuccedents == 1);
    207 	RF_ASSERT(commitNode->numAntecedents == 1);
    208 	rdNode->succedents[0] = commitNode;
    209 	commitNode->antecedents[0] = rdNode;
    210 	commitNode->antType[0] = rf_control;
    211 
    212 	/* connect commit node to terminator */
    213 	RF_ASSERT(commitNode->numSuccedents == 1);
    214 	RF_ASSERT(termNode->numAntecedents == 1);
    215 	RF_ASSERT(termNode->numSuccedents == 0);
    216 	commitNode->succedents[0] = termNode;
    217 	termNode->antecedents[0] = commitNode;
    218 	termNode->antType[0] = rf_control;
    219 }
    220 
    221 
    222 
    223 /******************************************************************************
    224  *
    225  * creates a DAG to perform a degraded-mode read of data within one stripe.
    226  * This DAG is as follows:
    227  *
    228  * Hdr -> Block -> Rud -> Xor -> Cmt -> T
    229  *              -> Rrd ->
    230  *              -> Rp -->
    231  *
    232  * Each R node is a successor of the L node
    233  * One successor arc from each R node goes to C, and the other to X
    234  * There is one Rud for each chunk of surviving user data requested by the
    235  * user, and one Rrd for each chunk of surviving user data _not_ being read by
    236  * the user
    237  * R = read, ud = user data, rd = recovery (surviving) data, p = parity
    238  * X = XOR, C = Commit, T = terminate
    239  *
    240  * The block node guarantees a single source node.
    241  *
    242  * Note:  The target buffer for the XOR node is set to the actual user buffer
    243  * where the failed data is supposed to end up.  This buffer is zero'd by the
    244  * code here.  Thus, if you create a degraded read dag, use it, and then
    245  * re-use, you have to be sure to zero the target buffer prior to the re-use.
    246  *
    247  * The recfunc argument at the end specifies the name and function used for
    248  * the redundancy
    249  * recovery function.
    250  *
    251  *****************************************************************************/
    252 
    253 void
    254 rf_CreateDegradedReadDAG(
    255     RF_Raid_t * raidPtr,
    256     RF_AccessStripeMap_t * asmap,
    257     RF_DagHeader_t * dag_h,
    258     void *bp,
    259     RF_RaidAccessFlags_t flags,
    260     RF_AllocListElem_t * allocList,
    261     RF_RedFuncs_t * recFunc)
    262 {
    263 	RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *xorNode, *blockNode;
    264 	RF_DagNode_t *commitNode, *rpNode, *termNode;
    265 	int     nNodes, nRrdNodes, nRudNodes, nXorBufs, i;
    266 	int     j, paramNum;
    267 	RF_SectorCount_t sectorsPerSU;
    268 	RF_ReconUnitNum_t which_ru;
    269 	char   *overlappingPDAs;/* a temporary array of flags */
    270 	RF_AccessStripeMapHeader_t *new_asm_h[2];
    271 	RF_PhysDiskAddr_t *pda, *parityPDA;
    272 	RF_StripeNum_t parityStripeID;
    273 	RF_PhysDiskAddr_t *failedPDA;
    274 	RF_RaidLayout_t *layoutPtr;
    275 	char   *rpBuf;
    276 
    277 	layoutPtr = &(raidPtr->Layout);
    278 	/* failedPDA points to the pda within the asm that targets the failed
    279 	 * disk */
    280 	failedPDA = asmap->failedPDAs[0];
    281 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
    282 	    asmap->raidAddress, &which_ru);
    283 	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
    284 
    285 	if (rf_dagDebug) {
    286 		printf("[Creating degraded read DAG]\n");
    287 	}
    288 	RF_ASSERT(asmap->numDataFailed == 1);
    289 	dag_h->creator = "DegradedReadDAG";
    290 
    291 	/*
    292          * generate two ASMs identifying the surviving data we need
    293          * in order to recover the lost data
    294          */
    295 
    296 	/* overlappingPDAs array must be zero'd */
    297 	RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
    298 	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs,
    299 	    &rpBuf, overlappingPDAs, allocList);
    300 
    301 	/*
    302          * create all the nodes at once
    303          *
    304          * -1 because no access is generated for the failed pda
    305          */
    306 	nRudNodes = asmap->numStripeUnitsAccessed - 1;
    307 	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
    308 	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
    309 	nNodes = 5 + nRudNodes + nRrdNodes;	/* lock, unlock, xor, Rp, Rud,
    310 						 * Rrd */
    311 	RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *),
    312 	    allocList);
    313 	i = 0;
    314 	blockNode = &nodes[i];
    315 	i++;
    316 	commitNode = &nodes[i];
    317 	i++;
    318 	xorNode = &nodes[i];
    319 	i++;
    320 	rpNode = &nodes[i];
    321 	i++;
    322 	termNode = &nodes[i];
    323 	i++;
    324 	rudNodes = &nodes[i];
    325 	i += nRudNodes;
    326 	rrdNodes = &nodes[i];
    327 	i += nRrdNodes;
    328 	RF_ASSERT(i == nNodes);
    329 
    330 	/* initialize nodes */
    331 	dag_h->numCommitNodes = 1;
    332 	dag_h->numCommits = 0;
    333 	/* this dag can not commit until the commit node is reached errors
    334 	 * prior to the commit point imply the dag has failed */
    335 	dag_h->numSuccedents = 1;
    336 
    337 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    338 	    NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
    339 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    340 	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
    341 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    342 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    343 	rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc,
    344 	    NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h,
    345 	    recFunc->SimpleName, allocList);
    346 
    347 	/* fill in the Rud nodes */
    348 	for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) {
    349 		if (pda == failedPDA) {
    350 			i--;
    351 			continue;
    352 		}
    353 		rf_InitNode(&rudNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
    354 		    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    355 		    "Rud", allocList);
    356 		RF_ASSERT(pda);
    357 		rudNodes[i].params[0].p = pda;
    358 		rudNodes[i].params[1].p = pda->bufPtr;
    359 		rudNodes[i].params[2].v = parityStripeID;
    360 		rudNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    361 	}
    362 
    363 	/* fill in the Rrd nodes */
    364 	i = 0;
    365 	if (new_asm_h[0]) {
    366 		for (pda = new_asm_h[0]->stripeMap->physInfo;
    367 		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    368 		    i++, pda = pda->next) {
    369 			rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
    370 			    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
    371 			    dag_h, "Rrd", allocList);
    372 			RF_ASSERT(pda);
    373 			rrdNodes[i].params[0].p = pda;
    374 			rrdNodes[i].params[1].p = pda->bufPtr;
    375 			rrdNodes[i].params[2].v = parityStripeID;
    376 			rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    377 		}
    378 	}
    379 	if (new_asm_h[1]) {
    380 		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
    381 		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    382 		    j++, pda = pda->next) {
    383 			rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc,
    384 			    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
    385 			    dag_h, "Rrd", allocList);
    386 			RF_ASSERT(pda);
    387 			rrdNodes[i + j].params[0].p = pda;
    388 			rrdNodes[i + j].params[1].p = pda->bufPtr;
    389 			rrdNodes[i + j].params[2].v = parityStripeID;
    390 			rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    391 		}
    392 	}
    393 	/* make a PDA for the parity unit */
    394 	RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    395 	parityPDA->row = asmap->parityInfo->row;
    396 	parityPDA->col = asmap->parityInfo->col;
    397 	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
    398 	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    399 	parityPDA->numSector = failedPDA->numSector;
    400 
    401 	/* initialize the Rp node */
    402 	rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    403 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList);
    404 	rpNode->params[0].p = parityPDA;
    405 	rpNode->params[1].p = rpBuf;
    406 	rpNode->params[2].v = parityStripeID;
    407 	rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    408 
    409 	/*
    410          * the last and nastiest step is to assign all
    411          * the parameters of the Xor node
    412          */
    413 	paramNum = 0;
    414 	for (i = 0; i < nRrdNodes; i++) {
    415 		/* all the Rrd nodes need to be xored together */
    416 		xorNode->params[paramNum++] = rrdNodes[i].params[0];
    417 		xorNode->params[paramNum++] = rrdNodes[i].params[1];
    418 	}
    419 	for (i = 0; i < nRudNodes; i++) {
    420 		/* any Rud nodes that overlap the failed access need to be
    421 		 * xored in */
    422 		if (overlappingPDAs[i]) {
    423 			RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    424 			bcopy((char *) rudNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t));
    425 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
    426 			xorNode->params[paramNum++].p = pda;
    427 			xorNode->params[paramNum++].p = pda->bufPtr;
    428 		}
    429 	}
    430 	RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
    431 
    432 	/* install parity pda as last set of params to be xor'd */
    433 	xorNode->params[paramNum++].p = parityPDA;
    434 	xorNode->params[paramNum++].p = rpBuf;
    435 
    436 	/*
    437          * the last 2 params to the recovery xor node are
    438          * the failed PDA and the raidPtr
    439          */
    440 	xorNode->params[paramNum++].p = failedPDA;
    441 	xorNode->params[paramNum++].p = raidPtr;
    442 	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
    443 
    444 	/*
    445          * The xor node uses results[0] as the target buffer.
    446          * Set pointer and zero the buffer. In the kernel, this
    447          * may be a user buffer in which case we have to remap it.
    448          */
    449 	xorNode->results[0] = failedPDA->bufPtr;
    450 	RF_BZERO(bp, failedPDA->bufPtr, rf_RaidAddressToByte(raidPtr,
    451 		failedPDA->numSector));
    452 
    453 	/* connect nodes to form graph */
    454 	/* connect the header to the block node */
    455 	RF_ASSERT(dag_h->numSuccedents == 1);
    456 	RF_ASSERT(blockNode->numAntecedents == 0);
    457 	dag_h->succedents[0] = blockNode;
    458 
    459 	/* connect the block node to the read nodes */
    460 	RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes));
    461 	RF_ASSERT(rpNode->numAntecedents == 1);
    462 	blockNode->succedents[0] = rpNode;
    463 	rpNode->antecedents[0] = blockNode;
    464 	rpNode->antType[0] = rf_control;
    465 	for (i = 0; i < nRrdNodes; i++) {
    466 		RF_ASSERT(rrdNodes[i].numSuccedents == 1);
    467 		blockNode->succedents[1 + i] = &rrdNodes[i];
    468 		rrdNodes[i].antecedents[0] = blockNode;
    469 		rrdNodes[i].antType[0] = rf_control;
    470 	}
    471 	for (i = 0; i < nRudNodes; i++) {
    472 		RF_ASSERT(rudNodes[i].numSuccedents == 1);
    473 		blockNode->succedents[1 + nRrdNodes + i] = &rudNodes[i];
    474 		rudNodes[i].antecedents[0] = blockNode;
    475 		rudNodes[i].antType[0] = rf_control;
    476 	}
    477 
    478 	/* connect the read nodes to the xor node */
    479 	RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes));
    480 	RF_ASSERT(rpNode->numSuccedents == 1);
    481 	rpNode->succedents[0] = xorNode;
    482 	xorNode->antecedents[0] = rpNode;
    483 	xorNode->antType[0] = rf_trueData;
    484 	for (i = 0; i < nRrdNodes; i++) {
    485 		RF_ASSERT(rrdNodes[i].numSuccedents == 1);
    486 		rrdNodes[i].succedents[0] = xorNode;
    487 		xorNode->antecedents[1 + i] = &rrdNodes[i];
    488 		xorNode->antType[1 + i] = rf_trueData;
    489 	}
    490 	for (i = 0; i < nRudNodes; i++) {
    491 		RF_ASSERT(rudNodes[i].numSuccedents == 1);
    492 		rudNodes[i].succedents[0] = xorNode;
    493 		xorNode->antecedents[1 + nRrdNodes + i] = &rudNodes[i];
    494 		xorNode->antType[1 + nRrdNodes + i] = rf_trueData;
    495 	}
    496 
    497 	/* connect the xor node to the commit node */
    498 	RF_ASSERT(xorNode->numSuccedents == 1);
    499 	RF_ASSERT(commitNode->numAntecedents == 1);
    500 	xorNode->succedents[0] = commitNode;
    501 	commitNode->antecedents[0] = xorNode;
    502 	commitNode->antType[0] = rf_control;
    503 
    504 	/* connect the termNode to the commit node */
    505 	RF_ASSERT(commitNode->numSuccedents == 1);
    506 	RF_ASSERT(termNode->numAntecedents == 1);
    507 	RF_ASSERT(termNode->numSuccedents == 0);
    508 	commitNode->succedents[0] = termNode;
    509 	termNode->antType[0] = rf_control;
    510 	termNode->antecedents[0] = commitNode;
    511 }
    512 
    513 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
    514 /******************************************************************************
    515  * Create a degraded read DAG for Chained Declustering
    516  *
    517  * Hdr -> Nil -> R(p/s)d -> Cmt -> Trm
    518  *
    519  * The "Rd" node reads data from the surviving disk in the mirror pair
    520  *   Rpd - read of primary copy
    521  *   Rsd - read of secondary copy
    522  *
    523  * Parameters:  raidPtr   - description of the physical array
    524  *              asmap     - logical & physical addresses for this access
    525  *              bp        - buffer ptr (for holding write data)
    526  *              flags     - general flags (e.g. disk locking)
    527  *              allocList - list of memory allocated in DAG creation
    528  *****************************************************************************/
    529 
    530 void
    531 rf_CreateRaidCDegradedReadDAG(
    532     RF_Raid_t * raidPtr,
    533     RF_AccessStripeMap_t * asmap,
    534     RF_DagHeader_t * dag_h,
    535     void *bp,
    536     RF_RaidAccessFlags_t flags,
    537     RF_AllocListElem_t * allocList)
    538 {
    539 	RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
    540 	RF_StripeNum_t parityStripeID;
    541 	int     useMirror, i, shiftable;
    542 	RF_ReconUnitNum_t which_ru;
    543 	RF_PhysDiskAddr_t *pda;
    544 
    545 	if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
    546 		shiftable = RF_TRUE;
    547 	} else {
    548 		shiftable = RF_FALSE;
    549 	}
    550 	useMirror = 0;
    551 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
    552 	    asmap->raidAddress, &which_ru);
    553 
    554 	if (rf_dagDebug) {
    555 		printf("[Creating RAID C degraded read DAG]\n");
    556 	}
    557 	dag_h->creator = "RaidCDegradedReadDAG";
    558 	/* alloc the Wnd nodes and the Wmir node */
    559 	if (asmap->numDataFailed == 0)
    560 		useMirror = RF_FALSE;
    561 	else
    562 		useMirror = RF_TRUE;
    563 
    564 	/* total number of nodes = 1 + (block + commit + terminator) */
    565 	RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
    566 	i = 0;
    567 	rdNode = &nodes[i];
    568 	i++;
    569 	blockNode = &nodes[i];
    570 	i++;
    571 	commitNode = &nodes[i];
    572 	i++;
    573 	termNode = &nodes[i];
    574 	i++;
    575 
    576 	/*
    577          * This dag can not commit until the commit node is reached.
    578          * Errors prior to the commit point imply the dag has failed
    579          * and must be retried.
    580          */
    581 	dag_h->numCommitNodes = 1;
    582 	dag_h->numCommits = 0;
    583 	dag_h->numSuccedents = 1;
    584 
    585 	/* initialize the block, commit, and terminator nodes */
    586 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    587 	    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
    588 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    589 	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
    590 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    591 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    592 
    593 	pda = asmap->physInfo;
    594 	RF_ASSERT(pda != NULL);
    595 	/* parityInfo must describe entire parity unit */
    596 	RF_ASSERT(asmap->parityInfo->next == NULL);
    597 
    598 	/* initialize the data node */
    599 	if (!useMirror) {
    600 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    601 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
    602 		if (shiftable && rf_compute_workload_shift(raidPtr, pda)) {
    603 			/* shift this read to the next disk in line */
    604 			rdNode->params[0].p = asmap->parityInfo;
    605 			rdNode->params[1].p = pda->bufPtr;
    606 			rdNode->params[2].v = parityStripeID;
    607 			rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    608 		} else {
    609 			/* read primary copy */
    610 			rdNode->params[0].p = pda;
    611 			rdNode->params[1].p = pda->bufPtr;
    612 			rdNode->params[2].v = parityStripeID;
    613 			rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    614 		}
    615 	} else {
    616 		/* read secondary copy of data */
    617 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    618 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
    619 		rdNode->params[0].p = asmap->parityInfo;
    620 		rdNode->params[1].p = pda->bufPtr;
    621 		rdNode->params[2].v = parityStripeID;
    622 		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    623 	}
    624 
    625 	/* connect header to block node */
    626 	RF_ASSERT(dag_h->numSuccedents == 1);
    627 	RF_ASSERT(blockNode->numAntecedents == 0);
    628 	dag_h->succedents[0] = blockNode;
    629 
    630 	/* connect block node to rdnode */
    631 	RF_ASSERT(blockNode->numSuccedents == 1);
    632 	RF_ASSERT(rdNode->numAntecedents == 1);
    633 	blockNode->succedents[0] = rdNode;
    634 	rdNode->antecedents[0] = blockNode;
    635 	rdNode->antType[0] = rf_control;
    636 
    637 	/* connect rdnode to commit node */
    638 	RF_ASSERT(rdNode->numSuccedents == 1);
    639 	RF_ASSERT(commitNode->numAntecedents == 1);
    640 	rdNode->succedents[0] = commitNode;
    641 	commitNode->antecedents[0] = rdNode;
    642 	commitNode->antType[0] = rf_control;
    643 
    644 	/* connect commit node to terminator */
    645 	RF_ASSERT(commitNode->numSuccedents == 1);
    646 	RF_ASSERT(termNode->numAntecedents == 1);
    647 	RF_ASSERT(termNode->numSuccedents == 0);
    648 	commitNode->succedents[0] = termNode;
    649 	termNode->antecedents[0] = commitNode;
    650 	termNode->antType[0] = rf_control;
    651 }
    652 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
    653 
    654 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
    655 /*
    656  * XXX move this elsewhere?
    657  */
    658 void
    659 rf_DD_GenerateFailedAccessASMs(
    660     RF_Raid_t * raidPtr,
    661     RF_AccessStripeMap_t * asmap,
    662     RF_PhysDiskAddr_t ** pdap,
    663     int *nNodep,
    664     RF_PhysDiskAddr_t ** pqpdap,
    665     int *nPQNodep,
    666     RF_AllocListElem_t * allocList)
    667 {
    668 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    669 	int     PDAPerDisk, i;
    670 	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
    671 	int     numDataCol = layoutPtr->numDataCol;
    672 	int     state;
    673 	RF_SectorNum_t suoff, suend;
    674 	unsigned firstDataCol, napdas, count;
    675 	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0;
    676 	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
    677 	RF_PhysDiskAddr_t *pda_p;
    678 	RF_PhysDiskAddr_t *phys_p;
    679 	RF_RaidAddr_t sosAddr;
    680 
    681 	/* determine how many pda's we will have to generate per unaccess
    682 	 * stripe. If there is only one failed data unit, it is one; if two,
    683 	 * possibly two, depending wether they overlap. */
    684 
    685 	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
    686 	fone_end = fone_start + fone->numSector;
    687 
    688 #define CONS_PDA(if,start,num) \
    689   pda_p->row = asmap->if->row;    pda_p->col = asmap->if->col; \
    690   pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
    691   pda_p->numSector = num; \
    692   pda_p->next = NULL; \
    693   RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
    694 
    695 	if (asmap->numDataFailed == 1) {
    696 		PDAPerDisk = 1;
    697 		state = 1;
    698 		RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    699 		pda_p = *pqpdap;
    700 		/* build p */
    701 		CONS_PDA(parityInfo, fone_start, fone->numSector);
    702 		pda_p->type = RF_PDA_TYPE_PARITY;
    703 		pda_p++;
    704 		/* build q */
    705 		CONS_PDA(qInfo, fone_start, fone->numSector);
    706 		pda_p->type = RF_PDA_TYPE_Q;
    707 	} else {
    708 		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
    709 		ftwo_end = ftwo_start + ftwo->numSector;
    710 		if (fone->numSector + ftwo->numSector > secPerSU) {
    711 			PDAPerDisk = 1;
    712 			state = 2;
    713 			RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    714 			pda_p = *pqpdap;
    715 			CONS_PDA(parityInfo, 0, secPerSU);
    716 			pda_p->type = RF_PDA_TYPE_PARITY;
    717 			pda_p++;
    718 			CONS_PDA(qInfo, 0, secPerSU);
    719 			pda_p->type = RF_PDA_TYPE_Q;
    720 		} else {
    721 			PDAPerDisk = 2;
    722 			state = 3;
    723 			/* four of them, fone, then ftwo */
    724 			RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    725 			pda_p = *pqpdap;
    726 			CONS_PDA(parityInfo, fone_start, fone->numSector);
    727 			pda_p->type = RF_PDA_TYPE_PARITY;
    728 			pda_p++;
    729 			CONS_PDA(qInfo, fone_start, fone->numSector);
    730 			pda_p->type = RF_PDA_TYPE_Q;
    731 			pda_p++;
    732 			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
    733 			pda_p->type = RF_PDA_TYPE_PARITY;
    734 			pda_p++;
    735 			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
    736 			pda_p->type = RF_PDA_TYPE_Q;
    737 		}
    738 	}
    739 	/* figure out number of nonaccessed pda */
    740 	napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0));
    741 	*nPQNodep = PDAPerDisk;
    742 
    743 	/* sweep over the over accessed pda's, figuring out the number of
    744 	 * additional pda's to generate. Of course, skip the failed ones */
    745 
    746 	count = 0;
    747 	for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) {
    748 		if ((pda_p == fone) || (pda_p == ftwo))
    749 			continue;
    750 		suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector);
    751 		suend = suoff + pda_p->numSector;
    752 		switch (state) {
    753 		case 1:	/* one failed PDA to overlap */
    754 			/* if a PDA doesn't contain the failed unit, it can
    755 			 * only miss the start or end, not both */
    756 			if ((suoff > fone_start) || (suend < fone_end))
    757 				count++;
    758 			break;
    759 		case 2:	/* whole stripe */
    760 			if (suoff)	/* leak at begining */
    761 				count++;
    762 			if (suend < numDataCol)	/* leak at end */
    763 				count++;
    764 			break;
    765 		case 3:	/* two disjoint units */
    766 			if ((suoff > fone_start) || (suend < fone_end))
    767 				count++;
    768 			if ((suoff > ftwo_start) || (suend < ftwo_end))
    769 				count++;
    770 			break;
    771 		default:
    772 			RF_PANIC();
    773 		}
    774 	}
    775 
    776 	napdas += count;
    777 	*nNodep = napdas;
    778 	if (napdas == 0)
    779 		return;		/* short circuit */
    780 
    781 	/* allocate up our list of pda's */
    782 
    783 	RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    784 	*pdap = pda_p;
    785 
    786 	/* linkem together */
    787 	for (i = 0; i < (napdas - 1); i++)
    788 		pda_p[i].next = pda_p + (i + 1);
    789 
    790 	/* march through the one's up to the first accessed disk */
    791 	firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol;
    792 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    793 	for (i = 0; i < firstDataCol; i++) {
    794 		if ((pda_p - (*pdap)) == napdas)
    795 			continue;
    796 		pda_p->type = RF_PDA_TYPE_DATA;
    797 		pda_p->raidAddress = sosAddr + (i * secPerSU);
    798 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
    799 		/* skip over dead disks */
    800 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
    801 			continue;
    802 		switch (state) {
    803 		case 1:	/* fone */
    804 			pda_p->numSector = fone->numSector;
    805 			pda_p->raidAddress += fone_start;
    806 			pda_p->startSector += fone_start;
    807 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    808 			break;
    809 		case 2:	/* full stripe */
    810 			pda_p->numSector = secPerSU;
    811 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
    812 			break;
    813 		case 3:	/* two slabs */
    814 			pda_p->numSector = fone->numSector;
    815 			pda_p->raidAddress += fone_start;
    816 			pda_p->startSector += fone_start;
    817 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    818 			pda_p++;
    819 			pda_p->type = RF_PDA_TYPE_DATA;
    820 			pda_p->raidAddress = sosAddr + (i * secPerSU);
    821 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
    822 			pda_p->numSector = ftwo->numSector;
    823 			pda_p->raidAddress += ftwo_start;
    824 			pda_p->startSector += ftwo_start;
    825 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    826 			break;
    827 		default:
    828 			RF_PANIC();
    829 		}
    830 		pda_p++;
    831 	}
    832 
    833 	/* march through the touched stripe units */
    834 	for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) {
    835 		if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1]))
    836 			continue;
    837 		suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector);
    838 		suend = suoff + phys_p->numSector;
    839 		switch (state) {
    840 		case 1:	/* single buffer */
    841 			if (suoff > fone_start) {
    842 				RF_ASSERT(suend >= fone_end);
    843 				/* The data read starts after the mapped
    844 				 * access, snip off the begining */
    845 				pda_p->numSector = suoff - fone_start;
    846 				pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
    847 				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
    848 				RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    849 				pda_p++;
    850 			}
    851 			if (suend < fone_end) {
    852 				RF_ASSERT(suoff <= fone_start);
    853 				/* The data read stops before the end of the
    854 				 * failed access, extend */
    855 				pda_p->numSector = fone_end - suend;
    856 				pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
    857 				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
    858 				RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    859 				pda_p++;
    860 			}
    861 			break;
    862 		case 2:	/* whole stripe unit */
    863 			RF_ASSERT((suoff == 0) || (suend == secPerSU));
    864 			if (suend < secPerSU) {	/* short read, snip from end
    865 						 * on */
    866 				pda_p->numSector = secPerSU - suend;
    867 				pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
    868 				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
    869 				RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    870 				pda_p++;
    871 			} else
    872 				if (suoff > 0) {	/* short at front */
    873 					pda_p->numSector = suoff;
    874 					pda_p->raidAddress = sosAddr + (i * secPerSU);
    875 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
    876 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    877 					pda_p++;
    878 				}
    879 			break;
    880 		case 3:	/* two nonoverlapping failures */
    881 			if ((suoff > fone_start) || (suend < fone_end)) {
    882 				if (suoff > fone_start) {
    883 					RF_ASSERT(suend >= fone_end);
    884 					/* The data read starts after the
    885 					 * mapped access, snip off the
    886 					 * begining */
    887 					pda_p->numSector = suoff - fone_start;
    888 					pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
    889 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
    890 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    891 					pda_p++;
    892 				}
    893 				if (suend < fone_end) {
    894 					RF_ASSERT(suoff <= fone_start);
    895 					/* The data read stops before the end
    896 					 * of the failed access, extend */
    897 					pda_p->numSector = fone_end - suend;
    898 					pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
    899 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
    900 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    901 					pda_p++;
    902 				}
    903 			}
    904 			if ((suoff > ftwo_start) || (suend < ftwo_end)) {
    905 				if (suoff > ftwo_start) {
    906 					RF_ASSERT(suend >= ftwo_end);
    907 					/* The data read starts after the
    908 					 * mapped access, snip off the
    909 					 * begining */
    910 					pda_p->numSector = suoff - ftwo_start;
    911 					pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start;
    912 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
    913 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    914 					pda_p++;
    915 				}
    916 				if (suend < ftwo_end) {
    917 					RF_ASSERT(suoff <= ftwo_start);
    918 					/* The data read stops before the end
    919 					 * of the failed access, extend */
    920 					pda_p->numSector = ftwo_end - suend;
    921 					pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
    922 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
    923 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    924 					pda_p++;
    925 				}
    926 			}
    927 			break;
    928 		default:
    929 			RF_PANIC();
    930 		}
    931 	}
    932 
    933 	/* after the last accessed disk */
    934 	for (; i < numDataCol; i++) {
    935 		if ((pda_p - (*pdap)) == napdas)
    936 			continue;
    937 		pda_p->type = RF_PDA_TYPE_DATA;
    938 		pda_p->raidAddress = sosAddr + (i * secPerSU);
    939 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
    940 		/* skip over dead disks */
    941 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
    942 			continue;
    943 		switch (state) {
    944 		case 1:	/* fone */
    945 			pda_p->numSector = fone->numSector;
    946 			pda_p->raidAddress += fone_start;
    947 			pda_p->startSector += fone_start;
    948 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    949 			break;
    950 		case 2:	/* full stripe */
    951 			pda_p->numSector = secPerSU;
    952 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
    953 			break;
    954 		case 3:	/* two slabs */
    955 			pda_p->numSector = fone->numSector;
    956 			pda_p->raidAddress += fone_start;
    957 			pda_p->startSector += fone_start;
    958 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    959 			pda_p++;
    960 			pda_p->type = RF_PDA_TYPE_DATA;
    961 			pda_p->raidAddress = sosAddr + (i * secPerSU);
    962 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
    963 			pda_p->numSector = ftwo->numSector;
    964 			pda_p->raidAddress += ftwo_start;
    965 			pda_p->startSector += ftwo_start;
    966 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    967 			break;
    968 		default:
    969 			RF_PANIC();
    970 		}
    971 		pda_p++;
    972 	}
    973 
    974 	RF_ASSERT(pda_p - *pdap == napdas);
    975 	return;
    976 }
    977 #define INIT_DISK_NODE(node,name) \
    978 rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
    979 (node)->succedents[0] = unblockNode; \
    980 (node)->succedents[1] = recoveryNode; \
    981 (node)->antecedents[0] = blockNode; \
    982 (node)->antType[0] = rf_control
    983 
    984 #define DISK_NODE_PARAMS(_node_,_p_) \
    985   (_node_).params[0].p = _p_ ; \
    986   (_node_).params[1].p = (_p_)->bufPtr; \
    987   (_node_).params[2].v = parityStripeID; \
    988   (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
    989 
    990 void
    991 rf_DoubleDegRead(
    992     RF_Raid_t * raidPtr,
    993     RF_AccessStripeMap_t * asmap,
    994     RF_DagHeader_t * dag_h,
    995     void *bp,
    996     RF_RaidAccessFlags_t flags,
    997     RF_AllocListElem_t * allocList,
    998     char *redundantReadNodeName,
    999     char *recoveryNodeName,
   1000     int (*recovFunc) (RF_DagNode_t *))
   1001 {
   1002 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
   1003 	RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode,
   1004 	       *unblockNode, *rpNodes, *rqNodes, *termNode;
   1005 	RF_PhysDiskAddr_t *pda, *pqPDAs;
   1006 	RF_PhysDiskAddr_t *npdas;
   1007 	int     nNodes, nRrdNodes, nRudNodes, i;
   1008 	RF_ReconUnitNum_t which_ru;
   1009 	int     nReadNodes, nPQNodes;
   1010 	RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
   1011 	RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1];
   1012 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
   1013 
   1014 	if (rf_dagDebug)
   1015 		printf("[Creating Double Degraded Read DAG]\n");
   1016 	rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
   1017 
   1018 	nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
   1019 	nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes;
   1020 	nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes;
   1021 
   1022 	RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   1023 	i = 0;
   1024 	blockNode = &nodes[i];
   1025 	i += 1;
   1026 	unblockNode = &nodes[i];
   1027 	i += 1;
   1028 	recoveryNode = &nodes[i];
   1029 	i += 1;
   1030 	termNode = &nodes[i];
   1031 	i += 1;
   1032 	rudNodes = &nodes[i];
   1033 	i += nRudNodes;
   1034 	rrdNodes = &nodes[i];
   1035 	i += nRrdNodes;
   1036 	rpNodes = &nodes[i];
   1037 	i += nPQNodes;
   1038 	rqNodes = &nodes[i];
   1039 	i += nPQNodes;
   1040 	RF_ASSERT(i == nNodes);
   1041 
   1042 	dag_h->numSuccedents = 1;
   1043 	dag_h->succedents[0] = blockNode;
   1044 	dag_h->creator = "DoubleDegRead";
   1045 	dag_h->numCommits = 0;
   1046 	dag_h->numCommitNodes = 1;	/* unblock */
   1047 
   1048 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList);
   1049 	termNode->antecedents[0] = unblockNode;
   1050 	termNode->antType[0] = rf_control;
   1051 	termNode->antecedents[1] = recoveryNode;
   1052 	termNode->antType[1] = rf_control;
   1053 
   1054 	/* init the block and unblock nodes */
   1055 	/* The block node has all nodes except itself, unblock and recovery as
   1056 	 * successors. Similarly for predecessors of the unblock. */
   1057 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
   1058 	rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList);
   1059 
   1060 	for (i = 0; i < nReadNodes; i++) {
   1061 		blockNode->succedents[i] = rudNodes + i;
   1062 		unblockNode->antecedents[i] = rudNodes + i;
   1063 		unblockNode->antType[i] = rf_control;
   1064 	}
   1065 	unblockNode->succedents[0] = termNode;
   1066 
   1067 	/* The recovery node has all the reads as predecessors, and the term
   1068 	 * node as successors. It gets a pda as a param from each of the read
   1069 	 * nodes plus the raidPtr. For each failed unit is has a result pda. */
   1070 	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
   1071 	    1,			/* succesors */
   1072 	    nReadNodes,		/* preds */
   1073 	    nReadNodes + 2,	/* params */
   1074 	    asmap->numDataFailed,	/* results */
   1075 	    dag_h, recoveryNodeName, allocList);
   1076 
   1077 	recoveryNode->succedents[0] = termNode;
   1078 	for (i = 0; i < nReadNodes; i++) {
   1079 		recoveryNode->antecedents[i] = rudNodes + i;
   1080 		recoveryNode->antType[i] = rf_trueData;
   1081 	}
   1082 
   1083 	/* build the read nodes, then come back and fill in recovery params
   1084 	 * and results */
   1085 	pda = asmap->physInfo;
   1086 	for (i = 0; i < nRudNodes; pda = pda->next) {
   1087 		if ((pda == failedPDA) || (pda == failedPDAtwo))
   1088 			continue;
   1089 		INIT_DISK_NODE(rudNodes + i, "Rud");
   1090 		RF_ASSERT(pda);
   1091 		DISK_NODE_PARAMS(rudNodes[i], pda);
   1092 		i++;
   1093 	}
   1094 
   1095 	pda = npdas;
   1096 	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
   1097 		INIT_DISK_NODE(rrdNodes + i, "Rrd");
   1098 		RF_ASSERT(pda);
   1099 		DISK_NODE_PARAMS(rrdNodes[i], pda);
   1100 	}
   1101 
   1102 	/* redundancy pdas */
   1103 	pda = pqPDAs;
   1104 	INIT_DISK_NODE(rpNodes, "Rp");
   1105 	RF_ASSERT(pda);
   1106 	DISK_NODE_PARAMS(rpNodes[0], pda);
   1107 	pda++;
   1108 	INIT_DISK_NODE(rqNodes, redundantReadNodeName);
   1109 	RF_ASSERT(pda);
   1110 	DISK_NODE_PARAMS(rqNodes[0], pda);
   1111 	if (nPQNodes == 2) {
   1112 		pda++;
   1113 		INIT_DISK_NODE(rpNodes + 1, "Rp");
   1114 		RF_ASSERT(pda);
   1115 		DISK_NODE_PARAMS(rpNodes[1], pda);
   1116 		pda++;
   1117 		INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName);
   1118 		RF_ASSERT(pda);
   1119 		DISK_NODE_PARAMS(rqNodes[1], pda);
   1120 	}
   1121 	/* fill in recovery node params */
   1122 	for (i = 0; i < nReadNodes; i++)
   1123 		recoveryNode->params[i] = rudNodes[i].params[0];	/* pda */
   1124 	recoveryNode->params[i++].p = (void *) raidPtr;
   1125 	recoveryNode->params[i++].p = (void *) asmap;
   1126 	recoveryNode->results[0] = failedPDA;
   1127 	if (asmap->numDataFailed == 2)
   1128 		recoveryNode->results[1] = failedPDAtwo;
   1129 
   1130 	/* zero fill the target data buffers? */
   1131 }
   1132 
   1133 #endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */
   1134